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We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, 
arising naturally as a consequence of the spontaneous breaking of an extended SU(3) ⊗ SU(3)L ⊗ U(1)X ⊗
U(1)N electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory 
for scotogenic dark matter and analyze its main features.
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1. Introduction

Unveiling the nature of dark matter constitutes a big challenge in astroparticle physics, requiring the existence of new particles and 
also suggesting the presence of new symmetries capable of stabilizing the corresponding candidate particle on cosmological scales. A pop-
ular class of dark matter candidates in agreement with astrophysical and cosmological observations are the so-called Weakly Interacting 
Massive Particles, or WIMPs. For example, they are realized within supersymmetric extensions of the standard model [1]. In that case 
stability follows from a postulated Z2 symmetry called R-parity which also avoids fast proton decay and neutrino masses.

WIMPS however, arise in many other ways including “low-scale” models of neutrino mass generation [2], such as scotogenic dark 
matter [3] scenarios in which the exchange of “dark sector particles” is responsible for the radiative origin of neutrino mass. In such 
attractive scenarios WIMP dark matter emerges as radiative neutrino mass messenger [4,5]. In Refs. [6,7] it was suggested that an extended 
gauge symmetry can provide a natural setting for a theory of cosmological dark matter. The associated electroweak extensions both 
involve the SU(3)L symmetry which has a long history. It is well-motivated due to its ability to “explain” the number of families to 
match that of colors, as a result of the anomaly cancellation requirement [8–10]. For recent papers see Refs. [11–14]. These theories can 
also be made consistent with unification [15] and/or with the understanding of parity as a spontaneously broken symmetry [16]. The 
two different models in [6,7] employ an extended electroweak gauge symmetry and the dark matter stability results from the presence 
of a matter-parity symmetry, M P , a non-supersymmetric version of R-parity, that arises naturally as a consequence of the spontaneous 
breaking of the extended gauge symmetry.

The purpose of this letter is to go a step further along this idea. For definiteness we set out to explore the SU(3) ⊗ SU(3)L ⊗ U(1)X ⊗
U(1)N model proposed in [6] as a possible template for a theory of scotogenic dark matter. To do so we consider an extension of the 
original model containing extra vector-like fermions as well as scalars. These naturally contain the new messenger dark sector particles 
required to implement the scotogenic scenario. In Sect. 2 we setup the stage for the theory, discussing the important issue of anomaly 
cancellation (details presented in appendix A). In Secs 3 and 4 we study the loop-induced neutrino masses as well as the scalar boson 
and fermion mass spectra. In Sect 5 we briefly discuss the dark matter phenomenology, and conclude in the last section.

* Corresponding author.
E-mail addresses: skkang@seoultech.ac.kr (S.K. Kang), opopo001@ucr.edu (O. Popov), rahulsri@ific.uv.es (R. Srivastava), jose.valle@ific.uv.es (J.W.F. Valle), 

vaquera@fisica.ugto.mx (C.A. Vaquera-Araujo).
https://doi.org/10.1016/j.physletb.2019.135013
0370-2693/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2019.135013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:skkang@seoultech.ac.kr
mailto:opopo001@ucr.edu
mailto:rahulsri@ific.uv.es
mailto:jose.valle@ific.uv.es
mailto:vaquera@fisica.ugto.mx
https://doi.org/10.1016/j.physletb.2019.135013
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2019.135013&domain=pdf


2 S.K. Kang et al. / Physics Letters B 798 (2019) 135013
Table 1
3311 model particle content (a = 1, 2, 3 and i = 1, 2 represent generation indices). Note the 
non-standard charges of “right handed neutrinos” νR .

Field SU(3)c SU(3)L U(1)X U(1)N Q M P = (−1)3(B−L)+2s

qiL 3 3 0 0 (− 1
3 , 2

3 ,− 1
3 )T (+ + −)T

q3L 3 3 1
3

2
3 ( 2

3 ,− 1
3 , 2

3 )T (+ + −)T

uaR 3 1 2
3

1
3

2
3 +

daR 3 1 − 1
3

1
3 − 1

3 +
U3R 3 1 2

3
4
3

2
3 −

DiR 3 1 − 1
3 − 2

3 − 1
3 −

laL 1 3 − 1
3 − 2

3 (0,−1,0)T (+ + −)T

eaR 1 1 −1 −1 −1 +

νiR 1 1 0 −4 0 −
ν3R 1 1 0 5 0 +
FaL,R 1 3 − 1

3 − 1
3 (0,−1,0) (− − +)

η 1 3 − 1
3

1
3 (0,−1,0)T (+ + −)T

ρ 1 3 2
3

1
3 (1,0,1)T (+ + −)T

χ 1 3 − 1
3 − 2

3 (0,−1,0)T (− − +)T

φ 1 1 0 2 0 +

S 1 1 0 2
3 0 +

σ 1 1 0 1
3 0 −

� 1 6 2
3

2
3

⎛
⎜⎜⎝

0 1 0

1 2 1

0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+ + −
+ + −
− − +

⎞
⎟⎟⎠

2. Model

We consider a variant of the model introduced in [6], based on the SU(3) ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N gauge symmetry (3-3-1-1 for 
short). This is an abelian extension of the class of models based on the SU(3) ⊗ SU(3)L ⊗ U(1) gauge symmetry and as such, it inherits 
many of the defining features of these models. The main motivation for the inclusion of the extra U(1)N symmetry is to allow for a fully 
gauged B − L symmetry within a 3-3-1 framework [17,18]. In the present model, electric charge and B − L are embedded into the gauge 
symmetry as

