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1 Introduction

Scattering amplitudes are one of the most basic objects in the subject of quantum field the-
ory (QFT) and quantum gravity (QG). They have received significant attention in the last
couple of decades, and this attention has led to the discovery of several hidden structures
(for example, the discovery of a geometrical object known as the Amplituhedron [1]). One
of the most widely used methods for studying scattering amplitudes is perturbation theory.
The conventional approach to calculating these amplitudes is through the use of Feynman
diagrams, which provide a diagrammatic representation of the terms in perturbation the-
ory. Although these diagrams make locality and Lorentz invariance of a theory manifest,
they are not the best method to compute scattering amplitudes involving large numbers
of particles. This is because the computation of such amplitudes involves summing over
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a multitude of Feynman diagrams with various tensor structures and it is not feasible to
extract any physical insight unless the answers can be expressed in a concise form. A
notable example of this is in the amplitude which showed up in the study of scattering of
gluons. It was found by Parke and Taylor [2] that the six-point amplitude for the scattering
of gluons had a very compact expression despite having many Feynman diagrams showing
up in the intermediate stages of the computation. This is now known as the Parke-Taylor
formula. Due to the simplicity of the final answer, it was anticipated that there existed an
easier and alternative approach for computing it, which did not require the use of Feynman
diagrams. This easier way was later discovered in papers by Britto, Cachazo, Feng, and
Witten [3–5] and are known as the BCFW recursion relations. Significant advancements
have been made in this subject following the seminal works of BCFW.

There has been a renewed interest in the study of cosmological correlation functions
since the work of Maldacena [6]. Studying these correlation functions enables cosmologists
to gain knowledge about various phenomena like galaxy formation, dark energy, and the
early history of the universe. They are also related to quantities that can be measured in
experiments by studying fluctuations in the cosmic microwave background (CMB) radia-
tion. One of the active areas of interest has been to study the non-Gaussianities in the
CMB. These refer to fluctuations that deviate from the Gaussian normal distribution of the
density fluctuations in the CMB. They are predicted by simple models of inflation, where
they are generated by quantum fluctuations of the inflaton field during the inflationary
epoch. To theoretically compute cosmological correlation functions, a more comprehensive
understanding of the state of our universe is required. This state, typically defined by a
path integral, is commonly referred to as the wave function of the universe [7] and can be
computed in perturbation theory. The AdS/CFT correspondence [8, 9] establishes a con-
nection between the wave function of the universe in dS space and transition amplitudes
in AdS, which we shall comment on towards the end.

The wave function of the universe can be computed in various ways in perturbation
theory. There have been several approaches to studying this, for example, in position
space [10–13], Mellin space [14, 15], etc. There has also been significant progress in study-
ing these in momentum space [16–23] including several recursion relations that have sim-
plified the computations at tree level, e.g., BCFW recursion relations [16], “clipping rules”
for scalars [20] and gluons [24], differential equations for correlation functions [25]. In par-
ticular, the paper [20] also introduced new geometrical objects known as the Cosmological
Polytopes whose canonical form was related to the wave function of the universe. The
discovery of this mathematical object aligns with the general theme of relating geometry
with scattering amplitudes [1, 26–28]. This is not surprising as the wave function of the
universe secretly contains the flat space scattering amplitude, in what is known as the
flat space limit [29]. One can gain information about Lorentz invariance, unitarity, and
other aspects of the theory through different triangulations and facets of the cosmologi-
cal polytope [20, 30]. While there has been considerable progress in calculating the wave
function at the tree level, advancements in computing it at the loop level have been lim-
ited [12, 13, 31–34]. In the paper [32], the authors used the recursion relations developed
in [20] to evaluate the value of transition amplitudes for conformally coupled scalars in
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AdS in momentum space. These were evaluated for some special cases of bubble diagrams
at one-loop for conformally coupled interactions in four-dimensions.

In this paper we evaluate one and two-loop diagrams for conformally coupled scalar in
four and six dimensions. In particular, we compute all possible diagrams at two-loop for the
2-point function (which, as explained later, is equivalent to the wave function coefficient at
the second order) in the ϕ4 theory in dS4. We also find a way to regularize certain classes of
Witten diagrams, like the cactus diagram (see figure 11) which are naively divergent even
at the level of the integrand. We also compute the one loop triangle diagram for ϕ3 theory
in dS6 in the squeezed limit and then discuss how one can extract the general answer. We
also find that the finite part of the diagrams have the same behavior as that of the 2-point
and 3-point functions in a CFT living in one lower dimension. We demonstrate how these
methods can be used to evaluate higher point diagrams for more general theories, such as
the 4-point bubble diagram in dS4 for gϕ3 + λϕ4 theory. These shed light on the analytic
structure of loop-level Witten diagrams for conformally coupled scalars. Although our
central results are primarily derived for interactions that are conformally invariant, toward
the end, we also comment on the structure of the wave function for other kinds of couplings.

2 Review of perturbation theory and recursion relations

In this section, we review the construction of [20] and introduce some of the building blocks
for computing Witten diagrams. We will keep our discussion self-contained and encourage
readers who seek additional details to refer to [20] and the review [21].

We will start with a self-interacting massless scalar field in FLRWd+1 with the action
given as

S = −
∫
ddxdη

√
−g

1
2g

µν∂µϕ∂νϕ+ ξRϕ2 +
∑
n≥3

λn

n! ϕ
n

 (2.1)

where gµν is the metric of FLRWd+1 in the Poincare patch and is given as

ds2 = a2(η)
[
− dη2 + δijdx

idxj
]

(2.2)

where the index i, j runs over the d-spatial directions and η is the conformal time. Note
that we have set the Hubble parameter H = 1. The time-like boundary of spacetime is
located at η → 0. The scalar fields have a scaling dimension of ∆ = d−1

2 .
In this paper, we draw insights by working with conformally coupled scalars where the

interaction terms are also conformally invariant. We later generalize some of our results to
other interactions. The advantage of working with conformally coupled scalars is that we
can use a Weyl transformation ϕ → a−∆(η)ϕ and gµν → a2(η)gµν to map the problem in
FLRW to that of flat spacetime with massless scalars. This requirement sets ξ = d−1

4d and
we end up with the following action

S =
∫
ddxdη

(1
2(∂ηϕ)2 − 1

2(∂iϕ)2 −
∑
n≥3

[a(η)](2−n)∆+2λnϕ
n

n!

)
.
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By absorbing [a(η)](2−k)∆+2 in the definition of λ we effectively have the Lagrangian for a
massless scalar field in flat space with time-dependent interactions,1

S =
∫
ddxdη

(1
2(∂ηϕ)2 − 1

2(∂iϕ)2 −
∑
n≥3

λn(η)ϕn

n!

)
(2.3)

where
λn(η) = [a(η)](2−n)∆+2λn . (2.4)

For the interactions to be time-independent (which is equivalent to them being con-
formally invariant), the parameter n takes a specific value depending on the dimension of
spacetime [32],

n = 2∆+ 1
∆ = 2(d+ 1)

d− 1 . (2.5)

This shows that there are three possible choices for (n,D ≡ d+ 1) such that n and D are
positive integers. These are (6, 3), (4, 4), (3, 6). Since D = 3 is not a favorable spacetime
to study the propagation of fields with general spin, we shall restrict to the case of D = 4
and D = 6. Thus, the only cases we are left with are ϕ4 theory in D = 4 and ϕ3 theory in
D = 6. We will later relax this restriction and consider more general cases.

The wave function of the universe is defined by the following path integral

ΨU [ϕ(x)] =
∫ φ(0,x)=ϕ(x)

φ(−∞(1−iϵ),x)=0
DφeiS[φ] , (2.6)

and it can be normalized using
∫
Dϕ |ΨU [ϕ(x)]|2 = 1 . This path integral can be evaluated

using Saddle point methods and it is convenient to go to momentum space and Fourier
transform φ(η,x) =

∫
eik·xφ(η,k)ddx. For evaluating this integral using this method it is

also convenient to split the field φ(η,k) into a “classical” and a “quantum part”,

φ(η,k) = φcl(η,k) + δφ(η,k) (2.7)

where φcl(η,x) satisfies the equation of motion for to the action given in (2.3),

∂2
ηφcl(η,k)− k2φcl(η,k) +

λk(η)
(k − 1)!φ

k−1
cl (η,k) = 0 . (2.8)

and the boundary conditions at η → −∞ and η → 0 . This equation is non-linear and can
be solved using the Green’s function approach. The general solution can be written down as

φcl(η,k) = ϕ(x)e+iη|k| − i

∫
dη′G(η, η′,k) λk(η)

(k − 1)!φ
k−1
cl (η,k) , (2.9)

The first term in this is the solution of the free equation of motion (λk(η) = 0) , which are
in general plane waves of the kind e±i|k|η. The boundary condition at η → −∞ only allows

1By taking loop corrections into account, it may not be possible to invert this conformal transformation
and obtain results for dS space. It would be interesting to determine where the modification needs to be
made in order to evaluate the result in dS space. However, for time-dependent interactions in flat space,
this setup remains perfectly valid.
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for one sign e+i|k|η and this choice is commonly referred to as the Bunch-Davies vacuum.
This gives the bulk-boundary propagator,2

B(η,k) = ei|k|η . (2.10)

The second term in (2.9) introduces the bulk-bulk propagator and it is given as the following
Green’s function (where k ≡ |k|),

G(η, η′, k) = 1
2k

[
e−ik(η−η′)Θ(η − η′) + e−ik(η′−η)Θ(η′ − η)− eik(η+η′)] . (2.11)

Using (2.7) one can integrate out φcl, then performing the path integral over δφ pertur-
batively gives us an expansion analogous to the usual Feynman diagrammatic expansion.
The difference between this and the usual diagrammatic expansion in flat space is that we
now have two kinds of propagators: the bulk-bulk propagator (2.11) and bulk-boundary
propagator (2.10). The final wave function then takes the following form

ΨU = exp

∑
n≥2

1
n!

