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The implications of the recently proposed trans-Planckian censorship conjecture (TCC) are analyzed in
the context of warm inflation. It is found that for a single-stage accelerated expansion the constraints
imposed by the censorship are roughly the same as for cold inflation. Next, we study how a two-stage
inflationary expansion with an intermediate radiation-dominated era can alleviate the bounds imposed by
the censorship. For a demonstrative toy model we found r < 10−23, but can be r < 10−5 for a weaker form
of TCC for the later stages of expansion, while still satisfying the other swampland conditions.
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I. INTRODUCTION

Inflation remains to this day as the most plausible
mechanism to explain the large scale structure of the
universe and the anisotropies in the cosmic microwave
background [1,2]. Furthermore, it single-handedly solves
the drawbacks of the standard big bang cosmology, in
particular, the horizon problem [3–6]. However, there are a
few shortcomings with the inflationary paradigm. For
instance, from a field theory perspective it has been proven
difficult to keep radiative corrections to the effective
potential under control so that the required flatness of
the potential do not get spoiled (the eta problem). Another
complication is related to the fact that if inflation lasted
long enough, present-day perturbative modes could be
traced back to sub-Planckian wavelengths during inflation,
raising questions about the validity of its predictions, since
physics at those scales is not understood. This is known as
the trans-Planckian problem [7,8].
There are many approaches to tackle this problem,

like considering modified dispersion relations at trans-
Planckian (TP) frequencies, or introducing a new physics
hypersurface such that perturbative modes do not evolve at
said scales, although some residues of that era are predicted
in the power spectrum [9,10]. Further changes can be
expected from the selection of initial states different to the
Bunch-Davies vacuum, like the α-vacua [11–13], a stan-
dard practice to deal with the past-incomplete nature of

inflation. In this sense, a different route is to consider
nonsingular bouncing cosmologies or other preinflationary
models where one can keep observational relevant scales
far from sub-Planckian wavelengths, yielding to negligible
corrections from TP physics [14]. These are considered
past-complete extensions to the inflationary paradigm, such
that the perturbations can be safely assumed to begin in the
standard Bunch-Davies state [15].
Against this background, it has been conjectured that

any model susceptible to the TP problem belongs to the
swampland [16,17]. This has been coined the trans-
Planckian censorship conjecture (TCC). It restricts long-
lived de Sitter states but it does allow for short-lived states
that do not last long enough for a TP mode to cross the
horizon. In particular, the TCC states that a meta-stable de
Sitter state can exist for a time t ≤ ð1=HÞ lnðMp=HÞ. This
restricts the energy scale of a phase of inflation to be fairly
low, hence placing a bound on the tensor-to-scalar ratio of
r < Oð10−30Þ, as shown in [16]. Even though there are
models that satisfy this constraint [18–21], it has been also
pointed out that the bound is less demanding for bouncing
cosmologies and other preinflationary scenarios, basically
for the same reasons that they are less sensitive to the TP
problem [16,22]. Along those lines, other scenarios like a
multistage inflation [23], excited initial states [24] or
nonstandard expansion histories [25,26] can also mitigate
the TCC constraints.
Notice however that the TCC comes in addition to the

other swampland criteria, which bounds the field variation
during inflation (the distance conjecture) and the shape of
the scalar potential (the de Sitter conjecture). The swamp-
land conditions emerge from the difficulty in constructing a
de Sitter space from string theory, at present the most
developed theory for quantum gravity. However, there are
still many fundamental issues to understand in string
theory. One viewpoint could be that inflation is very
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successful in explaining observations and so the swamp-
land conditions demonstrate the phenomenological incon-
sistency of string theory, at least in its present form. As
such, one could simply sidestep the problems emerging
from string theory and focus on the phenomenological
success of inflation. Alternatively, string theory has come
the closest to any idea so far in realizing a consistent theory
of quantum gravity. Thus, another viewpoint would be that
it is interesting to explore the extent of the consistency that
can be achieved between inflation and its realization from
string theory and its swampland conditions. This is the
viewpoint we will adopt for this paper.
Under such circumstances, warm inflation (WI) [27,28]

presents a unique set of features that allows it to overcome
these constraints [19,29–33]. The reason is twofold:
first, the inflaton is considered to dissipate energy into a
radiation heat bath. Thus, one can get the necessary amount
of inflation with a small background field variation,
provided that there is enough dissipation. Moreover, this
also allows for steeper potentials in comparison to the
standard picture (cold inflation) [34], so that the dS
conjecture can be readily satisfied while solving or at least
mitigating the eta problem. In fact, the swampland con-
ditions were stated in [35] more than a decade ago, of
course not in those terms, but nevertheless as conditions
necessary for a consistent high-energy model of warm
inflation. Second, not only dissipation is accounted for, but
also the effects of a random noise term in accordance with a
fluctuation-dissipation theorem. This determines the stat-
istical properties of the inflaton fluctuations, which are now
thermal. Consequently, warm inflation is conceptually
more robust than the standard picture regarding the initial
state of perturbations, since the observed fluctuations are
already classical during inflation. Indeed, all fluctuations in
warm inflation that become relevant to density perturba-
tions are created while modes are in the horizon before
crossing and at wavenumber scales well below TP scales.
Thus, vacuum fluctuations are suppressed and play a small
or no role in the primordial density fluctuations. However,
it should be noticed that the TCC would still apply in this
scenario, even though the role of vacuum fluctuations is not
relevant.
In this paper we will explore the consequences of the

