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Abstract

The present work examines the possibility of warm inflationary paradigm in the modified gravity theory 
with fractal geometry. By choosing the normal fluid as radiation fluid and the effective fluid (with the extra 
term in modified field equation) as the inflaton field both strong and weak dissipative regimes have been 
studied using slow roll approximation with quasi-stable criteria for radiation. Finally, using the Planck data 
set, the present model has been analyzed for various choices of the fractal function and the dissipation 
parameter.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In cosmology, due to tremendous technological development there are series of precision 
observed data dealing with Cosmic Microwave Background [1,2], large scale structures [3,4], 
Barionic Acoustic Oscillation data [5,6] both strong and weak lensing [7–9], galaxy cluster num-
ber counts [10,11] and gravitational waves detections [12–14]. Based on these observed data one 
have the idea about the early histories of the universe as well as evolution and nature of the 
universe [15,16]. Inflationary paradigm is the best predictive description of the universe at the 
early eras just after big bang. This scenario not only solves the problems of the standard big bang 
cosmology but also it explains the origin of the CMB anisotropies and the large scale structure 
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of the universe [17,18]. On the other hand, recent CMB data discards several models of inflation 
and puts severe constraints on many other models [19] with single scalar field (inflaton) model is 
the best option.

At present, there are two distinct inflationary scenarios depending on the dynamics of the in-
flaton field and they are termed as cold and warm inflationary models. In cold inflationary (CI) 
mechanism the inflaton field interacts with other field degrees of freedom very weakly so that it 
cannot prevent the dilution of any pre-existing or newly formed radiation and as a result there is 
a period of supercooling in this scenario. Also in this model density perturbations are originated 
from the quantum fluctuations of the inflaton field [20]. On the other hand, in warm inflationary 
(WI) model [21–23] the interaction between the inflaton and other fields is very much dominated 
to produce a quasi-stationary thermalized radiation bath during inflation. So the thermal fluc-
tuations in the radiation bath is the primary source of density fluctuations and it is transported 
to the inflaton field as adiabatic curvature perturbations [24–28]. Due to this non-trivial dissipa-
tive dynamics (and also stochastic effects) the observed inflationary parameters namely tensor to 
scalar ratio (r), the scalar spectral index (ns) and the non-Gaussianity parameters (fNL) [29–34]
differ significantly from their values in CI. Further, in WI scenario it is possible to have a strong 
coupling between the inflaton field and other fields to have sufficient amount of radiation produc-
tion, preserving the required flatness of the potential. As a result, the supercooling of the universe 
(observed in CI) is compensated by the radiation production and the universe makes a smooth 
transition from the accelerated era of expansion (inflationary epoch) to radiation dominated phase 
in WI without encountering any (pre) reheating era. Moreover, according to swampland conjec-
tures [35–37], it is not possible to have de-Sitter vacua in string theory and also set very stringent 
constraints on inflation model-building leading to impossibility for CI while dissipation mecha-
nism dominated WI can accommodate these conjectures.

The paper is organized as follows: A brief review of warm inflation has been done in section 2. 
The basics of fractal gravity theory has been briefly discussed in section 3. Section 4 deals with 
a detailed study of warm inflation in fractal geometry. In this section different choices for fractal 
function have been made to explain the inflationary paradigm. Also for that choice of fractal 
function, both weak and strong dissipative regime have been investigated with two different 
choices of dissipation coefficient. Several physical parameters, for example slow roll parameters, 
tensor to scalar ratio (r), scalar spectral index (ns) have been formulated as a function of model 
parameters. Then this theoretical model has been compared with the r −ns diagram of the Planck 
2018 data to find out an admissible range of the model parameters. The paper ends with summary 
and conclusion in section 5.

2. Basic equations in warm inflationary scenario

In the background of flat FLRW space-time geometry, the Friedmann equations for warm 
inflation can be written as

3H 2 = ρφ + ρr, 2Ḣ + 3H 2 = −pφ − pr (1)

where (ρr, pr ) are the energy density and thermodynamic pressure of the radiation component 
and those for scalar field are ρφ and pφ respectively.

Due to interaction between these two components, scalar field decays and consequently en-
ergy is transferred from scalar field to radiation fluid, and this process is described by the 
following energy conservation equations,
2
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ρ̇r + 3H(ρr + pr) = �φ̇2, (2)

ρ̇φ + 3H(ρφ + pφ) = −�φ̇2, (3)

where � is the dissipation coefficient and it is considered as positive according as the second 
law of thermodynamics. By using the explicit expressions for the energy density and pressure of 

the scalar field (i.e. ρφ = 1

2
φ̇2 + V (φ), pφ = 1

2
φ̇2 − V (φ)), equation (3) can be rewritten as the 

generalized Klein-Gordon equation for the scalar field,

φ̈ + 3H(1 + Q)φ̇ + ∂V (φ)

∂φ
= 0 (4)

where the parameter Q = �

3H
is the ratio of the radiation production to expansion rate. By 

assuming the process to be quasi-de Sitter, the scalar field energy density dominates over the 
radiation energy density, ρφ � ρr , and the kinetic term of the scalar field is negligible compared 
to the potential, i.e. ρφ � V (φ). Also it is assumed that the production of the radiation component 
is quasi-stable during inflation, so ρ̇r � Hρr and ρ̇r � �φ̇2. Then equations (1)-(4) can be 
approximated as

3H 2 � V (φ) (5)

φ̇ � − V ′(φ)

3H(1 + Q)
(6)

ρr � �φ̇2

4H
= Cγ T 4 (7)

where T is the temperature of the radiation bath, Cγ = π2g∗
30

is the Stefan-Boltzmann constant, 

and g∗ is the number of degrees of freedom of the radiation fluid. Here ‘overdot’ and ‘prime’ 
denotes the differentiation with respect to cosmic time t and scalar field φ respectively.

