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Abstract We analyze the extension of the GUP theory
deriving from the modified uncertainty principle in agree-
ment with the string low energy limit, which represents one
of the most general formulations satisfying the Jacobi iden-
tity, in the context of the associative algebras. After provid-
ing some physical insights on the nature of the considered
approaches exploiting the cosmological arena, first, we show
how a natural formulation of the theory in an infinite momen-
tum space does not lead to the emergence of a nonzero mini-
mal uncertainty in position, then we construct a truncated for-
mulation of the theory in momentum space, proving that only
in this case we can recover the desired feature of the presence
of a nonzero minimal uncertainty in position, which – as usual
in these theories – can be interpreted as a phenomenological
manifestation of cut-off physics effects. Both quantization
schemes are completely characterized and finally applied to
study wave packets’ behavior and their evolution in time. The
obtained results can shed light on which generalizations of
the GUP theory are more coherent with the string low energy
limit, in view of the existence of a minimum length in the
form of a minimal uncertainty in position.

1 Introduction

Theories describing cut-off physics effects on the ultraviolet
behavior of gravity, such as loop quantum gravity [1,2] and
superstrings [3], can have phenomenological representations
equivalent to modified formulations of non-relativistic quan-
tum theory. If, on the one hand, the motion of particles in the
low energy limit of string theories [4–8] is well-described by
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the so-called generalized uncertainty principle (GUP) the-
ories, a quantum framework based on modified uncertainty
relations between position and momentum operators, aris-
ing from a deformation of the Heisenberg algebra [9–11], on
the other, the proper application of loop quantum gravity in
the minisuperspace [12–14] is perfectly summarized by the
quantum formalism known as polymer quantum mechanics
(PQM), which is essentially an implementation of the quan-
tum theory on a lattice.

It is worth noting that, although these theories are in princi-
ple built on two different quantization schemes, recent works
[15] suggest that the PQM formalism can be interpreted as a
GUP theory as well, i.e. it is possible to faithfully represent
it as a proper deformed algebra of quantum operators.

In this paper, we concentrate our attention on the first men-
tioned approach to cut-off physics, namely GUP theories.
There exist a huge variety of generalizations of the original
framework discussed by Kempf, Mangano and Mann (KMM)
in [11] which have been widely studied in their structural
aspects [16–19] and applied in several fields, from cosmol-
ogy [20–24] to black holes [25–27]. Here, we completely
re-analyze and precise some of the results discussed in [28]
regarding one of these above mentioned generalizations, out-
lining some critical questions concerning the truncation of
the momentum space of the proposed theory.

As it is known, one of the main issues and at the same
time one of the most interesting features of these theories is
the possible existence of a nonzero minimal uncertainty in
position, which can be naturally interpreted as a minimum
length in the theory itself. Coherently with the basic idea of
a string configuration, this is exactly the case for the GUP
formulation studied in [11], in which indeed the modified
uncertainty principle comes directly from low energy con-
siderations concerning the string theory (see above). In [29–
31], the possibility to generalize and extend the uncertainty
principle mentioned above has been inferred by some heuris-
tic observations, leading to the introduction of a square root
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term in the Heisenberg algebra, able to reproduce the original
approach in [11] in a proper limit.

This generalization acquires particular relevance when
applied to the minisuperspace variables as discussed in [15]
and [23]. In these works it is indeed shown how the semi-
classical model of the GUP theory at issue overlaps the (mod-
ified) Friedmann equation for an isotropic Universe typical
of some models of brane cosmology [32]. This relation can
be considered as a potential mark for the physical interest of
the theory itself.

In the same works, it has been also emphasized how a
simple change of sign in the square root allows switching to
a polymer-like formulation, associated with the (modified)
Friedmann equation of loop quantum cosmology [33], where
the sign is semi-classically translated into the non-einsteinian
correction of the dynamics.

As told before, many other generalizations of the analysis
carried out in [11] have been considered over the years (see
for example [34] for an overview), but, as discussed in [15]
and in [29–31], the square root-modified Heisenberg algebra
is the most general one - modulo a minus sign in the square
root itself – that preserves the Jacobi identity of the operators
and therefore the only one providing a complete treatment,
at least in the context of the associative algebras, the mod-
ification of which is obtained through the introduction of a
function f (p̂), depending only on the momentum operator.

It is worth mentioning that the non-associative algebras
can represent an extremely interesting framework in which
to implement the quantum theory (see for example [35] and
[36]), but we are not going to deal with them in this article.

The analysis developed in [28] states, as one of the main
conclusions, the existence of a minimum length in the form of
a nonzero minimal uncertainty in position, as in the original
approach in [11]. In deriving this result a pivotal role is played
by a series expansion of the square root term itself.

It is exactly on this point that our analysis is focused,
aiming to precise and clarify the conditions under which
the Taylor expansion is allowed and to determine the proper
implications of such a procedure. Indeed, in the case under
study, the series expansion is mathematically viable only if
the momentum space is restricted to a compact region, needed
to ensure the convergence of the series itself. It is therefore
clear that the conclusions exposed in [28] are not necessarily
valid nor true in a complete, non-truncated formulation of the
theory, which thus asks to be studied via different methods.
On this ground, through a careful functional analysis of the
position operator and by means of the techniques first devel-
oped and discussed in [37], in particular from considerations
on the divergence of the modified Lebesgue measure in the
resulting Hilbert space, we preliminarily arrive to show that,
actually, a zero minimal uncertainty in the position opera-
tor is predicted in the theory when the momentum space is
not truncated. From this result we proceed to quantize this

generalized scheme, outlining its intrinsic difference from
the analysis carried out in [11]. Then, by exploiting again the
method exposed in [37], we rigorously construct the quantum
theory associated with a truncated momentum space, charac-
terizing completely the involved operators from a functional
point of view, and showing how in this case and only in this
case the existence of a nonzero minimal uncertainty in the
position operator emerges, although slightly different from
that one proposed in [28]. This automatically allows us to
construct a collection of maximally localized functions and
therefore a quasi-position representation similar to that one
first discussed in [11].

This means that the only viable generalization of the orig-
inal GUP formulation in [11], able to preserve the physi-
cal relevant fact of the existence of a minimum length, is
the square root-modified one, but implemented through an
ad hoc truncation of the momentum space. This non-trivial
aspect, namely the truncation, certainly calls attention to a
possible physical justification.

In that respect, cosmology, in particular in the minisu-
perspace formulation, offers an ideal arena to explore such a
motivation, as we will precise in Sect. 4. Indeed, we are going
to show, by considering an isotropic Universe and by apply-
ing the GUP formalism to its volume-like variable, how it is
possible to achieve in some measure, already at the classical
level, a significantly different behavior of the dynamics with
respect to the existence of the primordial singularity.

The paper is structured as follows: in Sect. 2 we summa-
rize and comment in some detail the functional procedure
introduced first in [37], which will be fully exploited to con-
struct the physical domain of the theory in the considered
Hilbert space and to determine the maximally localized func-
tions and their minimal uncertainty in position; in Sect. 3 we
introduce the extended GUP formulation obtained from the
square root-modified Heisenberg algebra and we outline the
analysis and the conclusion discussed in [28]; in Sect. 4 we
give some physical motivations to the structure of the for-
malism we are going to develop, based on some heuristic
considerations in the cosmology arena, specifically regard-
ing a minisuperspace model; in Sects. 5 and 6 we carry out
our complete analysis of this extended GUP formulation. In
particular, in Sect. 5 we construct and study the full theory,
that is the theory implemented in a non-truncated momentum
space, while in Sect. 6, through the same steps, we construct
and study the truncated or compact theory, that is the theory
implemented in a truncated momentum space. In the Sects.
6.1 and 6.2 first we make a comparison of our results with
the ones exposed in [28], then, following the arguments pre-
sented in [11] on the possibility to recover information on
the position, we construct the so-called quasi-position rep-
resentation within our truncated theory. Finally, in Sect. 7,
we analyze the behavior of localized wave packets in both
the truncated and non-truncated formulations, comparing the
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spreading properties with the ones resulting from the standard
non-relativistic quantum mechanical approach and pointing
out the relevant differences. In Sects. 8 we give our conclu-
sions and summarize our results.

2 General GUP framework

One of the possible rigorous ways to formulate a quantum
theory with a modified uncertainty principle involving the
position and momentum operators is the introduction of a
modification in the Heisenberg algebra. Although this alter-
ation can be realized in several ways, in the present paper we
are going to take under exam algebras the structure of which
can be realized as follows:
[
x̂, p̂

] = i h̄ f (p̂), (1)

where for the function f (p) we assume that:

∃ C > 0 | ∀p ∈ R f (p) > C. (2)

The natural choice is to represent these algebras on
momentum space, where the action of the operators, by
means of the braket formalism, can be written as:

x̂|ψ〉 → i h̄ f (p)∂pψ(p) (3)

p̂|ψ〉 → pψ(p), p ∈ R. (4)

It is straightforward to verify that this representation satis-
fies the commutation relation. Nevertheless, it has to be clear
that this is not the only possible choice.

In order to construct our theory in a consistent manner, it
is first strictly necessary to understand what conditions are
imposed by the algebra on the operators and how these have
to be properly defined.