TCC for the warm inflation scenario. We will show that the
constraints imposed on the energy scale in warm inflation
are roughly the same as for cold inflation. Subsequently, we
will explore how these constraints can be mitigated in a
multistage inflationary scenario with an intermediate radi-
ation dominated phase, a setup that can be naturally
produced by warm inflation from a field theory perspective.
We analyze this for generic realizations of the model and
then for a toy model. Finally, we point out that if one
relaxes the TCC for later stages, the bound on the amplitude
of tensor perturbations can be alleviated by several orders
of magnitude.

II. WARM INFLATION

A. Background dynamics

Warm inflation is an appealing alternative to the standard
picture, both conceptually and phenomenologically. It can
be seen as a generalization of the standard picture where the
interaction of the field with radiation degrees of freedom
cannot be neglected during inflation. An extra bonus of this
assumption is the absence of a reheating phase, since there
is a smooth transition between inflation and the radiation-
dominated (RD) era.
Dissipation of energy is readily accounted for through a

frictionlike term in the equation of motion of the inflaton,
such that

ϕ̈þ ð3H þϒÞ _ϕ ¼ −V;ϕ; ð1Þ

where ϒ is known as the dissipative coefficient. It is
convenient to introduce a dissipative ratio Q ¼ ϒ=3H,
which quantifies the importance of dissipation in compari-
son to the expansion rate. On the other hand, the evolution
of radiation is determined through the conservation of the
energy-momentum tensor, which renders the continuity
equation

_ρr þ 4Hρr ¼ ϒ _ϕ2: ð2Þ

Because of this extra friction term, the slow-roll conditions
in warm inflation are more relaxed than their cold inflation
counterparts. As in that scenario, one expects the field
acceleration ϕ̈ to be small in comparison to the other terms,
so the kinetic energy does not surpass the potential energy,
effectively ending inflation too soon. This can be checked
through the slow-roll parameters, which in warm inflation
are generalized as follows

ϵ ¼ M2
p

2ð1þQÞ
�
V;ϕ

V

�
2

; jηj ¼ M2
p

1þQ

����V;ϕϕ

V

����; ð3Þ

where MP is the reduced Planck mass and ϵ ≃ ϵH ≡
− _H=H2 during slow-roll. Naturally, the end-of-inflation
condition remains the same as in the standard picture, i.e.,
ϵH ¼ 1. From this, it becomes clear that the distance and dS
swampland constraints are more easily overcome in warm
inflation, as the field can move less due to dissipation,
which also allows for steeper potentials.
Finally, it is worth mentioning that warm inflation asks

for further consistency checks. Arguably, the most relevant
is that T > H, which can be interpreted as the requirement
that the microscopic dynamics should exceed the expansion
rate in order to maintain a thermal state. Likewise, in
quantum field theory realizations of warm inflation more
stringent consistency conditions also include that the
timescales of all relevant microphysical processes are faster
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than the Hubble rate, Γ > H, where Γ represents any
microphysical decay and/or scattering rates in the system.

B. Computation of perturbations

Warm inflation presents fundamental differences in the
study of perturbations in comparison to cold inflation. For
starters, the presence of other fields, namely radiation, also
generate density fluctuations that contribute to the curva-
ture power spectrum. In this way, the comoving curvature
perturbation can be written as

R ¼ −
H

ρþ p
ΨT ¼ −

H
ρþ p

ðΨϕ þ ΨrÞ; ð4Þ

where ρ and p are the total energy density and pressure
respectively, and ΨT denotes the total momentum pertur-
bation in the spatially flat gauge. It has been shown
numerically [36] and analytically [37] that at horizon
crossing radiation and momentum perturbations are
related by

Ψr ≃QΨϕ; ð5Þ

rendering a curvature perturbation of the form

R ¼ −
1

2M2
pϵ

ð1þQÞΨϕ ≃
H
_ϕ
δϕ; ð6Þ

where we have used Ψϕ ¼ − _ϕδϕ and the slow-roll

approximation, which implies ρþ p ≃ ð1þQÞ _ϕ2. Con-
sequently, and similarly to cold inflation, the curvature
power spectrum reads

