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1 Introduction

The AdS/CFT duality predicts that asymptotically AdS5 × S5 supersymmetric black holes
in type IIB supergravity correspond to a class of BPS states in maximally supersymmetric
Yang-Mills theory on R×S3 [1]. A notable problem in this context is to derive the Bekenstein-
Hawking entropy of the black holes from the dual Yang-Mills theory [2]. In recent years,
remarkable progress in this area has led to such a holographic derivation of the entropy of
the known black hole [3–9]. However, a full resolution of this problem naturally requires a
complete classification of black holes in this context, which itself is a difficult open problem
as explained in [10].

In fact, all known such black hole solutions are solutions to five-dimensional STU gauged
supergravity, that is, minimal gauged supergravity coupled to two vector multiplets. This
theory arises as a consistent dimensional reduction of type IIB supergravity on S5 that
retains only the KK zero modes on the sphere [11]. The bosonic field content consists of a
metric, three Maxwell fields and two real scalar fields. The theory has AdS5 with vanishing
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matter fields as the unique maximally supersymmetric solution [12]. Asymptotically AdS5
solutions in this theory can carry a number of conserved charges: the mass M , two angular
momenta J1, J2 and three electric charges Q1, Q2, Q3. Supersymmetric AdS5 solutions
satisfy the BPS equality

M = |J1|
ℓ

+ |J2|
ℓ

+ |Q1| + |Q2| + |Q3| , (1.1)

where ℓ is the AdS5 radius. The most general known supersymmetric black hole solution in
this theory is a four parameter family, which carries angular momenta J1, J2 and charges Q1,
Q2, Q3 related by one nonlinear constraint, with the mass determined by (1.1) [13].1 The
special case with equal angular momenta was first found by Gutowski and Reall [12]. This
immediately raises the following question: is this the most general supersymmetric AdS5
black hole? The purpose of this paper is to address this question within five-dimensional
STU gauged supergravity.2

There is a further truncation of IIB supergravity to five-dimensional minimal gauged
supergravity. This also corresponds to a consistent truncation of STU supergravity obtained
by setting the three Maxwell fields equal and the scalars to zero (so the electric charges
are equal). The most general known supersymmetric black hole solution in this theory is
the Chong-Cvetic-Lu-Pope (CCLP) solution [18], which corresponds to the equal charge
case of the black hole found in [13]. The special case with equal angular momenta is the
Gutowski-Reall (GR) black hole which was the first example of a supersymmetric black hole
in AdS5 [19]. We have previously established two uniqueness theorems for supersymmetric
solutions to minimal gauged supergravity that are timelike outside a regular horizon. The
first result of this kind established uniqueness of such solutions under the assumption of a
compatible SU(2) symmetry, establishing that the GR black hole or its near-horizon geometry
are the only solutions in this class [10]. The second result established uniqueness for solutions
with a compatible toric symmetry and a Calabi-toric Kähler base space [20], showing that
the CCLP black hole or its near-horizon geometry are the only solutions in this class. Both
of these results make essential use of the uniqueness of the near-horizon geometry [19, 21],
but no global assumptions on the exterior region of the spacetime.

In this paper we will generalise these results to STU supergravity. The main challenge is
that, unlike in the minimal theory, the Maxwell fields and scalar fields are not fully determined
by the Kähler base geometry and therefore these must be solved for simultaneously to the
metric. The classification of timelike supersymmetric solutions to five-dimensional STU
gauged supergravity is equivalent to a problem defined on a Kähler base space that is
orthogonal to the supersymmetric Killing field [12]. This is analogous to the corresponding
classification in minimal gauged supergravity [22], where it has been further shown that
supersymmetry reduces to finding a class of Kähler metrics that satisfy a complicated fourth
order ODE in the curvature [23]. In the STU theory the full set of supersymmetric constraints

1A non-extremal black hole that carries six independent conserved charges M , Ji, QI has been found [14].
As far as we are aware, it has not been checked that its BPS limit is equal to the known supersymmetric
black hole [13].

2The possibility of hairy supersymmetric black holes in other truncations of supergravity has recently been
investigated [15–17].
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has not been previously written down explicitly. We fill this gap (see section 2.1) and find
that in this more general theory, supersymmetry does not imply an explicit constraint Kähler
base geometry which is instead coupled to the scalars and the Maxwell fields. In any case,
for solutions that are also invariant under a toric symmetry this reduces to a complicated
PDE problem for a toric-Kähler metric. To make progress we follow the same strategy as in
the minimal theory and make further assumptions on the Kähler base space.

Motivated by this, we introduce a class of toric-Kähler metrics that we refer to as
separable because they can be described in terms of single-variable functions in an orthogonal
coordinate system. We will show that these naturally unify product-toric, Calabi-toric and
ortho-toric Kähler metrics. In fact, these three classes arose in a general study of Kähler
surfaces admitting a Hamiltonian 2-form, a concept that was introduced in [24]. In particular,
any toric-Kähler surface admitting a Hamiltonian 2-form must be one of these types [25].
Therefore, our definition of separable toric-Kähler surfaces provides an alternative approach to
the study of Kähler surfaces that admit Hamiltonian 2-forms which may be worthy of further
investigation. We also define an associated class of separable 2-forms which are similarly
described by single-variable functions in the same orthogonal coordinates (the Kähler and
Ricci form are two such examples). We then define timelike supersymmetric toric solutions to
be separable if they have a separable Kähler base and compatible separable Maxwell fields.

We are now ready to state our main results which are summarised by the following
theorems.

Theorem 1. Any supersymmetric toric solution to five-dimensional STU gauged supergravity,
that is timelike and separable outside a smooth horizon with compact (locally) spherical
cross-sections, is locally isometric to the known black hole [13] or its near-horizon geometry.

This is a generalisation of the aforementioned theorem proven in minimal supergravity
for Calabi-toric Kähler bases [20]. The strategy for the proof is as follows. First, we use the
classification of near-horizon geometries [26] to completely fix the single-variable functions
of one of the orthogonal coordinates defined by separability (an angular coordinate). Then
supersymmetry reduces to an ODE for the single-variable functions of the other orthogonal
coordinate (a radial coordinate), which can be explicitly solved for under the relevant black hole
boundary conditions. A key step in the proof is the near-horizon analysis, which shows that the
only separable toric-Kähler base space compatible with a smooth horizon is Calabi-toric, that
is, the product-toric and orthotoric bases are not allowed. This therefore also gives a stronger
form of the theorem in minimal supergravity that we previously established [20], as follows.

Theorem 2. Any supersymmetric toric solution to five-dimensional minimal gauged super-
gravity, that is timelike with a separable Kähler base outside a smooth horizon with compact
cross-sections, is locally isometric to the CCLP black hole or its near-horizon geometry.

A special case of the separable supersymmetric solutions of Calabi-type correspond to
(locally) SU(2) × U(1) invariant solutions. Surprisingly, the uniqueness proof for this class is
more involved and requires the stronger assumption of analyticity (as in the minimal theory).

Theorem 3. Any supersymmetric solution with a local SU(2) × U(1) symmetry to five-
dimensional STU gauged supergravity, that is timelike outside an analytic horizon with
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compact (locally) spherical cross-sections, is locally isometric to the GR black hole [12] or its
near-horizon geometry.

We emphasise that these uniqueness theorems do not make any global assumptions on
the exterior spacetime such as topology or asymptotics. Therefore, they also rule out the
existence of smooth or analytic solutions that are asymptotically locally AdS5 (other than
trivial quotients of the known black hole). In particular, this implies that the supersymmetric
black holes with squashed boundary sphere do not have smooth horizons [27, 28] (in the
minimal theory it has been shown the horizons are C1 but not C2 [10]). We also emphasise
that in the STU theory we need to impose the extra assumption that the cross-section is
locally S3 (spherical) because, in contrast to the minimal theory, there exist near-horizon
geometries with S1 × S2 (ring) or T 3 (torus) topology [26]. Unfortunately, our techniques do
not apply to these other near-horizon geometries because they possess null supersymmetry.
Therefore, our result does not address the existence of black rings in STU gauged supergravity,
which remans an interesting open problem.

The organisation of this paper is as follows. In section 2 we review supersymmetric
solutions to five-dimensional gauged supergravity, define the subclass with a compatible toric
symmetry, and derive the associated toric data for the near-horizon geometry. In section 3
we define the concept of separable toric-Kähler metrics and associated separable 2-forms; we
have presented this section in a self-contained way as it may be of independent mathematical
interest. In section 4 we introduce separable supersymmetric solutions and prove the above
black hole uniqueness theorems. In section 5 we close with a Discussion. We also include
an appendix with some auxiliary results on Hamiltonian 2-forms, and a simplified form of
the known black hole [13] and its near-horizon geometry.

2 Supersymmetric solutions with toric symmetry

In this section we first recall the supergravity theory and the known constraints on timelike
supersymmetric solutions. We then impose toric symmetry and examine the constraints on
the toric data arising from the presence of a smooth near-horizon geometry.

2.1 Timelike supersymmetric solutions

The bosonic content of five-dimensional N = 1 gauged supergravity coupled to n− 1 vector
multiplets comprises of a spacetime metric g, n abelian gauge fields AI , I = 1, . . . , n, and n−1
real scalar fields all defined on a five-dimensional manifold M . We work in the conventions
of [26] (see also [12]). The scalars can be represented by n real positive scalar fields XI

subject to the constraint
1
6CIJKX

IXJXK = 1 , (2.1)

where CIJK = C(IJK) are a set of real constants that obey

CIJKCJ ′(LMCPQ)K′δJJ
′
δKK

′ = 4δI(LCMPQ) , (2.2)

which means the scalars are in a symmetric space. It is convenient to define

XI = 1
6CIJKX

JXK , (2.3)
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so that (2.1) becomes XIX
I = 1. The action is

S = 1
16π

∫ (
Rg ⋆ 1−QIJFI ∧ ⋆FJ −QIJdXI ∧ ⋆dXJ − 1

6CIJKFI ∧FJ ∧AK + 2ℓ−2V ⋆ 1
)
,

(2.4)
where FI = dAI are the Maxwell fields and

QIJ = 9
2XIXJ − 1

2CIJKX
K . (2.5)

Equation (2.2) ensures the latter is invertible with inverse

QIJ = 2XIXJ − 6CIJKXK , (2.6)

where CIJK := CIJK and it follows that

XI = 9
2C

IJKXJXK . (2.7)

The scalar potential is

V = 27CIJKX̄IX̄JXK , (2.8)

where X̄I are positive constants. The unique maximally supersymmetric solution of this
theory is AdS5 with radius ℓ and vanishing Maxwell fields and constant scalars XI = X̄I [12].
We will be mainly interested in STU gauged supergravity which is given by taking n = 3,
CIJK = 1 if (IJK) is a permutation of (123) and zero otherwise, and X̄I = 1 (so X̄I = 1/3).
The truncation to minimal supergravity is given by constant scalars XI = X̄I and equal gauge
fields AI = X̄IA (which is also a truncation of STU supergravity). We find it convenient
to introduce a rescaled set of constants ζI := 3ℓ−1X̄I .

The general form of supersymmetric solutions was determined in [12], following the
analysis for minimal gauged supergravity [22]. Given a supercovariantly constant spinor one
can construct several spinor bilinears: a real scalar f , a Killing vector field V and three
real 2-forms J (i), i = 1, 2, 3. These satisfy

V µVµ = −f2 , (2.9)

implying that V is either timelike (in some open region) or globally null. In this paper we will
focus on the timelike class, that is, we assume there is some open region U ⊂M where V is
strictly timelike. In the timelike case we can assume that f > 0 in U and write the metric as

g = −f2(dt+ ω)2 + f−1h , (2.10)

where V = ∂t, h is a Riemannian metric on the orthogonal base space B, and ω is a 1-form on
B defined by ιV ω = 0 and dω = −d(f−2V ). The 2-forms J (i) can now be regarded as anti-self
dual (ASD) 2-forms on B with respect to the volume form vol(h) on B, where (dt+ω)∧vol(h)
is positively oriented in spacetime, that also satisfy the algebra of unit quaternions

J
(i)a

cJ
(j)c

b = −δijδab + ϵijkJ
(k)a

b . (2.11)
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Supersymmetry then implies that the base space (B, h) is Kähler with a Kähler form J := J (1),

∇aJ
(2)
bc = PaJ

(3)
bc , ∇aJ

(3)
bc = −PaJ (2)

bc , (2.12)

where ∇ is the metric connection of h,

P = ζIA
I , (2.13)

the Maxwell field takes the form

FI = d
(
fXI(dt+ ω)

)
+ F I , (2.14)

and the magnetic field F I = dAI is given by

F I = ΘI − 3f−1CIJKζJXKJ , (2.15)

for some self-dual (SD) 2-forms ΘI on B that obey

G+ = −3
2XIΘI , (2.16)

where
G± := 1

2f(dω ± ⋆4dω) , (2.17)

which encode the SD and ASD parts of dω and ⋆4 is the Hodge dual on the base. Equa-
tion (2.12) implies that the Ricci form Rab := 1

2RabcdJ
cd is given by R = dP and hence (2.13),

(2.15) in particular imply that

R− 1
4RJ = ζIΘI , (2.18)

and that the scalar f is determined by

f = −12
R
CIJKζIζJXK , (2.19)

where R is the scalar curvature of the base.
The conditions required by supersymmetry must be supplemented by the equations of

motion. In particular, the Bianchi identity dFI = 0 and the Maxwell equations reduce to

dF I = 0 , (2.20)

and

d⋆4 d(f−1XI) = −1
6CIJKΘJ ∧ΘK + 2

3ζIf
−1G−∧J + 2

3f
−2(QIJCJMNζMζN + ζIζJX

J)⋆4 1 ,
(2.21)

respectively. In order to fully determine ω we expand its ASD part in the basis J (i) by writing

G− = −ℓ
3f

48 λiJ
(i) , (2.22)
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where λi are functions on B. As we show below, the Maxwell equation (2.21) gives an
expression for λ1 in terms of XI , f and ΘI , whereas λ2, λ3 must satisfy a set of PDEs arising
from the integrability (i.e. closure) of the equation

dω = f−1(G+ +G−) . (2.23)

Conversely, given a Kähler base (B, h, J), scalars XI and SD two-forms ΘI that satisfy
the above conditions, one can reconstruct a timelike supersymmetric solution with f , ω
determined by (2.19) and (2.23) where G± are given by (2.16) and (2.22).

It is convenient to repackage the scalars into a new set of scalar fields ΦI defined by

ΦI := 3f−1CIJKζJXK . (2.24)

The inverse transformation is given by

XI = fℓ

3

(1
2ℓ

2ζIζJΦJ −GIJΦJ
)
, (2.25)

where GIJ := 2Q̄IJ is defined by (2.5) with X̄I in place of XI (note for STU supergravity
GIJ = δIJ ). We can recover the function f from the scalars ΦI by using CIJKXIXJXK = 2/9
(which follows from XIXI = 1 and (2.7)) which gives

f−3 = ℓ3

6 C
IJK

(1
2ℓ

2ζIζPΦP −GIPΦP
)(1

2ℓ
2ζJζQΦQ−GJQΦQ

)(1
2ℓ

2ζKζRΦR−GKRΦR
)
.

