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Abstract: We found, through analytical and numerical methods, new towers of infinite

number of asymptotically conserved charges for deformations of the Korteweg-de Vries

equation (KdV). It is shown analytically that the standard KdV also exhibits some tow-

ers of infinite number of anomalous charges, and that their relevant anomalies vanish for

N−soliton solution. Some deformations of the KdV model are performed through the

Riccati-type pseudo-potential approach, and infinite number of exact non-local conser-

vation laws is provided using a linear formulation of the deformed model. In order to

check the degrees of modifications of the charges around the soliton interaction regions, we

compute numerically some representative anomalies, associated to the lowest order quasi-

conservation laws, depending on the deformation parameters {ε1, ε2}, which include the

standard KdV (ε1 = ε2 = 0), the regularized long-wave (RLW) (ε1 = 1, ε2 = 0), the mo-

dified regularized long-wave (mRLW) (ε1 = ε2 = 1) and the KdV-RLW (KdV-BBM) type

(ε2 = 0, ε 6= {0, 1}) equations, respectively. Our numerical simulations show the elastic

scattering of two and three solitons for a wide range of values of the set {ε1, ε2}, for a

variety of amplitudes and relative velocities. The KdV-type equations are quite ubiquitous

in several areas of non-linear science, and they find relevant applications in the study of

General Relativity on AdS3, Bose-Einstein condensates, superconductivity and soliton gas

and turbulence in fluid dynamics.
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1 Introduction

The soliton solutions and the existence of infinite number of conserved charges are among

the main properties of the integrable models; however, certain non-linear field theory mod-

els with important physical applications and solitary wave solutions are not integrable.

Recently, there have been performed certain deformations of integrable models such that

they possess soliton-like waves (solitary waves) with approximately similar properties to

their counterparts of the true soliton theories. In this context, it has been put forward the
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quasi-integrability concept related to the anomalous zero-curvature approach to modifica-

tions of integrable models [1–3]. For earlier discussions on non-linear field theories with

solitary waves and the study of their collisions, see e.g. [4]. There are different approaches

regarding the deformations of integrable theories, see e.g. [5, 6] and references therein.

The quasi-integrability concept has recently been developed and certain deformations

of the sine-Gordon, Toda, Bullough-Dodd, KdV, non-linear Schrödinger (NLS) and super-

symmetric sine-Gordon models [1–3, 7–11] have been studied using their relevant anoma-

lous zero-curvature representations. The main developments have been focused on the

construction of infinite number of asymptotically conserved charges and the study of their

relevant properties. The asymptotically conserved charges exhibit the same form as the

ones from the relevant undeformed theories, and their quasi-conservation properties hold

provided the vanishing of the space-time integral of the corresponding anomaly densities.

The space-time integration of the anomalies are shown to vanish in special cases; i.e. for

two or three-soliton configurations with definite parity under a special space-time inversion

symmetry. Remarkably, the presence of several new towers of infinite number of asymp-

totically conserved charges was recently uncovered in the context of deformed sine-Gordon

models [12]. These new charges differ in form from the relevant charges corresponding to

the undeformed model. As it has been mentioned in [12], an infinite subset of those new

charges turned out to be anomalous even for the standard sine-Gordon model.

The complete understanding of the dynamics underlying the quasi-soliton behavior of

the soliton-like configurations are, so far, largely unknown. The main features can be sum-

marized as follows. First, the one-soliton sectors of those theories have an infinite number of

exact conservation laws since the so-called anomalies of the quasi-conservation laws vanish

for the one-soliton like solutions. Second, the anomalies also vanish for configurations in

which one-soliton like solutions are well separated from each other. The anomalies are sig-

nificant only when the solitons are close together and they interact with each other. Third,

the observed phenomenon seems to occur when the multi-soliton solutions of the equation

of motion possess special symmetry properties under a space-time parity transformation.

The two or three-soliton configurations possess definite parity, either odd or even, under a

space-time reflection around a point in space-time that depends on the individual parame-

ters of the solitons, i.e. velocity, width, initial position, deformation parameters, etc. When

the anomaly densities are odd under this parity transformation, one has that the space-time

integration, in a rectangle centered at the point around which the reflection is performed,

provides a vanishing anomaly, and consequently an asymptotically conserved charge. The

presence of that mirror-like symmetry is argued to be a sufficient condition in order to have

quasi-integrability [10]. Fourth, some deformed models possess a subset of infinite number

of exactly conserved charges for two-soliton field configurations being eigenstates of solely

the space-reflection parity symmetry. The deformed defocusing (focusing) NLS model with

dark (bright) solitons for a variety of two-soliton configurations [13–15] and the deformed

sine-Gordon model with kink-kink, kink-antikink and breather solutions [16]1 have been

shown to exhibit this property.

