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We study various aspects of higher-curvature theories of gravity built from contractions of the metric,
the Riemann tensor, and the covariant derivative, Lðgab; Rabcd;∇aÞ. We characterize the linearized
spectrum of these theories and compute the modified Newton potential in the general case. Then, we
present the first examples of generalized quasitopological (GQT) gravities involving covariant
derivatives of the Riemann tensor. We argue that they always have second-order equations on
maximally symmetric backgrounds. Focusing on four spacetime dimensions, we find new densities of
that type involving eight and ten derivatives of the metric. In the latter case, we find new modifications
of the Schwarzschild black hole. These display thermodynamic properties which depart from the ones
of polynomial GQT black holes. In particular, the relation between the temperature and the mass of
small black holes, T ∼M1=3, which universally holds for general polynomial GQT modifications of
Einstein gravity, gets modified in the presence of the new density with covariant derivatives to T ∼M3.
Finally, we consider brane-world gravities induced by Einstein gravity in the AdS bulk. We show that
the effective quadratic action for the brane-world theory involving arbitrary high-order terms in the
action can be written explicitly in a closed form in terms of Bessel functions. We use this result to
compute the propagator of metric perturbations on the brane and its pole structure in various
dimensions, always finding infinite towers of ghost modes, as well as tachyons and more exotic modes
in some cases.
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I. INTRODUCTION

Despite the spectacular list of experimental successes of
general relativity, there are good reasons to explore alter-
natives to Einstein’s theory. Firstly, it is expected that the
Einstein-Hilbert action is the first in an infinite series of
terms involving an increasing number of derivatives of the
metric [1]. This can be seen explicitly within the string
theory framework, where the new terms appear weighted
by powers of the inverse string tension [2–4]. Additionally,
holographic higher-curvature gravities can be used, through
AdS=CFT [5,6], as toy models of conformal field theories
(CFTs) which, being inequivalent from their Einsteinian
counterparts, can sometimes be used to unveil new uni-
versal properties valid for completely general CFTs [7–15].
From a different perspective, it is important to char-

acterize the possible existence (or lack thereof) of uni-
versal features of classical gravity in regimes in which the

Einsteinian description is expected to receive higher-
curvature corrections [16,17]. In order to do this, it is
often convenient to consider particular classes of higher-
curvature gravities displaying certain special properties.
The list includes quadratic [18,19], Lovelock [20–23],
quasitopological [24–28] and generalized quasitopological
gravities (GQTs) [29–32], among others [33–36]. All of
these belong to the subset of theories built from contrac-
tions of the Riemann tensor and the metric. In particular,
GQTs—which are characterized by admitting “single
function” static and spherically symmetric solutions (see
Sec. III) as well as possessing second-order equations on
maximally symmetric backgrounds—have been shown to
provide a basis for general gravitational effective actions
built from general contractions of the Riemann tensor and
the metric: any Lðgab; RabcdÞ theory can be mapped order
by order, via a field redefinition, to certain GQT [37].
Although seemingly less likely, it is also possible that

deviations from Einstein gravity are eventually measured in
unexpected situations (e.g. beyond the effective field theory
regime) and it is important to have alternative predictions
which can be tested [38]. Along this direction there have
been numerous attempts at constructing alternatives to
general relativity which are compatible with all current
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observations and internally consistent. This includes again
quadratic theories [39–41], fðRÞ models [42], as well
as nonlocal gravities which, by including an infinite
number of derivatives in the action, can be made free of
ghosts [43–50]. Nonlocal gravities are particular instances
of the general set of theories which will be the subject
of study in the present paper, namely, diffeomorphism-
invariant theories constructed from general contractions of
the Riemann tensor and its covariant derivatives,

I ¼ 1

16πG

Z
dDx

ffiffiffiffiffi
jgj

p
Lðgab; Rabcd;∇aÞ: ð1Þ

As a matter of fact, terms involving covariant derivatives of
the Riemann tensor generically appear in gravitational
effective actions [51,52]. A scenario in which this is apparent
corresponds to the so-called brane-world gravities [53–55].
These are effective gravitational theories defined on the
world volume of branes inserted on higher-dimensional
spacetimes. Originally introduced with phenomenological
motivations, they have received a lot of attention recently in
the holographic context—see e.g. [56–58].
In this paper we present the first examples of GQT

gravities with covariant derivatives. Analogously to their
“polynomial” counterparts, we show that they have second-
order linearized equations on maximally symmetric
backgrounds1 and that they admit black hole solutions
characterized by a single function, gttgrr ¼ −1. Focusing
on four dimensions, we find that the lowest-order instances
of GQT densities involve eight derivatives of the metric.
However, we observe that all such theories admit the
Schwarzschild metric as a solution, and therefore do not
give rise to new solutions when considered as corrections to
general relativity. The first GQT density with covariant
derivatives which does correct the Schwarzschild solution
occurs at tenth order in derivatives of the metric—see
Eq. (111) below for its explicit form. For this, we find that
the corrected solution displays features similar to the ones
of polynomial GQTs, including a near-horizon expansion
fully determined by a single parameter to be fixed asymp-
totically or the possibility of determining their thermody-
namic properties in a fully analytic fashion for general
values of the coupling. We analyze some of the thermo-
dynamic properties of the new solution finding, in particu-
lar, that for small black holes the temperature behaves as a
function of the mass as T ∼M3 as rh → 0. This departs
from the behavior encountered for all polynomial GQT
theories, for which it has been argued that the relation
T ∼M1=3 holds universally for small black holes [16,60].
The analysis of the linearized spectrum of GQTs is

performed after obtaining some general results on the

linearization of general higher-curvature theories with
covariant derivatives. We present general formulas which
allow for the computation of the linearized equations of a
given higher-curvature theory from its effective quadratic
action. Using this, we show that both GQTs as well as
brane-world gravities belong to the family of theories
which do not include scalar modes in their linearized
spectrum. Additionally, we obtain a formula for the
modified Newton potential valid for general higher-
curvature theories involving covariant derivatives in arbi-
trary dimensions.
Then, we move to brane-world theories. The effective

gravitational action induced on the brane world volume is
given by an infinite series of higher-derivative terms of the
form [61–68]

Ibgrav ¼
Z

dDx
ffiffiffiffiffiffi−gp

16πGD

�
Rþ l2

ðD − 2ÞðD − 4Þ

× Rab

�
Rab −

D
4ðD − 1Þ gabR

�
þ…

�
;

where l is the AdSDþ1 radius of the ambient spacetime.
Starting at sixth order in derivatives, all the higher-curvature
densities involve terms with covariant derivatives of the
Riemann tensor—e.g. see Eq. (136) for the next order. Here
we show that the effective curvature-squared action of the
full brane-world gravity—including the infinite tower of
terms with covariant derivatives—can be written as

Ið2Þbgrav ¼
Z

dDx
ffiffiffiffiffiffi−gp

16πGD

�
Rþ l2RabFDðl2

□Þ

×

�
Rab −

D
4ðD − 1Þ gabR

��
;

where

FDðl2
□Þ≡DðD − 2Þ

l4
□

2
−

1

l2
□

−
ðD − 2ÞYDþ2

2
ðl ffiffiffiffi

□
p Þ

l3
□

3=2YD
2
ðl ffiffiffiffi

□
p Þ ; ð2Þ

and Yk are Bessel functions of the second kind. Using
this expression, we study the linearized spectrum of the
theory on Minkowski spacetime in various dimensions.
Generically, the metric perturbations propagator includes
poles of the form

PDðl2k2Þ ∼ 1

l2k2
; PDðl2k2Þ ∼ −

2

ðD − 2Þl2½k2 þm2
j �
;

ð3Þ

where the first is the usual Einstein gravity massless spin-2
mode, and the second corresponds to infinite towers of
massive spin-2 modes (labeled by j) which always have
negative kinetic energy. Depending on the dimension, some

1This provides a counterexample to the conjecture of [59]
regarding the absence of theories with covariant derivatives of the
curvature possessing an Einsteinian spectrum.
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of those modes have positive squared masses, some of them
have negative squared masses, and some of them have
imaginary squared masses.
The structure of the paper is the following. Section II

contains some comments on the structure of the linearized
equations of general higher-curvature gravities with covar-
iant derivatives on general maximally symmetric back-
grounds, a characterization of the structure of poles of the
metric propagator on Minkowksi spacetime as well as a
derivation of the generalized Newton potential. In Sec. III
we construct GQTs with covariant derivatives in four
spacetime dimensions and study their new black hole
solutions and their thermodynamic properties. In Sec. IV
we study the linearization of brane-world gravities
obtaining their effective quadratic action and characterizing
the pole structure of the metric propagator in various
dimensions. We conclude in Sec. V with some comments
on future directions. Appendix A contains a complete list of
the curvature invariants at each order in derivatives up to
eight, as well as the nonexhaustive set we have used at
order ten. In Appendix B we present new hairy black hole
solutions of pure eight-derivative GQTs with covariant
derivatives. Finally, in Appendix C we present the linear-
ized field equations around an AdS background for the
simplest examples of the theories we consider here.

II. LINEARIZED HIGHER-CURVATURE
GRAVITIES WITH COVARIANT DERIVATIVES

Throughout the paper we will be interested in the
linearized equations of various higher-curvature theories
with covariant derivatives. In this section we analyze the
structure of such equations for a general theory of the
form (1) in general dimensions. We derive their general
form on a maximally symmetric background and then,
focusing on the Minkowski case, we identify the precise
relation between the effective quadratic action and the
linearized equations, classifying the different theories
according to themodes propagated. In particular, we identify
a set of generalizations of a particular type of quadratic
densities involved in the definition of the so-called “critical
gravities”—which have the peculiarity of propagating no
scalar modes. This set of theories will include both the
new GQTs theories presented in Sec. III and the brane-
world theories studied in Sec. IV as particular instances.
Additionally, we obtain an explicit formula for the
D-dimensional generalized Newton potential resulting from
a general higher-curvature gravity with covariant derivatives.
Before starting, let us point out that many of the

results presented in this section have appeared in different
forms in previous literature. Indeed, both the lineari-
zation on maximally symmetric backgrounds of general
Lðgab; Rabcd;∇aÞ theories as well as the Newton potential
have been studied in the four-dimensional case in [69–77].
We are interested in gravity theories of the form (1). Some-

times it is convenient to split the Lagrangian as follows:

Lðgab;Rabcd;∇aÞ ¼
ðD− 1ÞðD− 2Þ

l2
þRþLRðgab;RabcdÞ

þL∇ðgab;Rabcd;∇aÞ; ð4Þ

where we included an explicit Einstein-Hilbert plus
(negative) cosmological constant piece, LR includes terms
which do not involve covariant derivatives, and L∇
includes terms which contain at least one covariant deriva-
tive of the Riemann tensor. The equations of motion for
this theory can be written as [78]

Eab ≡ Ta
cdeRbcde −

1

2
gabL − 2∇c∇dTacdb ¼ 0 ð5Þ

where

Tabcd ≡
�

∂L
∂Rabcd

−∇a1

∂L∇
∂∇a1Rabcd

þ � � �

þ ð−1Þm∇ða1…∇amÞ
∂L∇

∂∇ða1…∇amÞRabcd

�
: ð6Þ

In the case of maximally symmetric backgrounds with
metric ḡab, the Riemann tensor is given by

R̄abcd ¼ −
2

l2
⋆
ḡa½cḡd�b; ð7Þ

where l2
⋆ has dimensions of length2 and it is a positive

number in the case of an AdSD background, a negative
number in the case of dSD, and infinite for Minkowski.
In order for ḡab to be a solution of Lðgab; Rabcd;∇aÞ, the
equations of motion impose the algebraic equation [79]

1 − χ þ l2

ðD − 1ÞðD − 2Þ
�
LRðχÞ −

2χ

D
L0
RðχÞ

�
¼ 0; ð8Þ

where we defined χ ≡ l2=l2
⋆, LRðχÞ stands for the on-shell

evaluation of the corresponding Lagrangian on the max-
imally symmetric background, and L0

RðχÞ≡ dLRðχÞ=dχ.
Observe that the piece of the Lagrangian involving covar-
iant derivatives of the Riemann tensor makes no contribu-
tion to this equation, which follows from ∇aḡbc ¼ 0.
Naturally, for Einstein gravity the above equation simply
imposes the condition χ ¼ 1. For a Lagrangian built from
polynomials of the Riemann tensor involving densities up
to order n in the curvature, the above equation is an order-n
algebraic equation for χ, which will in general have many
possible solutions, depending on the values of the corre-
sponding higher-derivative couplings.