(2.26)
We also introduce a basis of SD 2-forms I(i) that satisfy the quaternion algebra (2.11)
and expand

ΘI = ΘI
i I

(i) , (2.27)

for functions ΘI
i . In terms of these scalars (2.15) is simply

F I = ΘI − ΦIJ , (2.28)

so the Bianchi identity is

dΘI = dΦI ∧ J , (2.29)

equation (2.19) becomes

R = −4ζIΦI , (2.30)

and the Maxwell equation (2.21) reads

−∇2
(
GIJΦJ + 1

8ℓ
2ζIR

)
+ 1
ℓ
CIJK(ΦJΦK − ΘJ

i ΘK
i ) + ℓ2

12ζIλ1 = 0 , (2.31)

where we have used (2.2), (2.22) and the quaternion algebra (2.11).3 Multiplying by X̄I we
can solve the equation (2.31) for λ1 (note X̄IζI = 3ℓ−1) resulting in

λ1 = 1
2∇

2R+ 4
ℓ2
CIJKX̄

I(ΘJ
i ΘK

i − ΦJΦK) . (2.32)

3This in particular implies J(i) ∧ J(j) = −2δij ⋆4 1 and I(i) ∧ I(j) = 2δij ⋆4 1.
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Equation (2.23) now reads

dω = ℓ

2

(
GIJΦJ + ℓ2

8 ζIR
)

ΘI − ℓ3

48λiJ
(i) . (2.33)

The integrability condition for this latter equation, namely that the r.h.s. is a closed 2-form
reduces to a constraint as follows.

Using the duality properties of ΘI and J (i) we can write the integrability condition
d2ω = 0 in the equivalent form

∇a

[(
GIJΦJ + ℓ2

8 ζIR
)

ΘI
abJ

b
c

]
− ℓ2

24
[
∇cλ1 − (∇aλ3 +P aλ2)J (2)

ac + (∇aλ2 −P aλ3)J (3)
ac

]
= 0 ,

(2.34)
where we have used (2.11) and (2.12). Equation (2.34) should be interpreted as a PDE
for (λ2, λ3) with λ1 fixed by (2.32). The integrability condition for (2.34) is given by its
divergence which is,

∇c∇a

[(
GIJΦJ + ℓ2

8 ζIR
)

ΘI
abJ

(1)b
c

]
− ℓ2

24∇
2λ1 = 0 , (2.35)

where we have used (2.18) together with orthogonality of SD and ASD 2-forms. Observe
that the constraint (2.35) with λ1 given by (2.32) involves only the scalars, the SD two-forms
ΘI and the Kähler base geometry. For minimal supergravity, it can be checked that (2.35)
reduces to the following constraint on the curvature of the Kähler base [23],

∇2
(1

2∇
2R+ 2

3RabR
ab − 1

3R
2
)

+ ∇c(Rca∇aR) = 0 , (2.36)

where we have used Rab = RacJ
c
b. Interestingly, in contrast to the minimal theory, in the

general theory considered here, the constraint (2.35) is not purely in terms of the base geometry,
and therefore it is unclear what constraints (if any) there are on the Kähler base geometry.

We can now summarise the construction of any timelike supersymmetric solution. Choose
a Kähler base (B, h, J) and a set of SD two-forms ΘI and scalar fields ΦI on B that
obey (2.18), (2.30), (2.29), (2.31), (2.35), where λ1 is given by (2.32). Then we can solve (2.34)
for λ2, λ3, since (2.35) is the integrability condition for this equation. Next we can solve (2.33)
for ω, since (2.34) is the integrability condition for this equation. The function f is simply
given by (2.26). The spacetime metric is then given by (2.10) and the original scalars by (2.25).
Finally, the Maxwell field is given by (2.28) and (2.14).

The decomposition of the solution in terms of the supersymmetric data described above
is defined up to constant rescalings (since the Killing spinor is). These rescale the time
coordinate adapted to V as t → Kt, where K is a nonzero constant, and act on the
supersymmetric data as

h→ K−1h , ΦI → KΦI , λi → K2λi , ΘI → ΘI , (2.37)

which also implies that ω → Kω and f → K−1f . It is easy to check that the above equations,
and in particular the five-dimensional solution (g,FI , XI), are invariant under such rescalings.

We close this section by noting a particular consequence of supersymmetry. This result
will be useful in constraining the form of the Maxwell field for toric solutions.
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Lemma 1. The magnetic part of the Maxwell fields F I are J-invariant, that is, they obey

F IcdJ
c
aJ

d
b = F Iab . (2.38)

Proof. Consider the map on 2-forms J : Ω2(B) → Ω2(B) defined by (Jα)ab := αcdJ
c
aJ

d
b.

It is easy to see that J 2 = id and hence Ω2(B) decomposes into two eigenspaces of J = 1
eigen-2-forms (J-invariant) and J = −1 eigen-2-forms. One can check that the J = 1
eigenspace is spanned by the three SD 2-forms I(i) and the ASD Kähler form J = J (1),
whereas the J = −1 eigenspace is spanned by remaning ASD forms J (2), J (3).

The lemma now follows from equation (2.28), which show that the magnetic part of the
Maxwell field is in the J = 1 eigenspace.

2.2 Toric symmetry

We now consider supersymmetric solutions (M,g,FI , XI) to five-dimensional gauged super-
gravity as above, that also possess toric symmetry in the following sense.

Definition 1. A supersymmetric solution (M,g,FI , XI) to five-dimensional minimal gauged
supergravity coupled to vector multiplets is said to possess toric symmetry if:

1. There is a torus T ∼= U(1)2 isometry generated by spacelike Killing fields mi, i = 1, 2,
both normalised to have 2π periodic orbits. These are defined up to mi → A j

i mj where
A ∈ GL(2,Z);

2. The supersymmetric Killing V is complete and commutes with the T -symmetry, that is
[V,mi] = 0, so there is a spacetime isometry group R× U(1)2;

3. The Maxwell fields and scalar fields are T -invariant LmiFI = 0, LmiXI = 0;

4. The axis defined by {p ∈M | det g(mi,mj)|p = 0} is nonempty.

We now restrict to timelike supersymmetric solutions, that is, we assume there is an open
region U ⊂M on which V is strictly timelike. We will assume that U is simply connected
and intersects the axis. Therefore, on U , one can write the metric as (2.10), where (2.9) holds
and the Kähler metric on the orthogonal base space B is hµν = gµν + VµVν/f

2. It follows
from the above assumptions that the data f , h on the base are invariant under the toric
symmetry. Thus, it also follows that the scalar fields ΦI defined by (2.24) are invariant under
the toric symmetry. The 1-form ω is defined up to gauge transformations ω → ω + dλ and
t→ t− λ, where λ is a function on B, so one can choose a gauge such that Lmiω = 0 and
Lmit = 0. The form of the Maxwell field (2.14), (2.28), (2.16) implies

XIFI = XId(fXI(dt+ ω)) − 2
3G

+ −XIΦIJ , (2.39)

so we deduce that the Kähler form is also invariant under the toric symmetry LmiJ = 0,
i.e. the toric symmetry is holomorphic. It follows that ιmiJ is a globally defined closed
1-form so must be exact on B. This shows that the toric symmetry is Hamiltonian and
hence (B, h, J) is a Kähler toric manifold.
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It is convenient to introduce symplectic coordinates (xi, ϕi) on B, i = 1, 2, such that
mi = ∂ϕi [20, 29],

h = Gij(x)dxidxj +Gij(x)dϕidϕj , (2.40)
Gij = ∂i∂jg , (2.41)
J = dxi ∧ dϕi, (2.42)

where g = g(x) is the symplectic potential, Gij is the matrix inverse of the Hessian Gij and
we have introduced the notation ∂i := ∂/∂xi. In these coordinates the Ricci form potential is

P = Pidϕi , Pi = −1
2Gij∂

j log detG = −1
2∂

jGij , (2.43)

where detG := detGij . It is useful to note that symplectic coordinates are related to
holomorphic coordinates zi := yi + iϕi by the transformation

yi = ∂ig , (2.44)

and the Legendre transform of the symplectic potential,

K = xiy
i − g , (2.45)

gives the Kähler potential K [29] (see also appendix A of [20]).
Let us now turn our attention to closed 2-forms on toric Kähler manifolds. If such a

closed 2-form F is invariant under the torus symmetry, then ιmiF is a closed 1-form on
B and hence must be exact, so ιmiF = −dµi for some functions µi (moment maps for F ).
Furthermore, we must also have that ιm1ιm2F is a constant, and since we assume the axis is
nonempty this constant is zero so ιm1ιm2F = 0. Therefore, the functions µi are also invariant
under the T -symmetry. Observe that in general, F is not uniquely determined by its moment
maps. To this end, it is convenient to introduce the following class of 2-forms.

Definition 2. A closed 2-form F on a toric Kähler manifold is said to be toric if it is
invariant under the toric symmetry and satisfies the orthogonality condition m♭

1 ∧m♭
2 ∧F = 0,

where m♭
i are 1-forms that are metric dual to the Killing fields mi.

It is straightforward to show that in symplectic coordinates (2.40) the condition m♭
1 ∧

m♭
2∧F = 0 is equivalent to Fxixj = 0, and hence a toric closed 2-form F takes the general form

F = d(µidϕi) , (2.46)

so in particular it is determined by the moment maps µi.
An example of a toric closed 2-form is dω as we now show. First observe that the

magnetic fields F I are T -invariant, since the Maxwell fields (2.14) are, and satisfy the Bianchi
identity (2.20), hence we deduce ιm1ιm2F

I = 0. Since we also have ιm1ιm2J = 0, (2.28)
implies ιm1ιm2ΘI = 0 and in turn (2.16) implies ιm1ιm2G

+ = ιm1ιm2 ∗4 dω = 0.4 The latter
4Recall that dω is closed and T -invariant and hence ιm1 ιm2 dω = 0.
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condition is equivalent to m♭
1 ∧ m♭

2 ∧ dω = 0 which shows that dω is toric and therefore
can be written as in (2.46), so

ω = ωi(x)dϕi , (2.47)

for functions ωi that are invariant under the toric symmetry.
We now establish the following useful result for a class of 2-forms on the Kähler base.

Lemma 2. Let F ∈ Ω2(B) be closed, J-invariant, and invariant under the toric symmetry.
Then F is toric in the sense of definition 2, and in symplectic coordinates

∂i(Gjkµk) − ∂j(Gikµk) = 0 , (2.48)

where µi are the T -invariant moment-maps of F . Thus we may write

µi = Gij∂
jΛ , (2.49)

where Λ is a T -invariant function.

Proof. By the comments preceding definition 2, in symplectic coordinates 0 = ιmiιmjF =
Fϕiϕj . Next, J-invariance means J c

a J
d
b Fcd = Fab, which reduces to Fxixj = 0 and (2.48).

The latter equation just says that the 1-form Gijµjdxi is closed and hence must equal dΛ for
some function Λ invariant under the toric symmetry.

It is worth noting that in the holomorphic coordinates yi+ iϕi equations (2.48) and (2.49)
are simply ∂[iµj] = 0 and µi = ∂iΛ respectively where ∂i := ∂/∂yi. We also note that the
moment maps µi are defined up to gauge transformations,

µi → µi + αi , (2.50)

where αi are constants. Lemma 2 in particular applies to geometric quantities such as
the Kähler form J and the Ricci form R, since they are both closed J-invariant 2-forms
invariant under the toric symmetry. The associated potentials (2.49) for the Kähler form
can be read off from xi = Gij∂

jK (this follows from (2.45)), whereas for the Ricci form it
can be read off from (2.43), and are

ΛKähler-form = K, ΛRicci-form = −1
2 log detG . (2.51)

Lemma 1 shows that lemma 2 also applies to the magnetic fields, so they can be written as

F I = d(µIi dϕi) , µIi = Gij∂
jΛI , (2.52)

where the ‘magnetic’ potentials ΛI are invariant under the toric symmetry.
To summarise, we have shown that for a timelike supersymmetric toric solution we can

write the spacetime metric and gauge fields in symplectic coordinates as

g = −f2(dt+ ωidϕi)2 + f−1Gijdϕidϕj +Gijdxidxj ,
AI = fXI(dt+ ωidϕi) + µIi dϕi . (2.53)

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
2

We emphasise that any such solution is determined by the following T -invariant real functions,
the symplectic potential g, the magnetic potentials ΛI , and the scalar fields XI (or ΦI),
subject to the constraints presented in section 2.1. It is useful to record the following
spacetime invariants

g(V, V ) = −f2 , g(V,mi) = −f2ωi , g(mi,mj) = f−1Gij − f2ωiωj ,

ιV AI = fXI , ιmiAI = fXIωi + µIi , (2.54)

and observe that these are all invariant under the toric symmetry.
The axis of the T -symmetry has a simple description in symplectic coordinates [20]. In

particular, each component corresponds to a line segment ℓv(x) := vixi + cv = const, where
its slope vi corresponds to the vector vi∂iϕ that vanishes on the particular axis component.
The singular behaviour of the symplectic potential near any component of the axis then takes
a canonical form g = 1

2ℓv(x) log ℓv(x) + gsmooth where the latter term is smooth at the said
axis. This analysis does not depend on the matter content, for more details see [20].

2.3 Near-horizon geometry

We are interested in solutions that possess black hole regions. The event horizon of a black hole
must be invariant under any Killing field and hence in particular under the supersymmetric
Killing field. Thus the horizon is a supersymmetric horizon and hence must be a degenerate
Killing horizon with respect to V [30]. We will assume that a connected component of the
horizon has a spacelike cross-section S transversal to V . Then the metric near this horizon
component can be written in Gaussian null coordinates (GNC) [31], (v, λ, ya), (see also [26]),

g = −λ2∆2dv2 + 2dvdλ+ 2λhadvdya + γabdyadyb , (2.55)

where V = ∂v, ∂λ is a transverse null geodesic field synchronised so λ = 0 at the horizon,
and (ya) are coordinates on S. We assume the horizon is smooth which means that the
metric data ∆, ha, γab are smooth functions of (λ, ya) at λ = 0. The near-horizon geometry
is given by replacing this data in the spacetime metric with their values at λ = 0, denoted
by (∆(0), h

(0)
a , γ

(0)
ab ), which correspond to a function, 1-form and Riemannian metric on S

respectively. The gauge fields in GNC can be written in the gauge [26],

AI = λ∆XIdv +AIλdλ+ aIadya , (2.56)

where AIλ does not appear in the near-horizon limit, so the near-horizon data of the gauge
fields is given by the functions ∆(0)XI(0) and 1-forms aI(0) on S where (0) denotes again
evaluation at λ = 0. The toric Killing fields mi must be tangent to the horizon and since
they have closed orbits we may choose them tangent to S (hence one can adapt coordinates
(ya) on S to the toric Killing fields).

A horizon component corresponds to a single point in symplectic coordinates (x1, x2) on
the orbit space. The proof of this does not require detailed knowledge of the near-horizon
geometry and is identical to that in the minimal theory, see [20, lemma 3]. Its proof uses
the fact that the Kähler form in GNC is

J = dλ ∧ Z + λ(h ∧ Z − ∆ ⋆3 Z) , (2.57)

– 12 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
2

where Z = Zadya is a unit 1-form and ⋆3 is the Hodge star operator with respect to γab. The
symplectic coordinates are determined by dxi = −ιmiJ , so using the above form for J gives

xi = λZi +O(λ2) , (2.58)

where we have assumed that mi are tangent to S, Zi := ιmiZ, and fixed an integration
constant. Thus the horizon corresponds to a point in symplectic coordinates on the orbit
space, which we have assumed to be at the origin.