Q = T3 − T8√
3

+ X, (1)

B − L = − 2√
3

T8 + N, (2)

with Ti (i = 1, 2, 3, ..., 8), X and N as the respective generators of SU(3)L , U(1)X and U(1)N .
Under suitable conditions, the spontaneous symmetry breaking (SSB) pattern is such that a residual discrete symmetry arises from the 

B − L symmetry breakdown. The role of the remnant symmetry is analogous to that of R-parity in supersymmetric theories, we call it 
matter parity, M P = (−1)3(B−L)+2s . It follows that the stability of the lightest M P -odd particle leads to a potentially viable WIMP dark 
matter candidate. For recent related papers see Ref. [19–21].

Here we show how the natural M P symmetry described by the 3-3-1-1 models can be responsible for both the neutrino mass gen-
eration as well as for the stability of dark matter within a scotogenic scenario, without the need to impose any additional symmetry by 
hand [22].

The particle content of the model is shown in Table 1. Anomaly cancellation requires that, if left-handed leptons laL ; a = 1, 2, 3
transform as triplets under SU (3)L , i.e.

laL =
⎛
⎝ νa

ea

Na

⎞
⎠

L

, (3)

then two generations of quarks qiL ; i = 1, 2 must transform as anti-triplets and one as a triplet [8]

qiL =
⎛
⎝ di

−ui
Di

⎞
⎠

L

q3L =
⎛
⎝ u3

d3
U3

⎞
⎠

L

, (4)

This choice “explains” the number of generations as three (the same as the number of colors), an interesting feature of this class of 
models. The quark sector interactions are the same as in the original model [8].
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The new ingredients of the model, with respect to [6], are the vector-like fermion triplets FaL,R ,1 and the extended scalar sector 
spanned by S , σ and �. These fields will be responsible for the neutrino mass generation mechanism described in the next section. The 
Yukawa terms involving leptons and vector-like fermions are thus given by

LYuk ⊃ l
i
aL Y ab

e ebRρi + F
i
aR Y ab

1 libLσ + F aLmab
F FbR + FiaL,R Y ab

2L,R F jbL,R�i j + H.c., (5)

where i, j = 1, 2, 3 are SU (3)L indices.
Notice the unconventional chiral charges of νR fields, owing to which the tree level coupling between laL and νR is automatically 

avoided. Such chiral solutions were already known in context of B − L symmetry [23–26]. Here we show for the first time that they can 
also be embedded inside bigger gauge groups containing B − L symmetry. In appendix A we display explicitly the non-trivial way in which 
the anomalies involving the U(1) gauge symmetries cancel, despite the unconventional νR charge assignments.

After the singlet scalar φ develops a vacuum expectation value (VEV), the gauged B − L symmetry is spontaneously broken by two 
units, leaving a discrete remnant symmetry M P = (−1)3(B−L)+2s . The most general VEV alignment for the scalar triplets and φ, which is 
compatible with the preservation of M P symmetry, is given by

〈η〉 = 1√
2
(v1,0,0)T , 〈ρ〉 = 1√

2
(0, v2,0)T , 〈χ〉 = (0,0, w)T , 〈φ〉 = 1√

2
	. (6)

Furthermore, if the VEV alignment for the scalars S , σ and � is

〈S〉 = vs, 〈σ 〉 = 0, 〈�〉 =
⎛
⎝w1 0 0

0 0 0
0 0 w2

⎞
⎠ , (7)

then, M P is an exactly conserved symmetry.
Assuming w, 	, w2, vs � v1, v2, w1 the spontaneous symmetry breaking (SSB) pattern of the model is given by

SU (3)C ×SU (3)L × U (1)X × U (1)N

↓ w,	, w2, vs

SU (3)C × SU (2)L × U (1)Y × M P

↓ v1, v2, w1

SU (3)C × U (1)Q × M P , (8)

and the phenomenology for quarks, charged leptons and gauge bosons of the model coincides largely with the analysis performed in [17].

3. Neutrino masses

First we notice that, thanks to the charges of the scalars in the model as well as the unusual assignments of νR charges, tree level 
neutrino masses are absent in this model. These include a tree-level Dirac-like mass term coupling the electrically neutral isodoublet 
and isosinglet members of the lepton triplets [27]. Likewise, the absence of genuine right-handed neutrino fields implies no tree-level 
seesaw-type neutrino mass contributions, such as the type-I Majorana seesaw used in Ref. [6] or the type-II Dirac seesaw proposed in 
Ref. [28]. Matter-parity conservation also forbids seesaw-type neutrino Majorana masses mediated by the vector-like fermions.

As a result small neutrino masses are generated only at the one-loop level, mediated by the vector-like fermions F L,R , the singlet 
scalars S , σ and the scalar sextet �. The relevant interactions among these fields are

Lmν = F
i
aR Y ab

1 libLσ + FiaR Y ab
2R F jbR�i j + μ2σ

2 S∗ + H.c. (9)

where i, j represent SU (3)L indices.
Fig. 1 depicts the one-loop diagram for light νL masses. In the neutrino mass diagram, the fields running in the loop (F 0

R , σ ) have odd 
matter parity transformation, M P , whereas the fields that appear outside the loop (νL, �11, S) are even under matter parity transformation.