A. Linearized equations

Let us now consider the linearized equations of a general
theory of the form given by Eq. (1) around a maximally
symmetric background. We expand the metric as

gab ¼ ḡab þ hab; ð9Þ
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where hab is a small perturbation. Every relevant object
built from the metric can then be expanded at the desired
order in the perturbation as T ¼ Tð0Þ þTð1Þ þTð2Þ þOðh3Þ.
Given a particular theory we have two routes to derive its

linearized equations. On the one hand, we can take the full
nonlinear equations and expand each of the terms to linear
order in the perturbation. Alternatively, we can expand the
action to second order in the perturbation and derive the
linearized equations from the first variation. As we have
seen, the full nonlinear equations of a theory like (1) have a
rather complicated form. However, it is not difficult to
argue that the most general form of the linearized equations
is much simpler. In order to see this, let us start by
characterizing all possible terms that may arise in the
linearized equations. Doing this amounts to classifying all
symmetric tensors of two indices built from Rð1Þ

abcd, ḡab, and
∇a which are linear in the metric perturbation.
Let us start with a few observations. First, observe that

the linearized Riemann tensor is linear in hab, and therefore
all possible terms will have a single Riemann tensor,
possibly acted upon with covariant derivatives and with
various indices contracted. Another observation is that all
terms must necessarily contain an even number of covariant
derivatives, since ∇a is the only available object with an
odd number of indices. In addition, note that all Riemann
tensors will actually appear in the form of Ricci tensors.
This is because (a) any term involving exclusively metrics
and Riemann tensors reduces to Ricci tensors or vanishes,
since at most two of the indices can remain uncontracted;
(b) any term involving covariant derivatives and Riemann
tensors reduces to covariant derivatives and Ricci tensors.
Indeed, when only two indices are left uncontracted, a
tensor of the form

∇a∇bRcdef ð10Þ

reduces to one of the following four possibilities:
∇c∇eRcdef;□Rab;∇a∇bR; 0. In addition, using the second
Bianchi identity, it follows that the first possibility can only
give rise to a linear combination of the second and the third,
plus higher-order terms in h. We therefore conclude that the
most general possible term will come from contracting all
but two indices in an expression of the form

□
l∇c1∇c2…∇c2m−1

∇c2mRab; ð11Þ

where ci ≠ cj ∀ i ≠ j. Contracting 2m of the indices, we
immediately see that the only three possibilities are in fact

ḡab□lR; ∇a∇b□
lR; □

lRab: ð12Þ

We then conclude that the linearized equations of a general
Lðgab; Rabcd;∇aÞ theory around maximally symmetric
backgrounds will always take the form

Eab ≡
X
l¼0

l2l

�
αl□

lGð1Þ
ab þ βl□

lRð1Þḡab

þ γlþ1l2□l½ḡab□ −∇a∇b�Rð1Þ
�
¼ 0; ð13Þ

for certain dimensionless constants αl, βl, γl which will be
related to the gravitational couplings, and where we rearran-
ged some of the terms for later convenience. Implicitly, we
have assumed that the theory involves a polynomial depend-
ence on the covariant derivatives. Relaxing this requirement
would yield the more general form

Eab ≡
�
f1ðl2

□ÞGð1Þ
ab þ f2ðl2

□ÞRð1Þḡab

þ f3ðl2
□Þ½ḡab□ −∇a∇b�Rð1Þ

�
¼ 0; ð14Þ

for certain functions f1, f2, f3. The formof the equations can
be further constrained by noting that the tensor Eab must be
divergence-free, that is, ∇aEab ¼ 0. By commuting ∇a and
□, one can show that the divergence reads

∇̄aEab ¼
�
f2ðl2

□̃Þ þD − 1

D

�
f3ðl2

□̃Þ□̃

− f3ðl2□̂Þ
�
□̄ −

1

l2
⋆

��

þ 2 −D
2D

½f1ðl2
□̃Þ − f1ðl2

□̂Þ�
�
∇̄bRð1Þ; ð15Þ

where

b□ ¼ □ −
Dþ 1

l2
⋆

; e□ ¼ □þD − 1

l2
⋆

: ð16Þ

Therefore, the functionf2 is not free, but it depends onf1 and
f3 by

f2ðl2
□Þ ¼ D − 2

2D

�
f1ðl2

□Þ − f1ðl2
□þ 2DχÞ

�

þD − 1

Dl2

�
f3ðl2□þ 2DχÞðl2□ − χDÞ

− f3ðl2
□Þl2

□

�
; ð17Þ

where we recall that χ ¼ l2=l2
⋆. Observe that in the case of

flat space, f2 vanishes.
In the case of theories which do not involve covariant

derivatives, it is known that the most general form of the
linearized equations is captured by a general quadratic
action in the Riemann tensor. Something similar happens
for a general Lðgab; Rabcd;∇aÞ theory. Indeed, in that case
the most general quadratic action reads
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Leff ¼ λ

�ðD − 1ÞðD − 2Þ
l2

þ Rþ l2RF1ðl2
□ÞR

þ l2RabF2ðl2
□ÞRab þ l2RabcdF3ðl2

□ÞRabcd

�
;

ð18Þ

for certain functions F1, F2, F3. It is then possible to
relate these to the functions f1, f2, f3 of the linearized
equations (14). Such relation turns out to be quite cum-
bersome in the case of (A)dS backgrounds, as we illustrate
in Appendix C. In what follows we analyze the case of
Minkowski backgrounds.

1. Minkowski background

When the background is flat, the linearized equations for
the quadratic Lagrangian (18) read2

λ

2

�
½1þ ½4F3ðl2

□̄Þ þ F2ðl2
□̄Þ�l2

□̄�Gð1Þ
ab

− l2½2F1ðl2
□̄Þ þ F2ðl2

□̄Þ þ 2F3ðl2
□̄Þ�

× ½∇̄a∇̄b − ḡab□̄�Rð1Þ
�

¼ 0: ð20Þ

where

Gð1Þ
ab ¼ −

1

2
□hab þ∇ðaj∇chcjbÞ −

1

2
∇a∇bh −

1

2
ḡabRð1Þ;

ð21Þ

Rð1Þ ¼ ∇a∇bhab −□h ð22Þ

are the linearized Einstein tensor and Ricci scalar, respec-
tively. We point out that the above linearized equations can
be obtained immediately using the result found in [79] for
theories which do not involve covariant derivatives of the
Riemann tensor. The idea is to use the same relations
between the quadratic action couplings and the constant
parameters (a; b; c; e) appearing in such equations but now
promoting the constants to functions of l2

□.

The trace of the equations reads

−
λ

4
½ðD − 2Þ − l2

□½4F3ðl2
□Þ þDF2ðl2

□Þ
þ 4ðD − 1ÞF1ðl2

□Þ��Rð1Þ ¼ 0; ð23Þ

and their traceless part is given by

λ

2

�
½1þ ½4F3ðl2

□̄Þ þ F2ðl2
□̄Þ�l2

□̄�Rð1Þ
habi

− l2½2F1ðl2
□̄Þ þ F2ðl2

□̄Þ þ 2F3ðl2
□̄Þ�∇̄ha∇̄biRð1Þ

�
¼ 0: ð24Þ

Observe now that for theories satisfying the condition

4F3ðl2
□Þ þDF2ðl2

□Þ þ 4ðD − 1ÞF1ðl2
□Þ ¼ 0; ð25Þ

the trace equation becomes second order and simply reads

−
λ

4
ðD − 2ÞRð1Þ ¼ 0; ð26Þ

which is nothing but the Einstein gravity result. In the case
in which Fi ¼ αi are constants, condition (25) selects a
linear combination of quadratic terms which appear in the
so-called “critical gravities” in general dimensions—see
e.g. [80–86]. In particular, the action reduces in that case to

Leff ¼ λ

�ðD − 1ÞðD − 2Þ
l2

þ Rþ l2α3X 4

þ l2ðα1 − α3Þ
�
R2 −

4ðD − 1Þ
D

RabRab

��
; ð27Þ

where X4 ≡ R2 − 4RabRab þ RabcdRabcd is the Gauss-
Bonnet density and the second term can be written as a
linear combination of X4 and the Weyl tensor squared. For
this theory, the linearized spectrum on a general maximally
symmetric background is known to involve the usual
massless graviton and the massive one, but not the scalar
mode. This is also the case for theories satisfying Eq. (25)
with nonconstant functions. As we will see later, both
generalized quasitopological and brane-world gravities
belong to that class.
In order to study the physical modes propagated by the

metric perturbation, let us now fix the harmonic gauge,
which amounts to setting

∇ahab ¼
1

2
∇bh: ð28Þ

Then, the linearized Einstein tensor and Ricci scalar
become

2Note that, as far as the linearized equations on Minkowski
space are concerned, the term Rabcd

□
nRabcd is not independent

from the other two. Indeed, one finds

R□nR − 4Rab
□

nRab þ Rabcd
□

nRabcd

¼ total derivativeþOðR3
abcdÞ: ð19Þ

Hence, in the Minkowski case we could have just redefined out
F3 in Leff without loss of generality.
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Gð1Þ
ab ¼ −

1

2
□hab þ

1

4
ḡab□h; Rð1Þ ¼ −

1

2
□h: ð29Þ

For theories satisfying Eq. (25), the trace equation (26)
imposes □h ¼ 0. Using the residual gauge freedom
hab → hab þ∇ðaξbÞ, with □ξa ¼ 0, we can set h ¼ 0.
Therefore, the trace of the perturbation has no dynamics
and there are no scalar modes. On the other hand, the
traceless part of the equations becomes

−
λ

4
½1þ ½4F3ðl2□Þ þ F2ðl2□Þ�l2□�□hhabi ¼ 0: ð30Þ

By performing the Fourier transform in this expression,
which amounts to□ → −k2, we can read off the propagator

PðkÞ ¼ 4

λk2½1 − l2k2ð4F3ð−l2k2Þ þ F2ð−l2k2ÞÞ� : ð31Þ

Poles of the propagator inform about the degrees of freedom
of the theory. For each pole, k2 ¼ −m2 indicates the mass.
Thus, imaginary poles correspond to massive modes, while
real poles are tachyonic modes. On the other hand, the
residue of each pole tells us about the energy carried out
by the corresponding mode. A positive residue—like the
massless graviton one, k2 ¼ 0—corresponds to positive
energy, and vice versa for a negative residue. For constant
functions, Fi ¼ αi, we have the poles

m2 ¼ 0; m2
g ¼ −

1

ð4α3 þ α2Þl2
; ð32Þ

corresponding to the anticipated massless and massive
graviton, respectively, and in agreement with the result
of [79,87]. The next to simplest case corresponds to
Fiðl2

□Þ ¼ αi þ βil2
□. For that, one finds

m2 ¼ 0;

m2
� ¼ −

ðα2 þ 4α3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 þ 4α3Þ2 − 4ðβ2 þ 4β3Þ

p
2ðβ2 þ 4β3Þl2

; ð33Þ

which correspond, in addition to the usual massless
graviton, to two new massive gravitons.
An additional simplification occurs for theories

such that, besides Eq. (25), also satisfy the condition
F3ðl2

□Þ ¼ −F2ðl2
□Þ=4. Those two conditions can then

be rewritten as

F1ðl2
□Þ ¼ F3ðl2

□Þ ¼ −F2ðl2
□Þ=4; ð34Þ

and, in that case, the linearized equations reduce to

λ

2
Gð1Þ

ab ¼ 0; ð35Þ

namely, to the usual linearized Einstein equation. Hence,
for theories whose effective action satisfies the pair of
conditions (34), the linearized equations on Minkowski
space are identical to the Einstein gravity ones—or, in other
words, the higher-derivative densities do not contribute at
all to the linearized equations. Gauss-Bonnet gravity is a
particular instance, which corresponds to setting all func-
tions equal to constants, but the set of higher-derivative
theories with this property contains infinitely many den-
sities with an arbitrarily large number of covariant deriv-
atives. We will see later that generalized quasitopological
gravities fall within this category (not so for brane-world
gravities).

2. Newton potential

Here we study how the usual Newtonian potential gets
modified by the introduction of higher-derivative terms as
in Eq. (18). This will give us another perspective on the
new types of massive modes propagated by these theories.
We consider a metric perturbation on Minkowski spacetime
of the form

ds2N ¼ −½1þ 2UðrÞ�dt2 þ ½1 − 2VðrÞ�δijdxidxj; ð36Þ

where r ¼ jx⃗j and UðrÞ will be the Newtonian potential.
Now, we evaluate (20). We find two linearly independent
equations for a static source in the stress tensor as

Tð1Þ
00 ¼ ρðrÞ,

OUt
UðrÞ þOVt

VðrÞ ¼ ρðrÞ
2l2λ

;

OVx
VðrÞ þOUx

UðrÞ ¼ 0 ð37Þ

where

OUt
≡ 2ð2F3 þ 2F1 þ F2Þ□̄2;

OVt
≡ ðD − 2Þðl−2 − □̄ð4F1 þ F2ÞÞ□̄;

OVx
≡ ððð−4F3 −Dð4F1 þ F2Þ þ 8F1 þ F2Þ
þ ðD − 3Þl−2Þ□̄2;

OUx
≡ ðð4F1 þ F2Þ□̄ − l−2ÞÞ□̄: ð38Þ

We can solve this system of second-order ordinary differ-
ential equations using Fourier transforms. Denoting by ρk⃗
the Fourier transform of ρðrÞ in momentum space and

FðkÞ
i ¼ Fið−l2k2Þ, we find

SERGIO E. AGUILAR-GUTIERREZ et al. PHYS. REV. D 108, 124075 (2023)

124075-6



UðrÞ ¼
Z

dD−1k⃗
ð2πÞD−1

ρk⃗½k⃗2ð4F
ðk⃗Þ
3 þ 4Fðk⃗Þ

1 ðD − 2Þ þ ðD − 1ÞFðk⃗Þ
2 Þ þ ðD − 3Þl−2�

4k⃗2½k⃗2ð4Fðk⃗Þ
3 þ Fðk⃗Þ

2 Þ − l−2�½k⃗2ð4Fðk⃗Þ
3 þ 4ðD − 1ÞFðk⃗Þ

1 þDFðk⃗Þ
2 Þ þ ðD − 2Þl−2�

eik⃗·x⃗;

VðrÞ ¼
Z

dD−1k⃗
ð2πÞD−1

ρk⃗½k⃗2ð4F
ðk⃗Þ
1 þ Fðk⃗Þ

2 Þ þ l−2�
4k⃗2½k⃗2ð4Fðk⃗Þ

3 þ Fðk⃗Þ
2 Þ − l−2�½k⃗2ð4Fðk⃗Þ

3 þ 4ðD − 1ÞFðk⃗Þ
1 þDFðk⃗Þ

2 Þ þ ðD − 2Þl−2�
eik⃗·x⃗: ð39Þ

These are rather implicit formulas, but we can make further progress in the case of theories for which the functions F1, F2,
F3 are polynomials, namely,

F1 ¼
XN1

n¼0

α1nðl2□Þn; F2 ¼
XN2

n¼0

α2nðl2□Þn; F3 ¼
XN3

n¼0

α3nðl2□Þn: ð40Þ

where α1n, α2n, α3n are constant coefficients. Introducing the notation

N ≡maxfN1; N2; N3g; ð41Þ
and considering a pointlike source of mass M, we find the following result for the modified Newton potential in the most
general case3:

UðrÞ ¼ −
4Γ½D−1

2
�

ðD − 2ÞπD−3
2

GM
rD−3

�
1þ r

D−3
2

XN
i¼1

�
νgiKD−3

2
ðmgirÞ þ νsiKD−3

2
ðmsirÞ

��
: ð42Þ

Here KlðxÞ are modified Bessel functions of the second kind, we denoted G≡ 1=ð16πλÞ, and

νgi ≡ −
ðD − 2Þ2mD−3

2
gi

2
D−1
2 ΓðDþ1

2
Þ

YN
j≠i

�
1 −

m2
gi

m2
gj

�
−1
; νsi ≡

m
D−3
2

si

2
D−1
2 ΓðDþ1

2
Þ
YN
j≠i

�
1 −

m2
si

m2
sj

�
−1
: ð43Þ

In these expressions,mgi andmsi correspond, respectively, to the masses of new spin-2 and spin-0 modes. They are nothing
but the poles of the integrals in (39), namely, the roots of

mgi∶ k2ð4FðkÞ
3 þ FðkÞ

2 Þ − l−2 ¼ 0; ð44Þ
msi∶ k2ð4FðkÞ

3 þ 4ðD − 1ÞFðkÞ
1 þDFðkÞ

2 Þ þ ðD − 2Þl−2 ¼ 0: ð45Þ
The net negative contributions in the Newtonian potential indicate which of the modes are ghosts. In the case of constant Fi
previously studied in [79,87], the scalar mode is always contributing positively and is never a ghost, whereas the opposite
holds for the massive spin-2 mode, which is always a ghost. In the general case, we observe that some of the scalar modes
can also be ghosts, while some of spin-2 modes can carry positive energy. Note also that for theories satisfying condition
(25), the second equation becomes rootless and there are no new scalars, in agreement with the analysis of the previous
subsection. On the other hand, if F3ðl2

□̄Þ ¼ −F2ðl2
□̄Þ=4 holds then there are no new spin-2 modes. If both conditions

hold at the same time, the Newton potential reduces to the Einstein gravity one.
On the other hand, we find for the other metric function,

VðrÞ ¼ −
2Γ½D−3

2
�

ðD − 2ÞπD−3
2

GM
rD−3

�
1þ r

D−3
2

XN
i¼1

½ν̃giKD−3
2
ðmgirÞ þ ν̃siKD−3

2
ðmsirÞ�

�
ð46Þ

where

ν̃gi ≡
−ðD − 2ÞmD−3

2
gi

2
D−5
2 ðD − 1ÞΓðD−3

2
Þ
YN
j≠i

�
1 −

m2
gi

m2
gj

�
−1
; ν̃si ≡

−m
D−3
2

si

2
D−5
2 ðD − 1ÞΓðD−3

2
Þ
YN
j≠i

�
1 −

m2
si

m2
sj

�
−1
: ð47Þ

As expected, the expressions above reduce to the results in [79] for the potentialsUðrÞ and VðrÞwhenN ¼ 0 in ((42), (46)).