Restricting for simplicity to the one-dimensional case, as
a first request, the x̂ and p̂ operators have to be defined in
a dense subspace of the Hilbert space of the theory, i.e.
they have to be densely-defined, and in this domain they
need to result to be closed and symmetric. To fulfill these
demands, the Hilbert space in which we have to operate

will be L2
(
R,

dp
f (p)

)
, where the modified Lebesgue mea-

sure must be introduced in order to make x̂ symmetric on its
domain. Acting as a multiplicative operator, the momentum
operator would be symmetric in any case, with respect to any
measure.

It is now crucial to understand if these operators are essen-
tially self-adjoint operators, as the ordinary quantum theory
asks.

Indeed, as pointed out by Kempf et al. [11], this mathemat-
ical property is the key to understanding what is really phys-
ically relevant in our analysis, that is to figure out whether
there exists a minimum value in the position uncertainty �x̂

different from zero and in that case which physical states
realize it.

For this purpose, we will now review and comment on a
proposal for a more general approach, which can be found in
[37] (DGS method). According to this prescription, two cases
need to be distinguished: the compact and the non-compact
case.

2.1 The compact case

Let us consider a function f (|p|) such that, for p � 1,
f (|p|) ≈ |p|1+ν , with ν > 0. In this case for the quantity:

z(p) =
∫ p

0
f (q)−1dq (5)

it is true that:

z(+∞) = α+, z(−∞) = α−, α± ∈ R. (6)

It is then possible to construct a diffeomorphism between
R and the compact real interval [α−, α+] through the map
p → z(p), moving on from the space L2(R, dp/ f (p)) to
the space L2([α−, α+], dz).

On our new Hilbert space, the ẑ operator is a symmet-
ric multiplicative operator defined on the whole Hilbert
space, hence, it is automatically self-adjoint and, due to the
Hellinger–Toeplitz theorem, it is bounded.

The same can be stated for ẑ2.
With regards to the x̂ operator, the most natural choice is

to define it as follows:

x̂ : Dx̂ −→ L2([α−, α+], dz) (7)

ψ 
→ i h̄∂(w)
z ψ, (8)

where:1

Dx̂ = {ψ(z) ∈ H1,2([α−, α+], dz) |
ψ(α−) = ψ(α+) = 0}. (9)

and the symbol ∂(w) stands for the weak derivative or the
derivative in the distributional sense.

This operator is not self-adjoint as it can be seen through
a direct construction of its adjoint, which turns out to be a

true extension, that is x̂ � x̂†.
In particular:

x̂† : Dx̂† −→ L2([α−, α+], dz) (10)

ψ 
→ i h̄∂(w)
z ψ, (11)

1 By H1,2 we denote the space known as first Sobolev space, that is the
space of all square-integrable functions, which first weak derivatives
are also square-integrable. The norm of the space is defined as:‖ f ‖2 =∫ α+
α− (| f (z)|2 + | f ′(z)|2)dz.
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where:

Dx̂† = {ψ(z) ∈ H1,2([α−, α+], dz)}. (12)

Being the adjoint operator well-defined, at this point it is
possible to calculate the deficiency indices (d+, d−) of x̂†, i.e.
the dimension of the kernel of the operators (x̂† ± iI). In the
z-representation, this will lead to the following differential
equations:

(x̂† ± iI)|ψ〉 = 0,

∂(w)
z ψ(z) ± ψ(z) = 0,

∂(w)
z

(
e± 1

h̄ zψ(z)
)

= 0. (13)

Since the function on which the weak derivative acts is a
locally integrable function, it is possible to conclude, by an
application of the De Bois–Reymond lemma, that it is equal
to a constant κ almost everywhere on [α−, α+], hence:

ψ(z) = κe∓ z
h̄ . (14)

As it is straightforward to verify, both functions belong to
Dx̂† , therefore in this case the deficiency indices will be
(d+, d−) = (1, 1). According to the Von Neumann’s the-
orem, this means that x̂ is not essentially self-adjoint, but
rather it admits a one-parameter family of self-adjoint exten-
sions.

We notice that in p-representation, the previous differen-
tial equations to be solved would be:

∂(w)
p

(
e± 1

h̄

∫
dp f (p)(−1)

ψ(p)
)

= 0, (15)

the solutions of which, by the same arguments, are:

ψ(p) = κe± 1
h̄

∫
dp f (p)(−1)

. (16)

From these expressions the pivotal role played by the func-
tion f (p) and therefore, in some respect, by the algebra itself,
appears explicitly. Indeed, as we have just seen, it is the fact
that f (p) satisfies the conditions (6) that has led to obtain a
position operator which allows infinitely many self-adjoint
extensions.

These self-adjoint extensions x̂λ have the same action of
x̂ but are defined on the domain:

Dx̂λ
= {ψ(z) ∈ H1,2([α−, α+], dz) |

ψ(α+) = e−iλψ(α−)}, λ ∈ R. (17)

Not surprisingly, neither the squared position operator x̂2

is essentially self-adjoint, but admits a one-parameter family

of self-adjoint extensions given by x̂2
λ. Nevertheless, as it is

extensively discussed in [37], the more convenient choice
for the construction of the squared position operator is the
operator x̂†x̂, which domain is exactly Dx̂. Clearly, since
x̂2

� x̂, x̂†x̂ is an extension of x̂2 and it results to be self-
adjoint. Our final list of operators will be then represented
by x̂λ, x̂†x̂, ẑ, ẑ2.

We can now define the domain of the commutator
[
x̂λ, ẑ

]
,

which turns out to be:

D[x̂λ,ẑ] = Dx̂λẑ ∩ Dẑx̂λ
= Dx̂λẑ ∩ Dx̂λ

= Dx̂. (18)

Finally we are able to define the physical space of the the-
ory. In the general case, as physical space we can consider that
subspace of the Hilbert space resulting from the intersection
between the domains of the operators x̂, p̂, x̂2, p̂2 and [x̂, p̂],
in order to make it possible to define the uncertainty in posi-
tion and momentum and so that the generalized uncertainty
principle (GUP) holds.

Therefore, in the studied case, this space, which is the
space where to look for the maximally localized states as
well, will be:

Dx̂λ
∩ Dx̂†x̂ ∩ Dẑ ∩ D

ẑ2 ∩ D[x̂λ,ẑ] = Dx̂. (19)

At this point it is possible to write down �x̂ as a func-
tional object and define the maximally localized states as
those states which minimize this expression in Dx̂:

(�x̂)2 = 〈	|(x̂†x̂ − ξ)|	〉
〈	|	〉 , |	〉 ∈ Dx̂, (20)

(�x̂min)2 = min
〈	|(x̂†x̂ − ξ)|	〉

〈	|	〉 := μ2. (21)

Two constraints must be imposed for a consistent proce-
dure:

ξ = 〈	|x̂λ|	〉
〈	|	〉 , ξ ∈ R, (22)

γ = 〈	|v(p̂)|	〉
〈	|	〉 , γ ∈ R. (23)

The first one concerns the existence of the expectation
value of x̂λ, while the second one, which plays a crucial role
in the whole method, is an extra condition in order to select
only those states which admit a finite expectation value of
some function of the momentum operator, e.g. the energy,
from a physical point of view. The constrained variational
principle gives back, in p-representation, the Euler–Lagrange
equations for the system:
{
−

[
f (p)∂(w)

p

]2 − ξ2 + 2a
(
i f (p)∂(w)

p − ξ
)

+2b(v(p) − γ ) − μ2
}
	(p) = 0. (24)

Since v(p) is an arbitrary function, it is impossible to write
down a general solution of (24), except for the case b = 0.
For this particular choice of the Lagrange multiplier, taking
into account the first constraint and the boundary conditions
of the domain, the solution eventually will be:

	(p) = C exp[−iξ z(p)] sin {μ [
z(p) − α−

]}, (25)
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C =
√

2

α+ − α−
, μ = nπ

α+ − α−
, n ∈ N0. (26)

This function correctly belongs to Dx̂ and it has a non-
vanishing minimal uncertainty in position, obtained for n =
1, which corresponds to the minimum of the functional (20),
for b = 0.

Of course, the value b = 0 is a special case. Yet, it can be
shown that (�x̂min

)2 |b=0 is a local minimum with respect
to γ , hence signaling the importance of such a solution (for
a detailed discussion see [37]).

We stress that this method for searching an absolute min-
imum value of �x̂ is more general with respect to the one
discussed in [11]. Indeed, first of all, the latter is valid only
for some class of functions f (p) associated with the operator
f (p̂) of the deformed algebra and secondly, its more evident
limit is to look for maximally localized states only among
the so-called squeezed states, that is those states for which
the Heisenberg inequality is saturated:

�x̂�p̂ = 1

2
|〈[x̂, p̂]〉|. (27)

Even if successful in the case studied by Kempf et al., for
a general algebra such as

[
x̂, p̂

] = i h̄ f (p̂) it is not obvious at
all the exhaustiveness of such a research. The most intuitive
way to understand it is to notice that the expectation value
of the commutator, in the general case, is state-dependent.
Thus it is clear that it is necessary to look for these maximally
localized states in a more wide domain of our Hilbert space,
which is exactly the point addressed by the method that we
have summarized above. This means that, although it is still
possible that the states [25] are squeezed states, this will not
be the general case anymore.

2.2 The non-compact case

If the quantity z(p) diverges for p → ∞, the previous pro-
cedure, which is essentially based on the mapping between
R and a real compact interval, is not available. In general this
happens when f (p) ≈ |p|1+ν , for |p| → ∞, with ν < 0.
This suggests that for these GUP theories there is no an abso-
lute minimal uncertainty in position different from zero. In
order to show that this is indeed the case, we need to turn
our attention to the squeezed states of these theories. Indeed
in these scenarios the squeezed states are physical states, in
the sense fixed by the constrained variational principle of
the previous section, but their uncertainty in position can be
made arbitrarily small. This leads to conclude that the abso-
lute minimum of the quantity �x̂ is (asymptotically) zero in
these theories.