1See also the Research Highlight: An exploration of kinks/anti-kinks and breathers in deformed

sine-Gordon models, in Advances in Engineering, https://advanceseng.com/kinks-anti-kinks-breathers-

deformed-sine-gordon-models/.
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Several new towers of infinite number of anomalous conservation laws for deformed

sine-Gordon models have been uncovered by direct construction [12]. Remarkably, it has

been observed that even the standard sine-Gordon model possesses those types of anoma-

lous charges for soliton configurations satisfying the special space-time inversion symmetry

properties. So, one is lead to think that a truly integrable system inherits to its deformed

counterpart that novel property. Moreover, in [12] it has been developed the so-called

Riccati-type pseudo-potential approach to quasi-integrability, and shown that the anoma-

lous conservation laws of [1–3] are, in fact, exact conservation laws, i.e. they become simply

the higher order derivatives of the energy-momentum charges. In addition, it has been un-

covered an infinite set of exact non-local conservation laws associated to a linear system

formulation of the deformed sine-Gordon model [12]. The above results have been obtained

by combining analytical and numerical methods.

The models considered in [12] were deformed sine-Gordon models; i.e. relativistic mod-

els with topological solitons. So, it is worth to search for new anomalous charges and per-

form the pseudo-potential approach to deformations of models with different symmetries,

such as the non-relativistic KdV and non-linear Schrödinger models. These models stand

on the same level of importance as the SG model in their applications, which are abundant

in all areas of nonlinear science. Let us mention some applications. The SG, NLS and KdV

type models have been applied to the study of Bose-Einsten condensates and superconduc-

tivity [17–19], General Relativity on AdS3 [20], soliton gas and soliton turbulence in fluid

dynamics [21–23] and in the Alice-Bob physics [24, 25].

In this paper we will examine some of the patterns mentioned above in the context of

deformations of the KdV model. We examine carefully the anomalous conservation laws

presented in [10], and demonstrate that each of them hides a trivial conservation law, since

the relevant anomalies can be written as a sum of the type [∂t( . . . ) + ∂x( . . . )] which, in

turn, cancels their similar terms in each conservation law. We search for additional quasi-

conservation laws, different from the ones related to the anomalous zero-curvature approach

of [10], and study the role played by them in the phenomenon of quasi-integrability. As a

byproduct of our constructions we have found that even the standard KdV model exhibits

some towers of infinite number of anomalous conservation laws with analogous properties

to their counterparts in the quasi-integrable KdV theory. It is shown analytically the quasi-

conservation of the infinite towers of anomalous charges for N -soliton solution satisfying a

special parity symmetry. In particular, some of the lowest order anomalous charges, e.g. the

so-called statistical moments of the KdV model, have been argued to play a fundamental

role in the undertanding of the phenomena of soliton gas and soliton turbulence, see e.g. [21–

23] and references therein. Moreover, we perform the deformation of the KdV model in

the framework of the Riccati-type pseudo-potential approach. In this context, we obtain

a linear system formulation of a general deformation of the KdV model and provide an

infinite set of exact non-local conservation laws for the deformed model.

We numerically simulate the various two-soliton and three-soliton interactions of the

deformed model by numerically evolving linear superpositions of two or three (initially well-

separated) single-soliton exact solutions of the deformed model. The collisions were shown

to be very elastic (i.e. the solitons preserved their initial shapes and velocities and there
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was no appreciable loss of radiation). This property holds for integrable models and the

fact that it holds also for the deformed KdV equation, which is not an integrable system,

characterizes the quasi-integrability of the deformed model. By numerical simulations of

2-soliton and 3-soliton collisions we verify our analytical expectations for the new set of

quasi-conservation laws, and prove the vanishing of the lowest order anomalies associated

to the relevant new towers of anomalous conservation laws of the deformed KdV model for a

variety of values of the deformation parameters {ε1, ε2}. In order to perform the numerical

simulations we follow the methods discussed by J.C. Eilbeck and G.R. McGuire [32, 33]

and by L.A. Ferreira et al. [10].

This paper is organized as follows: the next section examines the particular deforma-

tion introduced in [10]. The exact one-soliton solutions of the deformed KdV are discussed,

and the special parity symmetry, i.e. a shifted space-reflection and time-delayed inversion,

is discussed. The properties of the quasi-conservation laws of [10], which have been found

in the anomalous zero-curvature approach, are examined and discussed. In the section 4

we obtain new towers of infinite number of anomalous conservation laws of the model. In

subsection 4.1 we obtain the higher order moments of the model as anomalous charges.