∫ n∏
v=1

ddxv ϕ(zv)δ
(∑

n

kn

)
ψ̃n(z)

 , (2.12)

where ψ̃n (which shall be referred to as the wave function coefficients) are represented by
integrals3

ψ̃n(Ev, Ee) =
∫ 0

−∞

∏
v,e

dηv e
iηvxvG(ηv, ηv′ , ye) , (2.13)

where xv denotes the sum of energies ∑
a |ka| at a vertex and y denotes the energy4 of an

internal line, e.g., |k1 + k2| . The integrals can be arranged in the form of diagrammatic
representations, which are referred to as Witten diagrams. These diagrams are analogous
to the typical Feynman diagrams that are utilized in S-matrix calculations. In section 2,
we provide a detailed examination of the expansion of wave function coefficients in terms
of Witten diagrams.

For theories where λk is time-dependent (i.e, the interactions are not conformally
coupled) the wave function (2.13) takes the form [20],

ψ̃n(Ev, Ee) =
∫ 0

−∞

∏
v

dϵv
∏
v∈V

λ̃kv(ϵ)ψ(Ev + ϵv, Ee) , (2.14)

where λk(η) =
∫ 0
−∞ dϵ eiϵηλ̃k(ϵ) . Thus, for computing the wave function coefficient for

time-dependent λ(η), we need to perform additional integrals on top of the wave function
coefficient for the conformally coupled case. For the majority of this paper, we will analyze
cases involving conformally coupled self-interactions, where λk(η) is equivalent to a constant

2This often requires a normalization to account for the IR divergence as one goes towards η → 0.
Therefore each of these bulk-boundary propagators often comes with a factor of 1

η∗|k| with η∗ → 0 defining
the IR regulator. Since these are overall factors, we shall suppress them in these computations.

3The dependence of the lower limit on iϵ has been suppressed from this integral.
4The word “energy” is being used loosely here as there is no strict notion of on-shellness. Whenever we

use the word energy, we always mean the modulus of momenta.
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k1 k2 k3 k1 k2 k3 k4

k1 + k2

Figure 1. The boundary, η → 0, of spacetime is represented by the bold horizontal line and the
edges starting from that line are the bulk-boundary propagators (2.10) and the edge in the bulk (of
the diagram on the right) is the bulk-bulk propagator (2.11).

λk. In section 4, we will demonstrate how these answers can be applied to derive results
for more general cases.

We now summarize the diagrammatic representations for the wave function coefficients
given in equation (2.13). Consider the leading order terms in perturbation theory for three
and four-point functions in ϕ3 theory. These correspond to the following Witten diagrams,
Consider the diagram on the left in figure 1. This diagram is given by integrating over the
bulk point, η, and attaching the three bulk-boundary propagators5,6

k1 k2 k3

η

=
∫ 0

−∞
ei(k1+k2+k3)ηdη = −i

k1 + k2 + k3
.

(2.15)

The diagram on the right in fig 1 can be expressed in a similar manner,

k1 k2 k3 k4

k1+k2η1 η2

=
∫ 0

−∞
dη1dη2e

i(k1+k2)η1ei(k3+k4)η2G(η1,η2,|k1+k2|) (2.16)

=
∫ 0

−∞
dη1dη2e

i(k1+k2)η1ei(k3+k4)η2
1
2kI

[
Θ(η1−η2)e−ikI (η1−η2)+Θ(η2−η1)e−ikI (η2−η1)−eikI (η1+η2)],

where we denote kI = |k1 + k2|. We are not going to evaluate the integral explicitly now
but will give an iterative procedure to do so in the next section.

We now introduce some more notations that we shall be using. The bold horizontal
line depicting η → 0 shall be removed altogether and bulk-boundary propagators shall be

5We also use the notation ki ≡ |ki|.
6Note that we are suppressing all the iϵ as our integrals are finite without using them. The iϵ prescription

comes naturally while performing the η integrals as the lower limit of the integral has −∞(1 − iϵ). It is
possible to restore these iϵ factors and perform the integrals. It would be interesting to see if different iϵ

prescriptions allow us to obtain different correlation functions.
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•
x1

•
x2

y
•
x

Figure 2. These are truncations of the diagrams in figure 1. The sum momenta of the bulk-
boundary propagators ending on a vertex is denoted by xi and the mod of the momenta of the
intermediate particles is denoted by yi. Therefore for the diagram on the left, we have x = k1 +
k2 + k3. For the diagram on the right, we have x1 = k1 + k2, x2 = k3 + k4, y = |k1 + k2|.

suppressed by the following notation, •. The bulk-bulk propagators will remain as it is. In
the new notations, the diagrams in figure 1 are denoted by

2.1 Example of a Witten diagram at one-loop

In this subsection and the next, we shall briefly review the recursion relations described
in [20] and construct the loop integrands. We first review the conventional way of perform-
ing this computation and describe the recursion relations after that. Similar to the tree
level computation, we first decompose the bulk-bulk Green’s function as given in (2.11)
and then attach the appropriate bulk-boundary propagators (equation (2.10)), followed by
an integration over the bulk points. Finally, we perform the loop integrals. This gives a
clear sense of the order of integration.

The Green’s function outlined in equation (2.11) includes terms that consist of Θ(η1 −
η2), Θ(η2 − η1), and a term that lacks a Θ-function. These can be depicted through the
following diagrams.7

• •
η1 η2

= 1
2yΘ(η1 − η2)e−iy(η1−η2),

• •
η1 η2

= 1
2yΘ(η2 − η1)e−iy(η2−η1),

• •
η1 η2

= 1
2y e

iy(η1+η2) .

(2.17)

We now focus on the wave function coefficient at one-loop,8 which can be written as

• •x1 x2

y1

y2

=
∫
d3l1

∫ 0

−∞
dη1dη2 e

iη1x1eiη2x2G(η1, η2, y1)G(η1, η2, y2) . (2.18)

This diagram is often known as the bubble diagram. From the equation above, we have to
evaluate a product of Green’s functions, containing the Θ functions. Upon multiplying two
such terms, ones with the opposite directions of Θ no longer survive as Θ(η1 − η2)Θ(η2 −

7Note that these diagrams are useful to denote the product of Θ−functions and will not be needed after
this subsection.

8For interactions that are conformally coupled this diagram can correspond to a two-point function in
the ϕ3 theory in D = 6 or a four-point function in ϕ4 theory in D = 4.

– 7 –



J
H
E
P
1
2
(
2
0
2
3
)
1
0
9

η1) = 0.9 Hence the only allowed contractions in the notations of (2.17) are given below,

• • =x1 x2

y1

y2

∫
d3l1

−•• −•• ••

+ −•• −•• ••

+ ••

.

(2.19)
The integrals over η are of two kinds, one which has a Θ function,∫ 0

−∞
dη1dη2 e

iaη1eibη2Θ(η1 − η2) =
∫ 0

−∞
dη1e

iaη1

∫ η1

−∞
dη2e

ibη2 = − 1
(a+ b)b , (2.20)

and one which does not, ∫ 0

−∞
dη1dη2e

iaη1eibη2 = − 1
ab
. (2.21)

The terms generated by these diagrams have spurious poles which cancel amongst each
other after summing up all the terms. For example, the contribution from the diagram

•• evaluates to the following expression

•• = 1
4y1y2(x1 + x2 + 2y1)(x2 + y1 + y2)

, (2.22)

which contain the poles 1
y1

1
y2

. However, after summing up all the diagrams in (2.19) we
see that these poles disappear implying that they are spurious. The final integrand for the
bubble diagram is given as,

• •x1 x2

y1

y2

=
∫
d3l1

1
(x1+x2)(x1+y1+y2)(x2+y1+y2)

[
1

x1+x2+2y1
+ 1
x1+x2+2y2

]
.

(2.23)
Since we are interested in computing the loop integrals above and also have to regularize
them, we must use an expansion that avoids integrating terms with spurious poles. Such
an expansion can be derived using old fashioned perturbation theory as advocated in [20]
and reviewed in the following section.