To prove that this is exactly the case and since it will be
useful for the next sections, now we are going to briefly sum-
marize the procedure through which it is possible to deter-

mine these squeezed states and their uncertainty in position,
following once again what is discussed in [37].

As it is known, relation (27) can be obtained directly from
the algebra, under the minimal assumptions that the operator
x̂ and p̂ are dense and symmetric operators on their domain
of definition. Tracing back all the steps from (1) to (27), it
can be shown that the equality sign in (27) can be obtained
from those states that are eigenstates of null eigenvalue of
the following operator:

Â|	〉 := (x̂ − ξ) + i h̄(p̂ − η)|	〉 = 0, (28)

where ξ, η, are real parameters.
In p-representation, this is a first-order differential equa-

tion the solution of which is:

	(p) = N e
(h̄η−iξ)

h̄ z(p)−u(p), (29)

where

z(p) =
∫ p

0
dq f (q)−1, (30)

u(p) =
∫ p

0
dq q f (q)−1, (31)

and N is just a normalization constant.
Clearly, the obtained wave function must be a square-

integrable function, or, in other words, it has to be normaliz-
able. Once  is fixed to be strictly positive, this condition is
satisfied whenever:

lim
p→±∞ u(p) = +∞. (32)

Furthermore, the fulfillment of the above requirement
assures that the parameters η and ξ coincide with the expec-
tation values of x̂ and p̂, as they should. It is relevant to notice
that this last condition is related to the need of working with
a symmetric position operator.

Now, in order to obtain the relevant quantities we are inter-
ested in, namely �x̂	 and �p̂	 , we need to evaluate and
properly compare two different objects. On the one hand,
the norm of the state Âl |	〉 = |Âl	〉, where in general
l �= :

〈	Âl |Âl	〉 =
(
〈	|Â†

l

) (
Âl |	〉

)

= h̄2(l − )2
(

〈	|(p̂† − η)

)(
(p̂ − η)|	〉

)

= h̄2(l − )2〈	|(p̂ − η)2|	〉, (33)

where in the last line we have used the fact that
(〈	|p̂†

)
(
p̂|	〉) = 〈	|(p̂2|	〉). On the other, we need to focus

on the following quantity:

〈	|
(
Â†

l Âl |	〉
)
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= 〈	|
(
(x̂ − ξ)2−h̄l f (p̂)+h̄2l2(p̂−η)2|	〉

)
, (34)

the computation of which instead relies basically on the fact
that 〈	|(x̂†x̂|	〉) = 〈	|(x̂2|	〉).

Notice that we have stressed the use of parenthesis since it
is relevant to understanding on which side the operators act.

These two last expressions (33) and (34) are equal if and
only if:

lim
p→±∞ p|	|2 = 0, (35)

This condition, which will depend on the behavior of u(p),
comes essentially from the requirement that

(〈	|x̂†
)(
x̂|	〉)

= 〈	|(x̂2|	〉).
Whenever these conditions are satisfied, we are allowed

to compare (33) and (34) and to write:

(�x̂)2
	

(�p̂)2
	

= h̄2

4
〈 f (p̂)〉2

	
, (36)

 = 〈 f (p̂)〉	

2(�p̂)2
	

, (37)

(�x̂)2
	

= h̄2

4

〈 f (p̂)〉2
	

(�p̂)2
	

= h̄22(�p̂)2
	

, (38)

whit a clear meaning of the used symbols.
The Eq. (38) represents an explicit functional expression

for �x̂	 :

(�x̂)2
	

= h̄22

∫ +∞
−∞

(
p2−η2

)
exp[−2(u(p)−ηz(p))]

f (p) dp
∫ +∞
−∞

exp[−2(u(p)−ηz(p))]
f (p) dp

. (39)

By minimizing this object with respect to η and , it is in
principle possible to determine the value of �x̂min and hence
the wave function which realizes this uncertainty in position.

All the conditions discussed above are satisfied whenever
the function f (p) grows at |p| → ∞ as |p|1+ν , with −1 ≤
ν ≤ 1, where in particular the lower bound is needed to assure
the validity of the condition (2). Therefore for the case that
we are considering, that is ν < 0, the procedure holds and it
can be shown that, for  → 0:

(�x̂)2
	

∝ 
2ν

ν−1 → 0, (40)

which proves that for these GUP theories there is no mini-
mal length in the guise of a non-zero minimal uncertainty in
position.

3 Extended GUP formulation

The literature is plenty of GUP-modified frameworks built
as an extension or a generalization of the KMM one, which

reads as:
[
x̂, p̂

] = i h̄(1 + βp̂2), (41)

where β is a dimensional deformation parameter, which, to
some extent, controls the deviation from the standard com-
mutator.2

It can be noticed at first glance that the KMM-modified
commutator can be regarded as a perturbative expansion in
β (at the first order) of some more general operator-valued
function.

One of the most interesting cases is doubtless represented
by the GUP theory studied in [28,30,31], the deformed alge-
bra of which can be written as:

[
x̂, p̂

] = i h̄
√

1 + 2βp̂2. (42)

This specific modification of the canonical commutation
relation (CCR) has a high degree of generality. The reason
for that lies in the fact that, in a 3-dimensional setting, the
most general modified algebra that can be written, asking
that the groups of translations and the group of rotations be
undeformed, is:

[
x̂i , x̂ j

] = h̄

κc2 a(p̂)εi jk Ĵk, (43)
[
x̂i , p̂ j

] = i h̄δi j f (p̂). (44)

where a(p) and f (p) are sufficiently regular functions of
the momentum operator, Ĵ is the angular momentum oper-
ator, κ is a parameter with the dimension of a mass and c
is the speed of light in vacuum. By imposing, as it should
be, that the constructed algebra satisfies the Jacobi identities,
a differential equations system is obtained for the form of
a(p) and f (p), the most general solution of which states
that a(p) = ±1, previous a rescaling of κ , and conse-
quently f (p) = √

α ± p2/(κc2), where α is an integra-
tion constant. By choosing α = 1 in order to recover in
the proper limit the standard Heisenberg uncertainty princi-
ple and rewriting 1/(κ2c2) = 2β0/(M2

plc
2) = 2β to make

contact with the KMM notation – where β0 is a dimension-
less constant and Mpl is the Planck mass - in the end we can
write f (p) = √

1 ± 2βp2. Therefore, the modified algebra
(42), is one of the two general solutions obtained by impos-
ing that the fundamental requirement of Jacobi identities is
fulfilled by the general commutators (43)–(44).

An analysis carried out in [28] shows how this formulation
of the quantum theory leads to the existence of a minimum

2 In these theories the β parameter, from which the value of the possible
minimum length will depend, is always treated as a constant. Neverthe-
less there exist some formulations of string theory, namely dynamical
string tension theories, the low energy limit of which could result in
something different, such as perhaps a variable β and hence a not uni-
versal minimum length (see e.g. [38]).
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length, namely a nonzero minimal uncertainty in position. By
following the reasoning path of the authors and restricting
for simplicity to the one-dimensional case, from (42) the
uncertainty principle can be derived:

�x̂�p̂ ≥ h̄

2
〈
√

1 + 2βp̂2〉. (45)

In order to evaluate explicitly the expectation value of the
commutator, a series expansion is performed:
√

1 + 2βp̂2 =
∑

n

cn(2βp̂2)n, (46)

where cn is the generalized binomial coefficient:

cn =
(

1/2

n

)
= (−1)2(2n)!

22n(1 − 2n)(n!)2 . (47)

Then, after a brief chain of inequalities, it is possible to write:

�x̂�p̂ ≥ h̄

2

√
1 + 2β(�p̂)2. (48)

From this it is immediate to see that there exists indeed a
nonzero minimum value for �x̂, which is reached asymptot-
ically, that is for �p̂ approaching infinity. In particular:

�x̂min = lP

√
β0

2
, (49)

where lP is the Planck length. So according to [28], this
framework provides the theory with a ”natural” minimum
length and it is capable of doing so in a way that resembles
much closer to the ordinary quantum theory with respect to
the KMM GUP, due to the asymptotic behavior discussed
above.

Nevertheless this procedure suffers from a subtle problem.
The operator-valued function

√
1 + 2βp̂2 admits a series

expansion which is convergent if and only if the p̂ operator
has a finite norm, in particular if and only if ‖p̂‖ ≤ 1/

√
2β.

This means that the procedure discussed in [28] cannot
be valid for the ”usual” momentum operator, which is an
unbounded operator, but it holds only for a theory where the
momentum operator is properly bounded. If this is the case,
it is clear that also �p̂ will be a bounded quantity, there-
fore it does not make any sense to explore indefinitely the
�p̂-region, since it will be accessible only up to a certain
finite positive value. From these considerations, it is clear that
other paths are needed to properly explore this GUP theory
and thus address these problems which make the conclusion
unreliable.

Two frameworks will be developed and studied: the full
or non-truncated theory and the compact or truncated theory.

A structure of this kind, even if on a formal level appears
in a natural way during the analysis itself, as we will see, on
a physical ground it stands in need of some motivations.

The next section is dedicated to the attempt of addressing,
in some measure, this point.