We now turn to the explicit form of the near-horizon geometry. The classification of
near-horizon geometry admitting a torus rotational isometry that commutes with V , and
possessing a smooth compact cross-section S, was derived in [26]. We will only consider
the case where S is topologically S3 or a quotient, which includes the possibility of lens
spaces. We present it here in a coordinate system that also describes the special case with
(local) SU(2) × U(1) symmetry, see appendix C for details. For simplicity, henceforth we
will restrict ourselves to the STU supergravity.

The near-horizon geometry depends on the parameters 0 < A2, B2 < 1 and KI , subject
to the constraints

κ2(A2,B2, C1, C2) > 0 , (2.59)

where

κ2(A2,B2, C1, C2) := −9A4B4 + 6A2B2(A2 + B2 + 1)2 − (A2 + B2 + 1)3
(
A2 + B2 − 1

3

)
+ 4C2

3 − 2C1

(
A4 + B4 −A2B2 + C1

2 − 1
)
, (2.60)

the parameters C1, C2 are defined by

C1 = ℓ

6C
IJKζIKJKK , C2 = 1

6C
IJKKIKJKK , (2.61)

and
CIJKζIζJKK = 0 . (2.62)

We now give the explicit expression for the near-horizon data.
The metric data are given by

∆(0) = 3κ
ℓĤ(η̂)2/3

,

h(0) = 3κ∆3(η̂)
4Ĥ(η̂)

σ̂ + 3(A2 − B2)
2Ĥ(η̂)

((
∆2(η̂)2 + C1

)
dη̂ − 3

2κτ̂
)
,

γ(0) = ℓ2

12(1 − η̂2)∆1(η̂)

(
Ĥ(η̂)1/3dη̂2 + 3

4
∆3(η̂)2 + κ2

Ĥ(η̂)2/3
τ̂2
)

+
ℓ2
(
4Ĥ(η̂) − 3∆3(η̂)2

)
48Ĥ(η̂)2/3

σ̂2 + 3ℓ2∆3(η̂)(A2 − B2)
8Ĥ(η̂)2/3

σ̂τ̂ , (2.63)
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the gauge field data by

aI(0) = − ℓ∆3(η̂)
4(ℓ∆2(η̂)ζI + KI)

σ̂ + ℓη̂
CIJKℓζJ

(
ℓ(2 −A2 − B2)ζK + 2KK

)
12(1 − η̂2)∆1(η̂) τ̂

+ ℓ
(A2 − B2)

4

(
3

ℓ∆2(η̂)ζI + KI
+ ℓ2

CIJKζJζK
2∆1(η̂)

)
τ̂ , (2.64)

and the scalars by

X
(0)
I = ℓ∆2(η̂)ζI + KI

3Ĥ(η̂)1/3
. (2.65)

In the above expressions we have defined the 1-forms

σ̂ = 1 − η̂

A2 dϕ̂1 + 1 + η̂

B2 dϕ̂2 , τ̂ = (1 − η̂2)∆1(η̂)
(

dϕ̂1

A2 − dϕ̂2

B2

)
, (2.66)

three linear functions of η̂,

∆1(η̂) = 1 + η̂

2 A2 + 1 − η̂

2 B2 ,

∆2(η̂) = 1 − 1 + 3η̂
2 A2 − 1 − 3η̂

2 B2 ,

∆3(η̂) = 1 − 2∆2(η̂) + A2B2 −A4 − B4 − C1 , (2.67)

and the cubic polynomial of η̂,

Ĥ(η̂) =
3∏
I=1

(
ℓ∆2(η̂)ζI + KI

)
= ∆2(η̂)3 + 3C1∆2(η̂) + C2 . (2.68)

Here (η̂, ϕ̂i) are coordinates on S with −1 ≤ η̂ ≤ 1 and ϕ̂i ∼ ϕ̂i + 2π are adapted to the
Killing fields mi = ∂ϕ̂i and ∆1 and ∆2 are strictly positive functions. The 1-form that
determines the Kähler form (2.57) is given by

Z(0) = ℓ

4Ĥ(η̂)1/3

(
κσ̂ − 3(A2 − B2)dη̂

)
. (2.69)

Note that solutions with A2 ̸= B2 are doubly counted with the two copies related by (C.17).
The solutions with A2 = B2 have enhanced (local) SU(2) × U(1) symmetry.

It is important to emphasise that positivity of the scalars XI places further constraints on
the parameters as follows. Without loss of generality we may assume A2 ≥ B2 (which removes
the double counting mentioned above), in which case positivity of the scalars is equivalent to

KI > 2A2 − B2 − 1 , (2.70)

where note that 2A2 − B2 − 1 < 0. It is useful to note that (2.70) implies that

−(1 + B2 − 2A2)2 < C1 ≤ 0 , −1
4(1 + B2 − 2A2)3 < C2 < 2(1 + B2 − 2A2)3 , (2.71)

which again holds assuming A2 ≥ B2.
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We are now ready to extract the toric data for the near-horizon geometry. By computing
the spacetime invariants (2.54) in GNC we deduce

f = λ∆ , ωi = − hi
λ∆2 , Gij = λ∆

(
γij + hihj

∆2

)
, (2.72)

µIi = aIi + fXIhi
∆2 . (2.73)

We may now compute the near-horizon behaviour of ωi, Gij , XI from the explicit near-
horizon data and we find

ωi = −ℓ
2Ĥ(η̂)1/3

12κ
(
∆3(η̂)σ̂ − 3(A2 − B2)τ̂

)
i

1
λ

+O(1) , (2.74)

Gij = ℓκ

4Ĥ(η̂)1/3

(
σ̂2 + τ̂2

(1 − η̂2)∆1(η̂)

)
ij

λ+O(λ2) , (2.75)

XI = Ĥ(η̂)1/3

ℓ∆2(η̂)ζI + KI
+O(λ) . (2.76)

The near-horizon behaviour of the scalars ΦI defined by (2.24) is easily deduced to be

ΦI = ℓĤ(η̂)1/3

3κ CIJKζJ(ℓ∆2(η̂)ζK + KK)λ−1 +O(1) . (2.77)

Observe that although ΦI are singular on the horizon the scalars XI defining the theory
are smooth.

Inserting (2.69) into (2.58) we find the leading order coordinate change is

x1 = ℓκ

4Ĥ(η̂)1/3
1 − η̂

A2 λ+O(λ2) , x2 = ℓκ

4Ĥ(η̂)1/3
1 + η̂

B2 λ+O(λ2) . (2.78)

One can now compute Gij , Gij and hence g as functions of the symplectic coordinates near
the horizon. We find that the symplectic potential takes precisely the same form as in the
minimal theory, namely [20],

g = 1
2x1 log x1 + 1

2x2 log x2 −
1
2(x1 +x2) log(x1 +x2) + 1

2(A2x1 +B2x2) log(A2x1 +B2x2) + g̃

(2.79)
where g̃ is smooth at the origin (horizon).

We have now determined the behaviour of the symplectic potential near any component
of a horizon. Combining this with the near axis behaviour discussed earlier, we can write
down the singular part of the symplectic potential for any black hole solution in this class.
The result is the same as in the minimal theory [20, theorem 2].

3 Separability on toric kähler manifolds

In this section we will introduce a special class of toric Kähler manifolds and associated
2-forms both of which we dub separable, since they are determined by single-variable functions
in a preferred orthogonal coordinate system. We will show that separable Kähler metrics
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naturally unify the known concepts of product-toric, Calabi-toric and ortho-toric Kähler
metrics, which are intimately related to the existence of a Hamilton 2-form [24, 25] (we
explore this connection in section 3.3). This section is written to be self-contained as it
may be of interest more widely.

3.1 Separable toric Kähler metrics

Consider a toric Kähler manifold B with Kähler metric h and Kähler form J . In symplectic
coordinates (xi, ϕi) this takes the form (2.40), (2.41), (2.42), where the toric Killing fields
are mi = ∂ϕi which we assume to have 2π-periodic orbits, and the associated moment maps
are xi. In order to introduce the concept of separability it turns out to be more convenient
to use an orthogonal coordinate system, as follows.

Let ξ, η be nonconstant functions that are invariant under the toric symmetry and
orthogonal in the sense,

dξ · dη = 0 , (3.1)

where · denotes the inner product defined by h. It follows that we can use (ξ, η, ϕi) as local
coordinates on B, so the Jacobian of the transformation (ξ, η) 7→ (x1(ξ, η), x2(ξ, η)),

Ω := ⟨∂ξx, ∂ηx⟩ ̸= 0 , (3.2)

where we use the notation ⟨α, β⟩ = ϵijαiβj and the alternating symbol is such that ϵ12 = 1.
In the (ξ, η) coordinates (3.1) is equivalent to hξη = 0, that is, it defines an orthogonal
coordinate system. It is useful to denote the other metric components by

F(ξ, η) := h−1
ξξ , G(ξ, η) := h−1

ηη . (3.3)

Changing coordinates (ξ, η) 7→ (x1, x2), the xixj components of the Kähler metric (2.40)
give an expression for Gij and its inverse is

Gij = F∂ξxi∂ξxj + G∂ηxi∂ηxj . (3.4)

Using this, it follows that the Kähler metric and Kähler form in such an orthogonal coordinate
system take the simple form

h = F−1dξ2 + G−1dη2 + Fσ2
ξ + Gσ2

η , (3.5)
J = dξ ∧ σξ + dη ∧ ση , (3.6)

where we have defined the 1-forms

σξ := ∂ξxidϕi , ση := ∂ηxidϕi . (3.7)

Using the natural orthonormal frame for the metric, we can easily write down a basis of
SD 2-forms,

I(1) = dξ ∧ σξ − dη ∧ ση ,
I(2) = (FG)1/2σξ ∧ ση + (FG)−1/2dξ ∧ dη ,
I(3) = (F/G)−1/2dξ ∧ ση + (F/G)1/2dη ∧ σξ , (3.8)
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and ASD 2-forms (recall J = J (1)),

J (1) = dξ ∧ σξ + dη ∧ ση ,
J (2) = (FG)1/2σξ ∧ ση − (FG)−1/2dξ ∧ dη ,
J (3) = (F/G)−1/2dξ ∧ ση − (F/G)1/2dη ∧ σξ, (3.9)

where the orientation is dξ ∧ dη ∧ σξ ∧ ση, both of which satisfy the quaternion algebra (2.11).
Now recall that Gij is the Hessian of the symplectic potential (2.41) and writing this

in orthogonal coordinates we find that (3.1) is equivalent to a PDE for the symplectic
potential, namely,

∂ξ∂ηg = (∂ξ∂ηxi)∂ig , (3.10)

and the other components give

F−1 = ∂2
ξ g − (∂2

ξxi)∂ig , G−1 = ∂2
ηg − (∂2

ηxi)∂ig . (3.11)

All we have done so far is rewritten a general toric Kähler metric in orthogonal coordinates
on the 2d orbit space, which is always possible. We are now ready to introduce the concept
of separability.

Definition 3. A toric Kähler manifold (B, h, J) is separable if there exists an orthogonal
coordinate system (ξ, η), as in (3.1), such that the moment maps xi of the toric Killing fields
satisfy,

∂2
ξxi = 0 , ∂2

ηxi = 0 , (3.12)

that is, the moment maps are linear in each of ξ, η.

Integrating the above we can write

xi = ci + aiξ + ãi(ξ + η) + biξη , (3.13)

for some constants ci, ai, ãi, bi. This definition reduces the freedom in the choice of orthogonal
coordinates ξ and η to just affine transformations

ξ → Kξξ + Cξ , η → Kηη + Cη , (3.14)

where Kξ ̸= 0, Kη ̸= 0 and Cξ, Cη are constants, as well as exchanging their roles

ξ → η , η → ξ . (3.15)

The constants in (3.13) also transform under (3.14) as,

bi → K−1
ξ K−1

η bi ,

ãi → K−1
η (ãi −K−1

ξ Cξbi) ,

ai → K−1
ξ ai + (K−1

ξ −K−1
η )ãi +K−1

ξ K−1
η (Cξ − Cη)bi ,

ci → ci −K−1
ξ Cξai − (K−1

ξ Cξ +K−1
η Cη)ãi +K−1

ξ K−1
η CξCηbi , (3.16)
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Class Definition Canonical choice
Product-toric (PT) ∂ξΩ = ∂ηΩ = 0 bi = 0 N = ⟨a, ã⟩ ̸= 0 Σ = 1

Calabi-toric (CT) ∂ξΩ ̸= 0, ∂ηΩ = 0 ãi = 0 N = ⟨a, b⟩ ̸= 0 Σ = ξ

Ortho-toric (OT) ∂ξΩ ̸= 0, ∂ηΩ ̸= 0 ai = 0 N = ⟨ã, b⟩ ̸= 0 Σ = ξ − η

Table 1. The three classes of separable toric Kähler structures.

while under (3.15) as,

bi → bi , ãi → ãi + ai , ai → −ai , ci → ci . (3.17)

These transformations will allow us classify separable metrics into three types.
To this end, consider the Jacobian (3.2) for a separable Kähler metric. The moment

maps xi are given by (3.13) so we find

Ω = ⟨a, ã⟩ + ⟨a, b⟩ξ + ⟨ã, b⟩(ξ − η) , (3.18)

in particular, note that ∂ξΩ and ∂ηΩ are both constant. There are three qualitatively different
cases to consider depending on whether both, one or none of the constants ∂ξΩ and ∂ηΩ
vanish. For each case, there is a canonical choice such that exactly one of the vectors ai, ãi, bi
vanishes identically. First, if both constants vanish ∂ξΩ = ∂ηΩ = 0 then ⟨a, b⟩ = ⟨ã, b⟩ = 0 and
⟨a, ã⟩ ̸= 0, which implies bi = 0 (since bi can’t be parallel to both ai and ãi). Secondly, if one
of the constants vanish, without loss of generality we may assume ∂ηΩ = 0 due to (3.15), so
∂ηΩ = ⟨ã, b⟩ = 0 and ∂ξΩ = ⟨a, b⟩ ̸= 0, which means that b ̸= 0 and ã is parallel to b, so from
the second line of (3.16) we can always fix ãi = 0. Thirdly, if both ∂ξΩ = ⟨a, b⟩ + ⟨ã, b⟩ ̸= 0
and ∂ηΩ = −⟨ã, b⟩ ̸= 0, then ã, b are linearly independent, and hence from the third line
of (3.16) we can always fix ai = 0.

These three cases are summarised in table 1, where the Jacobian is written as

Ω = NΣ , (3.19)

for a nonzero constant N and function Σ(ξ, η) which are given for each case in table 1.
We now show that these cases correspond to product-toric (PT), Calabi-toric (CT) and
ortho-toric (OT), respectively, therefore justifying the names in table 1 [25]. In particular,
we show that in orthogonal coordinates ξ, η, each case is completely characterised in terms
of two functions of a single variable F (ξ), G(η) (this is a generalisation of the Calabi-toric
case in proposition 1 in [20]).