2.2 Recursion relations for scalars

We now review the recursion relation developed in [20] which shall be used to construct
some of the loop integrands. This recursion relation uses the one-point graph

•x = 1
x
,

9More generally this identity is given as Θ(η1 − η2)η(η2 − η1) = aδ(η1 − η2) , where a is dependent on
the choice of the regularization.
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as a seed and generates the whole diagram by attaching edges and other vertices. We first
note that any Witten diagram Ψ of interest can be reduced to the following equation (after
stripping off the momentum-conserving delta function)

Ψ =
∫ 0

−∞

∏
v

dηve
ixvηv

∏
e

G(ηe, η
′
e, ye) . (2.24)

Since the boundary (η → 0, η → −∞) value of the Green’s function is zero, the boundary
value of the whole integrand in equation (2.24) is zero. This allows us to simplify the
integral by using integration by parts,

0 =
∫ 0

−∞

∏
v

dηv ∆̂
[
e
∑

v
ixvηv

∏
e

G(ηe, η
′
e, ye)

]
, (2.25)

where ∆̂ = −i
∑

v ∂ηv . The differential operator, ∆̂, is a linear operator and it will act on
both parts of the integrand, namely, the bulk-boundary propagators and also the bulk-bulk
propagators. Upon acting on the bulk-boundary propagators, it gives us the total energy,
i.e., ∫ 0

−∞

∏
v

dηv∆̂
[
e
∑

v
ixvηv

]∏
e

G(ye, ηe, η
′
e) = Ψ

∑
v

xv . (2.26)

Its action on the bulk-bulk propagators is more interesting. For that we first study its
action on a particular propagator, say G(η, η′, y) as given in (2.11). Since the differential
operator is a function of η+η′, it will annihilate the part of G(η, η′, y) that contains η−η′.
Therefore, the only term that will remain is given as

∆̂G(η, η′, y) = −eiy(η+η′) , (2.27)

which simply modifies the bulk-boundary propagators that were already present! Hence the
action of ∆̂ effectively clips the bulk-bulk propagator and adds a factor of y to the vertices
at its edge. Thus by using integration by parts, we can obtain the value of the integral
without having to explicitly integrate the Θ functions. For this trick to work it is imperative
for the bulk-bulk propagators to satisfy Cauchy’s exponential functional equation. Let us
study a simple example of this algorithm. Consider the diagram corresponding to the
four-point function, denoted by Ψ(0)

4 ,

Ψ(0)
4 (x1, y, x2) = • •

x1 x2

y
. (2.28)

By following the procedure described above, we have

(x1 + x2)Ψ(0)
4 = • •

x1 + y x2 + y
= 1

(x1 + y)(x2 + y) . (2.29)

This implies that the value of the diagram is given as

Ψ(0)
4 (x1, y, x2) =

1
(x1 + x2)(x1 + y)(x2 + y) (2.30)

– 9 –
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To understand the algorithm better, let us consider the five-point function,

k1 k2 k3 k4
k5

η1 η2η3

(2.31)

and denote it by L(x1, y1, x2, y2, x3). Here x1 = k1 + k2, x2 = k5, x3 = k3 + k4 and
y1 = |k1 + k2| and y2 = |k3 + k1 + k2| . In the condensed notation, this diagram is

L(x1, y1, x2, y2, x3) ≡ •
x1

y1 •
x2

y2 •
x3

. (2.32)

By following the procedure above we obtain the following recursion relation

(x1 +x2 +x3)L = •
x1 + y1

•
x2 + y1

y2 •
x3

+ •
x1

•
x2 + y2

y1 •
x3 + y2

, (2.33)

where two of the diagrams are evaluated in the previous example and therefore the value
of L(x1, y1, x2, y2, x3) becomes

L = 1
x1 + x2 + x2

[ 1
x1 + y1

Ψ(0)
4 (x2 + y1, y2, x3) + Ψ(0)

4 (x1, y1, x2 + y2)
1

x3 + y2

]
. (2.34)

We can also demonstrate the use of the recursion relations in the case of the one-loop
diagram discussed before (2.19),

• •x1 x2

y1

y2

= 1
x1 + x2

[
Ψ(0)

4 (x1 + y1, y1, x2 + y1) + Ψ(0)
4 (x1 + y2, y2, x2 + y2)

]
. (2.35)

This matches with the expression (2.23) which was evaluated by explicitly summing all the
terms.

We pause to mention an important physical point about the poles in the expression
of the wave function. Notice that by using this recursion relation we always end up with
the denominator containing the total energy (Etot) entering the diagram. For example, in
the case of the one-loop diagram in (2.23) we have the pole 1

x1+x2
. This factor of 1

Etot
is a

universal factor and is present in every diagram which is easy to see by using the recursion
relation in any general graph [20].10 By analytically continuing the energy and taking
the residue at this pole we obtain the corresponding S-matrix for high energy scattering
in flat space and hence this is known as the flat space limit [29].11 This is because this

10The other poles are also of physical significance and we refer the reader to [20] for a discussion on this.
11For tree level diagrams the residue at this pole exactly corresponds to the flat space S-matrix. For

loop-level diagrams, the flat space limit gives the corresponding loop-level integrand of the S-matrix but
with the integration over l0 already performed.
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•
x1

•
x1

•
x2

•
x1

•
x2y

• •
x1 x2

y1

y2

y3

Figure 3. The bulk-boundary propagators are denoted by a bold dashed line in order to avoid
drawing the boundary of spacetime.

•
x1 k

y1

•
x1 k

•
x2y1

y2

•
x1

•
x2y k

y1 y2

Figure 4. Contributions from the Cactus diagrams at one-loop and two-loop.

pole effectively restores energy conservation, which was broken because of the boundary
at η → 0. In other words, the scattering process “stops feeling the effect of the boundary”
in this limit. It is important to note that there is no pole in the physical space of the
momenta and for seeing these features the momenta have to be analytically continued. We
encourage the interested reader to refer to [20, 21] for a discussion on this issue.

3 Bulk Witten diagrams

In this paper, we go beyond the work in [20, 32] and evaluate the integrals for certain
two-loop diagrams and also for the one-loop triangle diagram. These will be relevant for
the case of ϕ4 theory in D = 4 and for ϕ3 theory in D = 6 respectively. We shall use the
recursion relations [20] reviewed in the previous section to write the loop integrands.

3.1 ϕ4 in dS4

The diagrams that contribute to the two-point function in first and second order in per-
turbation theory are given below,

3.1.1 Cactus diagrams

The recursion relations in the previous section can also be used to write the loop integrand
for the cactus diagram. However, it requires one to carefully regularize some integrals as
shown below. Using the diagrammatic rules, the expression for the one-loop diagram above
is given as,

R(1) =
∫ 0

−∞
dη eix1ηG(η, η, y1) , (3.1)
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with x1 = 2|k| and y1 = |l|. Following the method described in equation (2.25) we
can consider the integral of the total derivative (in η) of the integrand in equation (3.1).
However,the Green’s function at coincident points G(η, η, y) is not zero as η → −∞12 and
therefore we need to regularize it using the point splitting procedure and then taking the
limit limη′→η G(η, η′, y), which gives 0 as η → −∞ (following from the boundary value of
the Green’s function). Thus consider the following regularized expression13

0 = (−i)
∫ 0

−∞
dηdη′

(
∂

∂η
+ ∂

∂η′

)[
eix1ηδ(η − η′)G(η, η′, y1)

]
,

=
∫ 0

−∞
dηdη′eix1ηδ(η − η′)

[
x1 +

(
∂

∂η
+ ∂

∂η′

)
G(η, η′, y1)

]
.

(3.2)

By using the formula (2.27) and integrating over δ(η − η′) we obtain∫ 0

−∞
dη eix1η

[
x1 − e2iηy1

]
= 0 =⇒ R(1) =

1
x1(x1 + 2y1)

. (3.3)

Restoring the loop integral we get the following expression

R(1) =
∫
d3l

1
4k(k + l) . (3.4)

Since the integral is spherically symmetric we can easily evaluate it by going to spherical
polar coordinates

R(1) =
4π
4k

∫ Λ

0

l2dl

k + l
, (3.5)

which gives

R(1) =
Λ2

4k − Λ
2 − k

2 log kΛ . (3.6)

Notice that the flat space limit only captures the UV part of the result and the finite
part of this diagram has a different behavior from the corresponding Feynman diagram in
flat space (as this is dependent on the external momentum k) unless the theory contains
derivative interactions. Divergences appearing as polynomials in a Λ are absent in another
well-known regularization scheme known as dimensional regularization.

It is interesting to note that this integral can also be evaluated using the Feynman
rules by re-writing the bulk-bulk propagator in terms of its “spectral representation”,

R(1) =
2
π

∫ 0

−∞
dη e2ikη

∫ ∞

0
dp

sin2(pη)
p2 − l2

, (3.7)

and performing the η-integral, we obtain

R(1) =
1

2πk

∫ ∞

0

dp

p2 − l2
p2

p2 + k2 = 1
4k(k + l) , (3.8)

which reproduces the same integrand as equation (3.3) evaluated using the algorithm.
12

G(η, η, y) = (1− e2iyη)/(2y) .

13The δ(η − η′) function in this step should be thought of a distribution.
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The 1PI two-loop cactus diagram (see figure 4) is more complicated and requires careful
regularization for the bulk point integrals as described in appendix A. Using the result
derived in the appendix (A.16) the loop integral becomes,

R(2) =
∫ 2d3l1d

3l2
x1(x1+2y1)

[ 1
(2y1)(2y2+2y1)(x1+2y1)

+ 2
(x1+2y1+2y2)(x1+2y1)(2y1+2y2)

]
,

(3.9)
with x1 = 2|k|, y1 = |l1| and y2 = |l2| . Since the integrals are spherically symmetric, it is
straightforward to perform them in the same way as that of the single loop. Also, the l1
and l2 integrations are independent of each other and therefore, the integration measure
simply becomes d3l1d

3l2 = (4π)2l21l
2
2dl1dl2. The order of integration does not matter but

we find that it is convenient to perform the integration over the outermost loop (l2) and
then go inwards (l1).