4 Heuristics and motivations

As we discussed in some detail in the previous sections,
the possibility to generalize the standard GUP approach
described in [11] by introducing a square root term on the
right-hand side of the commutator is mathematically well
justified in view of the validity of the Jacobi identities. The
first intuitive physical interpretation is that of a much more
general setting for the study of the properties of such theo-
ries, which reduces to the standard one if the momentum is
much smaller than the value ∼ 1/

√
β (i.e. the square root is

truncated up to the leading two orders of approximation).
The matter concerning the two different physical situa-

tions, viz the truncation and non-truncation of the momen-
tum space, is, on the other hand, a bit more delicate and
subtle. As we clearly stated in the introduction and as we
are going to see in a rigorous manner, these two schemes
of the extended Heisenberg algebra are not equivalent since
only the truncated scenario is able to reproduce a minimal
uncertainty in the position or in the generalized coordinate.
This property can be considered the distinctive characteristic
of a GUP approach, given its deep physical meaning and its
consequences.

In order to understand how the distinction between the
two theories is relevant from a dynamical point of view and
therefore the relative physical implications, we now turn our
attention to a Minisuperspace model, namely the implemen-
tation of the generalized GUP framework to the dynamical
variables associated with the description of a homogeneous
and isotropic Universe. Indeed, it is just in the cosmology
arena, when the generalized coordinates correspond to the
Universe scale factors (in the example below we limit our
attention to the volume of the isotropic Universe) that the
physics provided by the deformation of the uncertainty prin-
ciple becomes relevant, since it is able to ensure significant
insights about the primordial evolution of the Universe itself
near the Planck era. In fact, we can consider the deformation
parameter β as a quantity in which the information about
a quantum modification of the dynamics, which takes place
only when the Universe density approaches the planckian
value, is stored.

In what follows, for our heuristic purpose, we will mainly
concentrate our attention on the classical dynamics of the
system as induced by modified Poisson brackets, neverthe-
less the correspondence principle immediately suggests that
a restated classical dynamics (de facto a modified gravity the-
ory) is to be regarded as the phenomenological emergence
of an intrinsically deformed quantum canonical dynamics of
the primordial Universe [1].

In this respect, let us consider the dynamics of a typi-
cal interesting paradigm for the primordial Universe, corre-
sponding to the isotropic flat Robertson-Walker model, in
the presence of a free massless scalar field φ. If we use as
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metric variable the cubed scale factor v, that is the variable
that scales the comoving volumes, the action of this system
reads as:

S =
∫ t2

t1
dt

{

pvv̇ + pφφ̇ − Nc

4π2

(

−3χvp2
v

2
+ p2

φ

v

)}

,

(50)

where χ is the Einstein constant, c is the speed of light in
the vacuum, pv and pφ denote the conjugate momenta to the
variables v and φ, respectively, while N is the lapse func-
tion and the dot refers to differentiation with respect to the
coordinate time t .

As it is known, the variation with respect to N will produce
a dynamical constraint (reflecting the time covariance):

p2
v = 2

3χ

p2
φ

2v2 ≡ 2

3χ
ρφ, (51)

where we denoted by ρφ the scalar field energy density.
Since the scalar field is typically used in cosmology as

a physical clock, we are naturally led to implementing the
generalized GUP framework on the variables v and pv only,
via the modified Poisson bracket:

{v, pv} =
√

1 + 2βp2
v. (52)

As shown in [15,23], the classical dynamics so recast
is associated with a generalized Friedmann equation [39],
which corresponds exactly to that one dictated by some mod-
els of brane cosmology [32].

Let us now briefly derive this result.
The first modified Hamilton equation reads, in a syn-

chronous reference frame (N ≡ 1), as follows:

v̇ = − c

π2

3

4
χvpv

√
1 + 2βp2

v. (53)

By observing that the Hubble rate H takes the simple
form H = v̇/3v in the volume variable and by making use
of constraint (51), it is straightforward to arrive at the desired
modified Friedmann equation:

H2 = c2

π4

χ

24
ρφ

(
1 + ρφ

ρ∗

)
, (54)

where ρ∗ = 3χ/4β is a constant representing the character-
istic energy density of the model.

The equation above is exactly the same one that can be
obtained in the Randall–Sundrum model of brane cosmol-
ogy, where ρ∗ depends on the brane tension σ instead of β.
This equation contains a quadratic dependence on the energy
density of the field and predicts the presence of a singularity
where the Universe’s volume vanishes.

On this behalf, we are naturally led to infer that our gen-
eralized GUP paradigm can have, in the Minisuperspace, a

Fig. 1 Plot of the absolute value of the function pv(t), solution of the
Eq. (55). The conjugate momentum is naturally measured in units of
1/

√
β, while the coordinate time is measured in units of

√
β/cχ . The

constant of integration is set to k = √
2 in order to obtain t = 0 as the

origin of the temporal axis

phenomenological relation with the brane physics. More pre-
cisely, while in the physical space the original GUP formu-
lation reproduces features of the low energy string dynamics
(see above for the references), in the configurational space of
cosmology the same correspondence can be drawn between
the generalized square root GUP physics and the braneworld
dynamics of the Randall–Sundrum model.

In this respect, this connection gives a first more robust
physical meaning to the generalized GUP framework that we
are discussing.

The issue concerning the possibility to deal with a trun-
cated square root GUP formulation, instead, comes out as a
delicate point that can be elucidated by considering the sec-
ond modified Hamilton equation, associated with the action
(50). It It is immediate to get the dynamical equation for the
momentum pv:

ṗv = c

4π2

[
3

2
χp2

v + p2
φ

2v2

] √
1 + 2βp2

v

= c

π2

3

4
χp2

v

√
1 + 2βp2

v, (55)

where, in the last equality, we have made use of the constraint
(51).

The integration of the above equation leads to a func-
tion pv(t), which, in absolute value, monotonically decreases
with time and diverges towards the singularity (see Fig. 1).

This behavior is reflected in the Hubble parameter, which,
expressed as a function of pv , reads as:

H2 = c2

π4

χ2

16
p2
v(1 + 2βp2

v). (56)

From this expression we immediately see that the Hubble
parameter diverges as a consequence of the presence of the
singularity.

This is clearly the picture emerging from the modified
classical theory, the dynamics of which is dictated by the
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Poisson bracket (52), where there are no other kinematic or
dynamical structures.

Now consider the following: if we impose by hand a con-
straint to the absolute value of pv , the Hubble parameter will
result constrained too, since it will present a maximum value.
This means that the truncation prevents the Hubble parame-
ter to diverge, a feature that can be considered a signal of the
avoidance of singularity.

This fact is not surprising per se and what is stated has
to be regarded as a heuristic observation, nevertheless, in
view of this, the truncation of the momentum space in the
quantum GUP formulation that we are going to discuss gains
in relevance.

Indeed, this particular formulation not only is relevant in
view of the emergence of a minimum length at the quantum
level but also in relation to the fact that it seems to imply a
cut-off physics able to affect the singularity.

Thus the truncated and non-truncated schemes appear now
very different and the general picture that we have drawn
seems to suggest that the Friedmann equation of the dis-
cussed model of brane cosmology is surprisingly associated,
on a quantum effective level, with a zero absolute minimal
uncertainty of the Universe volume.

In conclusion, we have seen how the Minisuperspace
example above well-elucidates the physical relevance of
studying the truncated theory of the generalized square root
GUP, as it reproduces a very different quantum dynamical
paradigm with respect to the non-truncated picture.

We also stress the fact that, in some measure, the presence
of a minimal uncertainty in the truncated theory as in [11]
legitimates the claim that this formulation only is the genuine
extension of the standard GUP approach when the square
root is considered. Clearly, the distinction between the two
models (with and without the square root) becomes relevant
only when the truncated momentum domain includes values
of the momentum much larger than the value ∼ 1/

√
β, where

the expansion in series of the square root would fail.

5 Non-truncated or full GUP theory

We shall now follow the functional procedure we carried out
in the reviewing sections.

For convenience we write again the modified algebra (42)
that we are going to study:

[
x̂, p̂

] = i h̄
√

1 + 2βp̂2. (57)

The natural choice is to represent the algebra (57) on
momentum space. The position and momentum operators
that we are going to construct, first of all, must be closed,
densely defined and symmetric operators. For these reasons
we define them as:

p̂ : Dp̂ −→ L2

(

R,
dp

√
1 + 2βp2

)

(58)

ψ 
→ pψ, (59)

x̂ : Dx̂ −→ L2

(

R,
dp

√
1 + 2βp2

)

(60)

ψ 
→ i h̄
√

1 + 2βp2∂pψ, (61)

where Dp̂ and Dx̂ have to be dense subsets of our Hilbert

space H ≡ L2
(

R,
dp√

1+2βp2

)
, with a deformed Lebesgue

measure, introduced as usual for the symmetry of the position
operator. For our purpose we can choose Dp̂ ≡ Dx̂ ≡ S,
namely the Schwartz space.