Proposition 1. Any separable toric Kähler metric can be written in the form

h = Σ
(

dξ2

F (ξ) + dη2

G(η)

)
+ 1

Σ
(
F (ξ)σ2

ξ +G(η)σ2
η

)
, (3.20)

where

σξ =


dψ
dψ + ηdφ
dψ + ηdφ,

ση =


dφ PT
ξdφ CT
dψ + ξdφ OT,

(3.21)
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the Kähler form is

J =


d
(
ξdψ + ηdφ

)
PT

d
(
ξdψ + ξηdφ

)
CT

d
(
(ξ + η)dψ + ξηdφ

)
OT,

(3.22)

with the cases PT, CT, OT and the corresponding function Σ defined in table 1, and ∂ψ, ∂ϕ
are a basis for the toric Killing fields.5

Proof. By definition, for a separable toric Kähler structure the moment maps are given
by (3.13). The orthogonality condition (3.10) now yields a PDE for the symplectic potential
which for the canonical cases listed in table 1 takes the form

Σ∂ξ∂ηg − (∂ηΣ)∂ξg − (∂ξΣ)∂ηg = 0 , (3.23)

where Σ is defined as in table 1 and we have used that bi∂i = Σ−1(∂ηΣ∂ξ + ∂ξΣ∂η). The
general solution to (3.23) in each case can be written as

g = Σ3
[
∂ξ

(
A(ξ)
Σ2

)
+ ∂η

(
B(η)
Σ2

)]
, (3.24)

where A(ξ) and B(η) are arbitrary functions.6 We can evaluate the functions F and G
appearing in (3.5) using (3.11) to obtain

F = Σ−1F (ξ) , G = Σ−1G(η) , (3.25)

where we have defined
F (ξ) := 1

A′′′(ξ) , G(η) := 1
B′′′(η) . (3.26)

Inserting (3.25) into (3.5) we obtain (3.20) as required. Finally, defining

ψ =


(ai + ãi)ϕi

aiϕ
i

ãiϕ
i,

φ =


ãiϕ

i

biϕ
i

biϕ
i,

PT

CT

OT,

(3.27)

we deduce the claimed form for the 1-forms (3.7) and the Kähler form (3.6).

It is useful to note that for separable metrics the Gram matrix of Killing fields (3.4)
simplifies to,

Gij = F (ξ)
Σ (a+ ã+ bη)i(a+ ã+ bη)j + G(η)

Σ (ã+ bξ)i(ã+ bξ)j , (3.28)

where we have used (3.13) and (3.25). Thus, its determinant takes the simple form

detGij = NF (ξ)G(η) , (3.29)
5Note that the Killing fields ∂ψ and ∂φ do not necessarily have closed orbits.
6To prove this for the OT case it helps to first differentiate (3.23) with respect to both ξ and η.
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where N is the constant in each of the three cases given in table 1. Furthermore, the
functions F (ξ) and G(η) can be expressed in terms of invariants on the Kähler base via
the following projections:

F (ξ)= Gij ãkãlϵ
ikϵjl

⟨ã, a⟩2 , G(η)= Gij(ak + ãk)(al + ãl)ϵikϵjl

⟨ã, a⟩2 , if PT (3.30)

F (ξ)
ξ

=Gijbkblϵ
ikϵjl

⟨a, b⟩2 , −ηF (ξ)
ξ

=Gijakblϵ
ikϵjl

⟨a, b⟩2 , ξG(η) + η2F (ξ)
ξ

=Gijakalϵ
ikϵjl

⟨a, b⟩2 , if CT (3.31)

F (ξ)= Gij(ãk + bkξ)(ãl + blξ)ϵikϵjl

(ξ− η)⟨ã, b⟩2 , G(η)= Gij(ãk + bkη)(ãl + blη)ϵikϵjl

(ξ− η)⟨ã, b⟩2 , if OT (3.32)

where ϵij is the alternating symbol with ϵ12 = 1 and recall the three cases are defined in table 1.

3.2 Separable 2-forms

We now introduce a class of separable 2-forms on toric Kähler manifolds. Note that we
will define this independently to the notion of separable Kähler metrics introduced in the
previous section, that is, we do not assume definition 3.

We start with a toric closed 2-form as in (2.46) which, in orthogonal coordinates (3.5),
reads

F = d
(
Ω−1(µξσξ + µηση)

)
, (3.33)

where we have defined

µξ := ⟨µ, ∂ηx⟩ , µη := −⟨µ, ∂ξx⟩ . (3.34)

These transform under the gauge transformations (2.50) as,

µξ → µξ + ∂η⟨α, x⟩ , µη → µη − ∂ξ⟨α, x⟩ . (3.35)

Now, by lemma 2 it follows that closed, J-invariant, 2-forms that are invariant under
toric symmetry, are a subclass of toric closed 2-forms as introduced in definition 2. The
condition (2.48) required for J-invariance becomes

F⟨∂ξx, ∂ξµ⟩ + G⟨∂ηx, ∂ηµ⟩ = 0 , (3.36)

which is also equivalent to the (local) existence of a potential Λ defined by (2.49) in terms
of which

µξ = ΩF∂ξΛ , µη = ΩG∂ηΛ . (3.37)

It is useful to note that (3.36) can be written as

F∂ξµη − G∂ηµξ = ⟨F∂2
ξx− G∂2

ηx, µ⟩ . (3.38)

Therefore, on a Kähler surface that is separable with respect to orthogonal coordinates
(ξ, η), the r.h.s. of (3.38) vanishes due to (3.12) and hence using (3.25) the J-invariance
condition reduces to

F (ξ)∂ξµη −G(η)∂ηµξ = 0 , (3.39)
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Figure 1. Various classes of closed 2-forms we use in this paper. Notice that separable 2-forms are a
subclass of the J-invariant ones.

while further using (3.19), equations (3.37) reduce to

µξ = NF (ξ)∂ξΛ , µη = NG(η)∂ηΛ . (3.40)

We are now ready to define a class of separable 2-forms.

Definition 4. A toric closed 2-form F , on a toric Kähler surface, is separable if there exist
orthogonal coordinates as in (3.1) such that

⟨∂ξx, ∂ξµ⟩ = 0 , ⟨∂ηx, ∂ηµ⟩ = 0 , (3.41)

where µi are the moment maps associated to F , that is, ιmiF = −dµi.

The motivation for this definition will become apparent shortly.7 First, observe that
according to this definition, a separable toric closed 2-form is necessarily J-invariant, in
particular, both terms in the J-invariance condition (3.36) vanish separately. Therefore,
separable 2-forms are a special subclass of J-invariant 2-forms, as illustrated in figure 1. The
archetypal separable 2-form on a generic toric Kähler surface is the Kähler form itself, since
in this case µi = xi which trivially solves (3.41). Observe that the definition of separable
2-forms (3.41) is invariant under the gauge transformations (2.50).

The following result shows that if the concepts of a separable 2-form and metric are
compatible, the 2-form can also be described in terms of functions of a single variable, thus
justifying the use of the term “separable”.

Proposition 2. Let (B, h, J) be a separable toric Kähler surface as in proposition 1. Then,
a toric closed 2-form F , that is separable with respect to the same orthogonal coordinates
(ξ, η), takes the form

F = d
( 1
NΣ(µξσξ + µηση)

)
, (3.42)

where
µξ = µξ(ξ) , µη = µη(η) . (3.43)

7It is worth noting that separability of 2-forms also admits a definition in terms of holomorphic coordinates
yi + iϕi, that is, (3.41) can be written as ∂ξy

i∂ηµi = 0 and ∂ηyi∂ξµi = 0.

– 21 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
2

Furthermore, the potential for F defined by (2.49) is additively separable,

Λ(ξ, η) = Λξ(ξ) + Λη(η) , (3.44)

for functions Λξ(ξ) and Λη(η). Conversely, on a separable toric Kähler surface (3.43) or (3.44)
imply that F is separable.

Proof. Recall that the functions µξ, µη are defined by (3.34). Differentiating these by η and
ξ respectively, using metric separability (3.12) and 2-form separability (3.41), we deduce

∂ηµξ = 0 , ∂ξµη = 0 , (3.45)

which establishes (3.43).8 The form for F then follows from (3.33) and (3.19). Next,
using (3.40), we see that both equations in (3.45) reduce to

∂ξ∂ηΛ = 0 , (3.46)

thus proving (3.44).
Conversely, if ∂ηµξ = 0 and ∂ξµη = 0, then (3.34) implies that ⟨∂ξx, ∂ξµ⟩ = 0 and

⟨∂ηx, ∂ηµ⟩ = 0 and hence F is separable.

Observe that this lemma shows that a 2-form that is separable, with respect to the same
orthogonal coordinates for which a Kähler metric is separable, corresponds to one where
both terms on the l.h.s. of (3.39) vanish separately.

We have already noted below lemma 2 that the Kähler potential is the Λ-potential for
the Kähler form. We therefore deduce the following corollary.

Corollary 1. For a toric Kähler surface that is separable with respect to orthogonal coordinates
(ξ, η), the Kähler potential is additively separable,

K(ξ, η) = Kξ(ξ) + Kη(η) . (3.47)

We can verify this statement by directly evaluating the Legendre transform (2.45) of the
symplectic potential for separable metrics given in (3.24) and we find

K =


(
ξ3 (ξ−2A(ξ)

)′)′ +
(
η3 (η−2B(η)

)′)′ for PT ,

∂ξΣ ξ2
(
ξ2 (ξ−2A(ξ)

)′)′ + ∂ηΣ η2
(
η2 (η−2B(η)

)′)′ for CT and OT ,
(3.48)

where without loss of generality we set ci = 0 in (3.13).9 It is interesting to note that the
Kähler potential for CT type depends only on ξ.

The next result gives another generic example of a separable 2-form.

Lemma 3. Consider a toric Kähler surface separable with respect to orthogonal coordinates
(ξ, η) as in proposition 1. The Ricci 2-form R = dP is also separable with respect to (ξ, η)
and given by

P = − 1
2Σ
(
F ′(ξ)σξ +G′(η)ση

)
. (3.49)

8This statement is invariant under the gauge transformations (3.35) (recall ∂2
ξxi = ∂2

ηxi = 0).
9Constant shifts of xi correspond to Kähler transformations.
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Furthermore, the Λ-potential for R is given by

ΛRicci-form = −1
2 logF (ξ)G(η) . (3.50)

Proof. The Ricci form potential for a toric Kähler metric in symplectic coordinates is given
by (2.43), so in particular its Λ-potential is given by Λ = −1

2 log detGij . The matrix Gij
can be computed from (3.20) and (3.27), which in all cases gives (3.50) (up to an irrelevant
additive constant). Then, using (3.37), (3.25), and (3.33) gives (3.49) as claimed. Therefore,
by proposition 2 the Ricci form is separable.

3.3 Hamiltonian 2-forms

In the preceding two subsections, we introduced the notion of separable metrics and 2-forms
on toric Kähler surfaces. In this subsection, we will establish a connection between metric
separability and the theory of Hamiltonian 2-forms [24]. In fact, in [24, 25] it has been shown
that any toric Kähler metric that admits a Hamiltonian 2-form must be precisely one of PT,
CT or OT, and therefore separable according to our definition. We deduce the following
theorem which gives a geometrical characterisation of our notion of separability.

Theorem 4. A toric Kähler metric is separable if and only if it admits a Hamiltonian 2-form.

We will provide a self-contained proof of one direction of this theorem, namely, that any
separable toric Kähler surface admits a Hamiltonian 2-form. We will show this by an explicit
calculation and in fact determine all possible Hamiltonian 2-forms on such geometries.

A Hamiltonian 2-form on a Kähler surface (B, h, J) may be defined as a closed J-
invariant 2-form Ψ that satisfies [24],

∇aΨbc = 2
3
(
(∂aσ)Jbc − Ja[b∂c]σ − ha[bJ

d
c] ∂dσ

)
, (3.51)

where10

σ := 1
4ΨabJ

ab . (3.52)

Notice that the Kähler form J always satisfies (3.51) and hence is trivially a Hamiltonian
2-form. However, in certain cases (3.51) may admit more interesting solutions which we
refer to as non-trivial Hamiltonian 2-forms.

In the case of a toric Kähler surface, if we assume Ψ also has toric symmetry, then
by lemma 2 we can write

Ψ = d(µidϕi) , (3.53)

for some moment maps µi. Since by definition a Hamiltonian 2-form is J-invariant, µi
are required to satisfy (2.48). A computation then reveals that in symplectic coordinates
equation (3.51) is equivalent to

Eijk = 0 , (3.54)
10This should not be confused with other quantities denoted by σ in this paper.
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where we have defined

Eijk := ∂i∂jµk −
1
2Gℓp∂

pGij∂ℓµk + 1
2Gkp∂

pGiℓ∂jµℓ

− 1
3(δjk∂

i∂ℓµℓ + 1
2δ

i
k∂

j∂ℓµℓ + 1
2G

ijGkp∂
p∂ℓµℓ) . (3.55)

In order to find non-trivial Hamiltonian 2-forms, we need to solve (3.54) together with (2.48).
We stress that this system does not admit non-trivial solutions for general toric Kähler metrics,
indeed, by theorem 4 it admits non-trivial solutions precisely for separable Kähler metrics.
This follows from the integrability properties of (3.54) which have been studied in [24, 25].

Our goal here is to assume separability of the Kähler metric and explicitly solve (3.54)
together with (2.48). With this assumption, we find the following components of (3.54),

0 = (2∂ηxi∂ξxp − ∂ξxi∂ηxp)∂ξxjϵpkEijk = NG(η)∂ξ∂2
ηΛ ,

0 = −(2∂ξxi∂ηxp − ∂ηxi∂ξxp)∂ηxjϵpkEijk = NF (ξ)∂2
ξ∂ηΛ . (3.56)

In order to arrive at the r.h.s., we have used the fact that a separable metric can be PT, CT
or OT and written the result in a unified way. Moreover, we have traded µi for µξ and µη
through (3.34) and expressed the latter in terms of the potential Λ as in (3.40) exploiting
the J-invariance of the Hamiltonian 2-forms. The general solution to (3.56) is

Λ = pξη + Λξ(ξ) + Λη(η) , (3.57)

for functions Λξ(ξ), Λη(η) and a constant p. Note that for p = 0 the above expression reduces
to (3.44). We can then use again (3.40) to find

µξ = NpF (ξ)η + µ̃ξ(ξ) , µη = NpG(η)ξ + µ̃η(η) , (3.58)

where µ̃ξ(ξ) := NF (ξ)Λ′
ξ(ξ) and µ̃η(η) := NG(η)Λ′

η(η). Therefore, by proposition 2, we
deduce that the corresponding Hamiltonian 2-form is itself separable if and only if p = 0.11

It remains to solve the rest of the equations in (3.54) for µ̃ξ(ξ) and µ̃η(η). The independent
components are

0 = E1 := 6F (ξ)
G(η)∂ξxi∂ξxj∂ξxpϵ

pkEijk ,

0 = E2 := 3∂ξxi∂ξxj∂ηxpϵpkEijk . (3.59)

It turns out that for a generic separable toric Kähler metric we have p = 0 and hence the
Hamiltonian 2-form is also separable. However, for certain specific choices of separable
metrics (i.e. specific functions F (ξ), G(η)), which we dub exceptional, there exist Hamiltonian
2-forms with p ̸= 0, that is, they also admit non-separable Hamiltonian 2-forms. We present
these exceptional cases in the appendix A.

We now consider separable solutions to (3.54), i.e. we set p = 0, which as we will see does
not impose any restrictions on the functions F (ξ) and G(η). Our results are summarised by

11In this subsection, when we say that the Hamiltonian 2-form is separable, we always mean separability
with respect to the orthogonal coordinates for which the metric is separable.
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Class Separable Hamiltonian 2-form
PT Ψ∗ = d(ξdψ − ηdφ)

CT Ψ∗ = d
(
ξ2(dψ + ηdφ)

)
OT Ψ∗ = d

(
ξ3

ξ−η (dψ + ηdφ) − η3

ξ−η (dψ + ξdφ)
)

Table 2. Non-trivial Hamiltonian 2-forms for separable toric Kähler metrics.

the following proposition which gives an explicit proof of one direction in theorem 4. Observe
that this shows that the space of non-trivial Hamiltonian 2-forms on generic separable Kähler
surfaces is 1-dimensional.