Upon performing the integrals, we obtain the following result for R(2),

R(2) =
π2Λ2

4k

[
3− 2 log kΛ

]
+ π2Λ

[
5 + 2 log kΛ

]
− 90π2k

72

[
π2

3 + 13
10 +

(
log kΛ + 1

3

)2]
(3.10)

Apart from the conventional 1PI diagrams we also have another diagram at 2-loop as
shown in figure 4. Unlike the usual Feynman diagrams in QFT, it is not obvious that the
connected Witten diagrams can be trivially obtained from the 1PI Witten diagrams as one
has to integrate over the bulk points that contain the bulk-bulk propagators. This utilizes
the procedure we described for the diagrams above and we obtain the following relation

•
x1

•
x2y

y1 y2

= 1
(x1 + x2)

[
•

x1 + 2y1
•
x2

y + •
x1

•
x2 + 2y2

y

+ •
x1 + y + 2y1

•
x2 + y + 2y2

]
.

(3.11)

It should be noted that only the last diagram splits into 2-1PI diagrams. Using the algo-
rithm we can write the final loop integrand,

∫
d3l1d

3l2R(1,1)

= 1
(x1+x2)(x1+y+2y1)(x2+y+2y2)

(3.12)

×
[ 2
(x1+y)(x1+x2+2y1)

+ 2
(x1+x2+2y1+2y2)(x1+x2+2y1)

+ 1
(x1+y)(x2+y)

]
,

where x1 = k, x2 = k and y = k, y1 = l1, y2 = l2. Since the diagram does not completely
reduce to a product of R(1) it implies that studying the conventional 1PI diagrams are not
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sufficient. The final loop integral for this diagram is given as

R(1,1) =
∫
d3l1d

3l2
1

8k(k + l1)(k + l2)

[ 1
2k(k + l1)

+ 1
2(k + l1 + l2)(k + l1)

+ 1
4k2

]
,

= π2Λ4

8k3 + π2Λ2

4k

(
2 log kΛ + 3

)
− π2Λ

4 − 1
2π

2k

(
log kΛ − 1

2

)2
. (3.13)

Although these diagrams have been regularized for interactions that are conformally
invariant, it is possible to use the same regularization technique for any time-dependent
interaction as explained in section 4.

3.1.2 Sunset diagram

A more complicated diagram at two-loop is the sunset diagram. The integrand for the
sunset diagram can be written in a convenient form using the algorithm described in
section 2,

k• •
x1 x2

y1

y2

y3

≡
∫
d3l1d

3l2

3∑
i=1

2∑
j=1

Yij , (3.14)

where the terms are given as

Y11 = 1
ET

1
x1 + x2 + 2y3

1
x1 + x2 + 2(y2 + y3)

1
x1 + y1 + y2 + y3

1
x2 + y1 + y2 + y3

,

Y12 = 1
ET

1
x1 + x2 + 2y3

1
x1 + x2 + 2(y1 + y3)

1
x1 + y1 + y2 + y3

1
x2 + y1 + y2 + y3

,

Y21 = 1
ET

1
x1 + x2 + 2y1

1
x1 + x2 + 2(y1 + y2)

1
x1 + y1 + y2 + y3

1
x2 + y1 + y2 + y3

,

Y22 = 1
ET

1
x1 + x2 + 2y1

1
x1 + x2 + 2(y1 + y3)

1
x1 + y1 + y2 + y3

1
x2 + y1 + y2 + y3

,

Y31 = 1
ET

1
x1 + x2 + 2y2

1
x1 + x2 + 2(y1 + y2)

1
x1 + y1 + y2 + y3

1
x2 + y1 + y2 + y3

,

Y32 = 1
ET

1
x1 + x2 + 2y2

1
x1 + x2 + 2(y2 + y3)

1
x1 + y1 + y2 + y3

1
x2 + y1 + y2 + y3

.

(3.15)

We use the notation ET = x1 + x2 . The values of xi, yi can be written in terms of the
external momenta k and the loop momenta l1, l2,

x1 = x2 = |k|, y1 = |l1|, y2 = |l1 + k − l2|, y3 = |l2| .

We now proceed onto evaluating this integral. The value of integrals over Yij shall be
denoted by Tij , i.e., Tij =

∫
d3l1d

3l2 Yij . By a simple change of variables, we see that the
number of independent integrals are just three, which are given as, T11, T12 and T31. This
can be seen by making the following substitution l1 ↔ l2 and k → −k . It is also interesting
to note that the integrals T12 and T31 are related to T11 by change of variables. To see this,
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in T12 we can use the substitution −l′1 = l1 + k − l2 and in T31, we use l′2 = l1 + k − l2.
These then give us T12 = T11 and T31 = T12. This means the final contribution to the
sunset diagram is simply 6T11. This shows that there is further simplification at the level
of the integrals than in the integrands.14 We now proceed to the evaluation of T11 .

Evaluation of T11. By plugging in the values of xi’s and yi’s in Y11, we obtain the
following

T11 =
∫
d3l1d

3l2
1

4ET

1
k + l2

1
k + |l1 + k − l2|+ l2

1
(k + l1 + |l1 + k − l2|+ l2)2 . (3.16)

It is easier to perform the integral over l1 first,

T11 =
∫
d3l2

1
4ET

1
k + l2

∫
d3l1

1
k + |l1 + k − l2|+ l2

1
(k + l1 + |l1 + k − l2|+ l2)2 . (3.17)

The advantage of performing the integrals in this order is that the integrals are manifestly
axisymmetric and therefore we can align the vector k − l2 (which is to be held constant
while integrating over l1) about the z-axis of l1. By doing this, the l1 integral becomes∫ 2πdl1dcosθ1

k+ l2+
√
l21 + |k− l2|2+2l1|k− l|cosθ1

1
(k+ l1+ l+2+

√
l21 + |k− l2|2+2l1|k− l|cosθ1)2

.

(3.18)
This integral can be performed by regulating the l1 integral by a hard cutoff Λ . One can
similarly perform the integral over l2 by aligning the vector k with the z-axis of l2 . The
final result after performing the two integrals is given as

T11 = πk2

ET

[
Λ2

6k2

(
6− π2

)
− 3Λ

2k +
(
log kΛ − 1

12

)2
+ 1

18

(
4π2 + 95

8

)]
. (3.19)

By substituting ET = 2k we obtain the final value of the sunset diagram,

k• •
x1 x2

y1

y2

y3

= πk

[
Λ2

2k2

(
6− π2

)
− 9Λ

2k + 3
(
log kΛ − 1

12

)2
+ 1

6

(
4π2 + 95

8

)]
.

(3.20)
The momentum dependence is consistent with the expectation from the CFT 2-point func-
tion. The UV divergence in this diagram is as expected from the corresponding diagram
in flat space.

For computing the full two-point function at two loops, we would also require the
diagram obtained from the counterterm which would be obtained by renormalizing the
one-loop cactus,

•⊗
2k

(3.21)

We leave the discussion of these diagrams and renormalization schemes in upcoming work.
14This suggests that the loops integrals over the triangulations of the cosmological polytope [20] can give

rise to simpler geometric structures. It might be interesting to study the loop integrals from this viewpoint.
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• •x1 x2

y1

y2

y3

y4

k1

k2

k3

k4

• •x1 x2

y1

y2

Figure 5. One-Loop contribution to the Four-Point Function.

The method described above can also be used to study more complicated diagrams of
similar kind, such as the four-point function in ϕ6 theory in D = 3,

3.1.3 4-point function: bubble diagram

Using a similar technique we can also evaluate the four-point function in ϕ4 theory as the
leading loop contribution comes from a bubble diagram of the form [32], with x1 = k12 =
|k1| + |k2|, x2 = k34 = |k3| + |k4|, y1 = |l| and y2 = |l + k1 + k2| . These classes of
diagrams are commonly known as the bubble diagram. The integrand of this follows in a
straightforward manner from the algorithm [20, 32],

A
(1)
4 = 1

(x1 + x2)(x1 + y1 + y2)(x2 + y1 + y2)

[ 1
x1 + x2 + 2y1

+ 1
x1 + x2 + 2y2

]
. (3.22)

The integral is given as

A
(1)
4 =

∫
d3l

ET (k12+ l+ |l+k1+k2|)(k34+ l+ |l+k1+k2|)

[ 1
ET +2l +

1
ET +2|l+k1+k2|

]
(3.23)

with ET = k12 + k34 . There are two terms appearing in the expression above and by a
change of variables l′ = l + k1 + k2, they reduce to the same term

A
(1)
4 =

∫ 2d3l

ET (k12 + l + |l + k1 + k2|)(k34 + l + |l + k1 + k2|)(ET + 2l) . (3.24)

We can perform this integral in a similar way as before and use

|l + k1 + k2| =
√
l2 + (k1 + k2)2 + 2k|k1 + k2| cos θ

with the measure of the integral given as d3l = 2πl2dl sin θdθ .

A
(1)
4 = 1

8k

[
π2

3 + 4k log 2
k12 + k34

+ log2
(
k34 − k

k + k12

)
+ log2

(
k12 − k

k + k34

)
− log2

(
k + k12
k + k34

)
(3.25)

+ 2Li2
k + k34
k − k12

+ 2Li2
k + k12
k − k34

+ 4k
k2

12 − k2
34

(
k34 log

k + k12
Λ − k12 log

k + k34
Λ

)]
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k• •
x1 x2

y1

y2

Figure 6. 2-point one-loop graph for ϕ3 theory.