It is easy to prove that the chosen representation satisfies
the commutator (57), even if – we again stress it – it is not
the only possible one. As a first thing, we notice that the p̂
operator on S is essentially self-adjoint and that the unique
self-adjoint extension is given by the adjoint of p̂ itself, which
is a multiplicative operator defined on the following domain:

Dp̂† =
{

ψ ∈ L2

(

R,
dp

√
1 + 2βp2

) ∣
∣∣∣

pψ ∈ L2

(

R,
dp

√
1 + 2βp2

)}

. (62)

Therefore from now on p̂† := p̂will be our ”true” momentum
operator. In this framework the momentum ”eigenfunctions”,
in momentum representation, are Dirac deltas and their scalar
product will be defined as:

〈p| p̃〉 =
√

1 + 2βp2δ(p − p̃). (63)

For the position operator x̂, as expected, the analysis is
more subtle. As the explicit construction of its adjoint shows,
it is not self-adjoint on S:

Dx̂† =
{

ψ ∈ L2

(

R,
dp

√
1 + 2βp2

)∣
∣∣∣

∃
√

1 + 2βp2∂(w)
p ψ ∈ L2

(

R,
dp

√
1 + 2βp2

)}

,

(64)

thus x̂ � x̂†.
In order to understand if this position operator x̂ is essen-

tially self-adjoint we need to calculate the dimension of the
kernel of the two operators x̂† ± iI, a procedure that results in
finding the solutions of the following differential equations:

h̄
√

1 + 2βp2∂(w)
p ψ(p) = ∓ψ(p). (65)
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By the same distributional analysis considerations that we
have mentioned in Sect. 2, we can write down the solutions:

ψ(p) = κe
∓ sinh−1(

√
2β p)√

2βh̄ . (66)

Nevertheless these functions are not square-integrable func-
tions, unless κ = 0, this means that Ker(x̂† ± iI) = 0 and
that (d+, d−) = (0, 0). Therefore, based on Von Neumann’s
theorem, we can conclude that, differently to the KMM case,
in this framework the position operator (on S) is essentially
self-adjoint and its unique self-adjoint extension is exactly
x̂†, defined above. This difference between the two formula-
tions is non-trivial and extremely relevant. Indeed, as we out-
lined in the review section, giving up the self-adjointness of
the position operator is the mathematical feature that allows
the theory to host a nonzero minimal uncertainty in position,
thus a ”natural” minimum length. To prove that indeed this
is the case, we now turn to the instrument provided by the
DGS procedure. Our function f (p) = √

1 + 2βp2 goes as
f (p) ≈ |p| for |p| � 1, hence the exponent ν is equal to
zero. As pointed out in [37], in this case it is not possible
to say anything about the integral function z(p) a priori, but
everything will depend on the precise behavior of f (p).

In the case under study, the quantity z(p) is:

z(p) =
∫ p

0
dq

1
√

1 + 2βq2
= sinh−1(

√
2βq)√

2β
(67)

and it is divergent for |p| → ∞.
According to the DGS scheme, we are in the non-compact

case, therefore the whole procedure discussed above in the
compact case, which eventually leads to finding a nonzero
minimal uncertainty in position, is not available.

This is still not enough to conclude that in this framework
the minimal value of �x̂ is zero. It is indeed necessary to
prove that also in this specific case with ν = 0, the squeezed
states are physical states, with uncertainty in position that
can be made arbitrarily small. As a first thing we need the
general form of the squeezed states of the theory, which turns
out to be:

�(p) = N e
(h̄η−iξ)

sinh−1(
√

2β p)
h̄
√

2β
−

√
1+2βp2−1

2β , (68)

where we recall that η ∈ R and  ∈ R
+.

The function f (p) we are working with satisfies all the
necessary conditions imposed by the procedure summarized
in the Sect. 2.2, as it is straightforward to verify. This allows
us to use all the developed machinery to evaluate explic-
itly the quantity (39). Unfortunately an analytical resolution
seems not viable, thus we need to estimate numerically the
value of the resulting integral as a function of the couple
(, η). For a more accurate calculation we will use the fol-
lowing general formula to express an integral over the whole

Fig. 2 Plots of the two-dimensional surface generated by the func-
tional �x̂� , depending on the two real parameters  and η, measured
respectively in units of β and 1/

√
β, while space is measured in units

of h̄
√

β. From the two presented perspectives it is clear that the mini-
mum of the surface with respect to η lies along the curve η = 0 and the
minimum with respect to  lies along the curve  = 0. Nevertheless,
it is also evident how any η-curve eventually reaches its minimum for
 = 0

real axis as an integral over a finite interval:

∫ ∞

−∞
h(x)dx=

∫ 1

0

[
h

(
1

t
−1

)
+h

(
−1

t
+1

)]
t−2dt. (69)

The numerical integration gives back the 2D-surface shown
in Fig. 2, which represents the changing of the value of �x̂�

with respect to  and η, in a sample region delimited by some
chosen values of the two independent variables.

We are now interested in finding – if they exist at all –
the values of  and η which minimizes �x̂� . By visually
inspecting the plot in Fig. 2, it appears clear that, with respect
to η, the surface reaches its minimum for η = 0, hence the
minimum with respect to  – if it exists – will lie along this
specific η-curve.
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Fig. 3 Plot of the functional �x̂� as a function only of , being
η = 0, in the same units of the previous plot. Here it can be appreciated
how the minimum of the functional along the η-curve for η = 0, is
reached for  = 0. Since physically we have that  �= 0, this means
that the value of �x̂ can be made arbitrarily small for  → 0 and hence
that the theory does not contain a natural minimum length as nonzero
minimal uncertainty in position

Setting η = 0, we are now able to represent the changing
of the value of �x̂� only with respect to , as shown in
Fig. 3.

The graphic shows distinctly what we have anticipated:
by making the value of  arbitrarily small, it is possible to
obtain states with an arbitrarily small uncertainty in position,
asymptotically going to zero for  → 0. Therefore we can
conclude that in this theory there does not exist a nonzero
minimal uncertainty in position. The corresponding asymp-
totically ”maximally localized” states are hence obtained for
η = 0, by making the limit for  → 0 of the expression
(68):

�(p) = 1√
2π h̄

e
−i x sinh−1(

√
2β p)

h̄
√

2β , (70)

where we have set N = 1/
√

2π h̄ as usual for the normal-
ization constant of a plane wave and ξ = x because, being
these states perfectly localized in position, the expectation
value of x̂ coincides with the exact position x of the particle
itself.

These states are modified plane waves and coherently they
are the eigenfunctions of the position operator of the theory
in momentum representation. Of course they are not phys-
ical states, but they can play exactly the same role as the
plane waves in the ordinary quantum theory and they can be
approximated with arbitrary precision by sequences of phys-
ical states of increasing localization. This means that within
this framework the position representation is available and it
has the usual physical interpretation. It is immediate to write
down the map from momentum space to position space:

ψ(x) := 〈x |ψ〉= 1√
2π h̄

∫

R

dp
√

1+2βp2
e
ix sinh−1(

√
2β p)

h̄
√

2β ψ̃(p),

(71)

which represents a generalization of the Fourier transform,
while its inverse can be written as:

ψ̃(p) := 〈p|ψ〉 = 1√
2π h̄

∫

R

dx e
−i x sinh−1(

√
2β p)

h̄
√

2β ψ(x). (72)

For a free particle of fixed momentum p̃ we have that
ψ̃(p) = √

1 + 2βp2δ(p− p̃) and coherently its generalized
Fourier transform, through (71), is:

ψ p̃(x) = 1√
2π h̄

e
i x sinh−1(

√
2β p̃)

h̄
√

2β , (73)

that is the same expression (70) (except for a sign), where
now p = p̃ is fixed and x is the independent variable.

By making use of the Fourier transform (71) and its inverse
(72) it is also possible to express the action of the position
and momentum operator in the x-representation:

〈x |x̂|ψ〉 = xψ(x), (74)

〈x |p̂|ψ〉 = 1√
2β

sinh

(
−i h̄

√
2β

d

dx

)
ψ(x). (75)

Finally we make two observations:

• even if we have chosen the η-curve of the surface obtained
for η = 0, which can be considered the most natural
choice, we would have come to the same conclusion for
any other value of η. Indeed, as the Fig. 2 shows, every
η-curve goes asymptotically to zero, for  → 0.

• once we have set η = 0, it is not difficult to verify through
numerical integration that the resulting squeezed states
are real physical states, in the sense that they belong to
the domain Dx̂ ∩ Dx̂2 ∩ Dp̂ ∩ Dp̂2 ∩ D[x̂,p̂].

6 Truncated or compact GUP theory

What we have just learned is that the full theory based on
the algebra (57) does not seem to lead to the existence of a
nonzero minimal uncertainty in position, which would play
the role of a ”natural” minimum length. In light of this, it
makes sense to ask whether or not some modifications of the
previous framework which can account for such a desired
feature are possible. One of the possible paths could be the
implementation of the GUP theory on a one-dimensional
truncated or compact momentum space. Besides the phys-
ical motivations given in Sect. 4, from a more formal point
of view, the arguments for such a choice are essentially two:

• the DGS functional procedure clearly shows that when-
ever it is possible to recast the theory, through a proper
diffeomorphism, in a compact momentum space, a
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nonzero minimal uncertainty in position appears. Hence
it should be automatic for a theory that is built on a com-
pact momentum space ab initio to host such a feature.

• an adequate truncation of momenta could allow us to
recover the series expansion method used in [28] – even if
the following analysis will have to be handled differently
– and it could be then compared to the DGS scheme.