Now during warm inflationary scenario, one can identify two regimes: namely the weak dis-
sipative regime where Q � 1 (equivalently � � 3H ) and the strong dissipative regime in which 
Q � 1 (i.e., � � 3H ). Moreover, one can consider the parameter � to be a constant (i.e., �0) 
or a function of the potential (i.e., � = �(φ)) or a function of the temperature of thermal bath 
T (i.e., � = �(T )) or function of both (i.e., � = �(φ, T )). If one consider � as a function of 
both φ and T , then using the result of quantum field theory in curved space, � can be chosen as 

� = �0
T m

φm−1 .

Using the above equations, one can express the first slow roll parameter as

ε1 = 1

2(1 + Q)

(
V ′

V

)2

= − Ḣ

H 2 (8)

The other two slow roll parameters can be expressed as

η = 1

(1 + Q)

V ′′

V
, β = 1

(1 + Q)

V ′�′

V �
(9)

The amount of cosmic expansion during the inflationary epoch is measured by the number of 
e-folds, N , given by
3
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N =
te∫

t�

Hdt =
φe∫

φ�

H

φ̇
dφ = −

φe∫
φ�

(1 + Q)
V

V ′ dφ (10)

where the subscripts ‘e’ and ‘�’ denote the quantity at the end of the inflation and at the horizon 
crossing time respectively.

On the other hand, due to the presence of radiation fluid in warm inflation dynamics, the 
source of density fluctuations correspond to thermal fluctuations. Thermal fluctuations depend 
on the fluid temperature T while quantum fluctuations are dependent on the Hubble parameter 
H . In the warm inflationary scenario, the fluid temperature is larger than the Hubble parameter, 
i.e. T > H ; stating that the thermal fluctuations are dominant over the quantum fluctuations, 
and become the origin of the Universe’s LSS. The amplitude of scalar perturbation during warm 
inflation, along with the slow roll approximation becomes

Ps = H 3T

φ̇2
(1 + Q)

1
2 = HT

2ε1
(1 + Q)

3
2 (11)

The scalar spectral index ns [38] is defined as ns − 1 = d lnPs

d ln k
and can be written in terms of 

slow roll parameters as

ns − 1 = − (9Q + 17)

4(1 + Q)
ε1 − (9Q + 1)

4(1 + Q)
β + 3

2
η (12)

According to the latest observational data, the amplitude of the scalar perturbations at horizon 
crossing is given by Ps = 2.17 × 10−9 [39,40]. The amplitude of tensor perturbation is given by 
Pt = 8H 2. The tensor to scalar ratio r is given by

r = Pt

Ps

= 16ε1

(1 + Q)
3
2

H

T
(13)

3. Brief review of fractal gravity

The total action of the Einstein gravity in fractal space-time is given by

S = Sg + Sm, (14)

where the gravitational part of the action is given by

Sg = 1

16πG

∫
d4x v(x)

√−g
(
R − ω∂μv∂μv

)
, (15)

and Sm, the action of the matter part minimally coupled to gravity [41–43], is given by

Sm =
∫

d4x v(x)
√−gLm. (16)

Here g is the determinant of the metric gμν , R is the Ricci scalar, v is the fractal function and 
ω is the fractal parameter. The standard measure d4x is replaced by a Lebesgue-Stieltjes measure 
dg(x). The scaling dimension of g is −4α, where the parameter α (0 < α < 1) corresponds to 
the fraction of states preserved at a given time during the evolution of the system. Further, the 
measure v is not a scalar field (nor a dynamical object), but its profile is fixed a priori by the 
underlying geometry.
4
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Now varying the above action (14), with respect to homogeneous, isotropic and flat FLRW 
metric gμν , the Friedmann equations in a fractal Universe can be obtained as (for convenience 
8πG = 1 is chosen)

3H 2 = ρ − 3H
v̇

v
+ ω

2
v̇2 (17)

2Ḣ + 3H 2 = −p − 2H
v̇

v
− ω

2
v̇2 − v̈

v
(18)

where H = ȧ

a
is the Hubble parameter, a is the scale factor, ρ and p are the energy density and 

pressure of the barotropic fluid component, respectively, with the barotropic equation of state 
p = ωρ. One may note that if the fractal function v is chosen as constant, then the standard 
Friedmann equations are recovered. The continuity equation in a fractal universe takes the form 
[44–47]

ρ̇ +
(

3H + v̇

v

)
(p + ρ) = 0 (19)

The above modified Einstein field equations can be written as Einstein field equations with 
interacting two fluids as [44,46]