3This result assumes that all the masses are different. The limit in which two or more masses coincide must be taken with care. This
result also does not capture the case in which the denominators in (39) are entire functions with no zeros (besides k2 ¼ 0). This can only
happen with an infinite number of derivatives [46].
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III. GENERALIZED QUASITOPOLOGICAL
GRAVITIES IN D= 4

In this section we present the first examples of gener-
alized quasitopological (GQT) densities involving covari-
ant derivatives of the Riemann tensor. We focus on D ¼ 4.
In that number of dimensions, in the absence of covariant
derivatives it has been shown that there exists a unique
nontrivial GQT density at each curvature order. Here we
show that the landscape of GQT theories is modified consi-
derably by allowing covariant derivatives of the Riemann
tensor to appear in the action. In particular, while we find
no new densities at four- and six-derivative (of the metric)
orders, we obtain four new inequivalent GQTs at eight-
derivative order. Of these, only one possesses an integrated
equation for fðrÞ which is of second order in derivatives,
two of them have third-order equations, and the remaining
one has an integrated fourth-order equation for the metric
function. In all cases, we find that the Schwarzschild
solution is also a solution of these theories. As a conse-
quence, coupling Einstein gravity to these theories does not
give rise to new spherically symmetric black hole solutions.
Extending the analysis to ten-derivative order, we find new
examples which do not admit Schwarzschild as a solution.
For those, the coupling to Einstein gravity does produce
new nontrivial modifications of the Schwarzschild black
hole. Similarly to what happens for polynomial GQTs, we
find that the thermodynamic properties of those solutions can
be computed analytically.We study the relation between their
temperature and their mass and find a deviation from the
universal behavior previously observed in the case of general
polynomial GQTs for small black holes. Instead of the
prototypical T∼M1=3 scaling universally found for such
theories [16,60], the density with covariant derivatives
induces a different behavior of the form T ∼M3.
Let us start by recalling the basic definition and proper-

ties of GQTs. Consider a general static and spherically
symmetric (SSS) spacetime parametrized by two functions,
NðrÞ and fðrÞ,

ds2N;f ¼ −NðrÞ2fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ðD−2Þ; ð48Þ

where dΩ2
ðD−2Þ is the (D − 2)-dimensional sphere metric.

The following comments extend, with minor modifications,
to the cases in which the horizon is hyperbolic or planar
instead. The expressions below will incorporate those cases
through a parameter denoted k which will take the values
þ1; 0;−1, respectively for the spherical, planar, and hyper-
bolic cases.
For a given curvature invariant of order 2m in derivatives

of the metric and involving p covariant derivatives of the
Riemann tensor,Rð2m;pÞ, let SN;f and LN;f be, respectively,
the effective on-shell action and Lagrangian resulting from
the evaluation of

ffiffiffiffiffijgjp
Rð2m;pÞ in the ansatz (48), namely,

LN;f ≡ NðrÞrD−2Rð2m;pÞjN;f;

SN;f ≡ΩðD−2Þ

Z
dt
Z

drLN;f; ð49Þ

where we performed the trivial integral over the angular
directions,ΩðD−2Þ ≡ 2π

D−1
2 =Γ½D−1

2
�. We denote by Lf ≡ L1;f

and Sf ≡ S1;f the expressions resulting from setting N ¼ 1

in LN;f. Now, solving the full nonlinear equations of
motion for a metric of the form (48) can be shown to be
equivalent to solving the Euler-Lagrange equations of SN;f

associated to NðrÞ and fðrÞ [16,88–90], namely,

EabjN;f ≡ 1ffiffiffiffiffijgjp δS
δgab

				
N;f

¼ 0 ⇔
δSN;f

δN
¼ δSN;f

δf
¼ 0:

ð50Þ

We say thatRð2m;pÞ is a GQT density if the Euler-Lagrange
equation of fðrÞ associated to Sf is identically vanishing,
namely, if

δSf
δf

¼ 0; ∀ fðrÞ: ð51Þ

This condition is equivalent to asking Lf to be a total
derivative,

Lf ¼ T 0
0; ð52Þ

for certain function T0ðr; fðrÞ; f0ðrÞ;…; fðpþ1ÞÞ.
Thus, the variation with respect to fðrÞ of the on-shell

action Sf determines whether or not a given density is of
the GQT class. When that is the case, the full nonlinear
equations of Rð2m;pÞ reduce to a single equation for fðrÞ
which can in fact be integrated once. Such integrated
equation can be obtained from the variation of LN;f with
respect to NðrÞ as

δSN;f

δN

				
N¼1

¼ 0 ⇔ equation of fðrÞ: ð53Þ

Let us see this in more detail. As explained in [30],
whenever Eq. (52) holds, the effective Lagrangian LN;f

takes the form

LN;f ¼ NT 0
0 þ N0T1 þ N00T2 þ � � � þ Nðpþ2ÞTpþ2

þOðN02=NÞ; ð54Þ

where T1; T2;…; Tpþ2 are functions of fðrÞ and its
derivatives (up to fðpþ2Þ), and OðN02=NÞ is a sum of
contributions which are all at least quadratic in derivatives
of NðrÞ. Integrating by parts one finds
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SN;f ¼ ΩðD−2Þ

Z
dt
Z

dr

�
N

�
T0 þ

Xpþ2

j¼1

ð−1ÞjTðj−1Þ
j

�0

þOðN02=NÞ
�
: ð55Þ

Therefore, one can write every term involving one power
of NðrÞ or its derivatives as a certain product of NðrÞ and
a total derivative which depends on fðrÞ alone. As a
consequence, Eq. (53) equates such a total derivative to
zero. Integrating it once one we are left with [30]

FRð2m;pÞ ≡ T0 þ
Xpþ2

j¼1

ð−1ÞjTðj−1Þ
j ¼ M

ΩðD−2Þ
; ð56Þ

where the integration constant was written in terms of the
ADM mass of the solution [91–94].
In sum, given some linear combination of GQT densities,

the equation satisfied by fðrÞ can be obtained from LN;f as
defined in Eq. (49) by identifying the functions Tfjg from
Eq. (54). The order of the integrated equation FRð2m;pÞ is at

least two orders less than the one of the equations deter-
mining fðrÞ and NðrÞ in the most general case, namely,

FRð2m;pÞ ¼ FRð2m;pÞ ðr; f; f0;…; fð2pþ2ÞÞ: ð57Þ

In particular, when p ¼ 0, corresponding to the case
without covariant derivatives of the Riemann tensor, the
integrated equation is at most second order in derivatives
of fðrÞ. In that case, one can see that the integrated
equations are either of order 0 in derivatives—these are
called simply “quasitopological” theories [24–28], which
includes Lovelock theories [20,21] as particular cases—or,
alternatively, of order 2. As we will see in a moment, the
actual order of the integrated equations that we will find in
our new GQT densities with covariant derivatives will be
considerably lower than the 2pþ 2 upper bound.
We will say that two GQT densities fRI

ð2m;pÞ;R
II
ð2m;pÞg

are “inequivalent” (as far as SSS solutions are concerned)
whenever the quotient of their respective integrated equa-
tions is not constant, namely,

RI
ð2m;pÞ inequivalent from RII

ð2m;pÞ ⇔
FRI

ð2m;pÞ
ðr; f; f0;…; fð2pþ2ÞÞ

FRII
ð2m;pÞ

ðr; f; f0;…; fð2pþ2ÞÞ ≠ constant: ð58Þ

Otherwise we will call them “equivalent.” Two equiva-
lent densities differ by densities which make no con-
tribution whatsoever to the integrated equation of fðrÞ.
Those densities are “trivial” as far as SSS solutions are
concerned.
In the p ¼ 0 case, it has been argued that (i) there exist

no (nontrivial) GQTs in D ¼ 3 [95]; (ii) there exists a
single inequivalent GQT density at each curvature order m
in D ¼ 4 whose integrated equation is a differential
equation of order 2 [32]; there exists a single inequivalent
quasitopological density at each curvature orderm inD ≥ 5
whose integrated equation is algebraic [31]; there exist
(m − 2) inequivalent GQT densities at each curvature order
in D ≥ 5 whose integrated equation is a differential
equation of order 2 [31,32].

A. Linear spectrum

A remarkable property of all GQTs built from poly-
nomial curvature invariants is that their linear spectrum
on maximally symmetric backgrounds is devoid of ghosts.
In fact, the linearized equations of motion are proportional
to those of Einstein gravity on the same background. In
the case of polynomial GQTs, the second-order nature
of the linearized equations was first verified explicitly
in case-by-case examples—see e.g. [24,25,27,29,96]. It
was subsequently proven that the single-metric-function

condition that defines GQTs also implies the linearization
is second-order in general [30]—cf. page 102 of [97] for the
most up-to-date version of this proof. Here we show that
this result in fact holds for all GQTs, including those that
contain covariant derivatives of the curvature (and hence
have equations of motion of order greater than four).
The idea behind the proof consists in considering a

metric perturbation within the single-function static spheri-
cally symmetric ansatz. Thus, we start by considering the
metric (48) with NðrÞ ¼ 1. For convenience, let us rewrite
this metric as

ds2 ¼ −fðrÞdu2 − 2drduþ r2dΩ2
ðD−2Þ; ð59Þ

where u ¼ tþ r�, and where r� is the tortoise coordinate,
defined by dr� ¼ dr=fðrÞ. One can show that in this
coordinate system the GQT condition (51) is equivalent
to the vanishing of the rr component of the equations of
motion, that is,

Err ¼ 0; ∀ fðrÞ: ð60Þ

We then take fðrÞ to be

fðrÞ ¼ 1þ r2

l2
⋆
þ hðrÞ; hðrÞ ≪ 1; ð61Þ
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corresponding to a maximally symmetric vacuum plus a
small perturbation hab given by

huu ¼ hðrÞ: ð62Þ

Then, the idea is to impose the condition (60) at the level
of the linearized equations by using this perturbation.

We know that, in general, the linearized equations are
given by (13) for certain coefficients αl, βl, and γl. Let
us for instance assume that our theory has sixth-order
equations of motion—so that only the coefficients with
l ≤ 2 are nonzero—and let us set D ¼ 4. We get, after a
direct evaluation of (13) on (62),

Eð1Þ
rr ¼ α1l2

�
−
4h
r4

þ 2h00

r2

�
þ γ1l2

�
−
12h
r4

þ 6h00

r2
−
4hð3Þ

r
− hð4Þ

�

þ α2l4

�
h

�
−
32

r6
þ 56

L2r4

�
þ 32h0

r5
þ
�
−
16

r4
−

28

L2r2

�
h00 þ 16hð3Þ

L2r
þ
�
4

L2
þ 4

r2

�
hð4Þ

�

þ γ2l4

�
h

�
−
80

r6
þ 120

L2r4

�
þ 80h0

r5
þ
�
−
40

r4
−

60

L2r2

�
h00 þ 40hð3Þ

L2r
þ
�
−
20

L2
þ 10

r2

�
hð4Þ

þ
�
−
6

r
−
12r
L2

�
hð5Þ þ

�
−1 −

r2

L2

�
hð6Þ

�
: ð63Þ

Then, the GQT condition (60) implies that this must vanish
for any choice of hðrÞ. Clearly, this only happens if
α1 ¼ α2 ¼ γ1 ¼ γ2 ¼ 0, since all the terms are linearly
independent. The same conclusion follows in general
dimensions and if the theory has higher-order equations
of motion. In the latter case Eq. (63) will include αl and γl
terms with higher l, but these are all linearly independent
because they contain different numbers of derivatives of h
and/or different radial dependence.
In conclusion, (60) implies thevanishingof all theαl and γl

except for α0, corresponding to the coefficient of the
linearized Einstein tensor. Finally, the relation (17) implies
the vanishing of the βl coefficients. Therefore, the linearized
equations must be proportional to the linearized Einstein
tensor.

B. Classification of four-dimensional theories

In this section, we will classify all possible GQT
Lagrangians, based on the number of derivatives of the
metric appearing in the action. In the case of four and six
derivatives, the result is in line with previous considerations
[24,25,29,30]: nothing new beyond those theories con-
structed from the polynomial invariants is found. However,
the cases of eight and ten derivatives reveals new features
not seen before.
Let us briefly summarize the methodology. At a given

derivative order, we construct the most general Lagrangian
density by performing a linear combination of all curvature
invariants that appear at that order:

Lð2mÞ ¼
X
i

cð2m;pÞ
ðiÞ RðiÞ

ð2m;pÞ: ð64Þ

Here, 2m refers to the number of derivatives of the metric

appearing in the term, while the cð2m;pÞ
ðiÞ ’s are constants.