In subsection 4.2, new asymptotically conserved charges with mixed scale dimensions are

discussed. These asymptotically conserved charges with mixed scale dimensions are com-

posed by local and non-local terms of their charge densities. In 5 it is discussed the mRLW

model and its quasi-integrability. In section 6, we show by direct construction that even

the standard KdV model possesses some towers of infinite number of anomalous conserva-

tion laws. It is shown analytically the quasi-conservation of the towers of infinite number

of anomalous charges for N -soliton solution. The section 7 presents some results of our

numerical simulations. These simulations were performed using the LU decomposition

method to solve a linear system of equations. The time evolution of various soliton field

configurations, corresponding to two- or three-soliton systems, initially located far away,

are performed and then verified whether the observed results supported the vanishing of the

integrated anomalies of the quasi-conservation laws for several values of the deformation

parameters.

The last section 8 considers a general deformation of the KdV model in the context of

the Riccati-type pseudo-potential approach. In subsection 8.1, it is found a linear system

formulation of the deformed model and constructed an infinite set of non-local conserved

charges. Finally, we present our conclusions and three short appendices presenting more

details about our numerical techniques and providing some additional results on the con-

struction of the quasi-conserved quantities.

2 A particular deformation of the kdv model

In this section we will consider the model studied in [10] as a particular deformation of

the KdV equation. It involves the real scalar field u and the auxiliary fields w and v with

equation of motion

ut + ux +
[α

2
u2 + ε2

α

4
wxvt + uxx − ε1(uxt + uxx)

]
x

= 0, (2.1)
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such that the auxiliary fields satisfy

u = wt (2.2)

u = vx. (2.3)

The real parameters ε1 and ε2 plays the role of deformation parameters away from the

standard KdV and α is an arbitrary real parameter. The model (2.1) encompasses a

variety of sub-models. In fact, for ε1 = ε2 = 0 one has the integrable KdV model. The case

ε1 = 1, ε2 = 0 corresponds to the so-called regularized long wave equation (RLW). It is

not integrable and possesses one-soliton solution. The two and three-soliton solutions for

the RLW model have been constructed numerically and their analytic expressions are not

known. Whereas, the case ε1 = ε2 = 1 corresponds to the modified regularized long wave

equation (mRLW). The mRLW equations presents the remarkable property of possessing

analytical two-soliton solutions. Moreover, for ε2 = 0, ε 6= {0, 1} one has the KdV-RLW or

Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) type equations. We will consider

below in section 8 a more general deformation of KdV in the Riccati-type pseudo-potential

approach.

A suitable parametrization of the model (2.1) is available in order to construct ana-

lytical or numerical soliton solutions of the model. So, let us consider

u = − 8

α
qxt. (2.4)

In addition, for soliton-type solutions in the context of the tau function Hirota constructions

one can make the following parameterizations [10]

wx = − 8

α
qxx and vt = − 8

α
qtt. (2.5)

So, substituting the expressions of u, wx and vt from (2.4)–(2.5), respectively, into (2.1)

one gets an equation for q as the x-derivative of the following equation

qtt + qxt − 4q2
xt − 2ε2qxxqtt + qxxxt − ε1(qxxtt + qxxxt) = 0. (2.6)

For later purposes we write the next identities. Let us define

X ≡ α

6

[α
4
ε2wxvt − ε1 (uxt + uxx)

]
. (2.7)

Using the system of eqs. of motion (2.1)–(2.3) and the definition of the field X in (2.7) one

can write

ut +
(α

2
u2 + uxx

)
x

= − 6

α

(
X +

α

6
u
)
x
, (2.8)

which shows on the l.h.s. the usual terms of the KdV model. Notice that for ε1 = ε2 = 0

the field X vanishes, so the effect of the deformation is completely encoded in this field.

The eq. (2.8) can further be written as

Xx = −α
6

[
vt + u+

(α
2
u2 + uxx

)]
x
, (2.9)
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where we have used the eq. (2.3) which introduces the field v as u = vx. So, the last eq.

once integrated in x, can be written as

X = −α
6

[
vt + u+

(α
2
u2 + uxx

)]
+ f(t), (2.10)

with f(t) being an arbitrary real function of t. This field can be set to zero provided that

suitable boundary conditions are assumed for the fields.

Next, let us discuss some space-time symmetries related to soliton-type solutions of

the model. So, consider the space-time reflection around a given fixed point (x∆, t∆)

P : (x̃, t̃)→ (−x̃,−t̃); x̃ = x− x∆, t̃ = t− t∆. (2.11)

In fact, the transformation P defines a shifted parity Ps for the spatial variable and the

delayed time reversal Td for the time variable. When x∆ = 0 (t∆ = 0), Ps (Td) is reduced

back to the pure parity P (pure time reversal T ).