Proposition 3. The most general Hamiltonian 2-form on a separable toric Kähler surface,
that is separable with respect to the same orthogonal coordinates (ξ, η), is given by

Ψ = γ J + δΨ∗ , (3.60)

where γ and δ are constants, J is the Kähler form (as in proposition 1) and Ψ∗ is a non-trivial
Hamiltonian 2-form given in table 2.

Proof. As we have already mentioned J is always a Hamiltonian 2-form so we will focus on
Ψ∗. We will look for solutions to (3.59) by examining each of the cases PT, CT and OT
separately. We will also utilise the gauge transformations (3.35). Further notice that since
p = 0 in (3.58), we have µξ = µξ(ξ) and µη = µη(η).

For PT geometries we have

0 = E1 = −µ′′η(η) , 0 = E2 = −µ′′ξ (ξ) , (3.61)

with solution µξ(ξ) = γ0 + γ1ξ and µη(η) = δ0 + δ1η, where γ0,1, δ0,1 are constants. The
constant terms γ0, δ0 can be fixed to zero using (3.35).

For CT geometries we have

0 = ∂2
ξ (ξ2E1) = −2µ′′η(η) , 0 = ∂3

η(ξ2E2) = −2ξµ′′′′ξ (ξ) , (3.62)

so µξ(ξ) is a cubic polynomial and µη(η) is a linear one. Then 0 = E1 = E2 further
constrains the coefficients of these polynomials such that µξ(ξ) = γ1ξ + γ2ξ

2 + γ3ξ
3 and

µη(η) = δ0 − γ1η, where γi, δ0 are constants. Using the gauge transformations (3.35) we can
fix µξ(ξ) = γ2ξ

2 + γ3ξ
3 and µη(η) = 0.

For OT geometries we have

0 = ∂3
ξ

(
(ξ − η)2E1

)
= 2µ′′′′ξ (ξ) , 0 = ∂3

η

(
(ξ − η)2E2

)
= −2(ξ − η)µ′′′′η (η) , (3.63)

so both µξ(ξ) and µη(η) are cubic polynomials. Then 0 = E1 = E2 further implies µξ(ξ) =
γ0 + γ1ξ + γ2ξ

2 + γ3ξ
3 and µη(η) = −γ0 − γ1η − γ2η

2 − γ3η
3, for constants γi. Using the

gauge transformations (3.35) we can fix µξ(ξ) = γ2ξ
2 + γ3ξ

3 and µη(η) = −γ2η
2 − γ3η

3.
The resulting Hamiltonian 2-forms follow from proposition 2 and are given in table 2.
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4 Separable supersymmetric solutions

In this section we will introduce the concept of separable supersymmetric solutions to
five-dimensional gauged supergravity.

Definition 5. A timelike supersymmetric toric solution to five-dimensional minimal gauged
supergravity, possibly coupled to n− 1 vector multiplets, is separable (or PT, CT, OT) if:

• The toric Kähler base (B, h, J) is separable (PT, CT, OT) with respect to orthogonal
coordinates (ξ, η) (definition 3).

• The magnetic fields F I are also separable (PT, CT, OT) with respect to the orthogonal
coordinates (ξ, η) (see definition 4). In minimal supergravity the magnetic field is com-
pletely determined by the Ricci form and so by lemma 3 this condition is automatically
satisfied.

We will first investigate supersymmetric solutions that are timelike and separable outside
a regular horizon with compact locally spherical cross-sections. We will find that the only
allowed type of separable toric Kähler metric compatible with such a horizon is Calabi-toric.
Then, we will perform a detailed analysis of Calabi-toric supersymmetric solutions and prove
uniqueness of the known black hole within this class.

4.1 Near-horizon analysis

We now examine the constraints imposed by the existence of a smooth horizon on timelike
supersymmetric solutions with separable toric-Kähler base metrics. A key point in our
analysis is that the η̂-dependence of the moment maps to leading order in GNC takes the form

xi = (linear in η̂)
Ĥ(η̂)1/3

λ+O(λ2) , (4.1)

as can be seen from (2.78), and the Gram matrix of Killing fields takes the form

Gij = (quadratic or cubic in η̂)
Ĥ(η̂)1/3

λ+O(λ2) , (4.2)

which follows from (2.75).
We will examine the three classes of separable metric in turn.

Lemma 4. Consider a supersymmetric toric solution to STU supergravity that is timelike
outside a compact horizon with (locally) S3 cross-sections. Then it cannot have a PT
Kähler base.

Proof. Recall that this case corresponds to b = 0 (see table 1). Then inverting (3.13) gives

ξ = ⟨x− c, ã⟩
⟨a, ã⟩

, η = −⟨x− c, a+ ã⟩
⟨a, ã⟩

. (4.3)

Therefore (4.1) implies

ξ = ξ0 + ξ1(η̂)
Ĥ(η̂)1/3

λ+O(λ2) , η = η0 + η1(η̂)
Ĥ(η̂)1/3

λ+O(λ2) , (4.4)
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where ξ0 = ⟨ã, c⟩/⟨a, ã⟩, η0 = −⟨a + ã, c⟩/⟨a, ã⟩ are constants and ξ1(η̂), η1(η̂) are linear
functions of η̂. Next, from (3.30) and the fact that (2.75) implies Gij = O(λ), we learn that
F (ξ) = O(λ) andG(η) = O(λ). Therefore, combining with (4.4) we deduce F (ξ0) = G(η0) = 0.
Expanding (3.28) to linear order in λ we find,

Gij = λ

Ĥ(η̂)1/3

(
F ′(ξ0)(ai + ãi)(aj + ãj)ξ1(η̂) +G′(η0)ãiãjη1(η̂)

)
+O(λ2) . (4.5)

The factor in the brackets is a linear function of η̂ which contradicts the explicit form of Gij
given by (4.2).

Lemma 5. Consider a supersymmetric toric solution to STU supergravity that is timelike
outside a compact horizon with (locally) S3 cross-sections. Then it cannot have an orthotoric
Kähler base.

Proof. Recall we can set ai = 0 in (3.13) (see table 1). We find that ξ and η are given by the
solutions of the quadratic equation

⟨ã, b⟩χ2 + ⟨b, x− c⟩χ+ ⟨ã, x− c⟩ = 0 . (4.6)

Thus, without loss of generality we can write,

ξ = χ+ , η = χ− , with χ± = −⟨b, x− c⟩ ±
√
⟨b, x− c⟩2 − 4⟨ã, b⟩⟨ã, x− c⟩

2⟨ã, b⟩ .

(4.7)
From (4.7) it is clear that the horizon is mapped to a point (ξ0, η0) = (χ0

+, χ
0
−) with

χ0
± := ⟨b, c⟩ ±

√
⟨b, c⟩2 + 4⟨ã, b⟩⟨ã, c⟩

2⟨ã, b⟩ , (4.8)

The analysis splits into two cases.
Let us first consider the case where the discriminant is nonvanishing, ⟨b, c⟩2+4⟨ã, b⟩⟨ã, c⟩ ̸=

0, or equivalently ξ0 ̸= η0. In this case the expansions of ξ and η in λ are as in (4.4) where
again ξ1(η̂), η1(η̂) are again linear due to (4.1). Since ξ0 ̸= η0, from (3.32) and (4.2) we infer
F (ξ) = O(λ) and G(η) = O(λ), so

F (ξ0) = G(η0) = 0 . (4.9)

We then find that (3.28) implies

Gij = λ

Ĥ(η̂)1/3

(
F ′(ξ0)
ξ0 − η0

(ãi + biη0)(ãj + bjη0)ξ1(η̂) + G′(η0)
ξ0 − η0

(ãi + biξ0)(ãj + bjξ0)η1(η̂)
)

+O(λ2) ,

(4.10)
which is incompatible with (4.2) since the factor in the brackets is linear in η̂.

We now turn to the case with vanishing discriminant, ⟨b, c⟩2 + 4⟨ã, b⟩⟨ã, c⟩ = 0, or
equivalently ξ0 = η0. The near-horizon expansions of (4.7) that follow from (4.1) are now of
the form

ξ = ξ0 + ξ1/2(η̂)
√
λ+ ξ1(η̂)λ+O(λ3/2) , η = η0 + η1/2(η̂)

√
λ+ η1(η̂)λ+O(λ3/2) ,

(4.11)
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for some functions ξ1/2(η̂) etc., whose explicit form we will not need. Next, it is useful to
note that for an OT metric (3.28) implies that

Gijϵ
ikϵjlbkbl

⟨ã, b⟩2 = F (ξ) +G(η)
ξ − η

. (4.12)

Therefore, the near-horizon behaviour (4.2) implies that both F (ξ)/(ξ − η) = O(λ) and
G(η)/(ξ − η) = O(λ) (since both of these are non-negative functions). Furthermore, (4.11)
implies ξ − η = O(

√
λ) so we deduce that in fact F (ξ) = O(λ3/2) and G(η) = O(λ3/2). In

turn, using (3.29) this implies detGij = O(λ3) which contradicts the form (4.2) since the
quadratic/cubic prefactor never vanishes identically.

We pause to emphasise that both lemma 4 and lemma 5 also apply to minimal gauged
supergravity since this is a consistent truncation of the STU theory. In fact, due to the
near-horizon uniqueness theorem in the minimal theory [21], both of these lemmas hold under
the weaker hypothesis that the cross-sections are compact (since they have to be locally S3

in this theory). Furthermore, in our previous paper, we showed that in the minimal theory
for any solution of this type with a Calabi-toric base, the solution must be locally isometric
to the CCLP black hole, see [20, theorem 1]. We have therefore now established theorem 2.

It remains to study the near-horizon form of such solutions with a Calabi-toric base in
the STU theory. From proposition 1, we can write any Calabi-toric surface as

h = ρ

(
dρ2

F (ρ) + dη2

G(η)

)
+ F (ρ)

ρ
(dψ + ηdφ)2 + ρG(η)dφ2 (4.13)

J = d(ρ(dψ + ηdφ)) , (4.14)

where in order to be consistent with the minimal theory we have set ξ = ρ. The canonical
choice ãi = 0 breaks the shift-freedom of ξ in (3.14) and the residual transformations with
Cξ = 0 act in the coordinates as

ρ→ Kρρ , ψ → K−1
ρ (ψ − CηK

−1
η φ) , η → Kηη + Cη , φ→ K−1

ρ K−1
η φ , (4.15)

on the functions F (ρ), G(η) as

F (ρ) → K3
ρF (ρ) , G(η) → KρK

2
ηG(η) . (4.16)

and on the constants ai, bi as

ai → K−1
ρ (ai − CηK

−1
η bi) , bi → K−1

ρ K−1
η bi . (4.17)

These freedoms in the choice of Calabi-coordinates will be useful in what follows.

Lemma 6. Consider a supersymmetric toric solution to STU supergravity that is timelike
outside a compact horizon with (locally) S3 cross-sections. If the Kähler base is Calabi-toric,
then near the horizon, Calabi coordinates (ρ, η) are related to GNC (λ, η̂) by,

ρ = ℓκ

4Ĥ(η̂)1/3
λ+O(λ2) , η = η̂ +O(λ) , (4.18)
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where H(η̂) is given by (2.68), so in particular the horizon is at ρ = 0. Furthermore, we can
always choose Calabi coordinates such that,

F (ρ) = ρ2 +O(ρ3) , G(η) = (1 − η2)∆1(η) , (4.19)

where the function ∆1(η) is given by (2.67).

Proof. This proceeds in an identical fashion to the analogous lemma in the minimal theory [20].
For completeness we repeat it here. Recall that for a CT base we may always set ãi = 0 in
which case ⟨a, b⟩ ̸= 0, see table 1. Hence inverting (3.13) we obtain

ρ = ⟨x− c, b⟩
⟨a, b⟩

, η = −⟨x− c, a⟩
⟨x− c, b⟩

. (4.20)

Therefore, the near-horizon expansion (4.2) together with (3.31) imply that as λ→ 0,

η = O(1) , F (ρ)
ρ

= O(λ) , ρG(η) = O(λ) . (4.21)

These relations imply that ci = 0.
To see this, suppose that ci does not vanish identically. If ⟨b, c⟩ = 0 then ci is a nonzero

multiple of bi and since ⟨a, b⟩ ̸= 0 it follows that ⟨a, c⟩ ̸= 0; then (4.20) and (4.1) imply
that η is singular at the horizon contradicting (4.21). We deduce that ⟨b, c⟩ ̸= 0. Then,
expanding (4.20) using (2.78) we find,

ρ = ⟨b, c⟩
⟨a, b⟩

+ 1
⟨a, b⟩

(1 − η̂

A2 b2 −
1 + η̂

B2 b1
) ℓκλ

4Ĥ(η̂)1/3
+O(λ2) ,

η = −⟨a, c⟩
⟨b, c⟩

+ ⟨a, b⟩
⟨b, c⟩2

(1 − η̂

A2 c2 −
1 + η̂

B2 c1
) ℓκλ

4Ĥ(η̂)1/3
+O(λ2) , (4.22)

where we have used that ai−bi⟨a, c⟩/⟨b, c⟩ = −ci⟨a, b⟩/⟨b, c⟩, showing that in Calabi-coodinates
the horizon maps to a point (ρ, η) = (ρ0, η0) where ρ0 ̸= 0, η0 ̸= 0. From (4.21) it then follows
that we have F (ρ0) = G(η0) = 0 and expanding (3.28) to linear order in λ we find

Gij =
[
G′(η0)bibj

⟨b, c⟩

(1 − η̂

A2 c2 −
1 + η̂

B2 c1

)

+ ⟨a, b⟩2F ′(ρ0)cicj
⟨b, c⟩3

(1 − η̂

A2 b2 −
1 + η̂

B2 b1

)]
ℓκλ

4Ĥ(η̂)1/3
+O(λ2) . (4.23)

The term in square brackets has linear η̂-dependence which contradicts (4.2). We deduce
that our assumption that ci ̸= 0 must be false and hence

ci = 0, (4.24)

as claimed.
Now, the relation between the Calabi coordinates (ρ, η) and the GNC (λ, η̂) near the

horizon that follows from (4.20) and (2.78) becomes,

ρ = 1
⟨a, b⟩

(1 − η̂

A2 b2 −
1 + η̂

B2 b1

)
ℓκ

4Ĥ(η̂)1/3
λ+O(λ2) ,

η = −A2a1(1 + η̂) − B2a2(1 − η̂)
A2b1(1 + η̂) − B2b2(1 − η̂) +O(λ) , (4.25)

– 29 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
2

which in particular implies that the horizon in Calabi-coordinates is given by ρ = 0. Inverting
we also deduce that λ is a smooth function of ρ at the horizon.