3H 2 = ρ + ρf

2Ḣ + 3H 2 = −p − pf

with conservation equations

ρ̇ + 3H(ρ + p) = Q = − v̇

v
(ρ + p),

ρ̇f + 3H(ρf + pf ) = −Q

and ρf = ω

2
v̇2 − 3H

v̇

v
, pf = 2H

v̇

v
+ ω

2
v̇2 + v̈

v

4. WI in fractal gravity

In the context of present WI scenario, (ρf , pf ) can be considered as the energy density 

and thermodynamic pressure for the inflaton field (i.e. ρf = ρφ = 1

2
φ̇2 + V (φ), pf = pφ =

1

2
φ̇2 − V (φ)) while the usual field is chosen as radiation field i.e. ρ = ρr , p = pr = 1

3
ρr . So the 

evolution equations of two fluid can be separately written as

ρ̇r + 4Hρr = �φ̇2 = −4

3

v̇

v
ρr , (20)

ρ̇φ + 3H(ρφ + pφ) = −�φ̇2 = 4

3

v̇

v
ρr . (21)

It is to be noted that the nonminimal interaction term � in equations (20) and (21) is not 
phenomenological; rather, it is a consequence of the continuity equation (19). In particular, in 
the present model, � depends on the time variation of the logarithm of v.

Assuming the quasi stable production of the radiation component (i.e. ρ̇r � Hρr and ρ̇r �
�φ̇2), one can obtain the Hubble parameter by using equation (20) as
5
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H = −1

3

v̇

v
(22)

and hence the potential can also be written in terms of fractal function as

V (φ) = 1

3

(
v̇

v

)2

(23)

Now, we choose various choices of the fractal function.

4.1. Model I: v = v0t
−δ , δ = 4(1 − α)

This is the most common choice for the fractal function in literature [41,44]. Moreover, it nei-
ther represents any multifractal geometry nor it recovers the standard measure of GR. However, 
the profile v = 1 + tn has the best theoretical motivation, but we have not considered it due to 
complexity of calculation [45]. From equation (22) one can obtain the Hubble parameter, and 
hence the scale factor, and the potential function (from equation (23)) can be expressed in terms 
of cosmic time t as

H = δ

3

1

t
, a = a0t

δ
3 , V (φ) = δ2

3

1

t2 (24)

Thus the 1st slow roll parameter turns out to be constant as

ε1 = 3

δ

Hence one has power law inflation for the choice of the fractal function and there is no mech-
anism to halt the inflation, it continues for ever.

4.2. Model II: v = v0e
−δt , δ = 4(1 − α)

In literature some authors choose this type of fractal function. As in the previous model, it 
neither represents any multifractal geometry nor it recovers the anomalous scaling of a fractal 
geometry. In this case equation (22) leads to

H = δ

3
, a = a0 exp

(
δ

3
t

)
, V (φ) = δ2

3
(25)

and consequently one can see that the first slow roll parameter vanishes.
So for this choice of the fractal function the universe corresponds to de-Sitter model.

4.3. Model III: v = v0e
−δtn , δ = 4(1 − α)

This model can be regarded as a nonperturbative extension of the measure v = 1 + tn [42]
(Note that the constant 1 is necessary to recover GR). Moreover, expanding the measure of the 
present model, one gets v ≈ constant + tn which has the correct multiscaling. However, this 
would happen only at early times (not at late times) or when α is very close to 1 (which is not 
theoretically desirable). To obtain non-constant slow roll parameters for inflationary paradigm, 
one can choose phenomenologically the fractal function in the above form by generalizing the 
choice for model II. Similarly from equation (22) and (23) one has
6
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H = δn

3
tn−1, a = a0 exp

(
δ

3
tn

)
, V (φ) = δ2n2

3
t2n−2 (26)

The slow roll parameter can also be obtained as

ε1 = 3(1 − n)

δn
t−n (27)

It is to be noted that, the value of α should be close to 0 i.e., δ is close to 1; so that the first 
slow roll parameter ε1 (given in (27)) becomes realistic (i.e., ε1 � 1). However, if α is close to 
1, i.e., δ is close to 0, then ε1 can no longer be very small and hence slow roll approximation 
cannot be valid. Hence, it is not physically justified. Also very small value of α, implies the 
fractal dimension should be very small.

4.3.1. Weak dissipative regime
In the weak dissipative regime, i.e. Q � 1, one can write the evolution equation of the scalar 

field as

φ̇2 = − V̇

3H
= 2δn(1 − n)

3
tn−2 (28)

which gives the scalar field explicitly as

φ =
√

8δ(1 − n)

3n
t

n
2 = φ0t

n
2 (29)

and the potential can be obtained as

V (φ) = δ2n2

3

(
8δ(1 − n)

3n

) 2(1−n)
n

φ
4(n−1)

n = V0φ
4(n−1)

n (30)

Hubble parameter, scale factor and the fractal function can be expressed in terms of scalar 
field as

H(φ) = H0φ
2(n−1)

n with H0 = δn

3

(
8δ(1 − n)

3n

) (1−n)
n

(31)

a(φ) = a0 exp

(
n

8(1 − n)
φ2

)
(32)

One may note that V0 = 3H 2
0 . The slow roll parameters can be obtained as

ε1(φ) = 8(n − 1)2

n2φ2 (33)

η(φ) = 4(n − 1)(3n − 4)

n2φ2 (34)