As in the quasi-integrability approach [10] let us assume that the u-field solution of

the deformed KdV model evaluated on the N-soliton solution, viz. uN -sol, is even under the

transformation (2.11)

P(uN -sol) = uN -sol. (2.12)

This implies, according to (2.2)–(2.3), that

P(vN -sol) = −vN -sol, P(wN -sol) = −wN -sol, P(qN -sol) = qN -sol. (2.13)

Therefore, one has

P(X) = X. (2.14)

Two and three-soliton solutions of the standard KdV satisfying the above parity symmetries

have been constructed in [10]. Moreover, the analytical two-soliton u2-sol solution of the

mRLW model (ε1 = ε2 = 1) possesses an even parity under the above transformation.

In [10] it has been presented an analytical proof of the quasi-integrability of the non-

integrable mRLW theory showing that the relevant charges are asymptotically conserved in

the scattering of two solitons. In fact, this has been the first analytical, not only numerical,

proof of the quasi-integrability of a (non-integrable) field theory in 1 + 1 dimensions.

Two types of 1-soliton solutions of (2.6) have been provided in [10] using the Hirota

and a direct method, respectively. Below we provide, by direct method, a general 1-soliton

solution of the model for any set of values of the parameters {ε1, ε2}, such that the known

solutions appear as particular solutions of that general 1-soliton solution.

2.1 Two types of 1-soliton solutions

The Hirota method furnishes the first type of solution of (2.6) [10]

qI =
3

(2 + ε2) (1 + (1− ε1)k2)

{
log 2 +

Γ

2
+ log cosh

(
Γ

2

)}
, (2.15)

– 6 –
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with

Γ = kx− w1t+ δ; w1 =
k + (1− ε1)k3

1− ε1k2
. (2.16)

So, the eq. (2.4) provides the first type of 1-soliton solution for the field u

uI =
6

α

k2

(2 + ε2) (1− ε1k2)
sech2

[
1

2
(kx− w1t+ δ)

]
. (2.17)

A direct method provides a general 1-soliton solution of (2.6) by assuming the form

qII = q0

{
log cosh

[
ζ

2a

]
+ bζ + c

}
, ζ = kx− w2t+ δ. (2.18)

A direct substituion of qII into (2.6) provides the relationships

w2 =
a2k + (1− ε1)k3

a2 − ε1k2
; q0 =

3a2

(a2 + (1− ε1)k2)(2 + ε2)
, (2.19)

such that a, b and c are arbitrary real parameters. So, through (2.4) one has the second

type of 1-soliton solution for u

uII =
6

α

k2

(2 + ε2)(a2 − ε1k2)
sech2

[
1

2a
(kx− w2t+ δ)

]
. (2.20)

This is a new general form of 1-soliton solution which can not be found by the usual

Hirota method. Clearly, the two types of solutions become the same for a2 = 1 and for

arbitrary values of the set {ε1, ε2}. Moreover, for the case ε1 6= 1 and w2 = k
1−k2 one has

a2 = 1− (1− ε1)k2, and the 1-soliton solution takes the form

u′II =
6

α

k2

(2 + ε2)(1− k2)
sech2

[
kx− w2t+ δ

2
√

1− (1− ε1)k2

]
. (2.21)

This particular case has been reported in [10], and this type of solution u′II coincides with

uI for ε1 = 1.

2.2 2-soliton type solution: the case ε1 = ε2 = 1

The 2-soliton solution exists for the particular case ε1 = ε2 = 1. The field q takes the

form [10, 43]

q = log
[
1 + eΓ1 + eΓ2 +A12e

Γ1eΓ2
]
, Γi = kix− wit+ δi, wi =

ki
1− k2

i

, i = 1, 2.

(2.22)

A12 = −(w1 − w2)2(k1 − k2)2 + (w1 − w2)(k1 − k2)− (w1 − w2)2

(w1 + w2)2(k1 + k2)2 + (w1 + w2)(k1 + k2)− (w1 + w2)2
. (2.23)

In order to implement the parity transformation (2.11) and check the space-time parity

inversion symmetry of the 2-soliton solution we will derive a new expression for q in (2.22),

– 7 –
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such that u2-sol in (2.4) becomes a manifestly P invariant function. So, let us define a new

parameter ∆, as A12 = e∆, and

Γj = kj x̃− wj t̃+ η0j −
∆

2
≡ ηj −

∆

2
, j = 1, 2 (2.24)

where

δj = −kjx∆ + wjt∆ + η0j −
∆

2
, j = 1, 2. (2.25)

Therefore, q can be rewritten as

q = log

[
2e−∆/4 e(η1+η2)/2

(
e∆/4 cosh

(
η1 + η2

2

)
+ e−∆/4 cosh

(
η1 − η2

2

))]
. (2.26)

So, using (2.4) one has

u2-sol = − 8

α
∂x∂t log

[
e∆/4 cosh

(
η1 + η2

2

)
+ e−∆/4 cosh

(
η1 − η2

2

)]
. (2.27)