The densities RðiÞ
ð2m;pÞ involve contractions of the Riemann

tensor and its covariant derivatives. In Appendix A we
present a generating set of these invariants for up to eight
derivatives of the metric. The action is then evaluated on a
single-function SSS metric ansatz and we impose Eq. (51),
namely, that the Euler-Lagrange equation for fðrÞ vanishes.
This leads to constraints on the cð2m;pÞ

ðiÞ ’s such that the

resulting theory is of the GQT type.
Let us make a few further comments regarding the

densities involving derivatives of the curvature. In general it
is possible to reduce the number of invariants that make
non-trivial contributions to the equations of motion by
integrating by parts and utilizing the Bianchi identities.
However, we have not pursued this option here. The
reasons are simply because, at high order in derivatives,
there are so many terms that it would be impractical to
do so. Furthermore, as will be obvious below, it is not
necessary to do this to understand the effects of these terms.
Therefore, in constructing our actions at the four-, six-, and
eight-derivative levels, we include all possible terms at a
given order (as listed in the Appendix). On the other hand,
in the case of ten-derivative theories our analysis will not be
exhaustive.

1. Two-derivative actions

For completeness, we include here the two-derivative
sector, which is simply Einstein gravity,

Lð1Þ
ð2;0Þ ¼ R: ð65Þ

The integrated equation for the metric function is given by

F ð1Þ
ð2;0Þ ¼ −2rðf − kÞ: ð66Þ

SERGIO E. AGUILAR-GUTIERREZ et al. PHYS. REV. D 108, 124075 (2023)

124075-10



2. Four-derivative actions

There are no nontrivial four-derivative GQT actions in four dimensions.

3. Six-derivative actions

There is a single nontrivial six-derivative GQT action in four dimensions. The action for this theory may be taken to be
that of Einsteinian cubic gravity [96]

Lð1Þ
ð6;0Þ ¼ þ12Ra

c
b
dRc

e
d
fRe

a
f
b þ Rcd

abR
ef
cdR

ab
ef − 12RabcdRacRbd þ 8Rb

aRc
bR

a
c; ð67Þ

whose integrated equation for the metric function fðrÞ reads [98,99]

F ð1Þ
ð6;0Þ ¼ −

4

r2

�
rff00ðrf0 þ 2ðk − fÞÞ − f0

3
ðr2f02 þ 3rkf0 þ 6fðk − fÞÞ

�
: ð68Þ

4. Eight-derivative actions

There are five nontrivial eight-derivative GQTG actions in four dimensions. The first of these possibilities may be taken
to be that given by the standard polynomial invariants—see e.g. [16]. However, the additional four theories require terms
involving covariant derivatives of the Riemann tensor. Of these, a single combination can be formed such that the integrated
equations are second order, while the remaining three involve higher derivatives of the metric function. As examples of
actions that give rise to each of the new sets of GQTGs, the following choices may be made:

Lð1Þ
ð8;0Þ ¼ þRpqrsRp

t
r
uRt

v
q
wRuvsw −

13

5
RpqrsRpq

tuRr
v
t
wRsvuw −

1

8
RpqrsRpq

tuRtu
vwRrsvw þ 1

5
RRpqrsRq

t
s
uRtpur; ð69Þ

Lð2Þ
ð8;2Þ ¼ þRpqrsRt

p
u
r
;vRtqus;v − Rpq;rRst

p
uRstqr;u þ 2RpqrsRp

tuvRqtru;sv þ RpqRrs;tRrtsp;q

− 2Rpq;rRp
s;tRqsrt þ Rpq;rsRt

p
u
rRtqus − RpqRrs

;pRrs;q −
1

2
R;pRqr;sRpqrs

þ RpqRrs
;q
tRprst −

1

2
□RpqRrst

pRrstq; ð70Þ

Lð3Þ
ð8;4Þ ¼ þ21Rpq;rstRprqs;t − 12□Rpq

□Rpq − 12RpqRrsRpq;rs þ 153RpqRrs;tRrtsp;q þ 6R;pq
□Rpq

þ 33

4
Rpqrs;tuRpqrs;tu þ 6R;pqRrst

qRrstp −
21

2
□RpqRrst

pRrstq þ 36Rpq;rsRt
p
u
rRtqus

þ 183RpqrsRp
tuvRqtru;sv − 51RpqRrs

;pRrs;q −
177

2
R;pRqr;sRpqrs − 81Rpq;rRp

s;tRqrst

− 93Rpq;rRp
s;tRqsrt − 60Rpq;rRst

p
uRstqr;u þ 33RpqrsRtuv

p;qRtuvr;s

− 27RpqrsRtuv
p;rRtuvq;s − 63RpqrsRt

p
u
r
;vRtqus;v; ð71Þ

Lð4Þ
ð8;4Þ ¼ þ52RpqRrs;tRrtsp;q þ 8Rpq;rstRprqs;t − 4□Rpq□Rpq − 20Rpq;rRp

s;tRqsrt

− 24Rpq;rRst
p
uRstqr;u − 4Rpq;rRs

p
tuRsqtr;u þ 12RpqrsRtuv

p;qRtuvr;s

− 10RpqrsRtuv
p;rRtuvq;s − 20RpqrsRt

p
u
r
;vRtqus;v þ 2R;pq

□Rpq þ 3Rpqrs;tuRpqrs;tu

þ 72RpqrsRp
tuvRqtru;sv − 8RpqRrs

;pRrs;q − 22R;pRqr;sRpqrs − 36Rpq;rRp
s;tRqrst; ð72Þ

Lð5Þ
ð8;4Þ ¼ þ1178RpqRrs;tRrtsp;q þ 171Rpq;rstRprqs;t − 95□Rpq

□Rpq − 76RpqRrsRpq;rs

− 646Rpq;rRp
s;tRqsrt − 475Rpq;rRst

p
uRstqr;u þ 228Rpq;rRs

p
tuRsqtr;u

þ 266RpqrsRtuv
p;qRtuvr;s − 209RpqrsRtuv

p;rRtuvq;s − 494RpqrsRt
p
u
r
;vRtqus;v

þ 95

2
R;pq

□Rpq þ
133

2
Rpqrs;tuRpqrs;tu þ 38R;pqRrst

qRrstp þ 228Rpq;rsRt
p
u
rRtqus

þ 1520RpqrsRp
tuvRqtru;sv − 342RpqRrs

;pRrs;q − 646R;pRqr;sRpqrs − 646Rpq;rRp
s;tRqrst: ð73Þ
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The integrated equations for each of these densities read,
respectively,

F ð1Þ
ð8;0Þ ¼ −

12f0

5r3

�
rff00

2
ðrf0 þ 2ðk− fÞÞ

−
f0

3

�
3r2f02

8
þ rf0

2
ðfþ 2kÞ þ 3fðk− fÞ

��
; ð74Þ

F ð2Þ
ð8;2Þ ¼ −

4f2

r5
α2; ð75Þ

F ð3Þ
ð8;4Þ ¼ þ 3f2

2r5
ð5α2 − 2rαα0 þ r2α02Þ; ð76Þ

F ð4Þ
ð8;4Þ ¼ −

2f2

r5
αð4α − α00r2Þ; ð77Þ

F ð5Þ
ð8;4Þ ¼ þ 19f2

4r5
ð4ðα − α0rÞβ þ α00r2ðαþ βÞÞ: ð78Þ

where we defined the functions4

αðrÞ≡ 2ðk − fðrÞÞ þ r2f00ðrÞ;
βðrÞ≡ 2ðk − fðrÞÞ þ 2rf0ðrÞ − r2f00ðrÞ: ð79Þ

From the densities involving covariant derivatives,
while the first three exclusively depend on αðrÞ and its
derivatives, the fourth one also includes a dependence on
βðrÞ—which cannot be expressed in terms of αðrÞ and its
derivatives.
Observe that αðrÞ and βðrÞ identically vanish when

evaluated for a maximally symmetric background. Namely,
if we set

fðrÞjðAÞdS≡ r2

L2
⋆
þk ⇒ αðrÞjðAÞdS¼βðrÞjðAÞdS¼0; ð80Þ

and therefore

F ð2Þ
ð8;2ÞjðAÞdS ¼ F ð3;4;5Þ

ð8;4Þ jðAÞdS ¼ 0; ð81Þ

or, in other words, the equations of motion of the new
GQTs identically vanish for maximally symmetric back-
grounds. Furthermore, it is easy to see that the usual
Schwarzschild-(A)dS solution satisfies the equations of
the new densities. This follows from the fact that

αðrÞjSch-ðAÞdS ¼ 0; βðrÞjSch-ðAÞdS ¼
12M
r

; ð82Þ

where

fðrÞjSch-ðAÞdS ≡ r2

L2
⋆
þ k −

2M
r

: ð83Þ

Since all terms appearing in F ði¼2;3;4;5Þ
8 are proportional to

αðrÞ or its derivatives, it follows that

F ð2Þ
ð8;2ÞjSch-ðAÞdS ¼ F ð3;4;5Þ

ð8;4Þ jSch-ðAÞdS ¼ 0: ð84Þ

This implies that if we couple the new densities to Einstein
gravity, the Schwarzschild solution will not receive correc-
tions from such terms. As we explore in Appendix B, new
solutions do exist when the new densities are considered as
full theories by themselves, but these are less interesting. In
order to obtain GQTs which give rise to continuous mod-
ifications of the Einstein gravity Schwarzschild solution we
need to move up yet another curvature order.

5. Ten-derivative actions

To the best of our knowledge, a full classification of
curvature invariants at ten-derivative order has not been
undertaken. Therefore, our analysis in this section is
necessarily incomplete but, as we shall see, interesting.
To study ten-derivative actions we do the following. We

construct all possible combinations of ten-derivative
actions built from lower-order densities—for example,
by multiplying all six-derivative densities by the four-
derivative ones, and so on. In addition to this, we include 20
additional terms that are explicitly order ten in derivatives.
We list the ones used for this purpose in Appendix A.
However, particularly relevant is the following density:

CabcdCabcdCefrs;uCefrs;u: ð85Þ
As discussed in [51,52], in four space-time dimensions
there are four nontrivial parity-preserving contributions to
the effective field theory of gravity at the ten-derivative
level. Two of them involve the square of a dual Riemann
tensor and hence they vanish identically on spherically
symmetric spacetimes. We thus are left with two contri-
butions that modify spherically symmetric solutions. The
first contribution can be taken, as usual, to be a contraction
of five Weyl tensors. The density appearing above is a
particular choice for the second nontrivial contribution.
The ten-derivative action is the first instance where more

than one nontrivial contribution to the EFT appears.
Moreover, it is the first instance where terms involving
covariant derivatives of themetric play an essential role—i.e.
cannot be removed by field redefinitions. For these reasons,
we expected to find novel GQT theories at this order that
explicitly modify the solutions to vacuum Einstein gravity,
corresponding to the two possible nontrivial effective field
theory contributions. This expectation will be borne out.

4The functions αðrÞ and βðrÞ are directly proportional to the
nontrivial components of the traceless Ricci tensor and Weyl
tensor for the single-function static, spherically symmetric back-
ground, respectively.
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From the entire set of ten-derivative invariants that
we construct, there turn out to be 21 independent con-
tributions. This represents notable growth compared to the
eight-derivative case where there were five independent
contributions. Of the 21 independent ten-derivative GQT
theories, only two of these are nontrivial when evaluated on

the Schwarzschild solution—corresponding to F ð1Þ
ð10;0Þ and

F ð9Þ
ð10;4Þ below. Of the 21 theories, 5 have second-order

integrated equations, 7 have third-order, 6 have forth-order,
2 have fifth-order, and 1 has sixth-order. As we have not
included all possible ten-derivative densities in our starting
action, these numbers are likely to be incomplete. However,
we expect that any additional GQTs, should they exist,
will not correct the solutions of vacuum general relativity.
The list of 21 inequivalent integrated equations reads

F ð1Þ
ð10;0Þ ¼ þ f02

r2

�
f03

5
þ 2ðf þ kÞf02

4r
−
2fðf − kÞf0

r2

−
ff00

r
ðrf0 þ 2ðk − fÞÞ

�
; ð86Þ

F ð2Þ
ð10;4Þ ¼ þ f2α2ðf − kÞ

r7
; ð87Þ

F ð3Þ
ð10;4Þ ¼ þ f2αðαþ βÞ2

r7
; ð88Þ

F ð4Þ
ð10;4Þ ¼ þ f2αð8αðf − kÞ þ α2 − β2Þ

r7
; ð89Þ

F ð5Þ
ð10;4Þ ¼ þ f2α2ð6ðk − fÞ − αÞ

r7
; ð90Þ

F ð6Þ
ð10;4Þ ¼ þ f2ðαþ βÞ2ðrα0 − 2αÞ

r7
ð91Þ

F ð7Þ
ð10;4Þ ¼ þ f2αðαþ βÞðrα0 − αþ βÞ

r7
; ð92Þ

F ð8Þ
ð10;4Þ ¼ −

f2αβðrα0 − αþ βÞ
r7

; ð93Þ

F ð9Þ
ð10;4Þ ¼ þ 1

r7

�
48f2r3ð−r2f00 þ 2rf0 þ 2ðk − fÞÞðk − fÞf000

þ fð2ð65f þ 16kÞrf0 þ 4ð2k − 65fÞðk − fÞÞ
�
rf0

2
þ k − f

�
r2f00 − 4kr4f04

− 3ð3k2 þ 4kf þ 121f2Þr3f03 − 2ð2k2 þ 38kf þ 1271f2Þðk − fÞr2f02

− 40rfðkþ 122fÞðk − fÞ2f0 − 3448f2ðk − fÞ3
�
; ð94Þ

F ð10Þ
ð10;4Þ ¼ þ f2

r7

h
4r2ðk − fÞα02 − 2rð4ðk − fÞ þ αþ βÞαα0 − αðαþ βÞðβ − 3αÞ

i
; ð95Þ

F ð11Þ
ð10;4Þ ¼ þ f2

r7

h
r2ð4ðk − fÞ − α − βÞα02 − 2rðð4ðk − fÞ þ βÞαþ β2Þα0 þ 3αðαþ βÞ2

i
; ð96Þ

F ð12Þ
ð10;4Þ ¼ þ f2

r7

h
2r2ð2ðk − fÞ − αÞα02 − 2rð4ðk − fÞ þ 3β − αÞαα0 þ αðα2 þ 6αβ − 3β2Þ

i
; ð97Þ

F ð13Þ
ð10;4Þ ¼ þ f2

r7

h
r2ðk − fÞðαþ βÞα00 − rðα2 þ αβ þ 4βðk − fÞÞα0 þ ð2α2 − αð4ðk − fÞ − 2βÞ þ 4βðk − fÞÞα