This result shows that the 4-point function at one-loop (for conformally coupled interac-
tions) has a higher transcendentality (as it contains Li2(x)) than the two-point functions.

3.2 ϕ3 in dS6

We now turn to the one-loop diagrams in ϕ3 theory in D = 6. The advantage of working
in D = 6 is that it makes the theory conformally coupled and therefore we can use the
algorithm described in the previous section to evaluate this.

3.2.1 One-loop diagram at 2 points: bubble diagram

The one-loop contribution in the two-point wave function coefficient is obtained from the
following diagram15 This diagram also falls under the class of the bubble diagrams and
therefore has the same integrand as (3.22) in the notation of [20], albeit, with different
values of x1, x2, y1 and y2.

Aϕ3,(2) =
1

(x1 + x2)(x1 + y1 + y2)(x2 + y1 + y2)

[ 1
x1 + x2 + 2y1

+ 1
x1 + x2 + 2y2

]
, (3.26)

with x1 = x2 = |k|, y1 = |l| and y2 = |l+k| . Since the loop integral is performed in D = 6
and is axisymmetric the measure of the integral becomes d5l = S3l

4 sin3 θdθdl, where S3 is
the area of the unit 3-sphere. By substituting this and performing the l integral after the
θ integral, we obtain the final value of the two-point function at one-loop

Aϕ3,(2) =
Λ2S3
12k − ΛS3

3 − kS3
120

(
7 + 50 log kΛ

)
. (3.27)

A part of this diagram was also studied using the cosmological cutting rules developed
in [35].

3.2.2 One-loop diagram at 3 points: triangle diagram

The contribution to the three-point wave function coefficient at one loop is given by the
triangle diagram . By using the algorithm described in section 2, we can write the loop

15This diagram was computed in [32] with a wrong integration measure, which is corrected in this paper.
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•

• •

x1

x2x3 y23

y12y31

Figure 7. Triangle diagram in ϕ3 theory.

integrand for this diagram recursively

•

• •

x1

x2x3 y23

y12y31

= 1
x1+x2+x3

[
L(x1+y12,y13,x3,y23,x2+y12) (3.28)

+L(x3+y23,y13,x1,y12,x2+y23)+L(x1+y13,y12,x2,y23,x3+y13)
]
,

where the term L(x1, y1, x2, y2, x3) corresponds to the following diagram and is evaluated
in (2.32),

L(x1, y1, x2, y2, x3) = •
x1

y1 •
x2

y2 •
x3

.

This enables us to write the integrand (3.28) as a sum of three terms

A
(1)
3 = A

(1)
3,1 +A

(1)
3,2 +A

(1)
3,3 , (3.29)

which are given as

A
(1)
3,1 = 1

ET

1
ET + 2y23

1
x1 + y12 + y13

1
x2 + y12 + y23

1
x3 + y23 + y13

{
1

x1 + x2 + y13 + y23

+ 1
x1 + x3 + y12 + y23

}
,

A
(1)
3,2 = 1

ET

1
ET + 2y13

1
x1 + y12 + y13

1
x2 + y12 + y23

1
x3 + y23 + y13

{
1

x1 + x2 + y13 + y23

+ 1
x2 + x3 + y12 + y13

}
,

A
(1)
3,3 = 1

ET

1
ET + 2y12

1
x1 + y12 + y13

1
x2 + y12 + y23

1
x3 + y23 + y13

{
1

x1 + x3 + y12 + y23

+ 1
x2 + x3 + y12 + y13

}
,

(3.30)
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k1

k2
k3

with x1 = |k1|, x2 = |k2|, x3 = |k3| and y12 = y21 = |l|, y23 = y32 = |l + k2|, y31 = y13 =
|l−k1|, and ET = k1 + k2 + k3 . The value of the diagram is obtained after performing the
integral over the loop momenta and is given as

A
(1)
3 =

∫
d5l A

(1)
3 . (3.31)

It is difficult to perform this integral for a generic configuration of momenta. However, it
is possible to evaluate them in the Squeezed Limit (where we take |k3| → 0). Such a limit
was also useful in analyzing the 3-point function of CFTs in momentum space [36]. In this
limit, the configuration of momenta becomes the following, The integrands tremendously
simplify in this limit and they all can be written in terms of the following three integrands,

I
(1)
3,1 = 1

8ET

1(
k2 + |l + k2|

)2
1(

k2 + l + |k2 + l|
)2

1
|k2 + l|

,

I
(1)
3,2 = 1

4ET

1
k2 + |l + k2|

1(
k2 + l + |k2 + l|

)3
1

|k2 + l|
,

I
(3)
3,3 = 1

4ET

1
k2 + l

1(
k2 + l + |k2 + l|

)3
1

|k2 + l|
.

(3.32)

The original integrands in (3.30) become

A
(1)
3,1

|k3|→0== I
(1)
3,1 + I

(1)
3,2 , A

(1)
3,2

|k3|→0== I
(1)
3,1 + I

(1)
3,2 = A

(1)
3,1, A

(1)
3,3

|k3|→0== 2I(1)
3,3 , (3.33)

and hence the integral (3.31) can be expressed as

A
(1)
3 = 2

∫
d5l

[
A

(1)
3,1 +A

(1)
3,2 +A

(1)
3,3

]
. (3.34)

These integrals are similar to the integrals in the previous section and can be evaluated
using the same methods. The final result is as follows

A
(1)
3 = − S3

24ET

[
π2 − 1 + 6 log k2

Λ

]
. (3.35)

Since the three-point function is exactly known from the CFT side (see equation (C.7)),
it should also be possible to also evaluate it using Witten diagrams and check that the
computations agree. As illustrated in section 4, this implies that in a particular renor-
malization scheme, it is possible to find counterterms that cancel the divergences and lead
to the structure of the expected CFT three-point function. Following the discussion in
appendix C.2 it is expected that the momenta dependence of this diagram for generic
momenta takes the form

1
ET

∑
perm[k1,k2,k3]

log E2
T

k1Λ
(3.36)

with ET = k1 + k2 + k3 and it would be interesting to derive this directly by evaluating
the integrals in equation (3.31) and to study this using the cosmological cutting rules [35]
or the cosmological bootstrap [25].
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k2 k2

Figure 8. Configuration of momenta in the squeezed limit for the Box diagram.

k1 k2 k4k3

Figure 9. Tree level 4-point function in ϕ3 theory for D = 4.

Box diagrams. In the previous section, we evaluated the triangle diagram in the squeezed
limit. Using the same techniques one can also evaluate the box diagram in the squeezed/collinear
limit when the adjacent or opposite legs are collinear, i.e., After applying the algorithm
described in the previous section, the loop integral can be simplified to the following form

1
ET

∫
d5l

la1(k2 + l)a2(k2 + l + |k2 + l|)a3
(3.37)

with a1 + a2 + a3 = 6 and ET is the total energy pole. These are similar to the integrals
we have had until now. Although it is possible to do these integrals, it is not clear what
it is useful for other than some consistency checks for CFT correlation functions in certain
special limits (e.g., when two points become coincident).

3.3 Extension to time-dependent interactions

Until now we have considered theories where the interaction terms respected conformal
invariance. For example, two main cases that we studied, had the following interactions:
ϕ4 theory in D = 4 and ϕ3 theory in D = 6. However, the method that we discussed in the
previous sections can also be used to work in other situations. For example, ϕ3 theory in
D = 4. In this example, even the tree-level Witten diagrams have higher transcendentality
than their conformal counterpart (which is ϕ3 theory in D = 6). For example, we first
review the computation of the four-point function [19] at the tree level and then extend it
to the one-loop case. For this theory, in dS4 space, the interaction vertices come with a
factor of η−1 (see the definition of λk(η) in (2.3)). Therefore the value of this diagram 9 in
dS4 is given as ∫ 0

−∞

dη1
η1

dη2
η2
eik12η1eik34η2G(η1, η2, |k1 + k2|) . (3.38)

where k12 = |k1| + |k2| and k34 = |k3| + |k4|. The presence of factors η−1
1 η−1

2 in the
integration makes it different from the computations that have already been performed.
However, it is possible to reformulate this calculation using the procedures outlined in
section 2.2. To do this we can recast (η1η2)−1 as an integral as shown below∫ ∞

k12

∫ ∞

k34

∫ 0

−∞
dη1dη2 e

i(k1+k2)η1ei(k3+k4)η2G(η1, η2, |k1 + k2|) . (3.39)
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Figure 10. One-Loop contribution to the Three-Point Function.

This integral is evaluated to be [19],
1

2|k1 + k2|

[
Li2

k12 − kI

kI
+ Li2

k34 − kI

kI
+ log k12 + kI

kI
log k34 + kI

kI
− π2

6

]
, (3.40)

with kI = |k1 + k2|. The structural similarity between this expression and the one-loop
diagram for ϕ4 theory in dS4 (3.25) suggests that one might be able to derive these using
other methods such as cosmological cutting rules [35]. It might be interesting to look at
such connections and we postpone this to a future project.