To complete the proof of our lemma, we need to show that there exist functions F (ρ)
and G(η) such that (3.28) reproduces (2.75) at O(λ). From (4.21) and (4.25) we see that
F (ρ) = O(λ2) and G(η) = O(1) are smooth functions of λ at the horizon. Therefore, we
can write,

F (ρ) = F2ρ
2 +O(λ3) , G(η) = G0(η̂) +O(λ) , (4.26)

where
F2 = 1

2F
′′(0) , G0(η̂) = G

(
−A2a1(1 + η̂) − B2a2(1 − η̂)
A2b1(1 + η̂) − B2b2(1 − η̂)

)
. (4.27)

One can now check that (2.75) and (3.28) match at O(λ) if and only if

b2
b1

= −A2

B2 , F2 = 2
a1A2 + a2B2 , G0(η̂) = −(1 − η̂2)∆1(η̂)

F2A2B2b1b2
. (4.28)

We can now exploit the freedom in the choice of Calabi type coordinates (4.17) to fix

a1 = −b1 = A−2 , a2 = b2 = B−2 , (4.29)

which thus fixes
F2 = 1 , G0(η̂) = (1 − η̂2)∆1(η̂) , (4.30)

and (4.25) simplifies to (4.18). The second equation in (4.27) now reduces to G0(η̂) = G(η̂)
which therefore determines the function G(η) as claimed.

It is worth noting that in the Calabi-coordinates of lemma 6 the constant N = ⟨a, b⟩
is fixed by the near-horizon geometry parameters (4.29) to be simply

N = 2A−2B−2 . (4.31)

4.2 Black hole uniqueness theorem in STU supergravity

We now turn to the proof of our main result, theorem 1, which is the first black hole uniqueness
theorem in STU gauged supergravity. This is a generalisation of the corresponding result
in minimal gauged supergravity, namely theorem 2, which itself is a generalisation of the
main theorem in [20]. The main assumption of theorem 2 is the separability of the Kähler
metric on the base space. In particular, in the minimal theory we did not need to make
any assumptions on the Maxwell field, since this is completely determined by the Kähler
data. This is not surprising since both the metric and the Maxwell field are part of the
gravitational multiplet, the only multiplet present in the minimal theory. However, in the STU
model, the gravitational multiplet is supplemented with two vector multiplets, so naturally
we find that an analogous uniqueness theorem requires making further assumptions on the
Maxwell fields. In this section, we will analyse the supersymmetry constraints for the class of
separable toric solutions (see definition 5) and use the near-horizon analysis in section 4.1 to
prove the uniqueness theorem. In fact, the near-horizon analysis, which is summarised by
lemmas 4, 5, 6, reveals that the only type of separable solution compatible with a horizon
is Calabi-toric, so our analysis will restrict to this class.
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4.2.1 Calabi-toric supersymmetry solutions with horizons

Consider a timelike supersymmetric toric solution that is Calabi-toric as in definition 5. Thus
both the Kähler metric h and magnetic fields F I are separable (CT) and we write the metric
in the form (4.13). Recall that by lemma 1 the magnetic fields are closed, J-invariant, 2-forms
invariant under the toric symmetry, therefore, by proposition 2, if F I are also separable
(CT), their gauge fields can be written as

AI = 1
N

(
µIρ(ρ)
ρ

(dψ + ηdφ) + µIη(η)dφ
)
, (4.32)

for functions µIρ(ρ), µIη(η) where N = ⟨a, b⟩ is a constant (see table 1). Note that the gauge
transformations (3.35) for the CT case act as

µIρ(ρ) → µIρ(ρ) + ⟨αI , b⟩ρ, µIη(η) → µIη(η) − ⟨α, a⟩ − ⟨α, b⟩η . (4.33)

We will show that separability imposes strong restrictions on supersymmetric solutions.
First, it is useful to note that for a Calabi-toric metric (4.13) the basis of SD and ASD

2-forms (3.8) and (3.9) become12

I(1) = dρ ∧ (dψ + ηdφ) − ρdη ∧ dφ , (4.34)

I(2) =
√
FGdψ ∧ dφ+ ρ√

FG
dρ ∧ dη ,

I(3) = ρ

√
G

F
dρ ∧ dφ+

√
F

G
dη ∧ (dψ + ηdφ) ,

and

J (1) = dρ ∧ (dψ + ηdφ) + ρdη ∧ dφ , (4.35)

J (2) =
√
FGdψ ∧ dφ− ρ√

FG
dρ ∧ dη ,

J (3) = ρ

√
G

F
dρ ∧ dφ−

√
F

G
dη ∧ (dψ + ηdφ).

Now, evaluating the field strengths F I = dAI and comparing with (2.28) with ΘI =
ΘI
i I

(i), we find

ΘI
2 = ΘI

3 = 0 , (4.36)

and

θI := ΘI
1 = 1

2N

[
ρ

(
µIρ(ρ)
ρ2

)′

− 1
ρ
µIη

′(η)
]
, (4.37)

ΦI = − 1
2Nρ

[
µIρ

′(ρ) + µIη
′(η)

]
. (4.38)

12In order to avoid cluttered expressions, we will occasionally omit the argument of a function when there is
no risk of confusion.
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This shows that for any CT supersymmetric solution the SD 2-forms ΘI and the scalars ΦI are
fully fixed in terms of gauge field data. It is convenient to note that the time rescalings (2.37)
for CT solutions can be realised by

ρ→ K−1ρ , F (ρ) → K−2F (ρ) , µIρ(ρ) → K−1µIρ(ρ) , (4.39)

with η, ψ, φ, G(η) and µIη(η) unchanged.
For solutions with horizons more information can be extracted from the near-horizon

geometry. Recall that in lemma 6 we showed that the near-horizon geometry completely
fixes the function G(η) appearing in the Calabi metric (4.13). We will now show that an
analogous result holds for the Maxwell field, that is, the function µIη(η) is also fixed by
the near-horizon geometry.

Lemma 7. Consider a supersymmetric solution with a horizon as in lemma 6, with Maxwell
fields that are separable with respect to the same Calabi-coordinates (ρ, η). Then there is a
gauge where

µIρ(ρ) = O(ρ2), µIη
′(η) = −CIJKζJ

Nℓ2

6 (ℓ∆2(η)ζK + KK) , (4.40)

where ∆2(η) is given by (2.67).

Proof. For the CT case the function µIρ defined by (3.34) reduces to µIρ(ρ) = ⟨µI , b⟩ρ. Since
µIi and ρ are smooth at the horizon by (2.73), (4.18), we deduce that µIρ(ρ) are smooth and
µIρ(ρ) = O(ρ). Furthermore, the gauge transformations (4.33) shift each µIρ′(ρ) by a constant
and therefore we can fix a gauge so

µIρ
′(0) = 0 . (4.41)

This gives the first equation in (4.40). Now, using the near-horizon expansions (4.18)
in (4.38) gives

ΦI = −2Ĥ(η̂)1/3

Nℓκλ
µIη

′(η̂) +O(1) . (4.42)

and comparing with the near-horizon expansion (2.77) we deduce (4.40) as required.

It remains to solve the rest of the supersymmetry conditions for the functions F (ρ) and
µIρ(ρ), subject to the near-horizon boundary conditions given in lemma 6 and 7.

We start with (2.30) and (2.18), which using G(η) in (4.19), µIη(η) in (4.40), (4.37)
and (4.38), yield

ζIµ
I
ρ
′(ρ) = N

(
1 − 1

2F
′′(ρ)

)
, (4.43)

and (
ζIµ

I
ρ(ρ)
ρ2

)′

= N

2ρ3
(
2F ′(ρ) − ρF ′′(ρ) − 2ρ

)
, (4.44)

respectively, which are equivalent to the single constraint,

ζIµ
I
ρ(ρ) = N

(
ρ− 1

2F
′(ρ)

)
. (4.45)
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The Maxwell equations (2.31) reduces to

EI := ∇2
(
ℓ2

2 ζJΦJζI −GIJΦJ

)
+ ℓ2

12ζIλ1 + 1
ℓ
CIJK(ΦJΦK − θJθK) = 0 , (4.46)

and λ1, given by (2.32), becomes

λ1 = 1
2∇

2R+ 4
ℓ2
CIJKX̄

I(θJθK − ΦJΦK) , (4.47)

where we have used (4.36) and the definition θI := ΘI
1.

Next, we recall that for a toric solution we showed that one can write ω as (2.47), so in
Calabi-coordinates we must have ω = ωψdψ+ωφdφ for functions ωψ, ωφ that depend only on
(ρ, η). This implies that dω does not have any ψφ components and hence from (2.23), (2.22)
and (4.35), we deduce that the function

λ2 = 0 . (4.48)

Finally, the integrability condition for the existence of ω, which is equivalent to (2.34),
now reduces to

∂ρ(
√
FGλ3) = −G∂η(λ1 + S) , ∂η(

√
FGλ3) = F

ρ
(ρ∂ρ(λ1 − S) − 2S) , (4.49)

where we have defined the combination

S := 12ζJΦJζIθ
I − 24ℓ−2ΦIθ

I . (4.50)

From (4.49) we immediately get that the integrability condition for the existence of λ3,
which is equivalent to (2.35), is

E := ∂ρ

[
F

ρ
(ρ∂ρ(λ1 − S) − 2S)

]
+ ∂η (G∂η(λ1 + S)) = 0 . (4.51)

With θI and ΦI expressed as in (4.37) and (4.38), G(η) and µIη ′(η) given by (4.19) and (4.40)
respectively, equations (4.45), (4.46) and (4.51) become a system of η-dependent coupled
ODEs for the functions F (ρ) and µIρ(ρ).

4.2.2 Uniqueness theorem

We now have all the necessary ingredients to complete the proof of theorem 1. We start with
the uniqueness of the Kähler base. In contrast to minimal supergravity this is coupled to the
scalars and Maxwell fields and hence we must solve for these simultaneously.

Proposition 4. Consider a supersymmetric toric solution to STU supergravity that is
timelike and separable outside a smooth (analytic if A2 = B2) horizon with compact (locally)
S3 cross-sections. Then, the Kähler base is Calabi-toric (4.13) where G(η) and F (ρ) are
given by (4.19) and

F (ρ) = ρ2 + sρ3, (4.52)
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where the constant s = 4/ℓ2 or s = 0, so in particular we can write,

h = dρ2

ρ+ sρ2 + (ρ+ sρ2)σ2 + ρ

(1 − η2)∆1(η)(dη2 + τ2) , J = d(ρσ) , (4.53)

where we have defined

σ := dψ + ηdφ = 1 − η

A2 dϕ1 + 1 + η

B2 dϕ2 ,

τ := −(1 − η2)∆1(η)dφ = (1 − η2)∆1(η)
(

dϕ1

A2 − dϕ2

B2

)
, (4.54)

and ∆1(η) is given by (2.67) and 0 < A2, B2 < 1 are constants that parameterise the near-
horizon geometry and satisfy (2.59). Furthermore, the scalar fields are given by (4.38) where
the functions µIη(η) and µIρ(ρ) are given by (4.40) and

µIρ(ρ) = −ℓNsX̄
I

2 ρ2 , (4.55)

so in particular,

ΦI = ℓ2

12ρC
IJKζJ

(
(3ρs+ ∆2(η))ℓζK + KK

)
. (4.56)

Proof. We have already shown in lemmas 4, 5 and 6 that the only separable Kähler base com-
patible with a smooth horizon is Calabi-toric, with the functions G(η) and µIη ′(η) determined
by the near-horizon geometry where the latter follows from lemma 7. Therefore we need to
solve (4.45), (4.46) and (4.51) for F (ρ), µIρ(ρ). We will show that the only solution to this
system compatible with lemma 6 and 7 is

F (ρ) = ρ2 + F3ρ
3 , µIρ(ρ) = −ℓNF3X̄

I

2 ρ2 , (4.57)

where F3 an integration constant and N is given by (4.31). Under the scaling freedom (4.39)
F3 → KF3 where K ̸= 0 is constant, so we can use this to set F3 = s where s = 0 or s = 4/ℓ2,
which gives the claimed solution. The explicit form of the base then follows from (3.27)
and (4.29) which give,

ψ = 1
A2ϕ

1 + 1
B2ϕ

2, φ = − 1
A2ϕ

1 + 1
B2ϕ

2 . (4.58)

As in the proof of the corresponding theorem in minimal supergravity [20], we need to
distinguish between the cases A2 ̸= B2 and A2 = B2.

(i) Case A2 ̸= B2. By examining the explicit η-dependence of E in (4.51) and EI in (4.46)
we find that both are polynomials in η of degree two and one respectively. Using (4.45)
and (2.62) we find

∂2
ηE = −6(A2 − B2)2

ρ4

(
ρ2F ′′(ρ) − 4ρF ′(ρ) + 6F (ρ)

)
, (4.59)

and

∂ηEI = −ℓ(A
2 − B2)
4ρ

(
X̄IF ′(ρ)

3ρ +
A2B2µIρ(ρ)

ℓρ

)′

. (4.60)

– 34 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
2

Hence (4.51) implies the vanishing of (4.59) which can be easily solved to give

F (ρ) = F2ρ
2 + F3ρ

3 , (4.61)

with F2 and F3 integration constants. From lemma 6 we deduce F2 = 1 and hence F (ρ)
is given by the first equation in (4.57). Inserting then back in (4.60) we can solve for
µIρ(ρ), which after fixing the relevant integration by using (4.41), is given by the second
equation in (4.57). It can now be checked that (4.51) and (4.46) are satisfied identically.
This completes the proof of (4.57) for the case A2 ̸= B2.

(ii) Case A2 = B2. In this special case, (4.59) and (4.60) are automatically satisfied and
therefore cannot be used to solve for F (ρ) and µI(ρ). In fact, E and EI “lose” all their
η-dependence, and (4.51) and (4.46) become ODEs for F (ρ), µIρ(ρ), which need to be
solved together with (4.45). In order to present these ODEs in a more convenient form,
we rescale the functions F (ρ) and µIρ(ρ) and define

F(ρ) := A−2ρ−2F (ρ) , νI(ρ) := A2µIρ(ρ) . (4.62)

In terms of these (4.45) is written as13

ℓ−1∑
I

νI + (ρ2F)′ − 2ρ
A2 = 0 , (4.63)

while (4.46) and (4.51) read respectively,

EI = 1
ρ

− ℓ(A2 − 1)
18 (A2ρF ′ − 2) + A2

36ρ

3∑
J=1

KJν
J + A4νI

12ρ2 (ρ2F)′

+ A2

12ρ

A2ν2
I

ℓρ
+

3∑
J,K=1

CIJKνJ

(
KK + A2

ℓρ
νK

)− A4νI

6ρ

+ A4F
4

(
ρ3(ρ−2νI)′

)′
+ ℓA2F

72

(
ρ4
(

6A2F + 3KI + 4A2 − 10
ρ

)′)′′ ′ ,
(4.64)

and

E =
[
A6F

6

(
1
ℓ2

3∑
I=1

(
12(ρ−1ν2

I )′ − 9ν ′I2
)′

+ 2
ℓA2

3∑
I=1

(KIν
I)′′

−
(

6(ρF2)′ − 8ρ2
(
ρ−1(ρF)′

)′
− 4

A2 (ρ2F)′′ + 18ρ2(FF ′′ −F ′2)

− 9
2ρ

4F ′′2 + ρ3
(

3F(3F + ρF ′)′′ − 21
2 F ′2

)′ )′)]′
,

(4.65)

where we have also used (4.63) and (2.62) to rewrite them.
13For this case of the proof we do not use the summation convention for the indices I = 1, 2, 3 and write out

all sums explicitly. We furthermore slightly abuse the position of the same indices by writing νI = νI .

– 35 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
2

The assumption that the horizon is analytic implies that the metric in GNC is analytic
in λ and hence by lemma 6 and 7 that F(ρ), νI(ρ) are analytic functions of ρ,

F(ρ) = A−2 +
∞∑
n=1

Fnρn , νI(ρ) =
∞∑
n=2

νInρ
n , (4.66)

where we have taken into account (4.19) to fix the zeroth order term in F(ρ) and lemma 7 to
fix the first and second order terms in νI(ρ). We next examine the higher order terms.