i
; ð98Þ

F ð14Þ
ð10;4Þ ¼ þ f2

r7

h
r2ðαþ βÞð8ðk − fÞ − α − βÞα00 − 4rðα2 þ βð8ðk − fÞ − βÞÞα0 þ 8ðβ − αÞð4ðk − fÞ − α − βÞα

i
ð99Þ

F ð15Þ
ð10;4Þ ¼ þ f2α

r7

h
r2ðk − fÞα00 − ðαþ βÞðrα0 − αþ βÞ

i
; ð100Þ

F ð16Þ
ð10;4Þ ¼ þ f2

r7

h
r2ð−α2 þ ð6ðk − fÞ − βÞαþ 2βðk − fÞÞα00 − 2rðα2 þ αβ þ βðk − fÞÞα0

þ 4ðα2 − ð2ðk − fÞ − βÞαþ 2βðk − fÞÞα
i
; ð101Þ

F ð17Þ
ð10;4Þ ¼ þ f2α

r7

h
r2ð4ðk − fÞ − αÞα00 − 4ðrα0 − αþ βÞβ

i
; ð102Þ
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F ð18Þ
ð10;4Þ ¼ þ f2

r7

h
r2ð−4rð3αþ 3β þ 4f − 12kÞα0 þ 4ð3α2 þ 4fα − 12kα − 3β2 − 4fβ þ 4kβÞÞα00

þ 16r2ð3αþ 3αþ 4f − 9kÞα02 − 2rð47α2 − αβ þ 92fα − 28kα − 48β2 − 32fβ þ 32kβÞα0

þ ð5α2 − 178αβ þ 176fαþ 464kα − 183β2 − 64fβ þ 64kβÞα
i
; ð103Þ

F ð19Þ
ð10;4Þ ¼ þ f2

r7

h
96fr3αα000 − 32r2ð−rfα0 þ ð19f − 9kÞαþ βðk − fÞÞα00 þ 64r2ð3k − 2fÞα02

þ 4rð−163α2 þ ð−148k − 76f − 163βÞαþ 32βðk − fÞÞα0

− 2ð−722α2 − 2ð35β þ 248f þ 392kÞαþ βð64ðk − fÞ þ 291βÞÞα
i
; ð104Þ

F ð20Þ
ð10;4Þ ¼ þ f2

r7

�
6r3fðrα0 − 2αÞα000 þ 6fr4α002 − 4ð4rfα0 þ ð18k − 13fÞαþ 5βðk − fÞÞr2α00

− 4ð3kþ 14fÞr2α02 þ 80

�
α2

16
þ
�
23k
20

þ 41f
20

þ β

16

�
αþ βðk − fÞ

�
rα0

− 80

�
7α2

32
þ
�
−
13k
10

þ 23f
10

þ 5β

16

�
αþ β

�
k − f þ 3β

32

��
α

�
; ð105Þ

F ð21Þ
ð10;4Þ ¼ −

3f2

r7

�
−
1

3

�
−α0fr −

9α2

2
þ
�
4kþ 2f −

9β

2

�
αþ βðk − fÞ

�
r2α00 ð106Þ

−
r4fαα0000

6
þ r3

�
−
β

4
þ kþ f

3
−
α

4

�
αα000 þ 2

�
k −

2f
3

�
r2α002 ð107Þ

þ 4

3

�
−
163α2

32
−
�
77k
8

þ 21f
8

þ 163β

32

�
αþ βðk − fÞ

�
rα0 ð108Þ

−
4α

3

�
β0fr
4

−
361α2

64
−
�
69k
4

þ 8f þ 35β

32

�
αþ β

�
k −

3f
4
þ 291β

64

���
: ð109Þ

As we can see, all densities but F ð1Þ
ð10;0Þ and F

ð9Þ
ð10;4Þ involve linear combinations of terms proportional to either αðrÞ, or βðrÞ,

or their derivatives. Hence, for all those the Schwarzschild metric solves the corresponding equations of motion. The
explicit form of the covariant densities is rather complicated in general, so we have preferred not to include the full list here.

The corresponding expressions for F ð1Þ
ð10;0Þ and F ð9Þ

ð10;4Þ read, respectively,

Lð1Þ
10;0 ¼ þ 1

2160

h
5R5 þ 132R



RabRab

�
2 þ 18R



RabcdRabcd

�
2
− 272R2Ra

b
c
dRb

e
d
fRe

a
f
c

þ 10R2Rab
cdRcd

efRef
ab − 30R3RabRab − 102RRabRabRcdefRcdef

þ 552RijRijRa
b
c
dRb

e
d
fRe

a
f
c − 156RijklRijklRa

b
c
dRb

e
d
fRe

a
f
c
i
; ð110Þ

Lð9Þ
10;4 ¼ −

1113943

20864
CabcdCabcdCefgh;iCefgh;i þ

19309071

39446
Ra
bR

b
cRae

cdRgh
efRdf

gh

þ 2168502179

4733520
Ra
cRb

dRef
cdRgh

efRab
gh −

23092199

10758
Ra
bRad

bcRfh
deRci

fgReg
hi

þ 7605694303

4733520
Ra
bRde

bcRcf
deRhi

fgRag
hi þ 2051116779

788920
Rcd

abReg
cdRai

efRfj
ghRbh

ij

−
6886022969

2366760
Rce

abRaf
cdRgi

efRbj
ghRdh

ij þ 176696887

215160
Rce

abRfg
cdRhi

efRaj
ghRbd

ij
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þ 237411

7172
RabRabRpqrs;tRpqrs;t −

388530029

11360448
RabcdRabcdR;pR;p þ

649013

7824
RabcdRabcdRpq;rRpq;r

þ 472435

43032
RabcdRabcdRpq;rRpr;q −

1802455

57376
RabcdRabcdRpq;rsRprqs

−
1065937721

2840112
RpqrsRpqrsRa

c
b
dRc

e
d
fRe

a
f
b þ

�
1535482063

22720896
R;aR;a −

34589843

631136
Rpq;rRpq;r

−
90238183

946704
Rpq;rRpr;q þ

21168615

2524544
Rpqrs;tRpqrs;t þ

315857975

1893408
R;pqRpq −

6185788187

17040672
Rb
aRc

bR
a
c

−
939340

177507
Ra

c
b
dRc

e
d
fRe

a
f
b −

26416471

516384
Rab

cdRcd
efRef

ab

�
□R

þ
�
1612029697

1893408
RpqRr

p□Rqr þ
74535679

118338
RpqRrsRpq;rs þ

48934355

236676
Rpq;rsRt

p
u
rRtqus

þ 23734313

59169
RpqRrs;qtRprst þ

35456237

946704
RpqRrstuRrstu;pq −

44597992

59169
RpqRrsRpr;qs

−
619200179

1420056
R;pqRrsRprqs −

315857975

1893408
Rpq∇q∇p□Rþ 90238183

473352
Rpq;r∇q□Rpr

−
21168615

315568
Rpq;rstRprqs;t þ

293954069

2840112
R;pq□Rpq þ

1588811801

5680224
RRpq;rsRprqs

þ 15025369

19723
Rpq

□RrsRprqs þ
1535482063

11360448
R;pqR;pq þ

90238183

473352
Rpq;rsRpr;qs

þ 26525693

258192
R;pqRr

pRqr þ
34589843

315568
Rpq;rsRpq;rs −

681365365

946704
RRpq

□Rpq

þ 34589843

315568
Rpq;r∇r□Rpq þ

293954069

1420056
R;pqrRpq;r þ

98790361

473352
Rpq;rRp

s;tRqrst

−
333105233

315568
Rpq;rRp

s;tRqsrt þ
17765777

86064
Rpq;rRst

p
uRstqr;u −

425439281

946704
Rpq;rRs

p
tuRsqtr;u

þ 16960493

187776
R2□Rþ 421946281

315568
RpqrsRtuv

p;qRtuvr;s −
21168615

1262272
Rpqrs;tuRpqrs;tu

þ 238362363

631136
RpqrsRtuv

p;rRtuvq;s −
9210385

315568
RpqrsRt

p
u
r
;vRtqus;v

þ 298907053

1893408
RmnrsRm

d
r
gRd

c
g
iRncsi −

298907053

7573632
RmnrsRmn

dgRdg
ciRrsci

�
R: ð111Þ

C. Black hole solutions

In this section we present the first examples of black hole
solutions to GQT theories with covariant derivatives. These
are continuous deformations of the Schwarzschild metric
and solve the equations of motion of Einstein gravity
coupled to the two nontrivial ten-derivative GQT densities
presented above. Note that in Appendix B we construct
additional (analytic) examples of non-Schwarzschild sol-
utions in the case of eight-derivative GQT densities.
However, those correspond to the less interesting case in
which we consider a linear combination of GQT densities
but no Einstein gravity term.
Let us then consider the gravitational Lagrangian

given by

L ¼ 1

16πG

�
Rþ 5μ

4
Lð1Þ
ð10;0Þ þ

λ

8
Lð9Þ
ð10;4Þ

�
; ð112Þ

where the explicit form of the ten-derivative densities
can be found in Sec. III B and for convenience we redefined
the gravitational couplings in terms of two new para-
meters, cð1Þ ≡ 5μ=4 and cð9Þ ≡ λ=8. For this theory, the
field equations for the SSS ansatz reduce to5

F ð1Þ
ð2;0Þ þ

5μ

4
F ð9Þ

ð10;0Þ þ
λ

8
F ð9Þ

ð10;4Þ ¼ 4GM; ð113Þ

5Henceforth we set G ¼ 1 in this section.
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where again the individual contributions can be found in
Sec. III B.
We present a relatively brief analysis of the solution.

Working perturbatively at large r and to linear order in
the coupling constants, we find the correction to the
Schwarzschild solution to be

fðrÞ ¼ 1 −
2M
r

−
4752λM3

r11
þ 90ðμþ 208λÞM4

r12

−
2ð83μþ 9236λÞM5

r13
þ � � � : ð114Þ

This makes clear already that the two densities correct the
solution in inequivalent ways. On the other hand, since
we are interested in black hole solutions, we consider a
near-horizon solution of the field equations. In this regime,
we write an expansion for the metric function

fðrÞ ¼ 4πTðr − rhÞ þ
X∞
i¼2

aiðr − rhÞi; ð115Þ

and expand the field equations as r → rh. Remarkably, the
usual characteristic property of GQT theories continues to
hold. The first two terms in the near horizon expansion of
the field equations suffice to fully determine the black hole
thermodynamics analytically. These equations read,

M ¼ rh
2
þ 8π4T4μð5þ 8πrhTÞ

r3h

−
2π2T2λ½1þ 12πrhT þ 16π2r2hT

2�
r5h

; ð116Þ

0 ¼ 1 − 4πrhT þ 16π4T4μð5þ 4πrhTÞ
r4h

þ 4π2T2λð1þ 4πrhTÞð5þ 4πrhTÞ
r6h

: ð117Þ

The first equation above expresses the massM as a function
of the temperature T and the horizon radius rh, while the
second determines the temperature as a function of the
horizon radius. At the next order in the near horizon
expansion, the parameters a2 and a3 appear, the latter
linearly. The higher-order terms in the expansion can be
solved for an (n ≥ 3) in terms of a single free parameter a2.
This is exactly the same behavior typically seen for GQT
theories with second-order integrated equations [16,29,99].
Here, one of the theories has second-order integrated
equations, while the other has third order. Nonetheless,
we find that this does not change the usual picture for the
near-horizon solution.
We wish to understand the effects of the corrections to

the thermodynamics of the Schwarzschild black hole. The
near-horizon equations give us the mass and temperature,

and so only the entropy remains. Computing the Wald
entropy [78,100] for this theory is rather involved, so we
instead use the first law itself to determine the entropy.
Regarding the temperature as a function of horizon radius
T ¼ TðrhÞ, we can obtain an expression for dM in terms of
the temperature, its first derivative, and rh. The first law
tells us that dM=T must be an exact differential. By adding
−1=ð2TÞ times the constraint (117) to the expression for
dM=T we can confirm that it is exact, and therefore can be
directly integrated. This gives for the entropy

S ¼ πr2h

�
1þ 80π3T3μð2þ 3πrhTÞ

3r5h

−
4πTλð3þ 27πrhT þ 32π2r2hT

2Þ
r7h

�
: ð118Þ

By construction, the thermodynamic quantities satisfy the
first law dM ¼ TdS. It should be possible to verify this
relation by a direct computation of the Wald entropy,
although this would be rather challenging computationally.
It is interesting to compare the effects of the μ-controlled

corrections (which correspond to the previously known
family of GQT theories first studied in [16]) with the new
λ-controlled higher-derivative corrections. For λ > 0 we
plot the relationship between temperature and mass for
these black holes in Fig. 1. The plot compares the cases
with ðμ; λÞ∈ fð−1; 1Þ; ð0; 1Þ; ð−1; 0Þg.6 In all cases there is
a maximum value of the temperature of the corrected black
holes. Below this temperature the specific heat becomes
positive.
Let us explore the features of the small black holes,

keeping in mind that for sufficiently small black holes
additional corrections would be expected to become
important.7 Generically the λ-controlled theory dominates
in the small black hole regime. The two theories give rise to
different scaling behavior for the temperature of small
black holes. The μ-controlled theory has T ∼M1=3 as
rh → 0, while the λ-controlled theory has T ∼M3.
Interestingly, the infinite class of GQT theories based on
polynomial curvature invariants as studied in [16,60]
uniformly display a temperature scaling of T ∼M1=3 for
small black holes. Similarly, in the case of exclusively
polynomial invariants, the modified Smarr relation M ¼
2
3
TS universally holds for small black holes for general

GQT theories [16]. When only λ is active, we find yet
another version of the Smarr relation in this regime,
namely,M ¼ TS. Hence, the λ-controlled theory, deviating
from these patterns, is a unique and noteworthy instance.

6In this case, that μ < 0 follows from the general
analysis of [16].