Δ2
R ¼

�
H
_ϕ

�
2

Δ2
δϕ: ð7Þ

Nevertheless, the amplitude of the spectrum, Δ2
δϕ, is quite

different to its standard picture counterpart, as already
mentioned. Indeed, dissipation induces the field perturba-
tion δϕ to satisfy a Langevin-like equation, with a fluc-
tuation-dissipation relation determining the statistical
properties of the fluctuations. In this way, we get [38,39]

Δ2
δϕ ¼

�
H�
2π

�
2
�
1þ 2n� þ

T�
H�

2π
ffiffiffi
3

p
Q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p

�
; ð8Þ

where n� denotes the statistical distribution of the pertur-
bative modes, and each background quantity is evaluated at
horizon crossing.
Finally, the observables linked to perturbations, the

spectral index and tensor-to-scalar ratio, are defined by

ns − 1 ¼ d lnΔ2
R

dN
; r ¼ Δ2

Tðk0Þ
Δ2

Rðk0Þ
; ð9Þ

where Δ2
T is the power spectrum of tensor perturbations

given by

Δ2
T ¼ 8

M2
p

�
H
2π

�
2

; ð10Þ

and Δ2
Rðk0Þ ¼ 2.2 × 10−9, where k0 ¼ 0.002 MPc−1 is a

pivot scale [40]. On the other hand, in the case of strong
dissipation the spectral index can be approximated by [37]

ns ≈ 1þ 3

4
ð2η − 6ϵÞ þ

�
5

4
−

1ffiffiffiffiffiffiffiffiffi
3πQ

p
�
θ; ð11Þ

where θ ¼ d lnð1þQÞ=dN is a slow-roll parameter
describing the evolution of dissipation.

C. Swampland constraints

1. The (refined) distance conjecture

This conjecture was motivated by the difficulty to embed
large-field inflationary models into string theory [41,42].
Then, it is inferred that for large distances d in field space of
the effective theory, there is an infinite tower of states with
mass

m ∼Mpe−αd; ð12Þ

with α ∼Oð1Þ. Hence, the distance conjecture effectively
sets an upper bound for the energy scale of inflation, such
that

Λdc ≡ Ae−αΔϕ=MpMp > Einf ; ð13Þ

where Einf is defined in terms of the tensor-to-scalar ratio as

Einf ≃ V1=4 ≃ 7.6 × 10−3
�

r
0.1

�
1=4

Mp: ð14Þ

There is not a fixed value for the parameters A and α,
however, one can approximate this condition as [32,43]

Δϕ
Mp

< Δ ∼Oð1Þ: ð15Þ

This limit comes into tension with the Lyth bound, which
for warm inflation is given by

Δϕ
Mp

¼
Z

dN

ffiffiffi
r
8

r �
1þ 2n� þ

T�
H�

2π
ffiffiffi
3

p
Q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p

�−1=2
ð16Þ

Notice that this is a more severe problem in the case of cold
inflation, since the Lyth bound favors large field models,
whereas the distance conjecture does the opposite. The
possibility of having strong dissipation and hence a small
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field motion brings warm inflation in consistency with
these bounds.

2. The de Sitter conjecture

The difficulty of constructing a de Sitter vacua from
string theory has hinted that any EFT that does present that
feature actually belongs to the swampland [44–46]. In this
way, it has been posit that the scalar potential of an EFT
coupled to gravity must satisfy either

j∇Vj ≥ c
Mp

V; or minð∇i∇jVÞ ≤ −
c0

M2
p
V; ð17Þ

where c and c0 are positive constants of order 1. In this
sense, it is clear from Eq. (3) that warm inflation can
generically satisfy these conditions, even more so ifQ ≫ 1.

D. Trans-Planckian censorship
conjecture in warm inflation

Recently, it has been proposed that any EFT consistent
with string theory should not lead to an expansion period
with perturbation lengths that can be traced back to sub-
Planckian scales [16,17]. Then, in the string theory context,
there should not exist a TP problem. In consequence, no TP
mode can cross the horizon, which translates into

lP
ai

<
1

afHf
; ð18Þ

where lP denotes the Planck length, aiðafÞ the scale factor
at the start (end) of inflation, and Hf is the Hubble
parameter at the end of inflation. On the left-hand side
(l.h.s) we find the comoving length of the largest TP mode
at the beginning of inflation and on the right-hand side
(r.h.s) the comoving horizon at the end of inflation.
Rearranging terms, this is equivalent to

eNe ¼ af
ai

<
Mp

Hf
: ð19Þ

Naturally, inflation needs to last long enough to solve the
horizon problem, but as it can be seen, the TCC bounds the
number of e-folds from above, imposing further constraints
on the energy scale of inflation and the amplitude of tensor
perturbations. Henceforth, we will specialize the analysis
for the warm inflation case, which presents some minor
differences in comparison to the material presented in [16].
Firstly, in order to solve the horizon problem, the present

comoving horizon has to be contained within the comoving
horizon at the beginning of inflation, i.e.,