Our new Hilbert space H will now be L2
([−p0, p0], dp/√

1 + 2βp2
)
, where p0 is a generic point of the real line and

we have chosen a symmetric interval with respect to zero as
compact momentum space in order to preserve the obvious
symmetry under parity. It is trivial to notice that the quantity
z(p) does not diverge anymore towards the endpoints of the
interval:

lim p→±p0

sinh−1(
√

2β p)√
2β

= ± sinh−1(
√

2β p0)√
2β

. (76)

Since we are working on a compact momentum space for
construction, there is no real need to make use of the map
p → z(p), which in this case is just a diffeomorphism
between two compact intervals. The functional analysis and
all the considerations about the momentum operator p̂, the
position operator x̂, their squares and the commutator are
exactly the same discussed in the compact DGS case, with
the only difference that now everything is written with respect
to the p-variable, thus it will be necessary to take into account
in every step the measure

√
1 + 2βp2.

The physical domain of the theory, therefore, will be:

Dx̂ =
{
ψ ∈ H1,2

(

[−p0, p0], dp
√

1 + 2βp2

) ∣∣
∣∣

ψ (−p0) = ψ (p0) = 0

}
. (77)

By applying the DGS method we are now able to find in
our physical domainDx̂ the maximally localized states of the
truncated theory and the corresponding nonzero uncertainty
in position, which will be the minimum length of the theory:

	ξ(p) = Ke
−iξ sinh−1(

√
2β p)

h̄
√

2β cos

(
π

2

sinh−1(
√

2β p)

sinh−1(
√

2β p0)

)
, (78)

�x̂min =
√

β

2

π h̄

sinh−1(
√

2β p0)
, (79)

where K =
√ √

2β

sinh−1(
√

2β p0)
.

Of course, by construction, the state (78) belongs to Dx̂
and respects all the constraints imposed by the variational
method, therefore it is a fully legitimate physical state. It is
worth noticing that the quantity �x̂min is inversely propor-
tional, through the hyperbolic arcsine function, to p0, which
can be read as the half-length of the symmetric closed real

interval we have chosen as momentum space. This implies
that the larger this interval, the smaller this length will be and
in the limit for p0 → ∞ we obtain �x̂min = 0.

Since the limit p0 → ∞ restores the real line as momen-
tum space, marking the transition from the compact formula-
tion to the non-compact one, this result is perfectly coherent
with our conclusions about the full theory and can be inter-
preted as a further confirmation of what we have discussed
previously. Furthermore, once the normalization condition is
relaxed, also the maximally localized states, for p0 → ∞,
are reduced to the modified plane waves (70), which, as stated
before, are the “maximally localized states” of the full theory,
even if they are not proper physical states.

Regarding the relation with ordinary quantum theory, it is
straightforward to see that if, once we have taken the limit for
p0 → ∞ – i.e. once we are dealing with the full theory – we
take the limit for β → 0, from (70), we re-obtain the plane
waves of the standard quantum mechanics as ”maximally
localized states”, with zero uncertainty in position.

Furthermore, the two limits commute. Indeed if we first
take the limit for β → 0, the expression (78) and (79)
become:

lim
β→0

Ke
−iξ sinh−1(

√
2β p)

h̄
√

2β cos

(
π

2

sinh−1(
√

2β p)

sinh−1(
√

2β p0)

)

=
√

1

p0
e−i ξ

h̄ p cos

(
π

2

p

p0

)
, (80)

lim
β→0

√
β

2

π h̄

sinh−1(
√

2β p0)
= π h̄

2p0
. (81)

These are respectively the maximally localized states and
the minimal uncertainty in position, obtained through a DGS
scheme, of the ordinary quantum theory implemented in a
one-dimensional compact momentum space, as it can be
directly verified. At this point, once the consistency of the
first limit is accepted, by relaxing again the normalization
condition, it is possible to make the limit for p0 → ∞ and
once again we find the plane waves of the standard theory,
with zero uncertainty in position.

6.1 Comparison with the series expansion procedure

In the previous analysis, which led us to explicitly find the
maximally localized states and the corresponding uncertainty
in position in the truncated theory, we never specified the
norm of p̂ and consequently neither the set of its possible
eigenvalues, since the procedure does not require it and holds
in general. Nevertheless, if we want to make contact with
the analysis carried out in [28] and if we want to use cor-
rectly a series expansion, some conditions must be imposed.
Indeed the series (46) converges to

√
1 + 2βp̂2 if and only

if ‖p̂2‖ ≤ 1/(2β) or equivalently if ‖p̂‖ ≤ √
1/(2β). With-

123



Eur. Phys. J. C (2023) 83 :385 Page 13 of 19 385

out loss of generality, we make the maximal choice and set
‖p̂‖ = √

1/2β, meaning that the eigenvalues of p̂ belong to
the set [−√

1/(2β),
√

1/(2β)], which represents our com-
pact momentum space. Under these assumptions it is now
possible to write:

�x̂�p̂ ≥ h̄

2

√
1 + 2β(�p̂)2. (82)

Yet, two fundamental facts must be taken into account to
interpret correctly the above expression:

• since our momentum space is a compact space, �p̂ can-
not take arbitrary values up to infinity, but only in the set
[0,

√
2/β];

• there are no physical states which are able to saturate
the inequality, hence the equal sign must be removed.
This is because the squeezed states, the general form of
which has been obtained in Sect. 2, have no place in the
truncated formulation because they do not belong to the
physical domain Dx̂ from expression (77).

At this point we can write:

�x̂ >
h̄

2

√
1

�p̂2 + 2β (83)

and, by inserting the value of �p̂ which minimizes the left-
hand side, we obtain a lower bound for �x̂, namely:

�x̂ >
1

2

√
5

2
h̄
√

β = 1

2

√
5

2
lp

√
β0 ≈ 0.79l p

√
β0. (84)

If we now calculate the value of �x̂min of the expression (79)
for p0 = √

1/(2β) we obtain:

�x̂min =
√

β

2

π h̄

sinh−1(1)
= π√

2 sinh−1(1)
l p

√
β0

≈ 2.52 l p
√

β0, (85)

which is in agreement with the constraint (84), derived from
the generalized uncertainty principle (82).

The values of �x̂ between the lower bound just defined in
(84) and the minimal uncertainty of the maximally localized
states reported in (85) are evidently ruled out from the the-
ory, since there do not exist physical states, i.e. states in Dx̂
which respect the constraints of the DGS variational princi-
ple, which can realize them.

6.2 Quasi-position representation

Even if a position representation formally still exists and can
be constructed, its physical meaning in some respects is lost
due to the presence of a limit in localizing physical objects.
Indeed, while in the ordinary quantum theory the position
eigenbasis, even if it is made up of non-physical states, can

be approximated by a sequence of physical states of uncer-
tainty in position decreasing to zero, this is no longer possible
in our framework for the formal position eigenbasis of the
x̂λ operator, hence the usual interpretation of the position
representation and the density probability amplitude 	(x) is
not valid anymore. Nevertheless, as pointed out first in [11],
information on position can still be recovered by exploiting
the maximally localized states. In particular it is possible to
project any arbitrary physical state |ψ〉 onto the maximally
localized state |ξ 〉, defining in this way the probability ampli-
tude of finding the particle maximally localized around the
position ξ . In this way the maximally localized states of the
theory can be interpreted as constituting a basis for a new
representation, namely the quasi-position representation:

ψ(ξ) := 〈ξ |ψ〉 =
∫ p0

−p0

dp
√

1 + 2βp2

{
Ke

iξ sinh−1(
√

2β p)√
2β h̄

× cos(
π

2

sinh−1(
√

2β p)

sinh−1(
√

2β p0)
)ψ̃(p)

}
. (86)

These wave functions are consequently called quasi-
position wave functions. We notice that the basis made by
the maximally localized states is not orthogonal (see Fig. 4):

〈ψml
ξ ′ |ψml

ξ 〉 =
∫ p0

−p0

dp
√

1 + 2βp2

{

K2e
i(ξ−ξ ′) sinh−1(

√
2β p)√

2βh̄

× cos[2]
(

π

2

sinh−1(
√

2β p)

sinh−1(
√

2β p0)

)}

= −2
√

2π2β3/2h̄3 sin

(
(ξ ′ − ξ) sinh−1

(√
2β p0

)

√
2βh̄

)

×
[

2π2β h̄2(ξ − ξ ′) sinh−1
(√

2β p0

)

+4(ξ ′ − ξ)3 sinh−1
(√

2β p0

)3
]−1

. (87)

This is analog to what happens in the original GUP formu-
lation in [11], where the lack of the orthogonality property
of the quasi-position basis is attributed to the ”fuzziness” of
the space.