7For sufficiently small horizon radius, the entropy becomes
negative. However, the entropy can be shifted by an arbitrary
constant by adding a topological Gauss-Bonnet term to the
action. So the region of negative entropy is not worrisome.
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It is tempting to speculate with the possibility that the
universal patterns identified in the case of polynomial
theories may have universal counterparts for theories
involving covariant derivatives. Additionally, these devia-
tions from the purely polynomial case suggest that terms
with covariant derivatives might play a pivotal role in
understanding characteristics of small black holes, such as
their evaporation.
We consider next the situation with λ < 0, which dis-

plays some significant differences relative to what we have

just seen. In the previous case, the qualitative behavior of
the two theories was similar, here they are different—see
Fig. 2. The λ-controlled theory, for negative coupling λ, has
a minimum black hole size and mass when μ is strictly zero.
However, for any finite value of μ the situation is com-
pletely different and qualitatively similar to the black curve
shown in the figure. First, let us note that when both λ and μ
and are negative we have

T ¼ xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ 1Þp
2π

1

rh
þ � � � with x≡ λ

μ
as rh → 0:

ð119Þ
So small black holes have large temperature (for x ¼ 1=8
the relationship is the same as in Einstein gravity).
However, for sufficiently small rh the black hole mass
ultimately becomes negative and approaches M → −∞ as
rh → 0. As such, this branch of solutions exhibits rather
pathological behavior, as the small black holes exhibit large
negative masses. This results in an order of limits issue, and
flat space is not recovered as rh → 0.
We postpone a more detailed and systematic study of the

thermodynamic properties of the black holes of GQTs
involving covariant derivatives for future work.

IV. BRANE-WORLD GRAVITIES

In this sectionwe consider a different class of gravitational
theories constructed from contractions of the Riemann
tensor and its covariant derivatives, namely, brane-world
gravities [54]. We find a closed expression for the quadratic-
order action, which involves a combination of inverse
polynomials and Bessel functions of the Laplace operator.
Using this, we analyze the linearized spectrum of brane-
world gravities. We generically find infinite towers of
massive ghostlike gravitons. In five dimensions we find an
additional tachyonic mode, whereas in seven dimensions we
find two extra modes with complex squared masses which
are conjugate of each other. On the other hand, both in four
and six dimensions, we find infinite towers of pairs of modes
with conjugate complex squared masses.
In the context of (Dþ 1)-dimensional Einstein-AdS

gravity, the insertion of a codimension one brane near
the AdS boundary gives rise to an effective theory for the
brane induced metric coupled to a cutoff CFT. The
gravitational theory involves an infinite series of higher-
derivative terms built from the Riemann tensor and its
covariant derivatives. Let us quickly review how this comes
along. Consider the action of Einstein gravity coupled to a
cosmological constant in general dimensions

I ¼ 1

16πG

�Z
M

dDþ1X
ffiffiffiffiffiffiffi
−G

p �
R½G� þDðD − 1Þ

l2

�

þ 2

Z
∂M

dDx
ffiffiffiffiffiffi
−g

p
K

�
: ð120Þ

FIG. 2. We show the effect of the higher derivative corrections
on the temperature versus mass relation, relative to the Einstein
gravity case (red curve). The colored curves show the temperature
versus mass for λ ¼ −2 and μ ¼ −1 (black curve), λ ¼ −2 and
μ ¼ 0 (green curve), and λ ¼ 0 and μ ¼ −1 (blue curve). When
both higher-derivative couplings are active, the mass is un-
bounded from below with M → −∞ as rh → 0. Dimensionful
parameters are measured in units of the coupling constants.

FIG. 1. We show the effect of the higher derivative corrections
on the temperature versus mass relation, relative to the Einstein
gravity case (red curve). The colored curves show the temperature
versus mass for λ ¼ 1 and μ ¼ −1 (black curve), λ ¼ 1 and μ ¼ 0
(green curve), and λ ¼ 0 and μ ¼ −1 (blue curve). The correc-
tions controlled by λ generically dominate in the small black hole
regime. Dimensionful parameters are measured in units of the
coupling constants.
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Inserting a brane near the AdSðDþ1Þ boundary amounts to
introducing an additional term of the form

Ib ¼ −T
Z
ρ¼ε

dDx
ffiffiffiffiffiffi
−g

p
; ð121Þ

where ε ≪ l, T is the brane tension and ρ is the holo-
graphic coordinate which we can use to write the bulk
metric in a Fefferman-Graham expansion [101]

Gμνdxμdxν ¼
l2

4ρ2
dρ2 þ l2

ρ
ĝijðρ; xÞdxidxj: ð122Þ

The total action, I þ Ib, can be alternatively written as a
sum of a gravitational action for the brane induced metric
and a quantum effective action of a CFT living on the
brane, namely,

I þ Ib ¼ Ibgrav þ ICFT: ð123Þ

The defining property of the induced theory of gravity on
the brane Ibgrav—which follows from the Israel junction
conditions in the AdS bulk [102]—is that its equations of
motion,

Πab ≡ 2ffiffiffiffiffiffi−gp δ

δgab

Z
dDx

ffiffiffiffiffiffi
−g

p
L; ð124Þ

satisfy the identity [61]

1

D − 1
Π2 − ΠabΠab ¼ DðD − 1Þ

l2
þ R ð125Þ

in the case of a tensionless brane. The claim is that there
exists a unique theory with this property. This can be
reformulated as the fact that there is a unique conserved
tensor (i.e., satisfying the identity ∇aΠab ¼ 0) built out of
the intrinsic metric gab that satisfies this relation. Both
facts, the existence and uniqueness of this theory, are
remarkable.
This theory has a definite value of the cosmological

constant, but it is possible to shift this value by adding a
tension to the brane. Introducing a nonvanishing tension
amounts to performing

Πab → Πab þ Tgab ð126Þ

in (125). We fix the brane tension so that the theory has
a vanishing cosmological constant, as we will be interested
in asymptotically flat solutions. This is achieved for
T ¼ ðD − 1Þ=l, so that the equation satisfied by the new
Πab reads

Π ¼ l
2

�
Rþ ΠabΠab −

1

D − 1
Π2

�
: ð127Þ

In order to solve this equation, we assume that the
Lagrangian allows for a derivative expansion of the form

L ¼
X∞
n¼1

l2n−1LðnÞ; ð128Þ

and similarly

Πab ¼
X∞
n¼1

l2n−1Πab
ðnÞ: ð129Þ

Then, we get [67]

Πð1Þ ¼
R
2
; ð130Þ

ΠðnÞ ¼
1

2

Xn−1
i¼1

�
ΠðiÞabΠab

ðn−iÞ −
1

D − 1
ΠðiÞΠðn−iÞ

�
; n ≥ 2:

ð131Þ

The other ingredient we need to solve this recursive relation
is [61]

ΠðnÞ ¼ ðD − 2nÞLðnÞ þ total derivative: ð132Þ
Since the total derivatives are irrelevant for the Lagrangian,
this allows us to get LðnÞ from the trace of the equation of
motion ΠðnÞ. Thus, we get

Lð1Þ ¼
R

2ðD − 2Þ ; Πð1Þab ¼ −
1

D − 2
Gab: ð133Þ

In a similar fashion, this process allows us to generate all
the Lagrangian densities LðnÞ. Observe that all of these
Lagrangians will be of the form

L ¼ LðRab;∇cRab;∇c∇dRab;…Þ; ð134Þ

since Riemann curvature appears nowhere in the pro-
cess. The quadratic and cubic densities read, respectively,
[61–68]

Lð2Þ ¼ þ 1

2ðD − 2Þ2ðD − 4Þ
�
RabRab −

D
4ðD − 1ÞR

2

�
;

ð135Þ

Lð3Þ ¼ −
1

ðD− 2Þ3ðD− 4ÞðD− 6Þ
�
3Dþ 2

4ðD− 1ÞRRabRab

−
DðDþ 2Þ
16ðd− 1Þ2R

3 − 2Ra
bR

b
cRc

a þ
D

2ðD− 1ÞR
ab∇a∇bR

þ 2Rab∇c∇bRac −Rab
□Rab þ

1

2ðD− 1ÞR□R

�
;

ð136Þ
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where already at cubic order we start seeing the appearance
of covariant derivatives of the Ricci tensor. Explicit for-
mulas for the quartic and quintic terms appear in [67].

A. Quadratic action

We are interested in studying the linearized equations of
these theories around the Minkowski vacuum. As we have
seen, the only higher-derivative terms that contribute to the
linearized equations are those quadratic in the curvature
(but with an arbitrary number of covariant derivatives) and,
therefore, the only possible quadratic Lagrangians are
R□nR and Rab

□
nRab. Thus, at order 2n in derivatives,

we will necessarily have

LðnÞ ¼ αnR□n−2Rþ βnRab□n−2Rab þOðR3Þ: ð137Þ

Our goal is to determine the coefficients αn and βn, for
which wewill use Eq. (131). First of all, in order to evaluate
the left-hand side of Eq. (131), we use Eq. (132), so that
we get

ΠðnÞ ¼ ðD − 2nÞðαnR□n−2Rþ βnRab
□

n−2RabÞ þ…:

ð138Þ

Now we must evaluate the right-hand side. The case n ¼ 2
must be considered independently, and it yields

Πð2Þ ¼
1

2

�
Πð1ÞabΠab

ð1Þ −
1

D− 1
Π2

ð1Þ

�

¼ −
D

8ðD− 1ÞðD− 2Þ2R
2 þ 1

2ðD− 2Þ2R
abRab; ð139Þ

so that we identify

α2 ¼ −
D

8ðD − 1ÞðD − 2Þ2ðD − 4Þ ;

β2 ¼
1

2ðD − 2Þ2ðD − 4Þ : ð140Þ

Now, for n ≥ 3 we have

ΠðnÞ ¼ Πð1ÞabΠab
ðn−1Þ −

1

D − 1
Πð1ÞΠðn−1Þ þ

1

2

Xn−2
i¼2

�
ΠðiÞabΠab

ðn−iÞ −
1

D − 1
ΠðiÞΠðn−iÞ

�

¼ −
RabΠab

ðn−1Þ
D − 2

þ RΠðn−1Þ
2ðD − 1ÞðD − 2Þ þ

1

2

Xn−2
i¼2

�
ΠðiÞabΠab

ðn−iÞ −
1

D − 1
ΠðiÞΠðn−iÞ

�
: ð141Þ

In order to evaluate this expression we need the equations
of motion ΠðnÞ;ab. Notice that we will compare the resulting
expression with Eq. (138), which is quadratic in the curva-
ture. Now, Eq. (141) is already quadratic in the equations
of motion, and this means that, in order to obtain the terms
that are quadratic in the curvature we only need to obtain
the terms in the equations of motion that are linear in the
curvature. Fortunately, all of these come from the term

−4∇c∇ePacbe ⊂ ΠðnÞ;ab; where Pacbe ¼
δL

δRabcd : ð142Þ

For a theory that only depends onRicci curvatures this can be
expressed as

ΠðnÞ;ab ¼ −2gab∇c∇ePce − 2□Pab þ 4∇c∇ðaPbÞc

þ…; where Pab ¼
δL
δRab : ð143Þ

Thus, for the Lagrangians (137) we get

ΠðnÞ;ab ¼ −ð4αn þ βnÞgab□n−1R

þ 2ð2αn þ βnÞ∇a∇b□
n−2R − 2βn□

n−1Rab þ…;

ð144Þ

ΠðnÞ ¼ −ð4ðD − 1Þαn þDβnÞ□n−1Rþ…: ð145Þ

Then,we can use these expressions to evaluate Eq. (141), and
after some simplifications we find

ΠðnÞ ¼ 2

�
−

D
4ðD − 1ÞR□

n−2Rþ Rab
□

n−2Rab

��
βn−1

ðD − 2Þ

þ
Xn−2
i¼2

βiβn−i

�
þ…; ð146Þ

where the ellipsis also contain total derivatives that arise
when rearranging the derivatives. Therefore, comparingwith
Eq. (138), we conclude that

αn ¼ −
D

4ðD − 1Þ βn; ð147Þ

while βn satisfies the recursive relation

βn ¼
2

ðD − 2nÞ
�

βn−1
ðD − 2Þ þ

Xn−2
i¼2

βiβn−i

�
: ð148Þ

We can transform this recursive relation into a differential
equation by introducing the generating function
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fðxÞ ¼
X∞
n¼2

βnx2n−D: ð149Þ

By taking the derivative and using the recursive relation for βn≥3, we have

f0ðxÞ ¼
X∞
n¼2

ð2n −DÞβnx2n−D−1 ¼ ð4 −DÞβ2x3−D þ 2
X∞
n¼3

�
βn−1
D − 2

þ
Xn−2
i¼2

βiβn−i

�
x2n−D−1

¼ ð4 −DÞβ2x3−D −
2

D − 2
xfðxÞ − 2xD−1fðxÞ2: ð150Þ

Now, the action can in fact we written in terms of this function. The full action (at quadratic order) reads

Ið2Þbgrav ¼
1

16πGDþ1

Z
dDx

ffiffiffiffiffiffi
−g

p �
l

2ðD − 2ÞRþ
X∞
n¼2

βnl2n−1
�
Rab

□
n−2Rab −

D
4ðD − 1ÞR□

n−2R

��
;

¼ 1

16πGD

Z
dDx

ffiffiffiffiffiffi
−g

p �
Rþ l2RabFðl2

□ÞRab −
D

4ðD − 1Þl
2RFðl2

□ÞR
�
; ð151Þ

where

Fðl2□Þ ¼ 2ðD − 2Þ
X∞
n¼2

βnðl2□Þn−2; ð152Þ

andGD ¼ 2ðD − 2ÞGDþ1=l. We see that this F is related to
f in Eq. (149) by

fðxÞ ¼ 1

2ðD − 2Þ x
4−DFðx2Þ: ð153Þ

Thus, FðxÞ satisfies the equation

F0ðxÞ ¼ ðD− 4ÞFðxÞ−Fð0Þ
2x

−
1

2ðD− 2Þð2FðxÞþ xFðxÞ2Þ;

ð154Þ

where

Fð0Þ ¼ 2ðD − 2Þβ2 ¼
1

ðD − 2ÞðD − 4Þ : ð155Þ

Remarkably, this differential equation allows for a general
solution in terms of Bessel functions. We find that the
appropriate solution, that corresponds to the summation of
the series Eq. (152), is given by

FDðxÞ ¼
DðD − 2Þ

x2
−
1

x
−
ðD − 2ÞYDþ2

2
ð ffiffiffi

x
p Þ

x3=2YD
2
ð ffiffiffi

x
p Þ ; ð156Þ

where Yk are the Bessel functions of the second kind.
Inserting FDðl2

□Þ in Eq. (151) we obtain our final
expression for the quadratic action of the brane-world
theory in general dimensions.