1

a0H0

<
1

aiHi
: ð20Þ

Once again, rearranging terms and conveniently introduc-
ing the scale factor at the end of inflation, the inequality
above becomes

1

H0

<
a0
af

af
ai

1

Hi
⇔

1

H0

<
Tfg

1=3
� ðTfÞ

T0g
1=3
� ðT0Þ

eNe
1

Hi
; ð21Þ

or equivalently,

1

H0

<
Tf

T0

eNe
1

Hi
⇔

Hi

Tf

T0

H0

< eNe; ð22Þ

where we have assumed that the ratio between the (cubic
root) number of degrees of freedom at the end of inflation
and at present day is of order one. Thus, Eqs. (19) and (22)
imply

T0

H0

<
Tf

Hf

Mp

Hi
: ð23Þ

Finally, assuming slow-roll and a rapid thermalization such
that ρr ∝ T4,we have got that [47]

Tf

Hf
≃
�
9

2

Qf

1þQf

�
1=4 Mp

V1=4
f

: ð24Þ

In this context, the strong dissipative regime is the most
interesting, since it helps to satisfy more easily the swamp-
land criteria. Thus, the TCC constraint for warm inflation is

V1=2
i V1=4

f < 5 × 10−30M3
p; ð25Þ

where we have used that T0=H0 ≈ 1.7 × 1029. Furthermore,
since Vi > Vf, we can find a bound for the energy scale at
the end of inflation of

V1=4
f < 1.7 × 10−10Mp ∼ 4 × 108 GeV; ð26Þ

in agreement with [43]. The main difference with the
expression found in [16] is due to the fact that in warm
inflation there is no need to consider a reheating phase, and
that, depending on the amount of dissipation, the Hubble
parameter at the beginning of inflation could be up to two
orders of magnitude larger than its value at the end of
inflation. Consequently, there is a stringent constraint on
the tensor-to-scalar ratio as well.

III. A MULTISTAGE WI RESPONSE TO THE TCC

In this section we will explore how the TCC constrains
the scale of inflation if the process takes place in multiple
stages. For the sake of simplicity, a two-stage scenario will
be considered, with an intermediate RD era, as illustrated
on Fig. 1. In this sense, the first phase, during which the
largest observable perturbation exits the horizon, happens
at a higher energy scale. In contrast, the subsequent phases
could happen at very low energies. Notice that this does not
affect the amplitude of the (potentially) measurable tensor
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perturbations and thus, the Lyth bound does not apply for
those low-energy periods. In this way, the main asset of the
other phases is to mitigate the amount of inflation required
for the first period, so that the more severe constraints are
those enforced by the TCC. Along these lines, working
in a warm inflation setup presents the further advantage/
possibility of having intermediate radiation-dominated
(RD) eras with smooth transitions in between, which would
further alleviate the demands on the first period.
Scenarios such as the one described above are not

strange to quantum field theory. Indeed, cosmological
phase transitions can be a source for small periods of
inflation. In [48] it was shown that dissipative effects do
occur generically in particle physics models. The paper
computed the dissipation coefficient for scalar fields within
the Standard Model and some of its common supersym-
metric extensions like the minimal (MSSM) and next-to-
minimal (NMSSM) supersymmetric SM. These dissipative
effects had significant impact on the evolution of cosmo-
logical scalar fields, leading to friction and entropy pro-
duction. During phase transitions within these models it
was shown that periods of warm inflation would develop
for a few e-folds Oð1–10Þ, even for the electroweak
transition in the Standard Model. Moreover it has also
been shown that scalar fields can get trapped in a false
vacuum by finite temperature effects, leading to a short
period Oð1–10Þ of thermal inflation [49]. As cosmological
phase transitions are common in particle physics models
from the Standard Model to its various extensions, multi-
stages of inflation would not be unusual to expect.
There are well-known problems with plateau models in

cold inflation, since a slow-roll solution is not a phase
space attractor for most potentials of this type. This implies
inflation can only be triggered if the field is initially
located in the plateau and with sufficiently small velocity.