One-loop. We now demonstrate how we can evaluate the contribution at one-loop for
the figure 6 for any general cosmology. The integrand there is of the form

A
4,(1)
ϕ3 =

∫ 0

−∞
dη1dη2

eikη1

ηρ

eikη2

ηρ

∫
d3l G(η1, η2, l)G(η1, η2, |l + k|) , (3.41)

with ρ being a positive number which is obtained from the vertex factors containing a(η) =
1

ηρ . By using an integral transform we can now convert this integral to a form that we have
evaluated before. This leads us to,

A
4,(1)
ϕ3 =

∫ ∞

0

ds1ds2
Γ[ρ]2 (s1s2)ρ−1

∫
d3l × • •k − is1 k − is2

y1

y2

, (3.42)

where y1 = |l| and y2 = |l + k|. The loop integral is exactly of the form (3.27) and
leads to a similar expression. Although it is challenging to obtain a general form for the
aforementioned integration, one can perform the integrals in analytic form for specific
values of ρ (with ρ > 0). For example, for ρ = 1 (which would be the case for ϕ3 theory in
dS4) the analytic structure of the integral only contains terms with transcendtality of log k.

We also discuss another example where we have two kinds of interactions in the bulk,
for example, gϕ3 + λϕ4 in dS4. Since one interaction is conformal invariant we shall only
have to extend the momenta for the second point as shown below. The contribution of this
diagram is

Aϕ4+ϕ3 =
∫ ∞

0
ds

∫
d3l × • •k12 k3 − is

y1

y2

. (3.43)
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This integration can be explicitly performed and gives an answer very similar to equa-
tion (3.25) but with different coefficients.16

4 Conclusion and discussion

Summary. In this paper, we have studied the wave function coefficients for conformally
coupled scalars at one and two-loop level. These results can also be used to compute the
cosmological correlation functions for any general cosmology and transition amplitudes in
AdS for conformally coupled scalars under suitable assumptions. The use of recursion
relations, developed in [20], has been a key technique in simplifying the loop integrands,
enabling us to evaluate these integrals in a more convenient form. Some of the diagrams
which are exactly calculable using these methods include Cactus, Sunset, and Bubble, at
two point, with a possible extension to similar diagrams at three and four-point. It is also
possible to evaluate the triangle diagram in the squeezed limit (see section 3.2.2) using
these methods and also bootstrap its general structure. In particular, the cactus diagram,
which naively gives a divergent expression from the bulk integrals can be regularized in a
consistent manner. While our results have primarily focused on self-interacting conformally
coupled scalar fields, they can be easily extended to any cosmological model, including cases
where the interaction potential is not conformally invariant, as discussed in section 3.3.

Inspired by [32], we adopted the hard cutoff regularization scheme for the loop in-
tegrals. While this approach may be suitable for scalar fields, it is not an appropriate
technique for gauge theories as this procedure is not gauge invariant. Compared to other
regularization methods, dimensional regularization presents more challenges as the form of
the propagators in momentum space (which typically are Bessel functions) is dependent
on the dimensions of spacetime. As a result, it becomes difficult to analytically continue
the method to arbitrary dimensions.

In this paper, we have evaluated loop integrals for scalar fields having a particular
scaling dimension with time-dependent interactions. However, it is important to note that
our approach has been limited to the regularization of the expressions. We have not yet
performed the renormalization of the diagrams. These need to be carefully handled and
have been discussed in several works in various contexts [10, 33, 37] and one of the next
steps would be to apply these to our construction. There has also been some discussion on
the choice of the regulator in [38, 39] and it would be interesting to also perform the loop
integrals in our paper using these regularization procedures.

Renormalization. Although we have not discussed this explicitly in the bulk of the pa-
per, it is possible to follow the usual schemes for renormalizing the diagrams. It should
be possible to add the necessary counterterms in a way such that they preserve the con-
formal symmetry of these correlators. This would allow one to read off the anomalous
dimension of the theory from the coefficient of log k terms in the case of 2-point functions
(see equation (C.17)) that appear when the CFT correlation functions in momentum space

16For the convenience of the reader, we have attached a Mathematica notebook that computes this
integral in the supplementary material.
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are expanded about their conformal dimension, ∆ = d−1
2 . A similar argument also works

for the 3-point function. This renormalization scheme has been discussed at one-loop in
momentum space for two point functions in ϕ4 theory in dS4 [31] and there has been some
progress in utilizing such an approach in position space as well, for example, [10, 33]. It
would be interesting to explicitly compute the counterterms and use them to study the
renormalization of higher-point functions in momentum space.

Relation with transition amplitudes. An object that is closely related to the wave
function coefficients are known as transition amplitudes in AdS and is defined as [17, 40, 41]

T (kij)(2π)dδd
(∑

ij

kij

)
= ⟨s|O(k3j1 · · ·O(k3jn))|s′⟩ (4.1)

with the momentum-conserving delta function being extracted out on the left-hand side.
The states |s⟩, |s′⟩17 are labeled by the momenta k1j and k2j respectively and are dual to
linear combinations of normalizable modes. These are evaluated in the same way as one
evaluates the wave function coefficients, i.e., the bulk-boundary correlators are chosen to
be the normalizable modes and the rest of the diagram is exactly similar, where one draws
the usual bulk-bulk propagators and contracts them with the normalizable bulk-boundary
propagators. To compare with the cases considered in this paper, all the non-normalizable
modes are switched off. Hence all the results in this paper can also be extended to AdS by
a suitable analytic continuation [6].

Minimally coupled scalars. By comparing the propagators in minimally and confor-
mally coupled scalars, we see that they have very similar structures. The former comprises
of the following Bessel functions J3/2,K3/2 (in D = 4), whereas the latter has the Bessel
functions J1/2,K1/2. Since the Bessel functions J3/2,K3/2 almost follow the Cauchy’s expo-
nential functional equation, it might be possible to extend the algorithm for the recursion
relations reviewed in section 2.2 to minimally coupled scalars as well.

Spinning loops. The recursion relations developed in [20] can be extended to Yang-Mills
theory at tree level [24, 42]. This allows us to expand the integrand for loop diagrams [43] in
partial fractions. Therefore many diagrams discussed in this paper can also be evaluated
in Yang-Mills theory after regularizing them in a gauge invariant fashion. It would be
interesting to evaluate these diagrams in the self-dual sector of Yang-Mills as well. Since
there is evidence of double copy working at tree level for this theory [44], one can also try
to evaluate them at loop level for gravity and check if the double copy relations still hold.
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Figure 11. 2-loop Cactus diagram.
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A Regularization of 2-loop Cactus diagram

(A.1)

The expression for the 2-loop cactus diagram is given as

R(2) =
∫ 0

−∞
dη1dη2 e

ix1η1
[
G(η1, η2, y1)

]2
G(η2, η2, y2) (A.2)

where x1 = 2|k|, y1 = |l1| and y2 = |l2|. This is naively divergent because of the lack of
the damping factor in the η2 integral. Since the flat space limit of the integral is finite,
we expect that this divergence can be regularized. To do this, we re-write the integral
as suggested in figure 11 by inserting a regulator eix2η2 in the integrand (we suppress the
limits of the integrals from this step),

R(2) = lim
x2→0

R̂(2) ≡ lim
x2→0

∫
dη1dη2e

ix1η1eix2η2
[
G(η1, η2, y1)

]2
G(η2, η2, y2) (A.3)

Note that adding this factor is not enough by itself to give a finite answer for the integral as
will be demonstrated in the steps below. However, this does allow for some integrals in the
intermediate steps to be finite. For example, the integral

∫ 0
−∞ dη is divergent, however, by

inserting the regulator eixη in the integrand, we get a finite answer in the intermediate step∫ 0
−∞ dηeixη = 1

ix . With this regulator, we have an integral of the form in equation (2.24)
and can therefore use the algorithm of section 2.2

R̂(2) =
∫
dη1dη2e

ix1η1eix2η2
[
G(η1, η2, y1)

]2
G(η2, η2, y2) . (A.4)

Due to the presence of the bulk-bulk Green’s function at a coincident point, this expression
is a bit tricky to write using the recursion relation directly and hence we evaluate it step
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•

•

x1 + y1

x2 + y1

y2

y1

by step. First, we insert the time translation operator in the integrand and use the fact
that the integrand is zero at the boundary to give us the following relation∫

dη1dη2(−i)
(
∂

∂η1
+ ∂

∂η2

) [
eix1η1eix2η2

[
G(η1, η2, y1)

]2
G(η2, η2, y2)

]
= 0 . (A.5)

The action of the derivatives on the three terms is given as

1. eix1η1eix2η2 :∫
dη1dη2(−i)

(
∂

∂η1
+ ∂

∂η2

) [
eix1η1eix2η2

][
G(η1, η2, y1)

]2
G(η2, η2, y2) =

(
η1 + η2

)
R̂(2)

(A.6)

2.
[
G(η1, η2, y1)

]2:∫
dη1dη2e

ix1η1eix2η2(−i)
(
∂

∂η1
+ ∂

∂η2

) [
G(η1, η2, y1)

]2
G(η2, η2, y2)

= −2
∫
dη1dη2e

ix1η1eix2η2G(η1, η2, y1)eiy1(η1+η2)G(η2, η2, y2) ,
(A.7)

where this follows from (2.27). This integral is diagrammatically expressed as

3. G(η2, η2, y2):∫
dη1dη2e

ix1η1eix2η2
[
G(η1, η2, y1)

]2(−i)
(
∂

∂η1
+ ∂

∂η2

)
G(η2, η2, y2)

=
∫
dη1dη2e

ix1η1eix2η2
[
G(η1, η2, y1)

]2(−i)
(
∂

∂η2

)
G(η2, η2, y2) .