The resulting neutrino radiative mass is given as

mab
ν = Y ac

1

32π2

{
s2

F−mN1

[
Z

(
m2

ξ1R

m2
N1

)
c2
ξ R + Z

(
m2

ξ2R

m2
N1

)
s2
ξ R − Z

(
m2

ξ1I

m2
N1

)
c2
ξ I − Z

(
m2

ξ2I

m2
N1

)
s2
ξ I

]

+ c2
F−mN2

[
Z

(
m2

ξ1R

m2
N2

)
c2
ξ R + Z

(
m2

ξ2R

m2
N2

)
s2
ξ R − Z

(
m2

ξ1I

m2
N2

)
c2
ξ I − Z

(
m2

ξ2I

m2
N2

)
s2
ξ I

]}
cd

Y db
1 , (10)

where the loop function Z(x) is defined as

Z(x) = x

1 − x
lnx, (11)

and mixing angles of (η3, σ )R,I and the odd component of 
(

F 0
L , F c0

R

)
are obtained from Eqs. (29) and (33), respectively.

1 These are called vector-like insofar as their gauge charges are concerned, required for anomaly cancellation. However, as we will see later, they have Majorana as well as 
Dirac-type mass terms.
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Fig. 1. 3311 model scotogenic neutrino mass.

Notice that the fields νR remain massless after spontaneous symmetry breaking, and do not play a direct role in neutrino mass 
generation. They can contribute as extra degrees of freedom in primordial Big Bang nucleosynthesis. However, this is not an issue since 
consistency with cosmological observations in such a case can be ensured by having the extra gauge bosons adequately heavy [29]. 
Alternatively, these extra fermions could be made massive trivially through the inclusion of extra scalar singlets with appropriate U(1)N

charges.

4. Mass spectrum

The full scalar potential of the model is written as

V = Vo + ληρ2

(
η†ρ

)(
ρ†η

)
+ ληχ2

(
η†χ

)(
χ †η

)
+ λη�2η

†i�
†
i j�

jkηk + λχρ2

(
χ †ρ

)(
ρ†χ

)
+ λρ�2ρ

†i�
†
i j�

jkρk + λχ�2χ
†i�

†
i j�

jkχk + λ�2�
i j�kl�

†
αβ�

†
γ δεikmε jlnε

αγ mεβδn

+ μ1ηiρ jχkε
i jk + μ2σ

2 S∗ + λ1χi�
i jχ j S + λ2σ

∗ηi�
i jχ j + λ3φ

∗S3 + λ4 Sσ
(
η†χ

)
+ H.c. (12)

where the Vo piece consists of the following terms,

Vo =
∑

x∈(η,ρ,χ,
φ,�,σ ,S)

m2
x

(
x†x
)

+
∑

x∈(η,ρ,χ,
φ,�,σ ,S)

λx

2

(
x†x
)2 +

∑
x,y∈(η,ρ,χ,

φ,�,σ ,S)∧x>y

λxy

(
x†x
)(

y† y
)

. (13)

The conditions for the minimization of the scalar potential are given as follows:

∂V

∂η1

∣∣∣∣
η1→v1

= 0 =⇒ 2m2
η + λη�2 w2

1 + λη�

(
w2

1 + w2
2

)
+ ληs v2

s + ληv2
1 + ληρ v2

2 + ληφ	2 + ληχ w2 + √
2μ1

v2 w

v1
= 0 (14)

∂V

∂ρ2

∣∣∣∣
ρ2→v2

= 0 =⇒ 2m2
ρ + λρ�

(
w2

1 + w2
2

)
+ λρs v2

s + ληρ v2
1 + λρ v2

2 + λρφ	2 + λρχ w2 + √
2μ1

v1 w

v2
= 0 (15)

∂V

∂χ3

∣∣∣∣
χ3→w

= 0 =⇒ 2m2
χ + λχ�

(
w2

1 + w2
2

)
+ λχ s v2

s + λρχ v2
2 + λχ w2 + λχφ	2 + λχηv2

1 + λχ�2 w2
2 + 2λ1 w2 vs

+ √
2μ1

v1v2

w
= 0 (16)

∂V

∂φ

∣∣∣∣
φ→	

= 0 =⇒ 2m2
φ + λφ	2 + λφs v2

s + λφηv2
1 + λφρ v2

2 + λφχ w2 + λφ�

(
w2

1 + w2
2

)
+ λ3

v3
s

	
= 0 (17)

∂V

∂�11

∣∣∣∣
�11→w1

= 0 =⇒ 2m2
� + λ�2 w2

2 + λ�

(
w2

1 + w2
2

)
+ λ�s v2

s + (λ�η + λ�η2
)

v2
1 + λ�ρ v2

2 + λ�χ w2 + λ�φ	2 = 0 (18)

∂V

∂�33

∣∣∣∣
�33→w2

= 0 =⇒ λ�2

(
w2

1 − w2
2

)
− λ�η2 v2

1 + λ�χ2 w2 + λ1
vs w2

w2
= 0 (19)

∂V

∂ S

∣∣∣∣
S→vs

= 0 =⇒ 2m2
s + λs�

(
w2

1 + w2
2

)
+ λs v2

s + λsηv2
1 + λsρ v2

2 + λsφ	2 + λsχ w2 + 3λ3 vs	 + λ1
w2 w2

vs
= 0 (20)

Notice that, due to the assumed positivity of its squared mass, the field σ has zero vacuum expectation value, as required for the 
conservation of the matter parity symmetry.