The map (86) from momentum space to quasi-position
space is clearly a generalization of the Fourier transform. In
order to see that this object is well defined, expression (86)
can be rewritten as:

ψ(ξ) =
∫ q0

−q0

dq

√
1

q0
eiξ

q
h̄ ψ̃(q) cos

(
π

2

q

q0

)
, (88)

where q := sinh−1(
√

2β p)√
2β

. (89)

What we have obtained now is a standard Fourier transform
of the compactly supported function ψ̃(q) cos(π

2
q
q0

).
By momentarily promoting ξ to be a complex variable,

we can make use of the Paley-Wiener theorem that assures
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Fig. 4 Plot of the scalar product between maximally localized states
as function of the difference (ξ − ξ ′) in units of h̄

√
β, for the arbitrary

choice of the real closed interval of momentum space [−p0, p0] =
[−5, 5], where the momentum is measured in units of 1/

√
β

us that the function ψ(ξ) exists and in particular that it is
an entire complex function, which is square-integrable over
horizontal lines in the complex plane and therefore also for
real values of ξ , the only ones in which we are interested,
being ξ the position expectation value of an arbitrary state. It
is interesting to notice that, since we are dealing with com-
pactly supported functions, it is possible to express ψ(ξ) as
a power series of ξ :

ψ(ξ) =
∞∑

n=0

anξ
n,

an = 1

n!
∫ q0

−q0

dq

√
1

q0
φ(q) cos

(
π

2

q

q0

)(
iq

h̄

)
. (90)

It can be shown that this series is absolutely convergent and
this implies that the ψ(ξ) functions are C∞-smooth, as they
should. If we now choose as ψ̃(p) the momentum ”eigen-
function”

√
1 + 2βp2δ(p − p̃), through the map (86) we

obtain:

ψ p̃(ξ) = K cos

(
π

2

sinh−1(
√

2β p̃)

sinh−1(
√

2β p0)

)
e
iξ sinh−1(

√
2β p̃)√

2β h̄ . (91)

The function (91), which is a modified plane wave, rep-
resents of course a free particle in quasi-position representa-
tion, with fixed momentum p̃ and fully delocalized in the ξ -
space. The obtained Fourier map is invertible and the inverse
transform can be obtained by starting from (88):

ψ̃(q)�
q+q0−q+q0

= 1

2π h̄

√
q0

cos(π
2

q
q0

)

∫ ∞

−∞
dξψ(ξ)e−iξq/h̄, (92)

where �
q+q0−q+q0

:= �(q+q0)×�(−q+q0) is the product of
two Heaviside functions, the natural presence of which sig-
nals that the inverse map is correctly giving back compactly
supported functions in the interval [−q0, q0]. By making use
of the relation q(p) we can of course come back to the p
variable and rewrite (92) as a function of p.

It is natural at this point to ask which is the action of
the momentum operator and position operator in the quasi-
position representation. By carefully using the definition of
the generalized Fourier transform (86) it is possible to show
what follows:

〈ξ |p̂|ψ〉 = 1√
2β

sinh

(
−i h̄

√
2β

d

dξ

)
ψ(ξ), (93)

〈ξ |x̂|ψ〉 = ξψ(ξ) + π

2

i h̄
√

2β

sinh−1(
√

2β p0)

× tan

(
−π

2

i h̄
√

2β

sinh−1(
√

2β p0)

d

dξ

)
ψ(ξ). (94)

As expected, they are non-local differential operators and
their action can be made explicit by a series expansion in the
derivative operator itself. Nevertheless for a generic function
ψ(ξ) the series is in general not convergent.

7 Wave packets

We want now to explore some physical consequences of the
theory within both formulations by studying one of the sim-
plest physical systems, that is a free wave packet. Exactly
as in the ordinary quantum theory, we can construct a wave
packet evolving in time as a superposition of time-dependent
plane waves:

	(x, t) = 1√
2π h̄

∫ +∞

−∞
	̃(p)e

ipx
h̄ − i t E(p)

h̄ dp, (95)

where 	̃(p) is the ordinary Fourier transform of the function
	(x, t) at t = 0 and E(p) is the dispersion relation between
energy and momentum. On this ground, in the full GUP the-
ory we will use as infinite basis for the wave packet the modi-
fied plane waves (70), which correctly are the eigenfunctions
of the position operator in momentum representation:

�(x, t) = 1√
2π h̄

∫ +∞

−∞
dp

√
1 + 2βp2

{
�̃(p)

×e
ix sinh−1(

√
2β p)√

2β h̄
− i t E(p)

h̄

}
, (96)

where �̃(p) is obtained via the generalized Fourier transform
(71) of �(x, t) at t = 0. On the other hand, in the compact
theory, to recover physical information on position we need to
rely on quasi-position representation. It is therefore natural
to use maximally localized states as infinite basis for the
construction of the wave packet. Coherently we notice that
in the ordinary quantum theory and in the full GUP theory the
plane waves and the modified plane waves used as basis for
the wave packet can be obtained respectively as the Fourier
transform and generalized Fourier transform of a Dirac delta
δ(p − p̃). This holds true in the compact theory as well,
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Fig. 5 Plot of the GUP-modified dispersion relation (99) for a free
particle together with its first derivative, which represents the group
velocity of the wave packet and its second derivative, which instead is
responsible for the dispersion of the wave packet

where via the generalized Fourier transform (86) of a Dirac
delta δ(p − p̃) we obtain the states (91). In light of this we
can write:

�(ξ, t) =
∫ +p0

−p0

dp
√

1 + 2βp2

{
�̃(p)

×e
iξ sinh−1(

√
2β p)√

2β h̄
− i t E(p)

h̄

× cos

(
π

2

sinh−1(
√

2β p)

sinh−1(
√

2β p0)

)}
. (97)

Since we are interested in free motion, the dispersion rela-
tion in both the GUP theories will be E(p) = p2/2m, where
m is the mass of the particle.

This is the same one as the ordinary theory since the free
particle Hamiltonian is left untouched by the modification of
the commutator. Nevertheless, if we express the dispersion
relation in terms of the frequency ω and the wave number
k we are able to appreciate the deep difference between the
GUP theories and the standard one (see Fig. 5):

ω(k) = h̄k2

2m
standard theory, (98)

ω(k) = sinh2(
√

2β h̄k)

4mh̄β
GUP theories. (99)

Here it is important to pay attention to the fact that while
in the full GUP theory the dispersion relation (99) does not
contain boundaries on the possible values of k and ω, in the
compact theory, since the momentum is constrained in some
interval [−p0, p0], k will be automatically limited and this
leads to the existence of a minimum wavelength λ, as it would
be expected from the presence of a minimum length in the
theory. It is also interesting to notice that the compactness of
the momentum space implies an upper bound on the angular
frequency ω, which could be interpreted as a lower bound
on the possible time interval. In order to make a comparison
between the time-evolution of a wave packet in the three
different frameworks we will analyze wave packets built up
by fixing a gaussian-like wave function in momentum space,

being careful that the chosen states belong to the physical
domain of the different theories.

Formally, we will have:
Standard theory:

	(x, t) = 1√
2π h̄

∫ +∞

−∞
dp Ae

− (p−γ )2

2σp ei
px
h̄ −i t p2

2mh̄ , (100)

Full GUP theory:

�(x, t) = 1√
2π h̄

∫ +∞

−∞
dp

√
1 + 2βp2

×
{

Be− β(p−ν)2

2σp × e
ix sinh−1(

√
2β p)√

2βh̄
−i t p2

2mh̄

}

, (101)

Compact GUP theory:

�(ξ, t) =
∫ +p0

−p0

dp
√

1 + 2βp2

{

Ce− β(p−κ)2

2σp e
iξ sinh−1(

√
2β p)√

2βh̄

×e−i t p2

2mh̄ cos[2]
(

π

2

sinh−1(
√

2β p)

sinh−1(
√

2β p0)

)}
,

(102)

where A,B, C are the normalization constants, γ, ν, κ are
real parameters and σp is a real positive parameter.

The quantity γ in (100) represents, in the ordinary theory,
the (initial) expectation value of the momentum operator p̂
for the considered state, but this is not true for the parameters
ν and κ in (101) and (102) in the GUP theories. Since we
want to compare states with the same initial conditions the
parameters ν and κ will hence be fixed in order to have 〈p̂〉 =
γ also for the wave packets in the two modified theories. On
the other hand, the initial (t = 0) expectation value 〈x̂〉 for
the position operator is automatically zero for all the wave
packets.

Numerical evaluation of these integrals – for which analyt-
ical solutions seem not available – are shown in the graphics
below in Fig. 6, where the probability density at different
times for the three wave packets is plotted, for an arbitrary
yet proper choice of the free parameters.

A more quantitative picture of the situation can be
obtained by inspecting the plot in Fig. 7 of the expectation
value of position 〈x̂〉 and the plot in Fig. 8 of the relative
uncertainty in position �x̂/�x̂0 as a function of time for the
three cases, where �x̂0 is the initial uncertainty.

From the first plot we notice that, even if 〈p̂〉 is the same
for all the wave packets, the time-evolution law for 〈x̂〉 is
different. This can be easily understood by looking at the
evolution of the x̂ operator in the Heisenberg picture in the
different frameworks:

dx̂
dt

= i

h̄

[
p̂2

2m
, x̂2

]
⇒ x̂(t)=x̂(0) + p̂

m
t, (103)
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Fig. 6 Plots of the spreading in time of the squared modulus of the
wave packets (100)–(102) in the different frameworks here discussed.
Space is naturally measured in units of h̄

√
β, time in units of mh̄β and

momentum in units of 1/
√

β. The parameter σp is set equal to unity in
all the wave packets. In figure a is shown the spreading of the gaussian
wave packet (100) in the ordinary quantum theory, in figure b is possi-

ble to appreciate the spreading of the wave packet (101) in the full GUP
theory, while in figures c, d is exhibited the spreading of the wave packet
(102) in the compact GUP theory for two different choices of the closed
interval of the momentum space, respectively [−p0, p0] = [−5, 5] and
[−p0, p0] = [−3.5, 3.5], in units of 1/

√
β

Fig. 7 Plot of the expectation value of the position operator in units of
h̄
√

β as a function of time, measured in units of mh̄β, for the different
wave packets in the three quantum frameworks here considered. We
can notice how the difference in the relations (103)–(104) here results
in wave packets with an expectation value of the position changing more
rapidly in the GUP theories with respect to the ordinary quantum theory

dx̂
dt

= i

h̄

[
p̂2

2m
, x̂2

]
⇒ x̂(t)=x̂(0)+

√
1 + 2βp̂2 p̂

m
t. (104)

From here it is clear why the expectation values of the
position operator are different. By looking at the second plot
in Fig. 8, instead, it is evident how differently the wave pack-
ets spread in the different frameworks.