At the end of inflation, ε1(φe) = 1. Therefore, φ2
e = 8(n − 1)2

n2 . The number of e-folds is given 

by

N = −
φe∫

V

V ′ dφ = n

8(1 − n)

[
8(n − 1)2

n2 − φ2
�

]
(35)
φ�

7
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which consequently gives the scalar field at the time of horizon crossing as

φ2
� = 8(n − 1)2

n2

[
1 + n

n − 1
N

]
(36)

The slow roll parameters at the horizon crossing are

ε1� =
(

1 + n

n − 1
N

)−1

(37)

η� = (3n − 4)

2(n − 1)

(
1 + n

n − 1
N

)−1

(38)

Case 1. � = �0φ
m

The temperature of the radiation fluid can be obtained as

T =
(

�0(1 − n)

2Cγ

) 1
4

φ
1

2n

0 φ
1
4 (m− 2

n
) (39)

The other slow roll parameter can be obtained as

β(φ) = 4m(n − 1)

nφ2 (40)

and at the horizon crossing time it is given by

β� = mn

2(n − 1)

(
1 + n

n − 1
N

)−1

(41)

Substituting the above values of slow roll parameters, the scalar spectral index ns can be 
written as a function of number of e-folds as

ns�(n,m,N) = 1 + n

4(1 − n)

(
8 + m

2
− 5

n

)(
1 + n

n − 1
N

)−1

(42)

The tensor to scalar ratio at the same time can be written as

r�(n,m,N) = 16nδ

3

(
2Cγ

1 − n

) 1
4 1

�
1
4
0 (n,m,N)

(
3n

8δ(1 − n)

)1− 3
4n

(
8(n − 1)2

n2

)1− m
8 − 3

4n

×
(

1 + n

n − 1
N

)− m
8 − 3

4n

(43)

Using the definition of Ps , one can find out �0(n, m, N) and the tensor to scalar ratio can be 
simplified to

r�(n,m,N) = 8(1 − n)2

Ps

(
δn

3(1 − n)

) 2
n
(

1 + n

n − 1
N

)2− 2
n

(44)

Using the r −ns diagram of Planck-2018, one could plot a n −m diagram as shown in Fig. 1, 
where the dark blue colour and light blue colour indicate an area of (n, m) in which the point 
(r, ns) of the model stand in 68% and 95% CL respectively.
8
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Fig. 1. Numerical values of the (n, m) parameters of the fractal warm inflation model in the weak dissipative regime for 
which the point (r − ns) is located in the observational region.

Fig. 2. Evolution of slow roll parameters with respect to the number of e-folds.

Fig. 3. Variation of spectral index and tensor to scalar ratio in terms of no. of e-fold.

Considering some points of (n, m) from Fig. 1, the evolution of the slow roll parameters with 
respect to the number of e-folds have been shown in Fig. 2. The figures show that it support 
the slow roll approximations. The behaviour of the ns and r have been represented in Fig. 3. 
The ratio of temperature and Hubble parameter has been depicted during inflation in WDR 
and have been presented in Fig. 4. The Figs. 2-4 have been drawn considering the data sets 
for (n, m) as (.0145, 672.82) (solid line), (.0142, 686.98) (dotted line) and (.014, 696.76) (dot-
dashed line).
9
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Fig. 4. Ratio of temperature and Hubble parameter in terms of no. of e-fold.

Case 2: � = �0
T m

φm−1

The temperature can be expressed as

T m−4 = 2Cγ

�0(1 − n)

(
3n

8δ(1 − n)

) 1
n

φm−1+ 2
n (45)

� can be explicitly written as

� = �0

(
2Cγ

�0(1 − n)

) m
m−4

(
3n

8δ(1 − n)

) m
n(m−4)

φ
2(m−2n+2mn)

n(m−4) (46)

The slow roll parameter β can be written as

β(φ) = 4(n − 1)

n2

(m − 2n + 2mn)

(m − 4)

1

φ2 (47)

The scalar spectral index can be written as

ns�(n,m,N) = 1 + 9m + 66n − 18mn − 40

8(m − 4)(n − 1)

(
1 + n

n − 1
N

)−1

(48)

The tensor to scalar ratio can be written as

r�(n,m,N) = 16nδ

3

(
1 − n

2Cγ

) 1
m−4

�
1

m−4
0 (n,m,N)

(
3n

8δ(1 − n)

)mn−m−4n+3
n(m−4)

(
8(n − 1)2

n2

)mn−2m−7n+6
2n(m−4)

(
1 + n

n − 1
N

) n−2m−mn+6
2n(m−4)

(49)

In Fig. 5, n − m diagram has been plotted using the r − ns diagram of Planck-2018 data as 
before, in the figure the dark blue colour indicates an area of (n, m) with the points (r, ns) of the 
model in 68% CL while that with light blue colour stands for 95% CL.

One can see that the equation (46) can also be rewritten as

� = �̂0φ
m̂

which implies that case 2 can be reduced to case 1 with some modified values of n and m. So 
further detailed study of graphical representation has not been done in this section.
10
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Fig. 5. Observed region indicates the location of (n, m) points in weak dissipative regime for present warm inflationary 
model considering the (r, ns ) in observational region.