Moreover, this needs to hold on super-Hubble scales, since
nonlinear effects from both the scalar field and the metric
could prevent the start of inflation. Thus irrespective if
the conditions leading to inflation are satisfied inside the
Hubble-sized patch, if in the outer regions the field value
does not meet these requirements, the field and space-time
dynamics may eventually cause the field to exit the slow-
roll regime everywhere. As such, plateau models require
fine tuning of the initial conditions for the field value, its
velocity, and its degree of homogeneity to realize inflation.
It has even been argued in [50,51] (although an alternative
point of view was given in [52,53]) that the inflationary
paradigm is at considerable risk of falling if it requires
plateau potentials.
In warm inflation, these fine tuning problems for plateau

potentials are not present. If the scalar field is being
governed by strong dissipation, ϒ > H, it was shown in
[54] that it damps fluctuations with physical wavelength
k < H. This means smoothness of the initial preinflationary
patch need not require the Hubble scale 1=H but rather just
1=ϒ. At length scales bigger than that, the dissipation will
damp the modes and prevent nonlinear dynamics from
becoming significant. In [55] it was shown within a
quantum field theory SUSY model that fluctuation-dis-
sipation dynamics can be present during the radiation-
dominated preinflationary epoch that can thermalize the
state, with the inflaton field naturally becoming localized
with a flat plateau about the origin, thus setting the
necessary conditions for the onset of inflation. Thus plateau
models do not present an initial condition fine tuning
problem in warm inflation.

A. Generic constraints

Following the discussion above, we consider a potential
which dominates the dynamics of the first expansion,

FIG. 1. Pictorial illustration of the evolution of the comoving horizon for a two-stage warm-inflation scenario. Some relevant
(comoving) scales are presented, like the largest TP mode at the beginning of inflation, or the perturbation crossing horizon at the
same time.
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which is effectively decoupled from the potential in charge
of the second inflationary phase. Then, there are two TCC
conditions that should be satisfied, namely,

eN1 ¼ af1
ai1

<
Mp

Hf1
; ð27Þ

eNT ¼ af2
ai1

<
Mp

Hf2
; ð28Þ

where N1 is the number of e-folds of expansion during the
first period, while NT denotes the total amount of expan-
sion, including the RD phase. The first condition is the
same as for a single-shot inflation, whereas the second
comes from requiring that the largest TP mode (λ ¼ lp at
the beginning of inflation) does not cross the horizon at the
end of the entire period.
Next, the horizon problem is dealt with in a similar

fashion as in Sec. II D, resulting in the condition

Hi1

Tf2

T0

H0

< eNT : ð29Þ

Thus, combining Eqs. (28) and (29), we get

Hi1

Tf2

T0

H0

< eNT <
Mp

Hf2
⇒

T0

H0

<
Tf2

Hf2

Mp

Hi1
: ð30Þ

This expression is analogous to Eq. (23) found for single-
shot warm inflation. Consequently, the potentials at the
different stages should satisfy

V1=2
i1 V1=4

f2 < 5 × 10−30M3
p; ð31Þ

which in turn implies that V1=4
f2 < 10−10Mp. Even though

the upper bound on the low-energy inflation is the same for
the single-phase scenario (both in cold and warm inflation),
Vi1 can take much higher values, as long as Eq. (27) is
satisfied. The conditions necessary for that are model-
dependent, so we will leave that for the next subsection.
However, there is still one generic point left to discuss.
Once the perturbative mode of interest has crossed the
horizon, it should not re-enter it before the second inflation
starts. There is a possibility of that happening during the
intermediate RD era if it lasts long enough. To avoid that,
the comoving horizon at ti2 should be smaller than the
comoving horizon at the beginning of inflation, at ti1, i.e.,

1

ai2Hi2
<

1

ai1Hi1
⇔

Hi1

Hi2
<

ai2
ai1

¼ eN1þNR; ð32Þ

where NR denotes the amount of expansion during the
intermediate RD phase. Consequently,

V1=2
i2 > V1=2

i1 e−ðN1þNRÞ; ð33Þ

so the no reentry condition sets a minimum scale for the
second inflationary period, or an upper limit for the amount
of expansion during the intermediate RD era. To quantify
this, notice that the radiation energy density during RD is
given by

ρrðaÞ ¼ ρrðaf1Þ
�
af1
a

�
4

: ð34Þ

On the other hand, the Stefan-Boltzmann equation together
with Eq. (24) render

ρrðaf1Þ ≃
Vf1

2
; ð35Þ

whereas the second inflationary phase will start roughly
when ρr ∼ Vi2, so that

ρrðai2Þ ≃ Vi2 ≃
Vf1

2

�
af1
ai2

�
4

: ð36Þ

This yields an expansion of

NR ¼ ln
ai2
af1

≃
1

4
ln

Vf1

2Vi2
: ð37Þ

Finally, combining (33) and (36), one also finds that

NR <
1

2
ln

Vi1

2Vf1
þ N1: ð38Þ

B. A toy model

In order to explore a concrete example, we study a toy
model with a potential

Vðϕ; χÞ ¼ λϕ4 þ κM4ð1 − 4e−2χ=MÞ; ð39Þ

where ϕ drives the first inflationary expansion and χ the
second one. Notice that the second term is a plateau
potential and the large field approximation of the function
VðχÞ ¼ κM4 tanh2 ðχ=MÞ. This kind of potentials, which
can be embedded into supergravity, have been studied in
the context of α-attractor inflation [56,57], including
double inflation realizations [58].
For each inflationary phase, dissipation will be modelled

such that analytical calculations can be simplified as much
as possible at this stage. However, there are many quantum
field theory derived models of warm inflation [39,59–64].
A fundamental difference between those models and the
one we will use in this work is the temperature dependence
of the dissipative coefficient, which translates into a much
richer phenomenology.
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1. First inflationary phase