4.1. Scalar masses

The physical scalars include the following particles, classified according to their electric charges and matter parities:
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• Q = ±2, M P = +: consists of only �±2
22 complex scalar, its mass is given by

m2
�22

= 1

2

(
λη�2 w2

2 v2
1 + λρ�2

(
w2

1 − w2
2

)
v2

2 − w2
1 w2

(
λχ�2 + λ1

vs

w2

))(
w2

1 − w2
2

)−1
. (21)

• Q = ±1, M P = +: consists of two complex physical scalar eigenstates and one complex Nambu-Goldstone (NG) boson corresponding 
to I-spin of SU (3)L gauge group (charged boson connecting (T3, T8) states ( 1

2 , 1
2
√

3
) ↔ (− 1

2 , 1
2
√

3
)). Corresponding mass squared matrix 

is given by

1

2

⎛
⎜⎝ληρ2 v2

2 − λη�2 w2
1 − √

2μ1
v2 w
v1

ληρ2 v1 v2 − √
2μ1 w λη�2 w1 v1

ληρ2 v1 v2 − √
2μ1 w λρ�2 w2

1 + ληρ2 v2
1 − √

2μ1
v1 w
v2

λρ�2 w1 v2

λη�2 w1 v1 λρ�2 w1 v2 λρ�2 v2
2 − λη�2 v2

1

⎞
⎟⎠ (22)

in the basis (ηc
2, ρ1, �12).

• Q = ±1, M P = −: consists of two complex physical scalar eigenstates and one complex Nambu-Goldstone (NG) boson corresponding 
to V-spin of SU (3)L gauge group (charged boson connecting (T3, T8) states (− 1

2 , 1
2
√

3
) ↔ (0, − 1√

3
)). Corresponding mass squared 

matrix is given by

1

2

⎛
⎜⎝

λρ�2 w2
2 + λρχ2 w2 λρχ2 v2 w − √

2μ1 v1 λρ�2 w2 v2

λρχ2 v2 w − √
2μ1 v1 λρχ2 v2 − λχ�2 w2

2 − 2λ1 w2 vs − √
2μ1

v1 v2
w λχ�2 v2 w + 2λ1 vs w

λρ�2 w2 v2 λχ�2 v2 w + 2λ1 vs w λρ�2 v2 − λχ�2 w2 − 2λ1
vs w2

w2

⎞
⎟⎠ (23)

in the basis (ρ3, χ c
2 , �23).

• Q = 0, M P = +: The CP even part consists of 7 physical scalar eigenstates. Corresponding mass squared matrix is given in Eq. (B.1) of 
Ap. B. CP odd part consists of 4 pseudo-scalars and 3 NG bosons. Corresponding mass squared matrix is given in Eq. (B.2) of Ap. B.

• Q = ±0, M P = −: consists of three real physical scalar and pseudo-scalar eigenstates and one complex Nambu-Goldstone (NG) bo-
son corresponding to U-spin of SU (3)L gauge group (charged boson connecting (T3, T8) states ( 1

2 , 1
2
√

3
) ↔ (0, − 1√

3
)). Corresponding 

CP-even mass squared matrix is given in Eq. (B.3) of Ap. B. The corresponding CP-odd mass squared matrix is given in Eq. (B.4) of 
Ap. B.

In order to calculate the neutrino masses we use the simplification w, 	, w2, vs � v1, v2, w1, then the mass squared matrices in Eqs. (B.3)
and (B.4) become block diagonalized 2-by-2 matrices and are given by

1

2

(
λη�2 w2

2 +
(
ληχ2 w − √

2μ1

)
w (λ2 w2 + λ4 vs) w

(λ2 w2 + λ4 vs) w 2m2
σ + λσ�w2

2 + λsσ v2
s + λφσ 	2 + λχσ w2 + 2

√
2μ2 vs

)
⊕

(− (λχ�2 w2 + 2λ1 vs
)

w2
(
λχ�2 w2 + 2λ1 vs

)
w(

λχ�2 w2 + 2λ1 vs
)

w −λχ�2 w2 − 2λ1
vs w2

w2

)
, (24)

and

1

2

(
λη�2 w2 + ληχ2 w2 − √

2μ1 w (λ2 w2 + λ4 vs) w
(λ2 w2 + λ4 vs) w 2m2

σ + λσ�w2
2 + λsσ v2

s + λφσ 	2 + λχσ w2 − 2
√

2μ2 v S

)
⊕

(−w2
(
λχ�2 w2 + 2λ1 vs

) −w
(
λχ�2 w2 + 2λ1 vs

)
−w

(
λχ�2 w2 + 2λ1 vs

) − (λχ�2 w2 + 2λ1 vs
) w2

w2

)
, (25)

respectively. The part relevant for neutrino masses is the first 2-by-2 block of mass squared matrices (24) and (25) in the basis (η3R,I , σR,I ). 
The eigenvalues are given by

m2
ξ1,2R

= 1

4

[(
2m2

σ + λη�2 w2
2 + ληχ2 w2 − 2

√
2μ1 w + λσ� w2

2 + λsσ v2
s + λφσ 	2 + λχσ w2 + 2

√
2μ2 vs

)