4.3.2. Strong dissipative regime
In the strong dissipative regime, the dissipative ratio is much larger than unity (Q � 1). Using 

this approximation, one can write the equation (6) as

φ̇ = −
∂V (φ)

∂φ

�
(50)

Case 1. � = �0φ
m

The evolution equation for the scalar field can explicitly be written as

φ̇2 = 2δ2n2(1 − n)

3�0

t2n−3

φm
(51)

and subsequently on integration it gives

φm+2 =
(

m + 2

2n − 1

)2 2δ2n2(1 − n)

3�0
t2n−1 = φ0t

2n−1 (52)

Using the above relation, one can write the potential, Hubble parameter, scale factor as

V (φ) = δ2n2

3φ
2n−2
2n−1
0

φ
(m+2)(2n−2)

(2n−1) (53)

H(φ) = δn

3φ
n−1
2n−1
0

φ
(m+2)(n−1)

(2n−1) (54)

a(φ) = a0 exp

⎛
⎝ δ

3

φ
n(m+2)

2n−1

φ
n

2n−1
0

⎞
⎠ (55)

Temperature can be obtained as

T =
[

(1 − n)nδ
] 1

4
[
φm+2 ] n−2

4(2n−1)

(56)

3Cγ φ0

11
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The slow roll parameters can be written as

ε1 = 3(1 − n)

δn

φ
(m+2)n

1−2n

φ
n

1−2n

0

(57)

η = (2m − 2n − 2mn + 3)

(m + 2)(1 − n)
ε1 (58)

β = m(1 − 2n)

(m + 2)(1 − n)
ε1 (59)

Inflation ends with ε1(φe) = 1 which implies φ
(m+2)n
(2n−1)
e = 3(1 − n)

δn
φ

n
2n−1
0 . Using the above re-

lation for N one can write the scalar field at the horizon crossing explicitly as

φ
(m+2)n
(2n−1)

� = 3(1 − n)

δn
φ

n
2n−1
0

(
1 + n

n − 1
N

)

The slow roll parameters at the horizon crossing can be expressed as

ε1� =
(

1 + n

n − 1
N

)−1

(60)

η� = (2mn − 2m + 2n − 3)

(m + 2)(n − 1)

(
1 + n

n − 1
N

)−1

(61)

β� = m(2n − 1)

(m + 2)(n − 1)

(
1 + n

n − 1
N

)−1

(62)

Inserting the above parameters, the scalar spectral index at the same time can be obtained as

ns(n,m,N) = 1 + 3

4

(2m − 2n − 5mn)

(m + 2)(n − 1)

(
1 + n

n − 1
N

)−1

(63)

In Fig. 6, at 68% and 95% CL, the points (r, ns ) of the model are indicated by dark blue colour 
and light blue colour respectively in the n −m plot, considering (r −ns ) diagram of Planck 2018 
data.

Choosing some points of (n, m) from Fig. 6, the evolution of the slow roll parameters with 
respect to the number of e-folds have been plotted in Fig. 7 and it matches with the slow roll 
approximations. The behaviour of the ns and r have been represented in Fig. 8. The Figs. 7-8 have 
been drawn considering the values for (n, m) as (.0145, .01715) (solid line), (.0142, .01779)

(dotted line) and (.014, .01882) (dotdashed line).

Case 2: � = �0
T m

φm−1

The scalar field can be written as

φ3−m =
[

4(3 − m)

8n − 4 − m(n − 2)

]2 2δ2n2(1 − n)

3�0

(
δn(1−n)

)m
4

t
8n−4−m(n−2)

4 = φ0t
8n−4−m(n−2)

4 (64)
2
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Fig. 6. In the strong dissipative regime of the present fractal warm inflationary model the observed region in the figure 
indicates the location of the (n, m) points by using the numerical values of (r, ns ) parameters from Planck 2018 data set.

Fig. 7. Variation of slow roll parameters with respect to number of e-folds.

Fig. 8. Spectral index and tensor to scalar ratio versus number of e-folds.

The temperature can be written as

T =
[

δn(1 − n)

2

] 1
4
[
φ3−m

φ0

] n−2
8n−4−m(n−2)

(65)

So the dissipation coefficient � can be rewritten as

� = �0

[
δn(1 − n)

2

]m
4 φ

m(3−m)(n−2)
8n−4−m(n−2)

−(m−1)

φ
m(n−2)

8n−4−m(n−2)

(66)
0
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Using the above relation, one can write the potential, Hubble parameter, scale factor as

V (φ) = δ2n2

3

[
φ3−m

φ0

] 8(n−1)
8n−4−m(n−2)

(67)

H(φ) = δn

3

[
φ3−m

φ0

] 4(n−1)
8n−4−m(n−2)

(68)

a(φ) = a0 exp

⎛
⎝ δ

3

[
φ3−m

φ0

] 4n
8n−4−m(n−2)

⎞
⎠ (69)

The slow roll parameters can be written as

ε1 = 3(1 − n)

δn

φ
4n(3−m)

m(n−2)+4−8n

φ
4n

m(n−2)+4−8n

0

(70)

η = 3mn − 2m − 4n + 8

4(m − 3)(1 − n)
ε1 (71)

β = 8n − 6mn − 4

4(3 − m)(1 − n)
ε1 (72)

At the end of inflation ε1(φe) = 1, hence φ
4n(3−m)

m(n−2)+4−8n
e = δn

3(1 − n)
φ

4n
m(n−2)+4−8n

0 . The scalar field 

at horizon crossing time can be written as

φ
4n(3−m)

8n−4−m(n−2)
� = 3(1 − n)

nδ
φ

4n
8n−4−m(n−2)

0

(
1 + n

n − 1
N

)
.