We consider the first phase to be dominated by a scalar
field subject to a quartic potential. Dissipative effects are
governed by a coefficient of the form ϒ ∝ ϕ2. In this way,
the dissipative ratio during slow-roll is given by

Q1 ¼
ϒ1

3H
≃
ϒ0=Mpffiffiffiffiffi

3λ
p ¼ const: ð40Þ

On the other hand, the end of inflation condition happens
when

ϵ ¼ M2
p

2ð1þQ1Þ
�
Vϕ

V

�
2

¼ 1; ð41Þ

which occurs when the field has a value

ϕf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

1þQ1

s
Mp: ð42Þ

Likewise, the value of the field N1 e-folds prior to the end
of the first inflation can be readily found through

N1 ≃ −
1

M2
p

Z
ϕf

ϕi

dϕ
V
V;ϕ

ð1þQ1Þ; ð43Þ

yielding

ϕi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1þ N1Þ
1þQ1

s
Mp: ð44Þ

Notice that this is the value of the field at horizon crossing.
Thus, the spectrum is fitted evaluating background quan-
tities at this instant. Next, taking the ratio between the
potential at the beginning and the end of this period,
we find

N1 ¼
�
Vi1

Vf1

�
1=2

− 1; ð45Þ

as it can be easily seen from Eqs. (42) and (44). From the
same equations, it is clear that the distance swampland
condition in Eq. (15) is readily satisfied for Q1 ≫ 1.
Finally, invoking the TCC through Eq. (27) into the

expression above, we conclude that

V1=2
i1 < V1=2

f1

�
1þ ln

ffiffiffi
3

p
Mp

V1=2
f1

�
: ð46Þ

Then, for example, for V1=4
i1 ∼ 10−3Mp, one would need

V1=4
f1 > 2.34 × 10−4Mp, just to avoid the crossing of TP

modes. Likewise, V1=4
i1 ∼ 10−7Mp induces a bound

V1=4
f1 > 1.64 × 10−8Mp.

2. Second inflationary phase

For this phase, a second scalar field slowly rolling
through a plateau potential drives the expansion of the
universe. Physical processes like the dissipation of energy
into radiation should happen at a rate comparable to a
characteristic mass scale during that era. Locally, we have
got that

jV;χχ j ¼ 16κM4e−2χ=M ∼m2; ð47Þ

and thus we will take

ϒ2 ¼ κ1=2Me−χ=M: ð48Þ

This renders a dissipative ratio

Q2 ¼
1ffiffiffi
3

p Mp

M
e−χ=M

ð1 − 4e−2χ=MÞ1=2 ≃
1ffiffiffi
3

p Mp

M
e−χ=M: ð49Þ

Hence, the end of inflation condition ϵðχfÞ ¼ 1 becomes

32
ffiffiffi
3

p Mp

M

�
e−2χf=M

1 − 4e−2χf=M

�
3=2

≃ 1; ð50Þ

where once again, we have assumed strong dissipation.
Then, the value of the field at the end of second inflation
can be approximated by

χf ≃
M
3
ln

�
32

ffiffiffi
3

p Mp

M

�
: ð51Þ

Likewise, the dissipative ratio at the end of inflation is

Qf2 ≃
�

1

12
ffiffiffi
2

p Mp

M

�
2=3

: ð52Þ

Finally, the amount of inflation is

N2 ≃ −
1

M2
p

Z
χf

χi

dχ
V
V;χ

ð1þQ2Þ: ð53Þ

It is convenient to make a change of variables such that
x ¼ e−2χ=M. The large field assumption (χ ≫ M) is equiv-
alent to xi, xf ≪ 1. Hence, the integral can be well
approximated by