First observe that (4.63) implies that

3∑
I=1

νIn+1 = −ℓ(n+ 2)Fn , n ≥ 1 . (4.67)

The Maxwell equations (4.64) at the first non-trivial order yield,

EI = A2

18ρ

(2 − 2A2 + KI)νI2 +
3∑

J,K=1
CIJK(−1 + A2 + KJ)νK2

+O(ρ0) . (4.68)

This is a linear system of three equations with three unknowns νI2 , but subject to the
constraint (2.62). In fact the vanishing of (4.68) implies ν1

2 = ν2
2 = ν3

2 and hence (4.67)
implies we have

νI2 = −ℓF1 . (4.69)

We will see that the constant F1 cannot be determined ((4.65) is automatically satisfied at
the relevant order E = O(ρ0)) and in fact it is the only free constant of the solution.

For the higher order terms, we will show by induction

Fn = νIn+1 = 0 , n ≥ 2 . (4.70)

The first step of the inductive argument is to verify the validity of this for n = 2. Equa-
tion (4.64) now yields

EI = A2

18

(7
4KI − 2(2A2 − 11)

)
νI3 −

3∑
J,K=1

(
CIJK

(1
4KI − (2A2 − 11)− 2KJ

)
νK3

)+O(ρ) .

(4.71)
Due to (2.62) the vanishing of the above equation has a one-parameter family of solutions
which is most conveniently parametrised by F2 through (4.67), namely14

νI3 = −ℓF2
3

4(11 − 2A2)2 + (11 − 2A2)KI − 2K2
I + 12C1

(11 − 2A2)2 + 4C1
. (4.72)

Then (4.65) yields

E = −F2A2 8(1 −A2)(11 − 2A2)2 − 12(1 + 2A2)C1 − 4C2
(11 − 2A2)2 + 4C1

+O(ρ) . (4.73)

14Note that (2.70) guarantees (11 − 2A2)2 + 4C1 ̸= 0. In particular for B2 = A2 it implies (11 − 2A2)2 +
4C1 > 81 + 36(1 −A2) > 0 since A2 < 1.
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Recall C1 and C2 are defined in (2.61). The factor multiplying F2 in the numerator of (4.73)
can never vanish since

8(1 −A2)(11 − 2A2)2 − 12(1 + 2A2)C1 − 4C2 > 8(1 −A2)(11 − 2A2)2 − 8(1 −A2)3

= 24(1 −A2)(10 −A2)(4 −A2)
> 0 , (4.74)

where in the first line we have used (2.70) and in the last A2 < 1. Therefore the vanishing
of (4.73) implies that F2 = 0 and hence (4.72) implies νI3 = 0. Therefore, we have shown
that (4.70) holds for n = 2.

We will now assume that (4.70) holds for some n ≥ 2 and prove that it also holds for n+1.
As in the n = 2 step we start from the Maxwell equations (4.64) expanded to order O(ρn−1),

EI = (n+ 1)A2

36

(n+ 6
n+ 3KI + 2an

)
νIn+2 −

3∑
J,K=1

(
CIJK

(
nKI

n+ 3 + an− 2KJ

)
νKn+2

) ρn−1 +O(ρn) ,

(4.75)
where we have introduced for convenience

an := 3n2 + 6n+ 2 − 2A2 . (4.76)

Taking into account (2.62) and (4.67) as before we find that the solution to the vanishing
of (4.75) is15

νIn+2 = −ℓFn+1
3

(n+ 3)a2
n + nanKI − 2nK2

I + 12C1
a2
n + 4C1

, (4.77)

and inserting into (4.65) we get

E = −Fn+1
n2(n+ 1)(n+ 2)A2

6

(
an − 3(1 + 2A2)

)
a2
n − 12(1 + 2A2)C1 − 4C2

a2
n + 4C1

ρn−1 +O(ρn) .

(4.78)
It is worth noting that (4.75), (4.77) and (4.78) reproduce respectively (4.68), (4.72) and (4.73)
for n = 1. Examining the numerator in (4.78) we have(

an − 3(1 + 2A2)
)
a2
n − 12(1 + 2A2)C1 − 4C2 >

(
an − 3(1 + 2A2)

)
a2
n − 8(1 −A2)3

>
(
a1 − 3(1 + 2A2)

)
a2

1 − 8(1 −A2)3

= 24(1 −A2)(10 −A2)(4 −A2)
> 0 , (4.79)

where we have used (2.70) as well as the fact that an > a1 > 3(1 + 2A2) for n ≥ 2. Therefore,
the vanishing of (4.78) implies that Fn+1 = 0 and hence (4.77) implies νIn+2 = 0. We have
therefore shown that (4.70) also holds for n+ 1.

Therefore, by induction, it follows that (4.70) is true. Redefining the integration con-
stant as

F1 = A−2F3 , (4.80)

we deduce that the only analytic solution to (4.45), (4.46) and (4.51) in the case A2 = B2

is (4.57).
15Again from (2.70) we have a2

n + 4C1 > 3n(n + 2)(3n2 + 6n + 4 − 4A2) > 0 for n ≥ 2.
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It remains to find the rest of the supersymmetric data in the timelike decomposition (2.10)
and (2.14), which is given by the following.

Lemma 8. Given a supersymmetric solution as in proposition 4, the function f is

f = 12ρ
ℓ2

( 3∏
I=1

((3sρ+ ∆2(η)) ℓζI + KI)
)−1/3

, (4.81)

and the scalar fields are

XI = 12ρ
fℓ2

((3sρ + ∆2(η)) ℓ ζI + KI)−1 . (4.82)

The axis set is η = ±1 and corresponds to the fixed points of ∂ϕ1 and ∂ϕ2 respectively. The
1-form ω is

ω =
(
ℓ3s2

8 ρ+ ℓ3s

8 (1 − ∆1(η)) − ℓ3∆3(η)
48ρ

)
σ − ℓ3(A2 − B2)

16

(
s

∆1(η) − 1
ρ

)
τ , (4.83)

and the magnetic part of the gauge fields are (up to a gauge transformation),

AI = − ℓ

2sρX̄
Iσ

− ℓ2

6 C
IJKζJ

(3
4
(
A2 − B2

)
(1 − η2) ℓζK +

(
(1 − 1

2(A2 + B2)) ℓζK + KK

)
η

)
dφ .

(4.84)

The functions ∆i(η) are given by (2.67).

Proof. First from the explicit form of the scalars (4.56) and their definition (2.24) we can
invert to obtain the original scalars,

f−1XI = ℓ2

36
(3ρs+ ∆2(η))ℓζK + KK

ρ
, (4.85)

and hence using CIJKXIXJXK = 2/9 we obtain the claimed form for f and XI . In particular,
for ρ > 0 the numerator of (4.85) is strictly positive (since it is for the near-horizon geometry),
so we deduce that away from the horizon f > 0. It therefore follows from (2.54) that on the
axis set Gij does not have full rank, so detGij = 0. On the other hand, from the explicit
form of the Kähler base detGij = NF (ρ)G(η) and the functions F (ρ), G(η), we see that the
only way this can vanish for ρ > 0 is if η = ±1.

We now turn to the 1-form ω. Using the data in proposition 4, we find that (4.49) give

∂ρ
(√

FGλ3
)

= 3(A2 − B2)G
ρ2 ,

∂η
(√

FGλ3
)

= 2
(1
ρ

+ s

)(
∆2

2 + ∆3 + C1
)
, (4.86)

which imply the solution is
√
FGλ3 = −3(A2 − B2)FG

ρ3 + λ3,0 , (4.87)
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where λ3,0 a constant. On the other hand, the equation for ω (2.23), reduces to the following
PDEs for ωψ and ωφ,

−48
ℓ3
∂ρωψ = −

(∆3
ρ2 + 6s2

)
,

−48
ℓ3
∂ρωφ = −η

(∆3
ρ2 + 6s2

)
+ λ3ρ

√
G

F
,

−48
ℓ3
∂ηωψ = −λ3

√
F

G
,

−48
ℓ3
∂ηωφ = −

(
6s(∆2 + sρ) + 2∆2

2 + ∆3 + 2C1
ρ

)
− λ3η

√
F

G
. (4.88)

Eliminating λ3 using (4.87) and integrating one finds the solution is

ω =
(
ℓ3s2

8 ρ+ ℓ3s

8 (1 − ∆1(η)) − ℓ3∆3(η)
48ρ

)
σ − ℓ3(A2 − B2)

16

(
s

∆1(η) − 1
ρ

)
τ + ω0

− ℓ3λ3,0
48

{
log(s+ ρ−1)

(1 − η2)∆1(η)τ + 1
A2B2

[
log

(2∆1(η)
1 + η

)
dϕ1 − log

(2∆1(η)
1 − η

)
dϕ2

]}
,

(4.89)

where ω0 = ω0idϕi and ω0i are constants. Now, imposing that the spacetime metric is smooth
at the horizon implies that ωi near the horizon behaves as (2.74) in GNC and hence, by the
coordinate change (4.18), must be smooth function of ρ apart from a 1/ρ leading pole. This
implies that the constant λ3,0 = 0. Furthermore, imposing that ω is a smooth 1-form at the
axis η = ±1 implies that ω0 = 0, giving the claimed form.

Finally, the gauge field follows from (4.32), together with (4.40), (4.55) and (4.58) where
we have fixed a gauge for AI .

We have completely determined the solution under our assumptions, which is given by
proposition 4 and lemma 8. We now show that this is locally isometric to the known black
hole solution or its near-horizon geometry. We have provided a simplified form for this black
hole solution in appendix B which is convenient for comparison to our general solution. It is
straightforward to check that the solution with s = 4/ℓ2 and s = 0 are identical to the known
black hole and its near-horizon geometry respectively, upon the coordinate change

ρ = r2/4, η = cosϑ , (4.90)

and the parameter identification (recall also that ζI := 3ℓ−1X̄I)

A2 = A2, B2 = B2 KI = KI . (4.91)

This completes the proof of theorem 1.
Finally, we note that the Kähler base in proposition 4 has an enhanced local SU(2)×U(1)

symmetry if and only if A2 = B2. Furthermore, in this case the separable magnetic 2-forms F I ,
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which have gauge fields (4.32), also possess a local SU(2) × U(1) symmetry. Therefore, the
uniqueness theorem for the case A2 = B2 also establishes the uniqueness of supersymmetric
solutions with a local SU(2) × U(1) symmetry that are timelike outside a compact horizon.
This is because timelike supersymmetric solutions that possess a symmetry which leaves V
invariant, must have a Kähler base and magnetic fields F I that are also invariant under the
symmetry (this can be argued in essentially the same way as in minimal supergravity [10]).
Furthermore, a Kähler metric with a local SU(2) × U(1) symmetry is a special case of
Calabi-toric (with G(η) ∝ (1 − η2)). This completes the proof of theorem 3.

5 Discussion

In this paper we have proven a uniqueness theorem for the most general known supersymmetric
black hole solution in five-dimensional STU gauged supergravity [13]. The key assumption
in our theorem is a toric symmetry that is compatible with supersymmetry and that is
separable in a sense that we defined. In particular, the concept of separability implies that
the solution is specified by single-variable functions in an orthogonal coordinate system and
hence allows one to reduce the problem to ODEs. We find that for solutions containing
horizons, with compact locally spherical cross-sections, the near-horizon boundary conditions
fix the angular dependent functions while the radial dependent functions are determined
by solving the remaining ODEs. Therefore, our proof is constructive, and furthermore,
results in a simpler form of the solution. This generalises our previous uniqueness theorem
in minimal gauged supergravity [20] in two directions: to the more general STU theory
and to the broader class of separable Kähler bases. Our work leaves a number of open
problems which we now elaborate on.

The near-horizon classification of toric supersymmetric solutions also contains solutions
with non-spherical horizon topology, namely horizons with cross-sections of topology S1 × S2

and T 3 [26]. These solutions are not allowed in minimal gauged supergravity, however,
they are in certain regions of the scalar moduli space in the STU theory. There are also
near-horizon geometries with horizon cross-section topology S1 times a 2d spindle [32] (these
are allowed in minimal supergravity [33]). In fact all of these near-horizon geometries are null
supersymmetric solutions and therefore not covered by our analysis. In order to extend our
work to these cases would require performing a higher order calculation in order to determine
the leading near-horizon behaviour of the Kähler base for a timelike supersymmetric solution
containing such a horizon. This is an interesting open problem that would in particular clarify
the existence of possible supersymmetric black rings, strings and spindles in this theory.

It would also be interesting to investigate the assumption of separability further, in
particular, whether any progress can be made by relaxing this assumption and study generic
supersymmetric toric solutions. The main motivation for studying this class is that it can
accommodate topologically non-trivial spacetimes and horizons and hence this is the natural
symmetry class within which to address the existence of black rings, black lenses, black holes
in bubbling spacetimes or even multi-black holes. This appears to be a very complicated
problem in toric Kähler geometry, even in the case of minimal supergravity, which ultimately
may require the use of numerical techniques. On the geometrical side, we showed that
separability of a toric Kähler metric is equivalent to the existence of a Hamiltonian 2-form.
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It would be interesting to clarify the spacetime interpretation of this structure and whether
it is related to other notions of separability such as the existence of Killing-Yano tensors or
related structures (which are known to exist for the black hole in minimal supergravity [34]).

This theory also admits supersymmetric solitons, that is, finite energy spacetimes that
are everywhere smooth with no event horizons [10, 23, 35, 36]. An essential part of our
analysis was to assume the existence of a smooth horizon and hence our results do not include
such solutions. It would be interesting if a uniqueness theorem for such solitons could be
established. In fact, the known supersymmetric soliton that is asymptotically globally AdS5
has an orthotoric Kähler base [23, 35], whereas the asymptotically locally AdS5 solitons have
an SU(2)×U(1) invariant base and hence are Calabi-toric [10, 36]. Thus all the known solitons
are separable according to our definition. It is therefore plausible that one may be able to
establish a classification theorem for solitons for separable supersymmetric toric solutions.

The known supersymmetric black hole [13] is expected to arise as the BPS limit of the
non-extremal three-charged rotating black hole in STU supergravity [14]. The latter is a
6-parameter family that correspond to the mass, three charges and two angular momentum
parameters, whereas the former is a 4-parameter family with the mass fixed by the BPS
relation and a non-linear constraint between the charges and angular momenta.16 We expect
there is a 5-parameter family of supersymmetric solutions that correspond to the BPS limit
of the non-extremal black hole [14] which generically do not have a black hole interpretation,
but can be analytically continued to obtain smooth ‘complex saddles’ that should be relevant
in holography. In the special case of minimal gauged supergravity (which possess three
equal charges) the non-extremal black hole is the CCLP solution [18] and the BPS complex
saddles where first found in [4] and possess an orthotoric Kähler base [23]. We expect the
aforementioned more general family of complex saddles in the STU theory to also be a
separable supersymmetric solution with an orthotoric Kähler base. This may also allow one
to write the BPS limit of the solution [14] in a simplified form.
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A Exceptional separable toric Kähler metrics

In this appendix we will consider non-separable Hamiltonian 2-forms on separable Kähler
surfaces. As shown in section 3.3 this corresponds to the case where the constant p is non-
vanishing in (3.58). We show below this is possible only when the functions F (ξ) and G(η)
in (3.20) have the form in table 3. We also provide the moment maps for the corresponding
Hamiltonian 2-forms. Observe that these examples all have multiple non-trivial Hamiltonian
2-forms (see also [24]).