(A.8)

This is the term that naively leads to a divergent integral because of the coinciding
Theta functions. However, we can regulate it using point-splitting regularization,18

i.e.,

(−i) ∂

∂η2
G(η2, η2, y2) = (−i) lim

η′
2→η2

(
∂

∂η2
+ ∂

∂η′2

)
G(η2, η

′
2, y2) = −e2iy2η2 (A.9)

The main difference between the 1-Cactus and the 2-Cactus is that it was possible to
derive the former without using this method as shown in equation (3.7). However,
following the same method, in this case, leads to a divergent expression. Thus, the

18The correct normalization is decided by spectral representation for the bulk-bulk Green’s function given
in equation (3.7).
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x1

x2 + 2y2

y1 y1

algorithm provides a natural way to regulate such divergences. Using this regularized
expression, equation (A.8) becomes,∫

dη1dη2e
ix1η1eix2η2

[
G(η1, η2, y1)

]2
(
∂

∂η1
+ ∂

∂η2

)
G(η2, η2, y2)

= −
∫
dη1dη2e

ix1η1ei(x2+2y2)η2
[
G(η1, η2, y1)

]2
(A.10)

The diagrammatic representation for this integral is given below This diagram is not
to be confused with the usual bubble diagram as the two internal propagators in this
one carry the same momenta.

Combining the expressions above, we end up with the following diagrammatic expres-
sion for R̂(2)

R̂(2) =
1

x1 + x2

[
2 •

•

x1 + y1

x2 + y1

y2

y1
+ •

•

x1

x2 + 2y2

y1 y1 ] (A.11)

The two diagrams can be evaluated in a similar manner as above using the regularization
described in equation (A.9).

1. Diagram 1:

•

•

x1+y1

x2+y1

y2

y1
= 1

(x2+x1+2y1)
[

•

•

x1+2y1

x2+2y1

y2

+ •

•

x1+y1

x2+y1+2y2

y1 ]
= 1

(x1+x2+2y1)

[ 1
(x2+2y1)(x2+2y2+2y1)

1
x1+2y1

(A.12)

+ 1
(x1+x2+2y1+2y2)(x1+2y1)(x2+2y1+2y2)

]
2. Diagram 2:

•

•

x1

x2 + 2y2

y1 y1
= 2
x1 + x2 + 2y2

•

•
y1

x1 + y1

x2 + y1 + 2y2

(A.13)

= 2
(x1 + x2 + 2y2)

1
(x1 + x2 + 2y1 + 2y2)(x1 + 2y1)(x2 + 2y1 + 2y2)
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Figure 12. n-loop Cactus diagram.

Combining everything we have an expression for R̂(2)

R̂(2) =
2

x1 + x2

{
1

(x1 + x2 + 2y1)

[ 1
(x2 + 2y1)(x2 + 2y2 + 2y1)(x1 + 2y1)

(A.14)

+ 1
(x1 + x2 + 2y1 + 2y2)(x1 + 2y1)(x2 + 2y1 + 2y2)

]

+ 1
(x1 + x2 + 2y2)(x1 + x2 + 2y1 + 2y2)(x1 + 2y1)(x2 + 2y1 + 2y2)

}

Clearly this expression is finite as we take x2 → 0 and therefore obtain the regulated
expression for R(2) = limx2→0 R̂(2)

R(2) =
2

x1(x1 + 2y1)

[ 1
(2y1)(2y2 + 2y1)(x1 + 2y1)

+ 1
(x1 + 2y1 + 2y2)(x1 + 2y1)(2y1 + 2y2)

]
+ 1
x1(x1 + 2y2)(x1 + 2y1 + 2y2)(x1 + 2y1)(2y1 + 2y2)

. (A.15)

Hence the two-loop cactus diagram is given as

R(2) =
∫ 2d3l1d

3l2
x1(x1+2y1)

[ 1
(2y1)(2y2+2y1)(x1+2y1)

+ 2
(x1+2y1+2y2)(x1+2y1)(2y1+2y2)

]
.

(A.16)
with x1 = 2|k|, y1 = |l1| and y2 = |l2| .

n-Cactus and other tadpoles. The regularization procedure described above can be
used to evaluate the n-Cactus diagram as well. The integral over ηn is divergent but it is
easy to see that it can be regulated in the same way as the 2-cactus diagram. First, one
introduces a term eixnηn in the integrand. Then, using the regularization technique used
in equation (A.9) we can regularize the ηn integral. This process can then be repeated for
the integrals after that. Using this, we can diagnose the divergences encountered in the
loop integrand for any diagram of the kind This resolves the issue of the tadpoles, cactus,
and other diagrams with propagators purely lying in the bulk being divergent.
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• •

•

x1 x2

y1

y2

• ••

••

x1 x2

y2

x

y

z

k2

k3

−k1

l

ψ

θ

Figure 13. Vector configuration of momenta in triangle diagram. We use the fact that the three
external momenta k1,k2,k3 satisfy momentum conservation and therefore form a plane. We align
this with the y − z plane of the loop integral l with the vector k2 along the z-axis.

B Evaluating the triangle diagram for k3 ̸= 0

In section 3.2.2 we evaluated the triangle diagram in the squeezed limit. Here we present
a perturbative approach to obtain a more general result away from the squeezed limit. In
the squeezed limit, we considered k1 = k2 = k and k3 = 0. However, a more general result
for the one-loop triangle diagram can be derived by performing a series expansion in two
parameters: k1 = k2 + ϵ1 and k3 = ϵ2. In this expansion, the loop propagators are affected
since |l−k1| ̸= |l+k2|. On the other hand, |l+k2| remains the same as before. To determine
|l − k1|, we utilize momentum configuration shown in figure 13, which is k1 + k2 + k3 = 0.
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For simplicity, we will work at O(ϵ01),19 which implies k1 = k = k2.

|l − k1| = |l + k2 + k3| =
√
l2 + k2 + k2

3 + 2lk cos θ + 2k2.k3 + 2l.k3 , (B.1)

k2 = k l̂z , k3 = k3 cos
(
π + ψ

2

)
l̂y + k3 cos

(
π

2 + ψ

2

)
l̂z , (B.2)

l = l sin θ cosϕ l̂x + l sin θ sinϕ l̂y + l cos θ l̂z (B.3)

here ψ is the angle between k1 and k2, it is easy to see that,

k2.k3 = −kk3 sin
(
ψ

2

)
, (B.4)

l.k3 = −lk3

(
cos(θ) sin

(
ψ

2

)
+ sin(θ) cos

(
ψ

2

)
sin(ϕ)

)
. (B.5)

Using k1 + k2 + k3 = 0, we get sin(ψ/2) = k3/2k and hence

|l − k1| =

√√√√√l2 + k2 + 2kl cos θ − 2k3l

√
1− k2

3
4k2 sin θ sinϕ+ k3

2k cos θ

 . (B.6)

For example, we will work out the following integrand

A
(1)
3,2 = 1

ET

1
ET + 2|l − k1|

1
k1 + l + |l − k1|

1
k2 + l + |l + k2|

1
k3 + |l + k2|+ |l − k1|

×
{

1
k1 + k2 + |l − k1|+ |l + k2|

+ 1
k2 + k3 + l + |l + k2|

}
, (B.7)

We consider a series expansion around k3 = 0. We substitute equation (B.6) into
equation (B.7) and leave the ET factor out from this substitution to ensure the correct
flat space-limit. This is also a natural thing to do from the point of view of the recursion
relation described in section 2.2 as the overall factor of ET always appears in the l.h.s. of
the recursion relation. The series can be written as follows:

A
(1)
3,2 =

∞∑
n=0

kn
3

(
A

(1)
3,2

)
n
, (B.8)

here
(
A

(1)
3,2

)
0

is the integrand in squeezed limit as given in (3.33).
As we progress in the order of expansion, we observe a reduction in the level of diver-

gence. This can be attributed to the structure of the propagators in the denominator of
equation (B.7). Each additional power of k3 in the numerator introduces an extra power of
the loop momenta l in the denominator. Consequently, beyond a certain order, the terms
in the series become free from divergences.

Specifically, in the ϕ4 theory with D = d + 1 = 4,20 we have shown that the zeroth-
order amplitude in k3 and all higher-order amplitudes are finite. Similarly, in the ϕ3 theory

19We provide a Mathematica notebook in the supplementary material to generalize to higher orders.
20To mimic the triangle diagram in the ϕ3 theory in D = 6, which is a three-point function, we will evaluate

the triangle diagram for ϕ4 theory in D = 4 with collinear momenta at each vertex, which effectively reduces
a six-point function of single trace operators to a three-point function of double trace operators. However,
it is trivial to generalize this using the Mathematica code supplied in the supplementary material.
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with D = d+ 1 = 6, the first-order and all subsequent order amplitude are also finite (the
zeroth order result is given in (3.35)).

For example, the O(k1
3) integrand in the series (B.8) is.

ET

k3

(
A

(1)
3,2

)
1
=−

2πkl3
(
(5cosθ+3)

√
k2+2klcosθ+l2+l(4cosθ+6)

)
4(k2+2klcosθ+l2)

(√
k2+2klcosθ+l2+k

)3(√
k2+2klcosθ+l2+k+l

)4

−
πl2

(
13k3+k2(13√k2+2klcosθ+l2+l(23cosθ+6)

))
4(k2+2klcosθ+l2)

(√
k2+2klcosθ+l2+k

)3(√
k2+2klcosθ+l2+k+l

)4

−
2πl4

(
3
√
k2+2klcosθ+l2+2l

)
4(k2+2klcosθ+l2)

(√
k2+2klcosθ+l2+k

)3(√
k2+2klcosθ+l2+k+l

)4 . (B.9)

The generic terms in the expansion (B.8) can be expressed using Apple Hypergeometric
functions. However, to maintain brevity, we have omitted writing them explicitly.