N2 ≃
M2

16M2
p

�
1

2x2
þ Mpffiffiffi

3
p

M

1

x

�����xi
xf

; ð54Þ

where
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xf ¼
�
32

ffiffiffi
3

p Mp

M

�
−2=3

: ð55Þ

Then, one can always choose values of Mp=M consistent
with strong dissipation, in particular Qf2 ∼ 100, which
yields xf ¼ 1=9600. The initial condition of the field is
determined by solving (54), which in turn fixes the starting
energy scale.
Collecting and summarizing the results, it was found that

the total amount of expansion NT ¼ N1 þ NR þ N2 should
be such that

Hi1

Tf2

T0

H0

< eNT <
Mp

Hf2
; ð56Þ

where the expansion during the first inflation, RD phase
and second inflation are given by Eqs. (45), (37), and (54),
respectively. In addition, the TCC for the first phase should
be satisfied separately by means of Eq. (46) and, finally, the
amount of expansion during radiation domination is con-
strained by Eq. (38), which guarantees that the mode that
crossed the horizon at ti1 does not reenter during the
intermediate stage.
One can also consider a weaker form of TCC (in contrast

to the strong one presented above) where the TP modes
from the first inflation are not constrained by the conditions
during the second one. If string theory is the correct high
energy complete theory, then the swampland conditions put
restrictions in any low energy effective theory on the types
of scalar potentials that are consistent with it. The restric-
tions in particular focus on the de Sitter states that can
emerge from the potential and put restrictions on the slope,
curvature and lifetime of such states. The TCC in particular
implies such de Sitter states can only be metastable and last
for short durations. In general therefore, behind the scalar
potentials that one writes down for inflation there would be
some complicated string theory dynamics from which they
emerge. If for example a scalar potential has two different
regions in its field space which realize de Sitter spaces, how
these spaces are related in the underlying string theory
would not be immediately clear from just the potential of
the low-energy theory. If they were somehow completely
disjoint de Sitter spaces, then the TCC would apply
separately for each space. That could mean TCC would
place no restriction on any preexisting modes when a
particular de Sitter space emerges.
In this weaker version, the TCC conditions become

eN1 <
Mp

Hf1
; eN2 <

Mp

Hf2
: ð57Þ

Naturally, both the horizon Eq. (29) and the no reentry
Eqs. (32), (38) conditions still hold. Hence,

1

a0H0

<
1

ai1Hi1
⇔

1

H0

<
1

Hi1

Tf2

T0

eNT

<
eNR

Hi1

Tf2

T0

M2
p

Hf1Hf2
; ð58Þ

where, in the last part, we have applied Eq. (57) for the N1

and N2 bits of the exponential. As usual, rearranging terms,
we get

T0

H0

Hi1Hf1

M2
p

e−NR <
Tf2

Hf2
: ð59Þ

This is to be compared with Eq. (30), which shows that this
weaker TCC imposes a much looser constraint on the
potentials, manifested by the exponential term denoting the
expansion during radiation domination.

3. Numerical results

Based on the conditions outlined in the previous section,
we have sampled different values for the energy scale for
the first and second inflationary periods. Since one key goal
is to get a higher value of V1=4

i1 , consistent with a non-
negligible tensor-to-scalar ratio, this potential is taken as an
input. Furthermore, the first expansion is allowed to last as
long as possible, i.e., we approach the limit imposed by the
TCC by choosing V1=4

f1 given by Eq. (46). Then, a good
starting point to look for Vi2 is by exploring the limit set by
Eq. (38), so that one can simply iterate until the inequality
in Eq. (56) holds. An analogous process can be followed for
the weak version. Notice that Vi2 ∼ Vf2 since we are
working exclusively in the plateau section of the potential.
Thus, once we sample a value of Vf2 consistent with the
imposed constraints, the range of permitted values of N2

can be determined. Finally, using Eqs. (54) and (55) one
can compute xi and Vi2 for a given value of N2.
Figure 2(a) shows a set of values for the potential at the

end of inflation (corresponding to Vf2 for the two-stage
case) and at the beginning (corresponding to Vi1 for the
two-stage case) which solve the horizon problem while
avoiding the crossing of TP modes. Figure 2(b) presents the
corresponding predictions. Triangular bullets (blue) are
used for single-stage warm inflation, while circular
(orange) and diamond (green) bullets are used for two-
stage warm inflation considering the strong and the weak
TCC, respectively. Below, we will outline how the values
presented in the plot can be sampled.
For example, for the strong TCC, take V1=4

i1 ∼ 10−8Mp,
which is two orders of magnitude higher than the allowed
values for single-stage inflation. Under this model, the
universe can undergo an expansion of N1 ∼ 41 e-folds
without violating the TCC, which is accomplished with
V1=4
f1 ∼ 1.5 × 10−9Mp. Thus, the maximum expansion dur-

ing the intermediate RD phase should be of about NR ∼ 37
e-folds, but due to the TCC for the overall expansion
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history, Vi2 and Vf2 are constrained to low values. The
highest one can choose, while still having V1 ≫ V2 is of
about V1=4

i2 ∼ 4 × 10−14Mp, which renders an expansion
during the RD phase of NR ∼ 10.39 e-folds. Under these
conditions the predicted observables are ns ≃ 0.947 and
r ≃ 8 × 10−25, as shown on Fig. 2.
A similar process can be followed for the weak TCC. For