±
√(

−2m2
σ + λη�2 w2

2 + ληχ2 w2 − 2
√

2μ1 w − λσ� w2
2 − λsσ v2

s − λφσ 	2 − λχσ w2 − 2
√

2μ2 vs

)2 + 4 (λ2 w2 + λ4 vs)
2 w2

]
,

(26)

m2
ξ1,2I

= 1

4

[(
2m2

σ + λη�2 w2
2 + ληχ2 w2 − 2

√
2μ1 w + λσ� w2

2 + λsσ v2
s + λφσ 	2 + λχσ w2 − 2

√
2μ2 vs

)

±
√(

−2m2
σ + λη�2 w2

2 + ληχ2 w2 − 2
√

2μ1 w − λσ� w2
2 − λsσ v2

s − λφσ 	2 − λχσ w2 + 2
√

2μ2 vs

)2 + 4 (λ2 w2 + λ4 vs)
2 w2

]
,

(27)

and mixing is given by(
η3
σ

)
R,I

=
(

cosθ −sinθ

sinθ cosθ

)
R,I

(
ξ1
ξ2

)
R,I

, (28)

tanθR,I = (λ2 w2 + λ4 vs) w(
−2m2

σ + λη�2 w2
2 + ληχ2 w2 − 2

√
2μ1 w − λσ�w2

2 − λsσ v2
s − λφσ 	2 − λχσ w2 ∓ 2

√
2μ2 vs

) . (29)
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Fig. 2. The direct detection and relic abundance constraints on the dark matter mass mσR and its coupling λσh to the Higgs boson. The red shaded region is ruled out by 
direct detection experiments, XENON1T [31] and LUX [32], while the blue shaded region is not compatible with the dark matter relic abundance [33]. The combination of 
relic density and direct detection constraints implies that, apart from a tiny region near half Higgs mass, the mass of dark matter must lie in the TeV range. The plot is 
obtained for a specific benchmark, see text for details.

4.2. Fermion masses

First note that the fermions NL,α = l3,α and νc
α,R do not mix with others at the tree level. The fermions which are relevant for neutrino 

mass generation are the M P odd components of (F 0
L , F c,0

R ), which lie in the sector with (Q = 0, M P = −). The corresponding mass matrix 
is given by(

Y2L w1 m†
F

m†
F Y †

2R w1

)
+ H.c., (30)

in the basis of (F 0
L , F c,0

R ) of the M P -odd components. Corresponding eigenvalues and mass eigenstates are given by

mN1,2 = w1

2

⎡
⎢⎣(Y2L + Y †

2R

)
±
√√√√(Y2L − Y †

2R

)2 + 4

(
m†

F

w1

)2
⎤
⎥⎦ , (31)

(
F 0

L
F c0

R

)
=
(

cosθ −sinθ

sinθ cosθ

)
f

(
F1L

F c
2R

)
, (32)

and θ f is given by

tanθ f = 2m†
F

w1

(
Y2L − Y †

2R

) . (33)

5. Dark matter phenomenology

Before concluding, let us briefly discuss the phenomenology of dark matter in our model. As can be seen from the discussion of 
previous sections, in our model dark matter is the mediator of neutrino mass generation. First notice that the stability of dark matter 
follows from the matter parity symmetry M P , which is a residual symmetry of the full SU(3) ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N gauge symmetry. 
All the particles odd under matter parity M P belong to the “dark sector”, with the lightest amongst them being the dark matter candidate. 
As can be seen from Table 1 our model can have both fermionic or scalar dark matter, depending on which one is the lightest.2 As an 
illustrative example, here we briefly discuss the phenomenological constraints for the case of scalar dark matter.

As can be seen from Table 1 and Fig. 1, the M P odd scalar σ takes part in the neutrino mass generation loop. Assuming that it is the 
dark matter particle we now analyze the associated phenomenology. For simplicity we assume that the mixing between σ and the other 
M P odd scalars is negligible. In order for σ to be dark matter it should also be the lightest particle amongst all dark sector particles. Due 
to its U (1)N charge, σ must be a complex field with real (σR ) and imaginary (σI ) components. Owing to the μ2 coupling of Eq. (9), the 
two masses cannot be exactly degenerate once the S field get a vev. The vev of S field breaks U (1)B−L → Z2 subgroup, the symmetry 
protecting the small neutrino mass, see Fig. 1. In the limit of 〈S〉 → 0 the symmetry of the theory gets enhanced. The presence of μ2
term coupled with the 〈S〉 implies that σR and σI components cannot be degenerate in mass and the lighter of the two will be the dark 
matter candidate. In our analysis leading to Fig. 2 we have assumed that σR is the lighter of the two components and is the dark matter.

Notice that in this model the new gauge bosons can lead to signatures at the LHC, as well as novel flavor violating effects in the neutral 
meson systems such as K-, D- and B-mesons. Current data already imply stringent limits. A recent phenomenological study [34] indicates 
that the masses of the new particles present in 3-3-1-1 models are expected to be high, so we take them heavy enough (� O(10)

TeV) so that they decouple at the electroweak scale. In this case, apart from standard model particles, the only particles that are not 

2 The gauge boson X0 is also odd under M P , hence a potential dark matter candidate. However, as discussed in [30], it cannot be a viable one, since its relic density turns 
out to be too small. It follows that, in our model, X0 cannot be the lightest dark sector particle.
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decoupled at the electroweak scale are the two components of σ which can be light, as they are SU(3) ⊗ SU(3)L ⊗ U(1)X singlets. Under 
these simplifying approximations, the relic density of our dark matter candidate σR is mainly controlled by its quartic coupling λσh with 
the standard model Higgs boson. Furthermore, its “effective interaction strength” with the nuclei determining the dark matter–nucleus 
interaction cross section is also directly proportional to λσh .