Therefore, the parity invariant 2-soliton becomes

u2-sol = u2-sol

∣∣∣
η01=η02=0

. (2.28)

Taking into account the condition η01 = η02 = 0, one gets the next relationships for the

coordinates of the special point (x∆, t∆)

x∆ ≡
w2θ̃1 − w1θ̃2

k2w1 − k1w2
(2.29)

t∆ ≡
k2θ̃1 − k1θ̃2

k2w1 − k1w2
, θ̃j ≡

∆

2
+ δj , j = 1, 2. (2.30)

Therefore, one has

P(u2-sol) = u2-sol, (2.31)

and using (2.2)–(2.3) one has that

P(v2-sol) = −v2-sol, P(w2-sol) = −w2-sol. (2.32)

In [10] it was provided a different procedure to construct u2-sol, and it has also been shown

that the exact Hirota three-soliton solutions of the standard KdV equation possess the

relevant parity properties when their solitons collide at the same point in space.

3 KdV-type asymptotically conserved charges

In the context of deformations of the sine-Gordon model, the higher order quasi-conser-

vation laws obtained in the anomalous zero-curvature approach [1–3], when conveniently

rewritten them as exact conservation laws, simply become the higher order derivatives of the

– 8 –
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energy-momentum conservation law [12]. Then, the higher order charges have been written

as dn

dtn (E ± P ), where E stands for energy and P for momentum. So, it is interesting to

examine the similar quasi-conservation laws related to the deformations of the KdV model

in the approach of [10].

In this section we will examine the properties of the anomalous conservation laws

considered in [10] for the particular deformation of the KdV model (2.1)–(2.3).

The anomalous conservation laws of the particular deformation of the KdV model (2.1)

have been defined as [10]

∂ta
(−2n−1)
x − ∂xa(−2n−1)

t = −Xγ(−2n−1), n ∈ Z+
0 (3.1)

where X has been defined in (2.7) and the first components of a
(−2n−1)
x and γ(−2n−1) are

provided in (A.1) and (A.2)–(A.3), respectively. So, one can write

d

dt
Q(−2n−1)
a = α(−2n−1), n ∈ Z+

0 (3.2)

such that the asymptotically conserved charges and their associated anomalies are de-

fined as

Q(−2n−1)
a ≡

∫ +∞

−∞
a(−2n−1)
x and α(−2n−1) ≡ −

∫ +∞

−∞
dxXγ(−2n−1). (3.3)

In [10] it has been defined the asymptotically conserved charges

Q
(−2n−1)
a (t→−∞) = Q

(−2n−1)
a (t→+∞). (3.4)

In fact, for soliton configurations satisfying the parity symmetries (2.12)–(2.14) the time

integrated anomalies vanish, i.e.∫ t=+∞

t=−∞
dtα(−2n−1) = −

∫ t=+∞

t=−∞
dt

∫ x=+∞

x=−∞
dxXγ(−2n−1) (3.5)

= 0. (3.6)

In that approach, the form of the charge densities a
(−2n−1)
x are the same as the relevant

ones corresponding to the usual KdV model at each order. Notice that the deformation

parameters enter only on the r.h.s., α(−2n−1), of the eq. (3.2).

Next, instead of assuming the quasi-conservation laws (3.2), which define the relevant

asymptotically conserved charges and anomalies, we inquire about the properties of the

anomalous r.h.s.’s; in particular, if they would directly be rewritten in the form

−Xγ(−2n−1) ≡ ∂t
(
j(−2n−1)
x

)
+ ∂x

(
j

(−2n−1)
t

)
, (3.7)

by explicitly obtaining the relevant current components j
(−2n−1)
x and j

(−2n−1)
t . So, let us

rewrite the r.h.s.’s of the first four equations of (3.1) for n = 0, 1, 2 and 3.
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Zeroth order (n = 0).

∂t

( α

223
u
)
− ∂x

(
−α

2

72
u2 +

α

12
(vt +

α

6
u2)

)
= 0, (3.8)

where the trivially vanishing term γ(−1) (A.2)–(A.3) has been used in the r.h.s. of (3.8).

Then, one can define the charge

Q(−1) =
α

12

∫ +∞

−∞
dxu. (3.9)

This charge is generally associated with the “mass”. Since it emerges from an exact con-

servation law, this charge is conserved even in the deformed KdV model (2.1).

First order (n = 1).

∂t

[
α2

2532
u2

]
− ∂xa(−3)

t = −Xγ(−3). (3.10)

A remarkable fact is that the r.h.s. of (3.10), using the expression for γ(−3) in (A.2)–(A.3)

and the eq. of motion (2.1), can be written as

−Xγ(−3) =
α2

2532
∂t[u

2]+∂x

[
α

233
Xu+

α2

2532
u2+

α2

2432
u(
α

2
u2+uxx)− α3

2533
u3− α2

2532
u2
x

]
.