The slow roll parameter at the horizon crossing time can be written as

ε1� =
(

1 + n

n − 1
N

)−1

(73)

η� = 3mn − 2m − 4n + 8

4(m − 3)(1 − n)

(
1 + n

n − 1
N

)−1

(74)

β� = 8n − 6mn − 4

4(3 − m)(1 − n)

(
1 + n

n − 1
N

)−1

(75)

The scalar spectral index can be obtained as

ns�(n,m,N) = 1 − 3(m(27n + 8) − 26n − 2)

8(m − 3)(1 − n)

(
1 + n

n − 1
N

)−1

(76)

Fig. 9 indicates the location of (n, m) points in the observational region for the strong dissipa-
tive regime case of the present fractal warm inflationary model, considering the numerical values 
of (r, ns ) parameters from Planck 2018 data set.

One can see that the equation (66) can also be rewritten as

� = �̃0φ
m̃

which implies that also in SDR, case 2 can be simplified to case 1 in SDR with some modified 
values of n and m. So further detailed study of graphical representation has not been done in this 
section.
14
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Fig. 9. The shaded region in the figure stands for the location of the (n, m) point of the present model in the strong 
dissipative regime using the numerical values of (r, ns ) from Planck-2018 data set.

5. Summary and conclusion

In the present work, warm inflationary scenario in the fractal gravity theory has been studied. 
For warm inflation, the universe is assumed to be consisting of a scalar field (inflaton) and radia-
tion which are interacting with each other. In the fractal gravity theory, the modified Friedmann 
equations can be considered as Friedmann equations of Einstein gravity with interacting two flu-
ids in which one is usual fractal fluid and other is effective fluid. Without loss of generality, in 
the context of warm inflation, the fractal fluid is chosen as radiation and the effective fluid has 
been considered as the inflaton field. Now incorporating the quasi-stable conditions and slow roll 
approximations the Hubble parameter, potential function and the scale factor has been expressed 
as a function of fractal function. Now different choices of fractal function has been considered 
so that it correctly describe the inflationary era. It is shown that for power law choice of fractal 
function inflation continues forever while exponential model of fractal function represents de-
Sitter model. From the analysis it is found that both the usual choices of the fractal function are 
not favourable for warm inflation. So a generalized form of exponential fractal function is chosen 
so that it describes the inflationary paradigm and makes a smooth transition to radiation era. It is 
to be noted that in ref. [48] inflationary scenario with multifractal space-time geometry has been 
studied for various choices of the fractal parameter as a function of no. of e-folds.

For this choice of fractal function inflationary scenario have been discussed in both weak and 
strong dissipative regime. It is shown that in WDR, the scalar field, potential, Hubble parameters, 
scale factor, no. of e-fold and the first two slow roll parameter can be expressed explicitly without 
choosing the dissipation coefficient. To obtain expression for temperature and the third slow roll 
parameter one need to choose the form of dissipation coefficient. At first, the dissipation coef-
ficient has been chosen as a function of the potential alone. Hence the scalar spectral index and 
tensor to scalar ratio also can be expressed as function of model parameters (n, m). Using the 
r − ns diagram of Planck 2018 data, the allowable range for (n, m) has been find out. The varia-
tions of slow roll parameters with respect to the no. of e-folds has been shown graphically which 
match with the slow roll approximations. Next the dissipation coefficient is chosen as a function 
of both temperature and scalar field. Though it is function of both temperature and scalar field, 
it can be shown that using the temperature expression, the dissipation coefficient can be reduced 
to function of potential alone. As a consequence, a similar study as previously discussed can be 
15
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made with that choice for dissipation coefficient. Now for the SDR, as dissipation coefficient is 
dominant over Hubble parameter, one have to choose the form of dissipation coefficient at very 
first step.

From the above analysis, it can be concluded that whatever be the choice of the dissipation co-
efficient, using the quasi-stable condition it can be reduced to a function of scalar field alone. So 
in this method, the theoretical models can be compared with observational data by constraining 
the arbitrary parameters. Though the initial conditions and the birth of our universe is not com-
pletely known, however, this technique may open some possibilities to compare the predictions 
of the theoretical models of inflation in different modified gravity theories with cosmological 
observational data.

CRediT authorship contribution statement

A. Bose: Methodology, Computing, Writing, Programming, Original Data Preparation.
S. Chakraborty: Conceptualization, Reviewing, Editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Acknowledgement

The author A.B. acknowledges UGC-JRF (ID: 1207/CSIRNETJUNE2019) and S.C. thanks 
Science and Engineering Research Board (SERB), India for awarding MATRICS Research Grant 
support (File No. MTR/2017/000407).