This simplified scenario has only one parameter, i.e. the λσh coupling, responsible for both the relic abundance as well as the direct 
detection cross section. As a result, the constraints are rather tight, as can be seen from Fig. 2. This Figure indicates the restrictions on the 
λσh − mσR plane obtained by requiring the correct dark matter relic abundance, as well as by imposing the dark matter direct detection 
constraints. The mass of the dark matter σR is confined to two distinct allowed regions. The first allowed region is near half the Higgs 
mass, where resonant annihilation of dark matter to the Higgs boson allows the relic density constraints to be satisfied for very small 
values of the coupling λσh , well below the current direct detection bounds. The second allowed region of mσR starts at around 1 TeV, 
where the direct detection constraints on the coupling λσh are weak. Thus, even within this constrained scenario, the field σR can be a 
good dark matter candidate, provided its mass lies in one of these two allowed regions.

Before ending this section we wish to remark that Fig. 2 is plotted for a very constrained scenario with all but one coupling of the dark 
matter field set to zero. This need not be the case. In the presence of other couplings, particularly the quartic coupling between σR and 
the other scalars, several additional channels for dark matter annihilation will open up. Thus the relic density constraints on the quartic 
coupling λσh can be substantially weakened, opening up the allowed parameter space for λσh and mσR . Thus, Fig. 2 should be taken as 
a kind of “worst case scenario” to illustrate consistency. Finally, as we have stated before, σR need not be the lightest M P -odd particle 
in our model. A complete phenomenological study of all possible dark matter candidates is not the main aim of our paper and hence we 
will not explore in detail other possibilities.

6. Discussion

Many general phenomenological features involving the weak SU(3) gauge group, such as present in SU(3) ⊗ SU(3)L ⊗ U(1) schemes, are 
common also to our model. These theories imply the existence of new Z ′ gauge bosons that can be produced in proton-proton collisions 
through the Drell-Yan mechanism, leading to dilepton events at the LHC. In addition, and more distinctively when compared to other 
electroweak extensions, the anomaly cancellation solution based on having one of the quark families transforming differently from the 
others implies the existence of flavor changing neutral currents at the tree level [8]. As a result one can have effects in the neutral meson 
systems such as K-, D- and B-mesons. Current LHC, Belle and BaBar data already imply stringent limits, discussed in [34]. Several other 
phenomenological aspects of this SU(3) ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N models were already discussed in Refs. [6] and [17].

The main motivation of the current paper was the issue of dark matter. We note that in the present model all standard model fields 
have M P = 1, thus the lightest M P = −1 is automatically stable and constitutes a potential WIMP dark matter candidate particle. Among 
the electrically neutral fields with M P = −1, we have σ and the lighter of the F ’s, i.e. (FaL,R )1. Whichever is the lightest of these, can be 
a potential dark matter candidate. We discussed explicitly a benchmark for the scalar dark matter (σR ) case.

As we noted, this model is characterized by the existence of extra fermions and scalar bosons needed for implementing the scotogenic 
scenario as well as for breaking the extended gauge symmetry. As a result one expects a plethora of possible collider signatures associated 
to the extra particles. Clearly, dedicated studies, similar to that in [35], would be required in order to scrutinize the associated detection 
potential at current and upcoming collider experiments, such as future runs of the LHC as well as future linear Colliders.

Finally, concerning the role of matter parity arising from the gauge sector in stabilizing the WIMP dark matter particle candidate, we 
note that this is a very general idea. Indeed, it may have alternative realizations from the one developed here.
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Appendix A. Anomaly cancellation

“Right handed neutrinos” νR with chiral charges were first discussed in context of B − L symmetry in [23–26]. Here we show that, 
despite the non-trivial nature of the SU(3) ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N gauge symmetry characterizing our model, the unconventional U(1)N

charges of νR (−4, −4, 5) ensure that the anomaly free conditions are fulfilled.

Non-trivial anomalies

• [SU (3)C ]2U (1)X :

∑
quarks

(X Q L − X Q R ) = 2 × 3XqαL + 3Xq3L − 3XuaR − 3XdaR − XU3R − 2XDαR

= 6(0) + 3(1/3) − 3(2/3) − 3(−1/3) − (2/3) − 2(−1/3) = 0,

(A.1)
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• [SU (3)C ]2U (1)N :∑
quarks

(N Q L − N Q R ) = 2 × 3NqαL + 3Nq3L − 3NuaR − 3NdaR − NU3R − 2NDαR

= 6(0) + 3(2/3) − 3(1/3) − 3(1/3) − (4/3) − 2(−2/3) = 0,

(A.2)

• [SU (3)L]2U (1)X :∑
fermion

(anti)triplets

(X f L − X f R ) = 3XlaL + 2 × 3XqαL + 3Xq3L + 3X FaL − 3X FaR

= 3(−1/3) + 6(0) + 3(1/3) + 3(−1/3) − 3(−1/3) = 0,

(A.3)

• [SU (3)L]2U (1)N :∑
fermion

(anti)triplets

(N f L − N f R ) = 3NlaL + 2 × 3NqαL + 3Nq3L + 3N FaL − 3N FaR

= 3(−2/3) + 6(0) + 3(2/3) + 3(−1/3) − 3(−1/3) = 0,

(A.4)