(3.11)

Substituting the last identity into the eq. (3.10) one gets a trivial identity, and then a

vanishing charge density. Therefore, one gets a trivial charge at this order

q(−3) = 0. (3.12)

However, following [10], at this order one can define the quasi-conservation law

dQ
(−3)
a

dt
= α(−3) (3.13)

where

Q(−3)
a ≡ α2

2532

∫ +∞

−∞
dxu2, α(−3) ≡ −

∫ +∞

−∞
dxXγ(−3), (3.14)

is the asymptotically conserved charge Q
(−3)
a , with α(−3) being its relevant anomaly.

Second order (n = 2).

∂t

[
α3

2733
u3 +

α2

2732
uuxx

]
− ∂xa(−5)

t = −Xγ(−5). (3.15)

Similarly, the r.h.s. of (3.15) can be written as

−Xγ(−5) =
α3

2733
∂tu

3− α2

2732
∂t(ux)2+∂x

[
α2

2632
u3+

α

263
u2
x+

α3

283
u4+

α2

263
uxxu

2+
α

263
u2
xx+

α2

2632
utux

]
.
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Substituting the last identity into the r.h.s. of eq. (3.15) and collecting the charge density

terms one has

q(−5) =
α2

2732

∫ +∞

−∞
dx ∂x (uxu) , (3.16)

= 0. (3.17)

Therefore, one has a trivially vanishing charge also at this order. Following [10] one can

define the quasi-conservation law

dQ
(−5)
a

dt
= α(−5) (3.18)

where

Q(−5)
a ≡ α2

2732

∫ +∞

−∞
dx
[α

3
u3 − (ux)2

]
, α(−5) ≡ −

∫ +∞

−∞
dxXγ(−5), (3.19)

are the asymptotically conserved charge Q
(−5)
a and its relevant anomaly α(−5). This charge

maintains the same form as in the usual KdV at this order.

Third order (n = 3).

∂t

[
5α4

21134
u4 +

α3

2733
u2uxx +

α2

2932
(αuu2

x + uuxxxx)

]
− ∂xa(−7)

t = −Xγ(−7). (3.20)

Next, the r.h.s. of (3.20) can be rewritten as2

−Xγ(−7) = ∂t

[
5α2

2932

(
α2

36
u4−α

3
u(ux)2+

1

5
(uxx)2

)]
+

5α2

2932
∂x

[
2α

3
uuxut−

2

5
uxxuxt+

2

5
uxxxut−

α2

32
u4−

1

6

(α
2
u2+uxx

)2
−2

5
uxuxxx+

1

5
u2
xx−

α3

45
u5− 1

30
u2
xxx−

α

15
uuxuxxx−

α2

9
u3uxx−

α

15
uu2

xx+
α

15
u2
xuxx−

α

15
uu2

xx

]
. (3.21)

Notice that the charge density in the l.h.s. of (3.20) and the term inside the bracket ∂t[. . .]

of (3.21) are the same up to an expression of the form ∂x[. . .]. With this observation in

mind and substituting (3.21) into the r.h.s. of eq. (3.20) and collecting the charge density

terms one has

q(−7) = 0. (3.22)

2The correct form of γ(−7) has been presented in (A.2)–(A.3) of the present paper. In fact, the term
5α2

2732
uxx inside −∂x[. . .] appearing in the expression of γ(−7) in the fourth line of (2.20) of [10] should be

replaced by 5α2

2732
uuxx.

– 11 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
6

So, one gets a trivial charge also at this order. However, related to (3.20) the next

asymptotically-conserved charge has been defined [10]

Q(−7)
a =

5α2

2932

∫ +∞

−∞
dx

[
α2

36
u4 − α

3
u(ux)2 +

1

5
(uxx)2

]
. (3.23)

Therefore, from (3.20) the quasi-conservation law for Q
(−7)
a can be written as

d

dt
Q(−7)
a = −

∫ +∞

−∞
dxXγ(−7), (3.24)

where the r.h.s. of (3.20) provides the so-called anomaly.

In summary, what we have done in the computations which follow the eqs. (3.10), (3.15)

and (3.20) is to rewrite the relevant r.h.s.’s in the form (3.7) and shown that the relevant

quasi-conservation laws reduce to trivial identities.