References

[1] N. Aghanim, et al., Planck, Astron. Astrophys. 594 (2016) A11.
[2] C.L. Bennett, et al., WMAP, Astrophys. J. Suppl. Ser. 208 (2013) 20.
[3] I. Pâris, et al., SDSS, Astron. Astrophys. 613 (2018) A51.
[4] D.M. Scolnic, et al., Pan-STARRS1, Astrophys. J. 859 (2) (2018) 101.
[5] K.S. Dawson, et al., BOSS, Astron. J. 145 (2013) 10.
[6] J.E. Bautista, M. Vargas-Magaña, K.S. Dawson, W.J. Percival, J. Brinkmann, J. Brownstein, B. Camacho, J. Com-

parat, H. Gil-Marín, E.M. Mueller, et al., Astrophys. J. 863 (2018) 110.
[7] S.H. Suyu, V. Bonvin, F. Courbin, C.D. Fassnacht, C.E. Rusu, D. Sluse, T. Treu, K.C. Wong, M.W. Auger, X. Ding, 

et al., Mon. Not. R. Astron. Soc. 468 (3) (2017) 2590–2604.
[8] T.M.C. Abbott, et al., DES, Phys. Rev. D 98 (4) (2018) 043526.
[9] N. Martinet, et al., Euclid, Astron. Astrophys. 627 (2019) A59.

[10] P.A.R. Ade, et al., Planck, Astron. Astrophys. 594 (2016) A27.
[11] F. De Bernardis, S. Aiola, E.M. Vavagiakis, M.D. Niemack, N. Battaglia, J. Beall, D.T. Becker, J.R. Bond, E. 

Calabrese, H. Cho, et al., J. Cosmol. Astropart. Phys. 03 (2017) 008.
[12] B.P. Abbott, et al., LIGO Scientific and Virgo, Phys. Rev. Lett. 116 (6) (2016) 061102.
[13] B.P. Abbott, et al., LIGO Scientific and Virgo, Phys. Rev. Lett. 119 (16) (2017) 161101.
[14] B.P. Abbott, et al., LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL, Astrophys. J. Lett. 848 (2) (2017) L13.
[15] R.A. Sunyaev, Y.B. Zeldovich, Astrophys. Space Sci. 7 (1970) 3–19.
[16] P.J.E. Peebles, J.T. Yu, Astrophys. J. 162 (1970) 815–836.
[17] V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33 (1981) 532–535.
[18] W.H. Press, Phys. Scr. 21 (1980) 702.
[19] Y. Akrami, et al., Planck, Astron. Astrophys. 641 (2020) A10.
16

http://refhub.elsevier.com/S0550-3213(22)00118-3/bib0C3D29D5572CF2AFFB640E06797AB100s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibDC60AE6F529C8DF82A3500D21FBDE270s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibDA0F1CDE9D0B67BE87399B7B64E2EA2Bs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibD9F2AD745A421C068BB2243737317F37s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib4BCB3BBAD368B519F28ADA7C37E03B49s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibD9E29502DF739F6FBA09ABDAE22C96A4s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibD9E29502DF739F6FBA09ABDAE22C96A4s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib7BDB6D8FC9E21B5A435CE0044399D3CAs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib7BDB6D8FC9E21B5A435CE0044399D3CAs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibAC96F5AC25F64DFAA30CE599061624CFs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibF36BB0BC6181E371F605E76BB093CB1Es1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib1193E3C9B64D702B9D68A21B6F6A1C56s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib3DDEE376C021CABCB8A716220A009725s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib3DDEE376C021CABCB8A716220A009725s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib6D685BA3824A15B66F2728F9B2F2DCE6s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib50B6E87F493FCD3F14C74E9B9C139345s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibF54404297934E606673670EF36A6E9A8s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibB8FFF8E5CF227338EC0E0EEDC3E0BAB9s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib18FBDB8E57735B8BE6B66A96B57A776Es1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib1BE501A0D79EF492BF7F861600D9D8D2s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibA822E2A25C3DB1157AB31E47F32F2E04s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib857ED59BFE052A8EB10FA184AA7B6D68s1


A. Bose and S. Chakraborty Nuclear Physics B 978 (2022) 115767
[20] D.H. Lyth, A.R. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, 
Cambridge University Press, Cambridge, 2009.

[21] A. Berera, Phys. Rev. Lett. 75 (1995) 3218–3221.
[22] A. Berera, I.G. Moss, R.O. Ramos, Rep. Prog. Phys. 72 (2009) 026901.
[23] M. Bastero-Gil, A. Berera, Int. J. Mod. Phys. A 24 (2009) 2207–2240.
[24] A.N. Taylor, A. Berera, Phys. Rev. D 62 (2000) 083517.
[25] L.M.H. Hall, I.G. Moss, A. Berera, Phys. Rev. D 69 (2004) 083525.
[26] C. Graham, I.G. Moss, J. Cosmol. Astropart. Phys. 07 (2009) 013.
[27] M. Bastero-Gil, A. Berera, R.O. Ramos, J. Cosmol. Astropart. Phys. 07 (2011) 030.
[28] M. Bastero-Gil, A. Berera, I.G. Moss, R.O. Ramos, J. Cosmol. Astropart. Phys. 05 (2014) 004.
[29] S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos, J.G. Rosa, Phys. Lett. B 732 (2014) 116–121.
[30] M. Bastero-Gil, A. Berera, R.O. Ramos, J.G. Rosa, J. Cosmol. Astropart. Phys. 10 (2014) 053.
[31] M. Bastero-Gil, A. Berera, I.G. Moss, R.O. Ramos, J. Cosmol. Astropart. Phys. 12 (2014) 008.
[32] L. Visinelli, J. Cosmol. Astropart. Phys. 01 (2015) 005.
[33] R.O. Ramos, L.A. da Silva, J. Cosmol. Astropart. Phys. 03 (2013) 032.
[34] M. Benetti, R.O. Ramos, Phys. Rev. D 95 (2) (2017) 023517.
[35] M. Dias, J. Frazer, A. Retolaza, A. Westphal, Fortschr. Phys. 67 (1–2) (2019) 2.
[36] L. Heisenberg, M. Bartelmann, R. Brandenberger, A. Refregier, Phys. Rev. D 98 (12) (2018) 123502.
[37] L. Heisenberg, M. Bartelmann, R. Brandenberger, A. Refregier, Sci. China, Phys. Mech. Astron. 62 (9) (2019) 