• [U (1)X ]2U (1)N :∑
fermions

(X2
f L

N f L − X2
f R

N f R ) = 3 × 3X2
laL

NlaL + 2 × 3 × 3X2
qαL

NqαL + 3 × 3X2
q3L

Nq3L

− 3 × 3X2
uaR

NuaR − 3 × 3X2
daR

NdaR − 3X2
U3R

NU3R − 2 × 3X2
DαR

NDαR

− 3X2
eaR

NeaR − 2X2
ναR

NναR − X2
ν3R

Nν3R + 3X2
FaL

N FaL − 3X2
FaR

N FaR

=9(−1/3)2(−2/3) + 18(0)2(0) + 9(1/3)2(2/3) − 9(2/3)2(1/3) − 9(−1/3)2(1/3) − 3(2/3)2(4/3)

− 6(−1/3)2(−2/3) − 3(−1)2(−1) − 2(0)2(−4) − (0)2(5) + 3(−1/3)2(−1/3) − 3(−1/3)2(−1/3) = 0,

(A.5)

• U (1)X [U (1)N ]2:∑
fermions

(X f L N2
f L

− X f R N2
f R

) = 3 × 3XlaL N2
laL

+ 2 × 3 × 3XqαL N2
qαL

+ 3 × 3Xq3L N2
q3L

− 3 × 3XuaR N2
uaR

− 3 × 3XdaR N2
daR

− 3XU3R N2
U3R

− 2 × 3XDαR N2
DαR

− 3XeaR N2
eaR

− 2XναR N2
ναR

− Xν3R N2
ν3R

+ 3X FaL N2
FaL

− 3X FaR N2
FaR

=9(−1/3)(−2/3)2 + 18(0)(0)2 + 9(1/3)(2/3)2 − 9(2/3)(1/3)2 − 9(−1/3)(1/3)2 − 3(2/3)(4/3)2

− 6(−1/3)(−2/3)2 − 3(−1)(−1)2 − 2(0)(−4)2 − (0)(5)2 + 3(−1/3)(−1/3)2 − 3(−1/3)(−1/3)2 = 0,

(A.6)

• [U (1)X ]3:∑
fermions

(X3
f L

− X3
f R

) = 3 × 3X3
laL

+ 2 × 3 × 3X3
qαL

+ 3 × 3X3
q3L

− 3 × 3X3
uaR

− 3 × 3X3
daR

− 3X3
U3R

− 2 × 3X3
DαR

− 3X3
eaR

− 2X3
ναR

− X3
ν3R

+ 3X3
FaL

− 3X3
FaR

=9(−1/3)3 + 18(0)3 + 9(1/3)3 − 9(2/3)3 − 9(−1/3)3 − 3(2/3)3 − 6(−1/3)3

− 3(−1)3 − 2(0)3 − (0)3 + 3(−1/3)3 − 3(−1/3)3 = 0,

(A.7)

• [U (1)N ]3∑
fermions

(N3
f L

− N3
f R

) = 3 × 3N3
laL

+ 2 × 3 × 3N3
qαL

+ 3 × 3N3
q3L

− 3 × 3N3
uaR

− 3 × 3N3
daR

− 3N3
U3R

− 2 × 3N3
DαR

− 3N3
eaR

− 2N3
ναR

− N3
ν3R

+ 3N3
FaL

− 3N3
FaR

=9(−2/3)3 + 18(0)3 + 9(2/3)3 − 9(1/3)3 − 9(1/3)3 − 3(4/3)3 − 6(−2/3)3

− 3(−1)3 − 2(−4)3 − (5)3 + 3(−1/3)3 − 3(−1/3)3 = 0,

(A.8)

• [Grav]U (1)X :∑
fermions

(X f L − X f R ) = 3 × 3XlaL + 2 × 3 × 3XqαL + 3 × 3Xq3L

− 3 × 3XuaR − 3 × 3XdaR − 3XU3R − 2 × 3XDαR − 3XeaR − 2XναR − Xν3R + 3X FaL − 3X FaR

=9(−1/3) + 18(0) + 9(1/3) − 9(2/3) − 9(−1/3) − 3(2/3) − 6(−1/3)

− 3(−1) − 2(0) − (0) + 3(−1/3) − 3(−1/3) = 0,

(A.9)
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• [Grav]U (1)N∑
fermions

(N f L − N f R ) = 3 × 3NlaL + 2 × 3 × 3NqαL + 3 × 3Nq3L

− 3 × 3NuaR − 3 × 3NdaR − 3NU3R − 2 × 3NDαR − 3NeaR − 2NναR − Nν3R + 3N FaL − 3N FaR

=9(−2/3) + 18(0) + 9(2/3) − 9(1/3) − 9(1/3) − 3(4/3) − 6(−2/3)

− 3(−1) − 2(−4) − (5) + 3(−1/3) − 3(−1/3) = 0.