The full amplitude at O(k0
3) and O(k1

3) for ϕ4 theory in D = d + 1 = 4, after loop
integration, are,

(
A

(1)
3

)
0
= 0.03125 2π

ET

1
k2 ,

(
A

(1)
3

)
1
= −0.786073 1

ET

k3
k3 . (B.10)

C CFT correlators in momentum space

In this appendix, we review the derivation of the CFT correlation functions in momentum
space. These are obtained via a Fourier transform of the correlation functions in position
space [36].

C.1 2-point function

The 2-point function of scalar operators in the vacuum state in position space is given as

⟨O(x)O(0)⟩ = CO
x2∆ , (C.1)

where CO is a constant. Since the d-dimensional CFT is Euclidean we do not encounter
any branch cuts while performing the Fourier transform. Thus, the integral that we have
to evaluate is

⟨⟨O(k)O(−k)⟩⟩ =
∫
ddx

e−ik·x

x2∆ , (C.2)

where we use the notation ⟨⟨X⟩⟩ to denote the correlation function without the momentum-
conserving delta function. As the integral in equation (C.2) is axisymmetric, it can be
evaluated in a similar method as the loop integrals in the main text,

⟨⟨O(k)O(−k)⟩⟩ =
∫
ddx

e−ik·x

x2∆ = Sd−2

∫ ∞

0

dr

r2∆ r
d−1

∫ π

0
dθ sind−2 θe−ipr cos θ . (C.3)
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This integral can be expressed in terms of the Regularized Hypergeometric function 0F̃1,21

⟨⟨O(k)O(−k)⟩⟩ =
√
πΓ

[
d− 1
2

]
Sd−2

∫ ∞

0
dr rd−2∆−1

0F̃1

[
d

2 ;−
k2r2

4

]
. (C.4)

Evaluating this integral and plugging in the value of Sd−2 gives us

⟨O(k)O(−k)⟩ = πd/22d−2∆k2∆−d Γ(d
2 −∆)
Γ(∆) , (C.5)

which agrees with the conventional result for the momentum space two-point function in
CFTd derived using Mellins-Barnes representation [36]. For 2∆ − d = −1 =⇒ ∆ = 1 in
d = 3 or ∆ = 2 in d = 5, which agrees with the results derived using the Witten diagrams.

C.2 3-point function

We do not state the derivation of the CFT 3-point function but just quote the result
from [45], which is expressed in terms of integrals over 3 Bessel-K functions

⟨⟨O∆1(p1)O∆2(p2)O∆3(p3)⟩⟩ = pβ1
1 p

β2
2 p

β3
3

∫ ∞

0
dxx

d
2−1Kβ1(p1x)Kβ2(p2x)Kβ3(p3x) (C.6)

with βj = ∆j − d
2 . For the classes of Witten diagrams considered in this paper, we have

∆j ≡ ∆ = d−1
2 , d = 5 and hence β = −1

2 . This implies that

⟨⟨O∆(p1)O∆(p2)O∆(p3)⟩⟩ =
1

√
p1p2p3

∫ ∞

0
dx x

d
2−1K−1/2(p1x)K−1/2(p2x)K−1/2(p3x)

= π3/2

2
√
2(p1p2p3)(p1 + p2 + p3)

. (C.7)

This result agrees with the tree-level result of the three-point function computed using
Witten diagrams. However, to make contact with the loop level diagram, i.e., the triangle
diagram given in section 3.2.2, we need to understand the behavior of this correlator for
∆ → 2. This dependence is difficult to extract in general but it is possible to do it in the
linearized order by using the integral representation for the Bessel functions. The functions
that appear after performing the integrals contain log p1+p2+p3

p3
and their permutations.

Since the renormalized three-point diagram should match with equation (C.7), the analytic
structure of the triangle diagram can be completely understood for the case of ∆ = 2 in
d = 5 by studying the deviations away from ∆ = 2 and using the result of the diagram in
the squeezed limit (given in (3.35)).

C.3 Relation with cosmological correlators in dS and anomalous dimensions

In this appendix, we demonstrate how one can use the wave functionals derived in this paper
to compute cosmological correlation functions [46]. For ϕ4 theory in four dimensions, the
wave functions derived in this paper have the following expansion,

Ψ[ϕ] = e−
∫

d3kA(k)ϕ(k)ϕ(−k)−
∫

d3k1d3k2d3k3B(k1,k2,k3)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(−k1−k2−k3) (C.8)
21 ∫ π

0
dθ sinb θe−a cos θ =

√
πΓ

[1 + b

2

]
0F̃1

[
1 + b

2 ;
a2

4

]
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where the contributions from the loops to A(k) arise from equa-
tions (3.6), (3.10), (3.13), (3.19) and similarly for B(k1,k2,k3) in equation (3.25).22

In order to avoid a clutter of notations, we schematically denote equation (C.8) as

Ψ[ϕ] = e−AΦ2−BΦ4
. (C.9)

The equal (and late time) correlation function ⟨ϕ(k1)ϕ(k2) · · ·ϕ(kn)⟩ can be expressed in
terms of the wave function as

⟨ϕ(k1)ϕ(k2) · · ·ϕ(kn)⟩ =
∫
Dϕ |Ψ[ϕ]|2ϕ(k1)ϕ(k2) · · ·ϕ(kn) (C.10)

where we have suppressed the dependence on the time coordinate. As a concrete example,
we shall demonstrate the computation for n = 4. The functions A(k) and B(k1,k2,k3)
have the following perturbative expansions in the coupling constant,

A = A0 + λA1 + λ2A2 + · · · , B = λB1 + λ2B2 + · · · , (C.11)

where the important distinction is that B always starts at O(λ) whereas A starts at O(λ0) .
Therefore we can perform the path integral in (C.10) in the same way we do in quantum
mechanics. For this we can write |Ψ[ϕ]|2 in a more convenient form by expanding the
exponential e−BΦ4 perturbatively,

|Ψ[ϕ]|2 = e−2ReAΦ2(1− λReB1Φ4 + · · ·
)

(C.12)

This can be interpreted as the probability distribution for the path integral in equa-
tion (C.10). The 4-pt correlator is now given as,

⟨ϕ(k1) · · ·ϕ(k4)⟩ =
∫
Dϕe−2ReAΦ2(1− λReB1Φ4 + · · ·

)
ϕ(k1) · · ·ϕ(k4) (C.13)

For demonstration, we focus on the two terms above. The first term is fairly simple and is
given by Wick theorem,∫

Dϕe−2ReAΦ2
ϕ(k1) · · ·ϕ(k4) = ⟨ϕ(k1)ϕ(k2)⟩ ⟨ϕ(k3)ϕ(k4)⟩+ permutations (C.14)

Where the functions ⟨ϕ(q1)ϕ(q2)⟩ are given as

⟨ϕ(q1)ϕ(q2)⟩ =
δ3(q1 + q2)
2ReA(q1)

(C.15)

The second term when written more explicitly is given as,

λ

∫
Dϕe−2ReAΦ2ReB1Φ4ϕ(k1) · · ·ϕ(k4)

= λ

∫
d3q1d

3q2d
3q3ReB1(q1, q2, q3)

∫
Dϕϕ(k1) · · ·ϕ(k4)ϕ(q1)ϕ(q2)ϕ(q3)ϕ(−q1) (C.16)

= λ

∫
d3q1d

3q2d
3q3ReB1(q1, q2, q3) ⟨ϕ(k1)ϕ(q1)⟩ ⟨ϕ(k2)ϕ(q2)⟩ ⟨ϕ(k3)ϕ(q3)⟩ ⟨ϕ(k4)ϕ(q4)⟩

+ permutations
22The tree level contributions are not given in our paper but can be found in [20]. A similar analysis can

be repeated for ϕ3 theory for which we have computed the 2 and 3-point functions.
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where we have not neglected contributions from the disconnected pieces. This contributes
to the four-point cosmological correlation function in terms of the wave function coefficients
computed in the text.

It is interesting to note that the 2-pt correlation function takes exactly the same form
as that of a CFT in one lower spacetime dimension (discussed in the previous section) but
depending on the renormalization scheme, it picks up an anomalous dimension. This is
easily seen by expanding the 2-point function in the CFT about ∆ = D−2

2 . For comparing
with the results in our paper, we specifically consider the case when D = 4 and D = 6,23

⟨O(k)O(−k)⟩D=4,∆=1+ϵ =
2π2

k
+ 2π2ϵ

k

[
2 log k2 + γE − ψ(0)

(1
2

)]
,

⟨O(k)O(−k)⟩D=6,∆=2+ϵ =
2π3

k
+ 2π3ϵ

k

[
2 log k2 + γE − 1− ψ(0)

(1
2

)]
,

(C.17)

where γE is the Euler Gamma constant and ψ(0)(x) is the Poly Gamma function. As seen
from the equation above, the terms proportional to log k (which are also present in the
loop diagrams) lead to anomalous dimensions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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