Some comments are in order here. First, the charges of the sequence Q
(−2n−1)
a , n =

0, 1, 2, . . . , in the anomalous zero-curvature approach, maintain the same form as the rele-

vant charges of the usual KdV. Second, in the ordinary KdV, i.e. when the anomaly X = 0,

the charges of (3.8), (3.10) and (3.15) are usually associated with the “mass”, “momen-

tum” and “energy” conservation, respectively. The quantity u inside the time-derivative

of (3.8) can be interpreted as the mass density, while the terms inside the x-derivative

represent the mass flux. However, the charges of (3.15) and (3.20) do not have a direct

interpretation and their relationships to the relevant physical quantities have recently been

considered (see e.g. [34]). Third, in order to achieve the trivial charges q(−n), n = 3, 5, 7

we have removed the non-homogeneous terms, which were dubbed as “anomalies” in [10],

and conveniently rewritten the relevant equations as exact conservation laws. So, one can

argue that the conservation laws (3.2) become trivially satisfied, since the r.h.s.’s of the

relevant quasi-conservation laws (3.1) can be expressed as time-derivatives of the relevant

KdV-type charges. Fourth, the behavior above is in contradistinction to the deformed

sine-Gordon models, in which the analogous higher order quasi-conservation laws, in the

anomalous zero-curvature approach, become simply the higher derivatives of the non-trivial

energy-momentum conservation law [12].

4 New asymptotically conserved charges and scale dimensions

In the context of the integrable KdV, modified KdV (mKdV) and Gardner (mixed KdV-

mKdV) models there have been analyzed the behavior of the so-called statistical moments

defined by the integrals of type [21, 22, 35]

Mn(t) =

∫ +∞

∞
un dx, n = 1, 2, 3, 4. (4.1)

For the above integrals it has been examined the two-soliton interactions which are thought

to play an important role in the formations of the structures of soliton turbulence and soli-

ton gas in integrable systems. The soliton gas associated to the quasi-integrable model (2.1)
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for ε2 = 0, ε1 6= {0, 1} (the so-called KdV-RLW or the Korteweg-de Vries-Benjamin-Bona-

Mahony (KdV-BBM) model), has been examined [36].

It is interesting to notice that the two-soliton interaction in the framework of the KdV

equation leads to the decrease of the 3rd and 4th moments, M3,4, respectively, around

the interaction region [21, 22], revealing a qualitatively analogous behavior to the asymp-

totically conserved charges reported in quasi-integrable models [10]. While the first two

moments M1,2 are integrals of the KdV and mKdV evolutions, respectively, the 3rd and

4th moments, corresponding to the KdV and mKdV systems, undergo significant vari-

ations in the dominant interaction region, resembling to the behavior of asymptotically

conserved charges of quasi-integrable KdV models [10]. In fact, the charge Q
(−3)
a in the

quasi-integrable KdV model, see (3.14), which has the same form as M2, is an asymptoti-

cally conserved charge.

We believe that those types of charges will play an important role in the study of

soliton gases and formation of certain structures in (quasi-)integrable systems, such as

soliton turbulence, soliton gas dynamics and rogue waves [21–23]. It has recently been

achieved the experimental realization of a hydrodynamic soliton gas in a wave flume in a

shallow water regime [23]. In this scenario a pure integrable dynamics and the two-soliton

interaction are the basic ingredients in the formation of the soliton gas.

In addition, the above type of moment functions have been used to implement a numer-

ical solution of KdV-type models in the context of the so-called general lattice Boltzmann

model [37].

The question arises whether one could find other independent sets, different from

the above set Q
(−2n−1)
a in (3.2)–(3.3), of asymptotically conserved charges in the quasi-

integrable KdV model. So, we will search for new infinite towers of asymptotically con-

served charges of the deformed KdV (2.1), or equivalently (2.8).

Let us examine the scaling dimensions and some symmetries of the model. By inspect-

ing the scaling (inverse length dimension) of the relevant fields in the l.h.s. of eq. (2.8) one

notices that the fields and derivatives can be associated with the scale dimensions3

deg(∂t) = 3; deg(∂x) = 1; deg(u) = 2; deg(v) = 1; deg(w) = −1, (4.2)

where the scaling dimensions of the fields w, v have been defined by using the relation-

ships (2.2)–(2.3), respectively. The standard KdV eq. is symmetric under scaling transfor-

mation; so, its conservation laws, generalized symmetries, and recursion operator inherit

the same scaling property of the KdV system [38]. According to the above definition, the

terms of the r.h.s. of (2.8) exhibits non-homogeneous scaling dimensions, i.e. the compo-

nents of X comprises fourth and sixth order scale dimensions, while the remaining term ux
possesses third order. We will systematically use this concept below to identify the higher

scale dimensions of different quantities, such as the relevant charge densities. In fact, the

KdV-type asymptotically conserved charges defined in section 3 exhibits homogeneous scale

dimensions in each term of their relevant charge densities; i.e. deg {a(−2n−1)
x } = 2n+ 2.