Despite the singular appearance of this function at x ¼ 0,
it is actually analytic around that point for odd D. In
fact, for odd D, FD can actually be written in terms of
trigonometric functions. We have

F3ðxÞ ¼ −
sinð ffiffiffi

x
p Þ

x sinð ffiffiffi
x

p Þ þ ffiffiffi
x

p
cosð ffiffiffi

x
p Þ

≈ −1þ 2x
3
−
7x2

15
þ 34x3

105
þ…; ð157Þ

F5ðxÞ ¼
cosð ffiffiffi

x
p Þ

ð3 − xÞ cosð ffiffiffi
x

p Þ þ 3
ffiffiffi
x

p
sinð ffiffiffi

x
p Þ

≈
1

3
−
2x
9
þ x2

27
þ 2x3

405
þ…; ð158Þ

F7ðxÞ ¼ −
ffiffiffi
x

p
sinð ffiffiffi

x
p Þ þ cosð ffiffiffi

x
p Þ

ðx − 15Þ ffiffiffi
x

p
sinð ffiffiffi

x
p Þ þ 3ð2x − 5Þ cosð ffiffiffi

x
p Þ

≈
1

15
þ 2x
75

−
13x2

1125
þ 22x3

16875
þ…; ð159Þ

where we included the first terms in the expansions around
x ¼ 0. On the other hand, in even D ≥ 4, the expansion
around x ¼ 0 contains logarithmic divergences, which are
the counterpart of the 1=ðD − 2nÞ divergences in the defini-
tion of these theories. For instance, for D ¼ 4 one finds

F4ðxÞ ¼
8

x2
−
1

x
−

2Y3ð
ffiffiffi
x

p Þ
x3=2Y2ð

ffiffiffi
x

p Þ ≈
1

4
½−2γE − logðx=4Þ�

þ 1

8
½−1þ γE þ logðx=4Þ�xþ… ð160Þ

where γE is the Euler-Mascheroni constant. Finally, the
D ¼ 2 case is a bit different, as it simply yields
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F2ðxÞ ¼ −
1

x
; ð161Þ

which means that the corresponding quadratic action is pro-
portional to the Polyakov induced-gravity action [103]—
see also [56].

B. Linearized equations and modes

It is obvious from Eq. (151) that the brane-world theory
belongs to the class of theories which satisfy condition (25),
as in this case we have F1 ¼ F, F2 ¼ −D=ð4ðD − 1ÞÞF,
F3 ¼ 0. As a consequence, the linearized equations of the
theory impose the condition (26), namely,

−
ðD − 2Þ
64πG

Rð1Þ ¼ 0; ð162Þ

so the trace of the equation has no dynamics and one is left
with

1

32πG
½1þ Fðl2

□̄Þl2
□̄�Gð1Þ

ab ¼ 0: ð163Þ

By going to the Lorentz gauge as in Sec. II A 1, one finds

−
1

64πG
½1þ Fðl2

□̄Þl2
□̄�□̄hhabi; ð164Þ

and the corresponding propagator is given by

PDðkÞ ¼
64πGD

ðD − 2Þ
�ilkYDþ2

2
ðilkÞ

YD
2
ðilkÞ −D

�−1
: ð165Þ

Using this we can analyze the pole structure in various
dimensions.

1. Three dimensions

In D ¼ 3 the propagator becomes

P3ðkÞ
64πG3

¼ 1

l2k2
−
lk tanhðlkÞ

l2k2
: ð166Þ

Studying its pole structure we find a massless mode as well
as an infinite tower of massive gravitons. The massless
mode is the same as the one appearing in the pure Einstein
gravity spectrum and it is pure gauge in three dimensions.
On the other hand, the massive gravitons have masses

mn ¼
π

2l
ð2n − 1Þ; n ¼ 1; 2;…; ð167Þ

and all of them have negative kinetic energy. This can be
seen by expanding the propagator around each of the poles
and comparing the overall sign with the one of the positive-
energy would-be massless mode. For this, one has

P3ðk2 → 0Þ
64πG3

¼ 1

l2k2
þOð1Þ: ð168Þ

For the new modes one finds, instead,

P3ðk2 → −m2
nÞ

64πG3

¼ −
2

l2½k2 þm2
n�
þOð1Þ: ð169Þ

Hence, all the new modes are ghosts.

2. Four dimensions

In D ¼ 4, the analysis of the propagator becomes more
cumbersome. To begin with, there is no simplified way
to write down the propagator in terms of trigonometric
functions. Instead, we are left with

P4ðkÞ
64πG4

¼ iY2ðilkÞ
2lkY1ðilkÞ

: ð170Þ

Again, we find the Einstein-like massless graviton and an
infinite tower of massive ghost gravitons, with masses

mn ≈
π

l
ð0.69937; 1.72832; 2.73619; 3.73987; 4.742; 5.74339; 6.74437; 7.7451;…Þ: ð171Þ

In this case, the masses are not equispaced, but the difference between pairs of modes tends to π=l as n → ∞. Indeed, the
mn tend to π

l ðn − 1=4Þ as n → ∞. Moreover, we now find a tower of modes with complex squared masses which are
conjugate of each other,

mn;� ≈
π

l
ð�0.1790þ 1.220i;�0.1762þ 2.233i;�0.1755þ 3.238i; � � �Þ: ð172Þ

These tend to π
l ð�0.17485þ ðnþ 1=4ÞiÞ as n → ∞. Again we find that all massive modes, including the complex ones,

have negative kinetic energy, namely,

P4ðk2 → −m2
jÞ

64πG4

¼ −
1

l2½k2 þm2
j �
þOð1Þ; ð173Þ

∀ j∈ fn;�g so again they are all ghosts.
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3. Five dimensions

In D ¼ 5 one finds

P5ðkÞ
64πG5

¼ 1

l2k2
þ 1

3 − 3lk tanhðlkÞ : ð174Þ

In addition to the Einstein-like massless graviton, we again find an infinite tower of massive gravitons with masses

mn ≈
π

l
ð0.89075; 1.9485; 2.9660; 3.9746; 4.9797; 5.9831; 6.9855;…Þ: ð175Þ

Now, however, there is only one tachyonic mode with
imaginary mass

m2
t ≈ −

1.43923
l2

: ð176Þ

Once again, we find that all the massive modes have
negative kinetic energy, namely,

P5ðk2 → −m2
jÞ

64πG5

¼ −
2

3l2½k2 þm2
j �
þOð1Þ; ð177Þ

∀ j∈ fn; tg, so they are all ghosts.

4. Six dimensions

The case of D ¼ 6 is similar to the four-dimensional
case. The propagator reads

P6ðkÞ
64πG6

¼ iY3ðilkÞ
4lkY2ðilkÞ

; ð178Þ

and again, we find the Einstein-like massless graviton, an
infinite tower of massive ghost gravitons, with masses

mn ≈
π

l
ð1.077;2.163;3.191;4.205;5.214;6.220;7.224;…Þ;

ð179Þ
which tend to π

l ðnþ 1=4Þ as n → ∞; and a tower of modes
with complex squared masses which are conjugate of
each other,

mn;� ≈
π

l
ð�0.3382þ 0.4711i;�0.1877þ 1.636i;�0.1795þ 2.680i;�0.1773þ 3.699i; � � �Þ: ð180Þ

These tend to π
l ð�0.17485þ ðn − 1=4ÞiÞ as n → ∞. More-

over, we find an extra conjugate pair,

m0;� ≈
π

l
� 0.4716 − 0.1503i: ð181Þ

As before, all massive modes are ghosts, including the
complex ones, since

P6ðk2 → −m2
jÞ

64πG6

¼ −
1

2l2½k2 þm2
j �
þOð1Þ; ð182Þ

∀ j∈ fn;�g, so they all have negative kinetic energy.

5. Seven dimensions

Finally, in D ¼ 7, one finds

P7ðkÞ
64πG7

¼ 1

15
þ 1

l2k2
−

l2k2

15ð3þ l2k2 − 3lk tanhðlkÞÞ :

ð183Þ

Again, we find the Einstein-like massless graviton, and an
infinite tower of massive ghost gravitons with masses

mn ≈
π

l
ð1.2604;2.3719;3.4109;4.4314;5.4442;

6.4529;7.4593;…Þ ð184Þ
with the difference between pairs of modes tending to π=l
as n → ∞. Now, there are only two extra modes with
complex squared masses which are conjugate of each other,
namely,

m2
� ≈ −

2.01933� 3.19512i
l2

: ð185Þ

Once more, we find that all the massive modes, including
the ones with complex squared-masses, have negative
kinetic energy, namely,

P7ðk2 → −m2
jÞ

64πG7

¼ −
2

5l2½k2 þm2
j �
þOð1Þ; ð186Þ

∀ j∈ fn;�g so they are all ghosts.
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We have found that, regardless of the number of
dimensions, there are always pathological modes appear-
ing in the linearized spectrum of these brane-world
gravities, with squared masses of order ∼1=l2. Since
the bulk theory is Einstein gravity, which is perfectly well
defined, the appearance of these pathological modes on
the gravitational effective theory induced on the brane
might seem worrisome at first. The bulk, however, is dual
to this induced theory on the brane plus a cutoff CFT,
which we have neglected in this analysis. The CFT cutoff
is precisely ∼1=l2, and so it is not surprising that patho-
logies might appear at this order. Moreover, when one
takes the coupling between this cutoff CFT and the induced
gravity on the brane into account, the observed pathologies
disappear. In a sense, coupling the induced action to the
cutoff CFT allows one to “UV-complete” the theory by
making it dual to the perfectly defined Einstein gravity in the
bulk. These results, along with a careful analysis of the linear
spectrum in this case, will appear in future work.

V. CONCLUSIONS

A summary of the main findings of this paper can be
found in the Introduction. Let us close with some com-
ments regarding open questions and future work.
In this work we have initiated the study of GQTs with

covariant derivatives. Our analysis has been restricted to
four dimensions and to the first few curvature orders. It
would be interesting to pursue a full classification of
GQTs with covariant derivatives in general dimensions as
well as for arbitrary curvature orders, similar to the one
achieved for polynomial GQTs in [31,32]. Similarly, it
would be interesting to determine whether the departure
from the universal behavior observed in polynomial
GQTs for the temperature of small black holes in the
case of the new GQT with covariant derivatives extends
to other theories of that kind, and whether a new
universal behavior arises in that case. The implications
for the evaporation process of black holes should also be
studied in this context.
Additionally, it would be interesting to prove that any

gravitational effective action can be mapped to a GQT.
This is established for general polynomial densities [37],
but the proof for terms involving covariant derivatives is
thus far limited to theories with up to eight derivatives of
the metric and also for theories with any number of
Riemann tensors and two covariant derivatives.
On a different front, it would be interesting to char-

acterize the generalized symmetries of general linearized
higher-curvature gravities with covariant derivatives along
the lines of [104], where such analysis was performed for
Lðgab; RabcdÞ theories.
Regarding brane-world gravities, the existence of

ghosts as well as of tachyonic and complex-squared-
mass modes in the linearized spectrum of these effective
theories seems to be in tension with the absence of such

pathologies in the bulk theory (Einstein gravity). In
particular, the appearance of imaginary poles in the
propagators of particles has been suggested as an indication
of confinement—see e.g. [105–107]. It would be interest-
ing to understand their origin from the bulk perspective.
Naturally, here we have ignored the effects of the cutoff
CFTwhich is also induced on the brane, so one could try to
understand if and how its coupling to the brane-world
gravities resolves the pathologies.
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APPENDIX A: BASIS OF INVARIANTS

We present here a complete list of the curvature
invariants at each order in derivatives. The same list
can be found in [108]. Our ordering also follows [108]:
The invariants are ordered by the number of covariant
derivatives acting on individual curvature tensors. We begin
with those invariants that involve the largest number of
derivatives acting on curvature, and end with the poly-
nomial curvature invariants (those built exclusively from
contractions of the Riemann tensor).
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1. Four derivatives

There are four possible terms involving four derivatives of the metric:

Rð1Þ
4 ¼ □R; Rð2Þ

4 ¼ R2; Rð3Þ
4 ¼ RpqRpq; Rð4Þ

4 ¼ RpqrsRpqrs: ðA1Þ

2. Six derivatives

There are 17 terms involving six derivatives of the metric:

Rð1Þ
6 ¼ □R2; Rð2Þ

6 ¼ R□R; Rð3Þ
6 ¼ R;pqR;pq; Rð4Þ

6 ¼ Rpq
□Rpq; Rð5Þ

6 ¼ Rpq;rsRpqrs;

Rð6Þ
6 ¼ R;pR;p; Rð7Þ

6 ¼ Rpq;rRpq;r; Rð8Þ
6 ¼ Rpq;rRpr;q; Rð9Þ

6 ¼ Rpqrs;tRpqrs;t; Rð10Þ
6 ¼ R3;

Rð11Þ
6 ¼ RRpqRpq; Rð12Þ

6 ¼ RpqRp
rRqr; Rð13Þ

6 ¼ RpqRrsRprqs; Rð14Þ
6 ¼ RRpqrsRpqrs;

Rð15Þ
6 ¼ RpqRrst

pRrstq; Rð16Þ
6 ¼ RpqrsRpq

tuRrstu; Rð17Þ
6 ¼ RpqrsRp

t
r
uRqtsu: ðA2Þ

3. Eight derivatives

There are 92 terms involving eight derivatives of the metric:

Rð1Þ
8 ¼ □3R; Rð2Þ

8 ¼ R□2R; Rð3Þ
8 ¼ Rpq□R;pq; Rð4Þ

8 ¼ Rpq□2Rpq; Rð5Þ
8 ¼ Rpq;rsRprqs;

Rð6Þ
8 ¼ R;p

□R;p; Rð7Þ
8 ¼ Rpq;rRpq;r; Rð8Þ

8 ¼ Rpq;r
□Rpq;r; Rð9Þ

8 ¼ Rpq;r
□Rpr;q;

Rð10Þ
8 ¼ Rpq;rstRprqs;t; Rð11Þ

8 ¼ ð□RÞ2; Rð12Þ
8 ¼ R;pqR;pq; Rð13Þ

8 ¼ R;pq
□Rpq;