16In the special case with SU(2) × U(1) spacetime symmetry (which posses equal angular momenta) the
non-extremal solutions in the STU theory were found in [37] and their BPS limit was studied in [38] (see also [8]).
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Class F (ξ) G(η) µ̃ξ(ξ) µ̃η(η)

PT F0 + F1ξ G0 +G1η pG1ξ
2 + γ1ξ pF1η

2 + δ1η

CT F2ξ
2 + F3ξ

3 −F2η
2 +G1η +G0 γ2ξ

2 + γ3ξ
3 0

OT F0 + F1ξ + F2ξ
2 + F3ξ

3 −(F0 + F1η + F2η
2 + F3η

3) γ2ξ
2 + γ3ξ

3 −(γ2η
2 + γ3η

3)

Table 3. For exceptional separable toric Kähler surfaces the Hamiltonian 2-form is not necessarily
separable. Fn, Gn, γn and δn are constants.

Starting with the PT case, we have

0 = ∂ξE1 = p
(
2F ′′(ξ) −G′′(η)

)
, 0 = ∂ηE2 = p

(
2G′′(η) − F ′′(ξ)

)
, (A.1)

which implies F (ξ) and G(η) are linear as shown in the first row of table 3. Solving
0 = E1 = E2 we find µ̃ξ(ξ) = pG1ξ

2 + γ1ξ + γ0 and µ̃η(η) = pF1η
2 + δ1η + δ0 where the

constant terms can be fixed to zero using the gauge transformations (3.35). The results
are summarised in the first row of table 3.

Next for the CT case we have

0 = ∂ξ∂ηE1 = −pG′′′(η) , 0 = ∂2
ξ∂η(ξ2E2) = −pξ2F ′′′′(ξ) , (A.2)

which imply G(η) = G0 + G1η + G2η
2 and F (ξ) = F0 + F1ξ + F2ξ

2 + F3ξ
3. Further using

0 = ∂ξE1 we get F0 = 0 and G2 = −F2. We then have 0 = E1 = −4pF1 − µ̃′′η(η) and hence
µ̃η(η) = −2pF1η

2+δ1η+δ0 and inserting into 0 = ∂η(ξ2E2) we find F1 = 0. With these 0 = E2
becomes and ODE for µ̃ξ(ξ) which can be readily solved to give µ̃ξ(ξ) = γ3ξ

3 + γ2ξ
2 − δ1ξ.

We can then use gauge transformations (3.35) to get the results in the second row of table 3.
For OT geometries we have

0 = ∂ξ

[ 1
(ξ− η)2∂

2
η

(
(ξ− η)2E1

)]
= −pG′′′′(η) , 0 = ∂η

[ 1
(ξ− η)2∂

2
ξ

(
(ξ− η)2E2

)]
= −pF ′′′′(ξ) ,

(A.3)
from which we infer that F (ξ) and G(η) are cubic polynomials. We then have 0 = ∂2

ξ∂
2
ηE1 =

−2µ̃′′′′η (η) and 0 = ∂2
ξ∂

2
ηE2 = −2µ̃′′′′ξ (ξ) and therefore µ̃ξ(ξ) and µ̃η(η) are cubic polynomials

as well. Then 0 = E1 = E2 are polynomial equations in ξ and η and we can easily deduce
that F (ξ) and G(η) should have opposite coefficients and the same holds for µ̃ξ(ξ) and µ̃η(η).
Finally using gauge transformations (3.35) we can arrive at the third row of table 3.

B The known black hole

The known supersymmetric black hole in STU gauged supergravity is a four parameter family
of supersymmetric solutions [13]. We present it here in a simplified form, also providing
the necessary formulae to compare to our notation.

The parameters of the solution are 0 < A2, B2 < 1 and KI , I = 1, 2, 3 subject to

CIJKX̄IX̄JKK = 0 , (B.1)
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where X̄I were introduced in subsection 2.1. The parameter space of the solution is further
constrained by

κ2(A2, B2, C1, C2) > 0 , KI >
3
2(A2 +B2) + 1

2 |A
2 −B2| − 1 , (B.2)

where
C1 = ℓ

6C
IJKX̄IKJKK , C2 = 1

6C
IJKKIKJKK , (B.3)

and κ2 is given by (2.60). The metric and the Kähler form of the Kähler base are given by

h = dr2

V (r) + r2

4

(
dϑ2

∆ϑ
+ ∆ϑ sin2 ϑdϕ2

)
+ r2V (r)

4 (dψ + cosϑdϕ)2 ,

J = d
(1

4r
2(dψ + cosϑdϕ)

)
, (B.4)

where ∆ϑ = A2 cos2(ϑ/2) + B2 sin2(ϑ/2). The black hole corresponds to V = 1 + r2

ℓ2 while
its near-horizon geometry (also a supersymmetric solution) corresponds to V = 1. The
coordinate ranges are r ≥ 0 and 0 ≤ ϑ ≤ π while the angles ψ and φ are given in terms
of 2π-periodic coordinates ϕi as

ψ = A−2ϕ1 +B−2ϕ2 , ϕ = −A−2ϕ1 +B−2ϕ2 . (B.5)

An interesting observation about (B.4) is the fact that it does not involve the constants
KI . In particular the Kähler base is the same for K1 = K2 = K3 = 0 which yields the
supersymmetric CCLP solution [18] (see appendix B of [20]).

In order to write the full solution it is convenient to introduce r̃2 (note that it is
ϑ-dependent) through

r̃2/ℓ2 = V (r) − ∆ϑ + 1
3(A2 +B2 − 2) . (B.6)

With this we have

f−3 =
3∏
I=1

(
3r̃2

r2 X̄I + ℓ2

3r2KI

)
, (B.7)

and

ω =
(
r2

2ℓ + ℓ

2(1−∆ϑ)− ℓ3

12r2

(
6∆ϑ −A4 −B4 +A2B2 − 2(A2 +B2)− 1−C1

))
(dψ+ cosϑdϕ)

+ ℓ(A2 −B2)
4

(
1 − ℓ2∆ϑ

r2

)
sin2 ϑ dϕ . (B.8)

Finally, the scalar and gauge fields are respectively given by

f−1XI = r̃2

r2 X̄I + ℓ2

9r2KI , (B.9)
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and

AI = XIf(dt+ ω) − ϵ
r2

2ℓX̄
I (dψ + cosϑdϕ)

− ℓ

2C
IJKX̄J

(9
4
(
A2 −B2

)
X̄K sin2 ϑ +

(
3X̄K − 3

2(A2 +B2)X̄K +KK

)
cosϑ

)
dϕ ,

(B.10)

where ϵ = 1 for the black hole and ϵ = 0 for its near-horizon geometry.
The map between our coordinates and parameters and those in [13] is given by the

following,

ℓhere = g−1
there, (r/ℓ)here = sinh(gσ)there , (ϕ1, ϕ2, ϑ)here = (−ϕ,−ψ, 2θ)there ,

(B.11)

(A2, B2,KI)here = (A2, B2, 9eI/ℓ2)there , ∆ϑ|here = ∆θ

g2α2

∣∣∣
there

, r̃2|here = ρ2|there. (B.12)

We also note that for A2 = B2 we recover the SU(2)×U(1)-symmetric black hole found in [12].

C Unified form of near-horizon geometry

The possible near-horizon geometries with compact cross-sections in five-dimensional STU
gauged supergravity that admit a toric symmetry were derived in [26]. For the solutions
with locally S3 horizons, the cases with generic toric symmetry and enhanced SU(2) × U(1)
symmetry were treated separately in that reference. The latter with enhanced symmetry
first appeared in [12]. Here we show that they can be written in a unified coordinate system
as in subsection 2.3.

C.1 Generic toric symmetry

The near-horizon geometry in the case of generic toric symmetry was expressed in [26] in
terms of six parameters x1, x2, x3 and k1, k2, k3, the latter being subject to

k1 + k2 + k3 = 0 . (C.1)

Let us present the near-horizon solution in this parametrisation where χihere = xithere and
kI |here = KI |there. The leading order of the near-horizon geometry in (2.55) is given by

∆(0) = ∆0
H(x)2/3 ,

h(0) =
(
C2 − ∆2

0
H(x)

)
dχ1 + ∆0(α0 −x)

H(x) dχ2 − H ′(x)
3H(x)dx ,

γ(0) = ℓ2H(x)1/3

4P (x) dx2 + C2H(x)−∆2
0

H(x)2/3

(
dχ1 + ∆0(α0 −x)

C2H(x)−∆2
0
dχ2

)2
+ 4H(x)1/3P (x)
C2H(x)−∆2

0
(dχ2)2 ,

(C.2)
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while of the near-horizon gauge field (2.56) is given by

aI(0) =
XI

(0)

H(x)1/3

(
∆0dχ1 + (x− α0)dχ2

)
, (C.3)

and of the scalars by

X
(0)
I = 1

H(x)1/3

(
ℓ

3ζIx+ kI

)
. (C.4)

The constants ∆0, C and α0 are given in terms of x1,2,3 as

C2 = 4
ℓ2 (x1 + x2 + x3), α0 = x1x2+x1x3+x2x3−3c1

2(x1+x2+x3) ,

∆2
0 = 4(x1x2x3+c2)(x1+x2+x3)

ℓ2 − (x1x2+x1x3+x2x3−3c1)2

ℓ2 , (C.5)

and the functions H(x) and P (x) are defined by

H(x) =
3∏
I=1

(x+ 3kI) = x3 + 3c1x+ c2 , P (x) =
3∏
i=1

(x− xi) = H(x)− ℓ2C2

4 (x−α0)2 − ∆2
0

C2 ,

(C.6)
where

c1 = 3ℓ
2 C

IJKζIkJkK , c2 = 9
2C

IJKkIkJkK . (C.7)

One can easily see that the near-horizon solution is invariant under the rescalings

x→ K̃x , χ1 → K̃−1χ1, χ2 → χ2 , k1,2,3 → K̃k1,2,3 , x1,2,3 → K̃x1,2,3 ,

(C.8)
where K̃ > 0 is a constant.

The values of x1, x2, x3 are restricted by

0 < x1 < x2 < x3 , ∆2
0(x1, x2, x3) > 0 , (C.9)

and for the coordinate x we have x1 ≤ x ≤ x2 with P (x) > 0 in the interior. The parameters
kI are also constrained by demanding positivity of the scalars on the horizon, so (C.4) gives

1
3x1 + kI > 0 . (C.10)

The metric generically has conical singularities at the endpoints x = x1, x2 where two
different linear combinations of the biaxial Killing fields vanish.17 The Killing fields ∂χi do not
necessarily have closed orbits and are related to the Killing fields with fixed points mi = ∂ϕ̂i by

mi = −di
( 4
ℓ2C4(α0 − xi)

∂χ1 − ∂χ2

)
, i = 1, 2, (C.11)

where m1 = 0 at x = x1 and m2 = 0 at x = x2. The Killing fields mi must have closed
orbits in order to avoid conical singularities. We can determine the constants di (up to

17Note a typo in [26], equation (122) in that paper for ω(xi) has a missing factor of ∆0 in the numerator.
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signs) by demanding that ϕ̂i ∼ ϕ̂i + 2π and that the metric has no conical singularities
at these endpoints. We find

d1 = ℓ3C2

4(x2 − x1)
α0 − x1
x3 − x1

, d2 = − ℓ3C2

4(x2 − x1)
α0 − x2
x3 − x2

, (C.12)

where the signs have been conveniently chosen. From equations (C.11) and (C.12) we can read
off the matrix A which determines the transformation to the 2π-periodic angles χi = ϕ̂jA i

j

where mi = A j
i ∂χj .

It’s also useful to note that from [26] we can infer that

Z(0) = 3ℓ
2∑I X

I

[
−x

2 + c1
H

(
C2(x− α0)dχ1 − 4∆0

ℓ2C2 dχ2
)

+ dH
3H

]
, (C.13)

where Z(0) is the leading order of the 1-form Z appearing in (2.57).
The near-horizon solution can be expressed in terms of quantities invariant under (C.8).

For this purpose, we define a new coordinate

η̂ := −x− x1 + x− x2
x2 − x1

, (C.14)

and new parameters

A2 := x3 − x1
x1 + x2 + x3

, B2 := x3 − x2
x1 + x2 + x3

, KI := 9kI
x1 + x2 + x3

, (C.15)

and the parameters C1 and C2 are defined in (2.61).18 Therefore −1 ≤ η̂ ≤ 1 and from the
first equation in (C.9) we deduce that 0 < B2 < A2 < 1. We can now straightforwardly verify
that the expressions (C.2), (C.3), (C.4) and (C.13) map to (2.63), (2.64), (2.65) and (2.69)
respectively (up to gauge transformations for the gauge field), the second constraint in (C.9)
maps to (2.59) and (C.10) maps to (2.70). In comparing the relevant expressions, some
useful relations are

∆2(η̂)2 + C1 = 9(x2 + c1)
(x1 + x2 + x3)2 , κ = 3ℓ∆0

(x1 + x2 + x3)2 . (C.16)

Finally, note that the parameter region can be extended to B2 > A2. To see this, observe
that if we exchange

ϕ̂1 ↔ ϕ̂2 , η̂ ↔ −η̂ , A2 ↔ B2 , (C.17)

we get identical expressions in subsection 2.3 for the near-horizon solution.

C.2 Enhanced symmetry

The near-horizon solution with enhanced local SU(2) × U(1) rotational symmetry is parame-
trised by a constant ∆ > 0 and the values of the constant scalars XI > 0 subject to

18Note that C1 = 9c1
x1+x2+x3

, C2 = 27c2
x1+x2+x3

.
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X1X2X3 = 1 [26]. The data in (2.55) and (2.56) explicitly read

∆(0) = ∆ ,

h(0) = X∆
ℓ(∆2 + ℓ−2Y )(dϕ+ cos θdψ) ,

γ(0) = 1
∆2 + ℓ−2Y

(dθ2 + sin2 θdψ2) + ∆2

(∆2 + ℓ−2Y )2 (dϕ+ cos θdψ)2 , (C.18)

and
aI(0) = −XI (X − 2XI)

ℓ(∆2 + ℓ−2Y )(dϕ+ cos θdψ) , (C.19)

where

X = X1 +X2 +X3 , (C.20)
Y = (X1)2 + (X2)2 + (X3)2 − 2X1X2 − 2X1X3 − 2X2X3 , (C.21)

and the ranges of Euler angles that cover S3 are 0 ≤ ϕ ≤ 4π, 0 ≤ ψ ≤ 2π, 0 ≤ θ ≤ π.
The above data is equivalent to (2.63) and (2.64) for B2 = A2 (up to gauge transfor-

mations) under the coordinate change

ϕ = ϕ̂1 + ϕ̂2 , ψ = −ϕ̂1 + ϕ̂2 , cos θ = η̂ , (C.22)

and the parameters are related by

∆ = 3κ
ℓĤ2/3

, XI = Ĥ1/3

1 −A2 + KI
, (C.23)

where the function Ĥ(η̂) for B2 = A2 becomes a constant. The inverse transformation
of the parameters is

A2 = ℓ2∆2 + Y

ℓ2∆2 +X2 , KI = X2 − Y

ℓ2∆2 +X2
2 − (XI)2(X −XI)
1 + (XI)2(X −XI) . (C.24)

Note that X1X2X3 = 1 implies (2.62) and that the constraints ∆ > 0 and XI > 0
become (2.59) and (2.70) respectively.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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