Fig. 8 Plot of relative uncertainty in position as a function of time for
the different wave packets studied in the three quantum frameworks, in
the same units of the previous plot. We are able to see how the wave
packet spread in the full GUP theory is always more rapid with respect
to the one in the ordinary theory, while the wave packet spread in the
compact GUP theory strongly depends on the real interval chosen as
a momentum space, producing thus physical objects which can spread
more or less rapidly with respect to the one in the standard theory

In particular we see that the wave packet of the full GUP
theory spreads more rapidly than the wave packet of the ordi-
nary theory, while the spreading of the wave packet in the
truncated GUP theory really depends on how the compact
interval of momentum is fixed. Thus, according to the cho-
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sen interval, we can have wave packets spreading more or
less rapidly with respect to the ordinary theory, but always
more slowly than the full GUP theory, the spreading curve
of which represents an upper limit for the region that the
position uncertainty of these wave packets can explore.

We stress the fact that within the compact GUP theory
is then possible to obtain wave packets that spread really
slowly in time and in the end this is due to the truncation
process which cuts out all the modified plane waves with
higher momentum.

8 Concluding remarks

We have analyzed in detail, in one dimension, the extended
formulation of the GUP theory deriving from a square root-
modified Heisenberg algebra, which verifies the Jacobi iden-
tity, as proposed in [28].

The main merit of our study is to have proved that, differ-
ently from what was stated in [28] and differently from the
original approach in [11], the considered formulation, with-
out any truncation of the momentum space, is not associated
with a minimal uncertainty different from zero for the posi-
tion operator. This result was first of all signaled by the func-
tional analysis of the position operator, which has resulted to
be essentially self-adjoint, exactly as in the ordinary quan-
tum theory and differently from the KMM GUP theory, and
it was then supported by considerations regarding the mod-
ified Lebesgue measure of the theory, the integral of which
is divergent, and consequently by an explicit calculation car-
ried out according to the functional methods presented in
[37]. To obtain a minimal uncertainty for the position opera-
tor different from zero and, in this sense, to extend the original
formulation, we have shown that a truncation (by hand) of
the momentum space is necessary. Then, we constructed the
so-called quasi-position representation and, by following a
similar scheme to that one presented in [11], we arrived at
a complete characterization of the modified quantum theory.
From a physical point of view, a significant difference with
respect to the original analysis consists in having obtained
a minimal uncertainty in position realized by states that do
not belong to the boundary of the uncertainty relation (i.e.
when the equality sign holds). These states are indeed ruled
out from the theory since they cannot satisfy the boundary
conditions of the obtained physical domain (77).

In particular, whenever the truncation is chosen in such a
way that is possible to apply the series expansion method
discussed in [28], the uncertainty relation, which can be
explicitly found in this case, is strictly an inequality, setting
a lower bound �x̂GU P for the value of �x̂, compatible with
the value of �x̂min obtained in our analysis through the meth-
ods discussed above. In this specific case, this fact suggests
that all the states which have minimal uncertainty in posi-

tion in the range ]�x̂GU P ,�x̂min[ must correspond to non-
physical states as well, for which, for instance, the energy
is diverging or not well-defined. Finally, we have analyzed
the spreading of localized wave packets both in the truncated
and non-truncated theory, comparing the obtained properties
with the standard ones coming from the ordinary quantum
mechanics. We have shown that, at equivalent initial condi-
tions, the non-truncated or full theory displays wave packets
that spread more rapidly than the ordinary quantum theory.
Instead, the truncated or compact theory exhibits spreading
features faster or slower than ordinary quantum mechanics,
depending on the width of the real closed interval chosen as
momentum space. This could have some interesting impli-
cations for possible minisuperspace implementation of the
GUP theory, concerning the possibility to deal, in the trun-
cated formulation, with wave packets which, differently from
the Wheeler-De Witt dynamics [39], are slowly spreading
even close to the initial singularity or the Big-Bounce, thus
allowing, possibly even in that regime, for a quasi-classical
approximation of the quantum dynamics.

We conclude by underlining again that in [15,23] it has
been clarified that the classical GUP dynamics (that is a mod-
ification of the Poisson brackets in place of the commuta-
tors), naturally leads, in the case of an extended formulation
with the square root, to the same Friedmann equation for
the isotropic Universe, emerging in the Randall–Sundrum
model of brane cosmology. Our analysis then opens inter-
esting questions about which of the two proposed extended
approaches really corresponds to this singular brane cosmol-
ogy. As already stated in Sect. 4, since the Poisson brackets
have been studied without any restrictions on the momen-
tum space, we are led to argue that the above correspon-
dence should be valid for the non-truncated theory. Nev-
ertheless, an intriguing question still would remain on the
ground: which kind of cosmological behavior is predicted
by the quasi-classical limit of the isotropic Universe in the
truncated scenario?
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Appendix A

In ordinary quantum mechanics it is possible to prove that the
usual Heisenberg’s uncertainty principle (HUP) holds also
for those states which are not properly physical states. In this
brief appendix we want to show how it is possible to extend
this result also in the context of the GUP theories defined by
the algebra (43)–(44)

By recalling the definition of physical space, a certain
wave function 	 will be a physical state if it belongs to the
domain:

D	 = Dx̂2 ∩ Dp̂2 ∩ Dx̂p̂ ∩ Dp̂x̂. (A1)

If this condition is not satisfied, the state ψ fails to be a
physical state. Yet, for these wave functions it is still possible
to define an uncertainty in position and momentum such that
the GUP holds. Indeed, in the ordinary quantum theory, by
use of the Weyl algebra formalism, it is possible to prove that
the ordinary Heisenberg’s inequality is still valid by taking
weaker assumptions on the set to which a generic state 	

has to belong, in particular it suffices that the state belongs
just to the domain of position and momentum operator ([40],
section 11.5.6). The general validity of this result can be
shown to hold also in our case. Let consider the operator
x̂′ = x̂+aI and p̂′ = p̂+bI, where a and b are real numbers
and Dx̂′ = Dx̂ and Dp̂′ = Dp̂.

By explicit computations in p-representation it is easy to
show that:

〈x̂′ψ |p̂′〉ψ − 〈p̂′ψ |x̂′ψ〉= i h̄
∫

R

dp|ψ(p)|2, ∀ψ ∈Dx̂ ∩ Dp̂.

(A2)

First, we notice that this expression is formally equivalent
to the expectation value of the commutator between position
and momentum operators for those states for which it can be
defined, that is:

〈[x̂, p̂]〉 = i h̄
∫

R

dp|ψ(p)|2, ∀ψ ∈ D[x̂,p̂], (A3)

but only under the condition:

lim
p→±∞ pψ(p)∂(w)

p ψ∗(p) = 0. (A4)

Then, by choosing a = ξ and b = η, we can formally
write:

‖x̂′ψ‖2
L2 = 〈x̂′ψ |x̂′ψ〉 =

∫

R

dμx (x − ξ)2|ψ |2, ∀ψ ∈ Dx̂,

(A5)

‖p̂′ψ‖2
L2 = 〈p̂′ψ |p̂′ψ〉 =

∫

R

dp

f (p)
(p − η)2|ψ |2, ∀ψ ∈ Dp̂,

(A6)

which are the formal expressions of the square standard devi-
ation of the x̂ and p̂ operators in our framework, where with
μx we have indicated a generic formal measure in the (possi-
bly non-physical) x-representation. At this point, from (A2)
and transposing in the physical p-representation the expres-
sion (A5), we can infer:

‖x̂′ψ‖‖p̂′ψ‖ ≥ |〈x̂′ψ |p̂′ψ〉|
≥ |Im〈x̂′ψ |p̂′ψ〉| = h̄

2

∫

R

dp|ψ |2. (A7)

and, in the end, since ‖x̂′ψ‖ = �x̂ψ and ‖p̂′ψ‖ = �p̂ψ :

�x̂ψ�p̂ψ ≥ h̄

2

∫

R

dp|ψ |2 = h̄

2
|〈 f (p̂〉ψ |. (A8)

This proves exactly that the GUP is valid for all those states
belonging to Dx̂ ∩ Dp̂.

It is interesting to notice that this is exactly the case of the
maximally localized states of the KMM theory discussed in
[11]. The wave function for these states reads as:

ψml
ξ (p) =

√
2
√

β

π
(1 + βp2)−1e

−iξ arctan (
√

β p)
h̄
√

β , (A9)

where ξ is the quasi-position variable.
By inspecting carefully the domains involved in theory,

it can be shown that while 	ml
ξ belongs to Dx̂2 and Dx̂p̂, it

does not belong to Dp̂2 and Dp̂x̂, hence it cannot belong to
the whole intersection.3

These considerations lead us to conclude that the functions
	ml

ξ are not proper physical states.
Nevertheless, on behalf of the result of this appendix, we

can conclude that for the maximally localized states (A9) it is
still effectively possible to define an uncertainty in position
and momentum and a GUP which relates these two quantities,
hence validating the whole procedure involving these states
at a ”kinematic” level, even if, from a ”dynamic” perspective,
due to the domain to which they belong, these states cannot
be considered fully legitimate physical states.
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