instance, take V1=4
i1 ∼ 10−4Mp. The maximum expansion

allowed by the first TCC is N1 ∼ 22.11 e-folds, for
V1=4
f2 ≳ 2 × 10−8Mp. Thus, the maximum expansion during

the intermediate RD phase is NR ∼ 18.62 e-folds. The
more the actual amount of expansion approaches to
this value, the wider the range accessible to N2. Take
V2 ∼ 5.4 × 10−10Mp, which yields an expansion during the
RD era of NR ∼ 10.38 e-folds. Then, the overall expansion
can be roughly between 71 and 76 e-folds, or equivalently,
N2 can be between 38.51 and 43.51 e-folds. The specific
value of N2 will determine uniquely V1=4

i2 and V1=4
f2 .

However, notice that they will depart very little from
5.4 × 10−10Mp. As it can be seen, the weak TCC opens
a wider range of accessible values at the energy scales of
both inflationary periods, which can be clearly appreciated
from Fig. 2. In this case, the predicted observables are ns ≃
0.90 and r ≃ 8.3 × 10−9.
Clearly, the predictions shown in Fig. 2(b) and discussed

above are model dependent, so one could expect to be able
get higher values of r without departing too much from
the spectral index measured by the Planck mission
(ns ¼ 0.9626� 0.0057) [40]. Case in point, for a quadratic
potential VðϕÞ ∝ ϕ2 with a constant dissipative coefficient
one can get similar constraints as those found for our toy
model, although the range of potentials consistent with
strong dissipation is more reduced, especially at higher
values. In any case, for V1=4

i1 ∼ 10−5Mp (r ∼ 10−12) and

N1 ≃ 26.9 e-folds, the quadratic potential model with con-
stant dissipation predicts ns ≃ 0.977, which is closer to the
experimental value in comparison to ns ≃ 0.92 predicted by
the quartic potential with quadratic dissipation.

IV. DISCUSSION

In this article we have studied the implications of the
recently proposed trans-Planckian censorship conjecture
within the warm inflation scenario. We have shown that for
a single stage inflation the bounds on the energy scale of
inflation are roughly the same as for cold inflation,
although there can be some small differences because
warm inflation can be realized with steep potentials.
However, the bounds on the energy scale, tensor-to-scalar
ratio and maximum amount of expansion remain severe.
Although theoretically inconvenient, the latter is consistent
with the low quadrupole alignment first measured by
COBE [65] and subsequently confirmed by WMAP [66]
and Planck [67], as shown in [68].
Then, following on previous work that suggested the

plausibility of periods of warm inflation sourced by cosmo-
logical phase transitions, we examined the constraints of
the TCC on a two-stage warm inflation scenario with a
radiation-dominated era in between. As expected, this kind
of models relaxes the amount of inflation required during
each stage in order to solve the horizon problem, which
enhances the range of allowed energies, while still being
consistent with the TCC. Our toy model showed that one
can access energies up to two orders of magnitude higher
than those allowed for a single-stage scenario. Naturally,
these bounds could be improved by further increasing the
number of inflationary stages.
In another direction, we also analyzed the possibility of

having two (or more) independent metastable dS states,
leading to a weaker version of the TCC. In a broader sense,

(a) (b)

FIG. 2. Left: Potentials at the beginning, Vi1, and the end, Vf2, of inflation that are consistent with the TCC constraints while solving
the horizon problem for the toy model presented in Sec. III B. Right: Predictions for the spectral index and tensor-to-scalar ratio for the
toy model and for single-stage inflation corresponding to the potentials presented on the left.
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such states could be seen as emerging from different local
regions sampling an infinite distance in moduli space (see
Ref. [69]). Furthermore, considering that the TCC could be
a consequence of the swampland distance conjecture [70],
the weak TCC could follow. With these considerations, our
toy model showed that the tensor-to-scalar ratio could be as
high as 10−5, although it corresponds to red spectral
indices. However, this particular prediction is highly model
dependent, so it would be interesting to further explore this
idea by considering more realistic dissipative coefficients,
as those obtained from quantum field theory calculations.
In conclusion, if proven to be correct, the TCC puts

stringent constraints on inflationary models coupled to
gravity. Alternatively, one could argue that the TCC in and
of itself provides a recipe to avoid the technical and

conceptual inconvenience of having TP modes crossing
the horizon, and thus to obtain predictions without relying
on unknown high-energy physics. In any case, scenarios
like warm inflation may generically satisfy and/or avoid
those constraints while also predicting tensor perturbations
that could be measured in future experiments. In addition to
this, it can also accommodate other setups, like having a
thermal bath of gravitons, which could also enhance the
amplitude of tensor perturbations.
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