(A.10)

Appendix B. Scalar mass spectrum

I. Q = 0, M P = +, CP = even:
The mass squared matrix elements m2

i j ; i, j = 1 · · ·7 in the basis (η1R , ρ2R , χ3R , φR , �11R , �33R , S R) are given as

2m2
11 = 2ληv2

1 − √
2μ1

v2 w

v1
2m2

12 = 2ληρ v1 v2 + √
2μ1 w (B.1)

2m2
13 = 2ληχ v1 w + √

2μ1 v2 2m2
14 = 2ληφ v1	

2m2
15 = 2

(
λη� + λη�2

)
w1 v1 2m2

16 = 2λη�w2 v1

2m2
17 = 2ληs vs v1 2m2

22 = 2λρ v2
2 − √

2μ1
v1 w

v2

2m2
23 = 2λρχ v2 w + √

2μ1 v1 2m2
24 = 2λρφ v2	

2m2
25 = 2λρ�w1 v2 2m2

26 = 2λρ�w2 v2

2m2
27 = 2λρs vs v2 2m2

33 = 2λχ w2 − √
2μ1

v1 v2

w

2m2
34 = 2λχφ w	 2m2

35 = 2λχ�w1 w

2m2
36 = 2

(
λχ� + λχ�2

)
w2 w + 2λ1 vs w 2m2

37 = 2λχ s vs w + 2λ1 w2 w

2m2
44 = 2λφ	2 − λ3

v3
s

	
2m2

45 = 2λφ�w1	

2m2
46 = 2λφ�w2	 2m2

47 = 2λφs vs	 + 3λ3 v2
s

2m2
55 = 2λ�w2

1 2m2
56 = 2λ�w1 w2 + 2

λη�2 w1 w2 v2
1 − (λχ�2 w2 + λ1 vs

)
w1 w2

w2
1 − w2

2

2m2
57 = 2λs�vs w1 2m2

66 = 2λ�w2
2 − λ1

vs w2

w2

2m2
67 = 2λs�vs w2 + λ1 w2 2m2

77 = 2λs v2
s + 3λ3 vs	 − λ1

w2 w2

vs

II. Q = 0, M P = +, CP = odd:
The mass squared matrix in the basis (η1I , ρ2I , χ3I , φI , �33I , S I ) is given as

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−√
2μ1

v2 w
v1

−√
2μ1 w −√

2μ1 v2 0 0 0

−√
2μ1 w −√

2μ1
v1 w
v2

−√
2μ1 v1 0 0 0

−√
2μ1 v2 −√

2μ1 v1 −√
2μ1

v1 v2
w − 4λ1 w2 vs 0 −2λ1 vs w −2λ1 w2 w

0 0 0 −λ3
v3

s
	

0 3λ3 v2
s

0 0 −2λ1 vs w 0 −λ1
vs w2

w2
−λ1 w2

0 0 −2λ1 w2 w 3λ3 v2
s −λ1 w2 −λ1

w2 w2

vs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.2)

III. Q = 0, M P = −, CP = even:
The mass squared matrix in the basis (η3R , σR , χ1R , �13R) is given as

1

2

⎛
⎜⎜⎜⎝

−λη�2
(

w2
1 − w2

2

)+ ληχ2 w2 − √
2μ1

v2 w
v1

(λ2 w2 + λ4 vs) w ληχ2 v1 w − √
2μ1 v2 λη�2 (w1 + w2) v1

(λ2 w2 + λ4 vs) w m2
22 (λ2 w1 + λ4 vs) v1 λ2 v1 w

ληχ2 v1 w − √
2μ1 v2 (λ2 w1 + λ4 vs) v1 m2

33

(
λχ�2 (w1 + w2) + 2λ1 vs

)
w

λη�2 (w1 + w2) v1 λ2 v1 w
(
λχ�2 (w1 + w2) + 2λ1 vs

)
w m2

44

⎞
⎟⎟⎟⎠ , (B.3)

where
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m2
22 = 2m2

σ + λσ�

(
w2

1 + w2
2

)
+ λsσ v2

s + λησ v2
1 + λρσ v2

2 + λφσ 	2 + λχσ w2 + 2
√

2μ2 vs,

m2
33 = λχ�2

(
w2

1 − w2
2

)
+ 2λ1 (w1 − w2) vs + ληχ2 v2

1 − √
2μ1

v1 v2

w
,

m2
44 =

(
λχ�2 (w1 + w2) + 2λ1 vs

)
w2 − λη�2 (w1 + w2) v2

1

w1 − w2
,

IV. Q = 0, M P = −, CP = odd:
The mass squared matrix in the basis (η3I , σI , χ1I , �13I ) is given as

1

2

⎛
⎜⎜⎜⎝

ληχ2 w2 − λη�2
(

w2
1 − w2

2

)− √
2μ1

v2 w
v1

(λ2 w2 + λ4 vs) w −ληχ2 v1 w + √
2μ1 v2 λη�2 (−w1 + w2) v1

(λ2 w2 + λ4 vs) w m2
22 (λ2 w1 − λ4 vs) v1 λ2 v1 w

−ληχ2 v1 w + √
2μ1 v2 (λ2 w1 − λ4 vs) v1 m2

33 λχ�2 (w1 − w2) w − 2λ1 vs w

λη�2 (−w1 + w2) v1 λ2 v1 w λχ�2 (w1 − w2) w − 2λ1 vs w m2
44

⎞
⎟⎟⎟⎠ , (B.4)

where

m2
22 = 2m2

σ + λσ�

(
w2

1 + w2
2

)
+ λsσ v2

s + λησ v2
1 + λρσ v2

2 + λφσ 	2 + λχσ w2 − 2
√

2μ2 vs,

m2
33 = λχ�2

(
w2

1 − w2
2

)
− 2λ1 (w1 + w2) vs + ληχ2 v2

1 − √
2μ1

v1 v2

w
,

m2
44 =

(
λχ�2 (w1 − w2) − 2λ1 vs

)
w2 − λη�2 (w1 − w2) v2

1

w1 + w2
,
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