Rð14Þ
8 ¼ □Rpq

□Rpq; Rð15Þ
8 ¼ Rpq;rsRpq;rs; Rð16Þ

8 ¼ Rpq;rsRpr;qs; Rð17Þ
8 ¼ Rpq;rsRrs;pq;

Rð18Þ
8 ¼ Rpqrs;tuRpqrs;tu; Rð19Þ

8 ¼ R2□R; Rð20Þ
8 ¼ RR;pqRpq; Rð21Þ

8 ¼ □RRpqRpq;

Rð22Þ
8 ¼ RRpq

□Rpq; Rð23Þ
8 ¼ R;pqRp

rRqr; Rð24Þ
8 ¼ RpqRp

r
□Rqr; Rð25Þ

8 ¼ RpqRrsRpq;rs;

Rð26Þ
8 ¼ RpqRrsRpr;qs; Rð27Þ

8 ¼ R;pqRrsRprqs; Rð28Þ
8 ¼ RRpq;rsRprqs; Rð29Þ

8 ¼ Rpq
□RrsRprqs;

Rð30Þ
8 ¼ RpqRp

r;stRqsrt; Rð31Þ
8 ¼ RpqRrs

;q
tRprst; Rð32Þ

8 ¼ □RRpqrsRpqrs; Rð33Þ
8 ¼ R;pqRrst

qRrstp;

Rð34Þ
8 ¼ □RpqRrst

pRrstq; Rð35Þ
8 ¼ Rpq;rsRru

prRtuqs; Rð36Þ
8 ¼ R;pqrsRt

p
u
qRtrus;

Rð37Þ
8 ¼ Rpq;rsRt

p
u
rRtqus; Rð38Þ

8 ¼ RpqRrstuRrstu;pq; Rð39Þ
8 ¼ RpqrsRp

tuvRqtru;sv;

Rð40Þ
8 ¼ RR;pR;p; Rð41Þ

8 ¼ R;pR;qRpq; Rð42Þ
8 ¼ RRpq;rRpq;r; Rð43Þ

8 ¼ RRpq;rRpr;q;

Rð44Þ
8 ¼ R;pRqrRqr;p; Rð45Þ

8 ¼ R;pRqrRpq;r; Rð46Þ
8 ¼ RpqRp

r;sRqr;s; Rð47Þ
8 ¼ RpqRp

r;sRqs;r;

Rð48Þ
8 ¼ RpqRrs

;pRrs;q; Rð49Þ
8 ¼ RpqRrs

;pRrq;s; Rð50Þ
8 ¼ R;pRqr;sRpqrs;

Rð51Þ
8 ¼ Rpq;rRp

s;tRqrst; Rð52Þ
8 ¼ Rpq;rRp

s;tRqsrt; Rð53Þ
8 ¼ Rqr;pRst

;pRqsrt;

Rð54Þ
8 ¼ Rpq;rRst

;pRqsrt; Rð55Þ
8 ¼ RpqRrs;tRprqs;t; Rð56Þ

8 ¼ RpqRrs;tRrtsp;q;
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Rð57Þ
8 ¼ R;pRqrstRqrst;p; Rð58Þ

8 ¼ RRpqrs;tRpqrs;t; Rð59Þ
8 ¼ RpqRrstu

;pRrstu;q;

Rð60Þ
8 ¼ RpqRrstu

;pRrstq;u; Rð61Þ
8 ¼ Rpq;rRst

r
uRstpq;u; Rð62Þ

8 ¼ Rpq;rRst
p
uRstqr;u;

Rð63Þ
8 ¼ Rpq;rRst

p
uRsqtr;u; Rð64Þ

8 ¼ RpqrsRtuv
p;qRtuvr;s; Rð65Þ

8 ¼ RpqrsRtuv
p;rRtuvq;s;

Rð66Þ
8 ¼ RpqrsRt

p
u
r
;vRtqus;v; Rð67Þ

8 ¼ R4; Rð68Þ
8 ¼ R2RpqRpq; Rð69Þ

8 ¼ RRpqRp
rRqr;

Rð70Þ
8 ¼ ðRpqRpqÞ2; Rð71Þ

8 ¼ RpqRp
rRq

sRrs; Rð72Þ
8 ¼ RRpqRrsRprqs; Rð73Þ

8 ¼ RpqRrsRr
tRpsqt;

Rð74Þ
8 ¼ R2RpqrsRpqrs; Rð75Þ

8 ¼ RRpqRrst
pRrstq; Rð76Þ

8 ¼ RpqRpqRrstuRrstu;

Rð77Þ
8 ¼ RpqRp

rRstu
qRstur; Rð78Þ

8 ¼ RpqRrsRtu
prRtuqs; Rð79Þ

8 ¼ RpqRrsRt
p
u
qRtrus;

Rð80Þ
8 ¼ RpqRrsRt

p
u
rRtqus; Rð81Þ

8 ¼ RRpsrsRpq
tuRrstu; Rð82Þ

8 ¼ RRpqrsRp
t
r
uRqtsu;

Rð83Þ
8 ¼ RpqRp

r
q
sRtuv

rRtuvs; Rð84Þ
8 ¼ RpqRrstuRrs

v
pRtuvq; Rð85Þ

8 ¼ RpqRrstuRr
v
tpRsvuq;

Rð86Þ
8 ¼ ðRpqrsRpqrsÞ2; Rð87Þ

8 ¼ RpqrsRpq
tuRtu

vwRrsvw; Rð88Þ
8 ¼ RpqrsRpq

tuRtu
vwRrsvw;

Rð89Þ
8 ¼ RpqrsRpq

tuRrt
vwRsuvw; Rð90Þ

8 ¼ RpqrsRpq
tuRr

v
t
wRsvuw; Rð91Þ

8 ¼ RpqrsRp
t
r
uRt

v
u
wRqvsw;

Rð92Þ
8 ¼ RpqrsRp

t
r
uRt

v
q
wRuvsw: ðA3Þ

4. Ten derivatives

The number of independent invariants grows rapidly with an increasing number of derivatives. To the best of our
knowledge, a complete classification of terms involving more than eight derivatives of the metric has not been completed.
However, for example, at ten-derivative order it is known that there are 668 invariants. The set of ten-derivative invariants
we have used consists of 180 ¼ 20þ 92þ 4 × 17 elements, and so it is necessarily very incomplete. Out of the 180
densities that we use, only 20 are not built from products of lower-order densities. These are

Rð1Þ
10 ¼ CabcdCabcdCefgh;iCefgh;i

Rð2Þ
10 ¼ Ra

bR
b
dR

c
fRag

deRce
fg; Rð3Þ

10 ¼ Ra
bR

b
dR

c
fRcg

deRae
fg; Rð4Þ

10 ¼ Ra
bR

b
cRae

cdRgh
efRdf

gh;

Rð5Þ
10 ¼ Ra

bR
b
cRef

cdRgh
efRad

gh; Rð6Þ
10 ¼ Ra

bR
b
cReg

cdRah
efRdf

gh; Rð7Þ
10 ¼ Ra

cRb
dRab

cdRgh
efRef

gh;

Rð8Þ
10 ¼ Ra

cRb
dRae

cdRgh
efRbf

gh; Rð9Þ
10 ¼ Ra

cRb
dRef

cdRgh
efRab

gh; Rð10Þ
10 ¼ Ra

cRb
dReg

cdRah
efRbf

gh;

Rð11Þ
10 ¼ Ra

cRb
eRaf

cdRgh
efRbd

gh; Rð12Þ
10 ¼ Ra

bRad
bcRfh

deRci
fgReg

hi; Rð13Þ
10 ¼ Ra

bRde
bcRcf

deRhi
fgRag

hi;

Rð14Þ
10 ¼ Ra

bRdf
bcRac

deRhi
fgReg

hi; Rð15Þ
10 ¼ Ra

bRdf
bcRah

deRei
fgRcg

hi; Rð16Þ
10 ¼ Ra

bRdf
bcRgh

deRei
fgRac

hi;

Rð17Þ
10 ¼ Rcd

abReg
cdRai

efRfj
ghRbh

ij; Rð18Þ
10 ¼ Rce

abRaf
cdRgi

efRbj
ghRdh

ij;

Rð19Þ
10 ¼ Rce

abRag
cdRbi

efRfj
ghRdh

ij; Rð20Þ
10 ¼ Rce

abRfg
cdRhi

efRaj
ghRbd

ij: ðA4Þ

APPENDIX B: HAIRY BLACK HOLES IN PURE
EIGHT DERIVATIVE GQTs

Excluding the fourth-order density Lð1Þ
ð8;0Þ, all the other

eight-derivative Lagrangians allow the Schwarzschild-
(A)dS spacetime as an exact solution. However, due to
the fact that the equations of motion are of higher order, one
may wonder if additional solutions exist.
In order to illustrate the possibility of having non-

Schwarzschild black holes, let us consider the simple
(yet unrealistic) case in which we do not have an

Einstein-Hilbert term in the action. In fact, for the sake
of simplicity let us just consider a higher-derivative gravity
given by the following eight-derivative Lagrangian:

L ¼ 1

16πG
½cð2ÞLð2Þ

ð8;2Þ þ cð3ÞL
ð3Þ
ð8;4Þ þ cð4ÞL

ð4Þ
ð8;4Þ�: ðB1Þ

The integrated equation for the function f becomes in this
case

cð2ÞF
ð2Þ
ð8;2Þ þ cð3ÞF

ð3Þ
ð8;4Þ þ cð4ÞF

ð4Þ
ð8;4Þ ¼ 4GM; ðB2Þ

ASPECTS OF HIGHER-CURVATURE GRAVITIES WITH … PHYS. REV. D 108, 124075 (2023)

124075-25



which explicitly reads

f2

2r5
ðα2ð−8cð2Þ þ 15cð3Þ − 16cð4ÞÞ þ 3cð3Þr2α02

þ 2αrð2cð4Þrα00 − 3cð3Þα0ÞÞ ¼ 4GM: ðB3Þ

Now, for M ¼ 0, a solution to this equation is the
Schwarzschild-(A)dS black hole with arbitrary mass
parameter and cosmological constant, which has α ¼ 0.
However, this is not the most general solution. If we again
setM ¼ 0, we find a homogeneous equation for α, that has
the following general solution:

αðrÞ ¼ arνðrμ þ bÞ2−2νμþ1 ; ðB4Þ

where a and b are integration constants, and

μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 8

cð2Þ
cð4Þ

þ
6cð2Þcð3Þ− 9c2ð3Þ

c2ð4Þ

vuut ; ν≡3
cð3Þ
cð4Þ

− 2μþ 2

3
cð3Þ
cð4Þ

þ 4
:

ðB5Þ

Thus, solving now the equation

r2f00 þ 2ðk − fÞ ¼ α; ðB6Þ

we get the general solution

fðrÞ ¼ −λr2 þ k −
2m
r

þ arνðbþ rμÞ3þμ−2ν
1þμ

3b

�
1

ν − 2 2F1

�
1;
ðμ − 1Þð2þ μ − νÞ

μð1þ μÞ ;
μþ ν − 2

μ
;−

rμ

b

�

−
1

νþ 1 2F1

�
1;
1þ 4μþ μ2 þ ν − μν

μð1þ μÞ ;
1þ μþ ν

μ
;−

rμ

b

��
; ðB7Þ

where λ and m arise as integration constants. This repre-
sents a biparametric modification of Schwarzschild’s
solution. In the limit b → 0, we get a much simpler
solution,

fðrÞ ¼ −λr2 þ k−
2m
r

þ ãrσ; σ ¼ 3cð3Þ þ 2cð4Þðμþ 1Þ
3cð3Þ þ 4cð4Þ

;

ðB8Þ

where ã ∝ a. For σ < −1 this represents an asympto-
tically flat/AdS/dS black hole solution with continuous
hair. On the other hand, for σ > 2 the asymptotic behavior
is exotic.

APPENDIX C: LINEARIZED EQUATIONS
ON AN AdS BACKGROUND

Here we present the explicit linearized equations of
motion around an AdS background for the simplest
examples of the theories considered in the main text.
First consider the effective quadratic theory arising from
purely polynomial theories,

Lð0Þ ¼ λðR−2Λ0Þþαð0ÞR2þβð0ÞRabRabþγð0ÞRabcdRabcd:

ðC1Þ

For this theory, the linearized equations were computed in
[79] and read

Eð1Þ
ab ¼

�
λ

2
−

2

l2
⋆
ðDðD − 1Þαð0Þ þ ðD − 2Þβð0Þ

þ ðD − 3ÞðD − 4Þγð0ÞÞ þ βð0Þ□̄
�
Gð1Þ

ab

þ ½2αð0Þ þ βð0Þ�½ḡab□̄ − ∇̄a∇̄b�Rð1Þ

−
1

l2
⋆
½2ðD − 1Þαð0Þ þ βð0Þ�ḡabRð1Þ; ðC2Þ

and we are using the following conventions for the back-
ground curvature tensor:

R̄abcd ¼ −
1

l2
⋆
½ḡacḡbd − ḡadḡbc�: ðC3Þ

Now consider the effective action involving one
d’Alembertian acting on curvature,

Lð1Þ ¼ αð1ÞR□Rþ βð1ÞRab□Rab þ γð1ÞRabcd□Rabcd: ðC4Þ

For this theory, the linearized equations of motion take
the form
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Eð1Þ
ab ¼

�
−

8

l4
⋆
γð1ÞðD − 3ÞDþ 2

l2
⋆
ðβð1Þ þ 2γð1Þð5 −DÞÞ□̄þ ðβð1Þ þ 4γð1ÞÞ□̄2

�
Gð1Þ

ab

þ ð2αð1Þ þ βð1Þ þ 2γð1ÞÞ½ḡab□̄ − ∇̄a∇̄b�□̄Rð1Þ þ 2ðD − 2Þð4γð1Þ þ βð1ÞÞ
l2
⋆

∇̄a∇̄bRð1Þ

−
ðD − 1Þð2αð1Þ þ βð1Þ þ 2γð1ÞÞ

l2
⋆

ḡab□̄Rð1Þ −
4ðD − 2ÞðD − 3Þ

l2
⋆

γð1ÞḡabRð1Þ: ðC5Þ

In particular, note that the linearized field equations of this six-derivative action involves terms with two, four, and six
derivatives. It may be that the linearized equations can be simplified in alternative gauges, see e.g., [75].
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