990421.
[38] I.G. Moss, C. Xiong, J. Cosmol. Astropart. Phys. 11 (2008) 023.
[39] H. Sheikhahmadi, A. Mohammadi, A. Aghamohammadi, T. Harko, R. Herrera, C. Corda, A. Abebe, K. Saaidi, Eur. 

Phys. J. C 79 (12) (2019) 1038.
[40] T. Harko, H. Sheikhahmadi, Eur. Phys. J. C 81 (2) (2021) 165.
[41] G. Calcagni, J. High Energy Phys. 03 (2010) 120.
[42] G. Calcagni, Phys. Rev. Lett. 104 (2010) 251301.
[43] G. Calcagni, J. Cosmol. Astropart. Phys. 12 (2013) 041.
[44] D. Das, S. Dutta, A. Al Mamon, S. Chakraborty, Eur. Phys. J. C 78 (10) (2018) 849.
[45] G. Calcagni, Phys. Rev. D 95 (6) (2017) 064057.
[46] S. Haldar, J. Dutta, S. Chakraborty, arXiv :1601 .01055 [gr-qc].
[47] A. Sheykhi, Z. Teimoori, B. Wang, Phys. Lett. B 718 (2013) 1203–1207.
[48] G. Calcagni, S. Kuroyanagi, S. Tsujikawa, J. Cosmol. Astropart. Phys. 08 (2016) 039.
17

http://refhub.elsevier.com/S0550-3213(22)00118-3/bibB8FDA45C7D51E9BF7C1669D72FFE744Cs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibB8FDA45C7D51E9BF7C1669D72FFE744Cs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib6D25A8CB55538FF4EF0BAA5E906CFE54s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib058AB6FE607202336AFABC65D300E2D4s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib77F5C7515965A81A7AD3D76F5D5A931Ds1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib43AD7287A5AF58829883A058DB87F5A4s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib27DA6DDFCD351499B1F6440143E2A86As1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib3224445560DDEF5EA582B471A4C4B07Ds1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib73C3BE2C7F8C160F6E8E6D7898483FB7s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib301DEB870F1EA843E628C9ECCED23A39s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibCE86050AEBA19FA66088EC05C5442D29s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibC52EFB9985F0D17693FB1D659CAC80A0s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibDB19A7EC7D4715F096A426791B228E4Ds1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibDF209998273ED54EF76C50E7DBB94850s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibEFED5D5CEA5C49CFA045399B1E1B5C21s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib5B6250A79ADB4537C7794A774CFED222s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibD8DDFD9955A3804849F648916620B9A4s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibB63618B1B2E8D4015286F85E5BABA1F6s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibAD783FC717E2EB2986FD1A3C74347E88s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibAD783FC717E2EB2986FD1A3C74347E88s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibDF720ACF240CC9A3522C08FF97663431s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib356A2CCBA8E4D3E098C4C1336E51A506s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib356A2CCBA8E4D3E098C4C1336E51A506s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibF7FDC6AA810B683C3B2AB5DBD6A5D829s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib33FEE235F00D0656169BB3C56C140E00s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib18090C16DAB470584068787E68C654BAs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibBE0456E1282B54E0949CE0AE0BC89735s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibB27E48B30C667E1FA49AC013D6A8BA10s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib6D4167204580D7EFA8778A2736D10CE0s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibB824E402C0F93E9BEB8C1E8F24BF1CB1s1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bibDC8AD2280D7339DC65CC166203F7D80Cs1
http://refhub.elsevier.com/S0550-3213(22)00118-3/bib392D74E1384CDBE80054CEDAF3BC0DD5s1

	Does fractal universe favour warm inflation: Observational support?
	1 Introduction
	2 Basic equations in warm inflationary scenario
	3 Brief review of fractal gravity
	4 WI in fractal gravity
	4.1 Model I: v=v0t−δ, δ=4(1−α)
	4.2 Model II: v=v0e−δt, δ=4(1−α)
	4.3 Model III: v=v0e−δtn, δ=4(1−α)
	4.3.1 Weak dissipative regime
	4.3.2 Strong dissipative regime


	5 Summary and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