3Note that all terms in the l.h.s. of (2.8) should be of the same scale dimension with ∂x being L−1,

which we define as deg(∂x) = 1. The ux term in the r.h.s. can be removed by field redefinition, as in the

usual KdV.
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4.1 Higher order moments as asymptotically conserved charges

One can get an infinite tower of quasi-conservation laws by multiplying (2.8) on the both

sides by nun−1 and using the form of X in (2.10) one gets the non-homogeneous conserva-

tion laws

∂t[u
n]+∂x

[
α

2
nun+1+nun+nun−1uxx+

6n

α
un−1X

]
= −n(n−1)un−2uxvt; n = 1, 2, 3 . . .

(4.3)

Notice that the n = 1 case corresponds to the eq. of motion (2.8) itself; since the r.h.s.

of (4.3) for n = 1 vanishes the relevant conservation law defines, up to the constant factor

α/12, the mass Q(−1) in (3.9). Taking n = 2 in (4.3) and using the expression of vt in (2.10)

one gets the quasi-conservation law

∂t[u
2] + ∂x

[
2α

3
u3 + u2 + 2uuxx +

12

α
uX − u2

x

]
=

12

α
uxX, (4.4)

which is, up to the overall constant factor α2

2532
, the anomalous conservation law (3.10). So,

we define the following quasi-conservation laws for n ≥ 3

d

dt
q̃(n)
a = β̃(n), n = 3, 4, 5, . . . (4.5)

q̃(n)
a ≡ αn

22n+13n

∫ +x̃

−x̃
dx un, β̃(n) ≡ αn

22n+13n

∫ +x̃

−x̃
dx [−n(n− 1)un−2uxvt]. (4.6)

Since we can assume the parity symmetry (2.12)–(2.14) for the corresponding fields, the

time integrated anomalies β̃(n) vanish for t̃→ +∞, x̃→ +∞∫ +t̃

−t̃
dtβ̃(n) =

αn

22n+13n

∫ +t̃

−t̃
dt

∫ +x̃

−x̃
dx [−n(n− 1)un−2uxvt]. (4.7)

= 0

Integrating in time (4.5) and making x̃→ +∞ one can write

q̃(n)
a (+t̃) = q̃(n)

a (−t̃), n = 2, 3, 4, . . . (4.8)

provided that the vanishing of the time-integrated anomaly (4.7) is taken into account.

So, the higher order moments defined in (4.5) become asymptotically conserved charges,

in analogy to the relevant moments (4.1) of the standard KdV as mentioned above.

Notice that the relevant charge densities exhibit the scale dimension deg un = 2n. So,

this tower of asymptotically conserved charges stands as a different set from the previous

set constructed using the KdV-type conservation laws. The last results beg the question

of whether it could be possible to construct new quasi-conservation laws directly from the

equations of motion. In the next constructions we will show the appearance of other sets

of asymptotically conserved charges with mixed scale dimensions.

In section 7, we will numerically simulate the anomaly β̃(3) in (4.5) of the quasi-

conservation laws (4.3) for 2-soliton and 3-soliton scatterings.
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4.2 Asymptotically conserved charges and mixed scale dimensions

In addition to the above charges, we can also define another set of charges with correspond-

ing charge density terms possessing mixed scale dimensions, i.e. in contradistinction to the

charge densities a
(−2n−1)
x in (A.1) with deg(a

(−2n−1)
x ) = 2n+ 2 for each of their terms, and

the above higher order moment charges (4.5) with deg un = 2n.

4.2.1 Local asymptotically conserved charges and mixed scale dimensions

Let us examine local asymptotically conserved charges with mixed scale dimensions com-

posing their charge densities. Taking into account the form of X in (2.7) and multiply-

ing (2.8) on the both hand sides by 2u, the next non-homogeneous conservation law can

directly be obtained

∂t[u
2 + ε1u

2
x] + ∂x

[
u2 +

2α

3
u3 + 2uuxx − u2

x − 2ε1uuxt +
αε2
2
uwxvt

]
=
αε2
2
wxvtux.

(4.9)

Notice that for ε2 = 0 the r.h.s. of (4.9) vanishes; so, this eq. turns out to be an exact

conservation law; and it will give rise to the second conserved charge of the KdV-RLW

model [36, 39–41] defined for ε2 = 0, ε1 6= {0, 1}. For the particular choice ε2 = 0, ε1 =

1 (4.9) defines the second conservation law of the RLW model [44]. For ε2 6= 0 one can

define an asymptotically conserved charge from the quasi-conservation law (4.9) as

d

dt
Q̃(2)
a = α̃2 (4.10)

Q̃(2)
a ≡ α2

2532

∫ +x̃

−x̃
dx[u2 + ε1u

2
x]; α̃2 ≡

α3ε2
2632

∫ +x̃

−x̃
wxvtux dx, (4.11)

where the r.h.s. defines the relevant anomaly α̃2, and an overall normalization factor has

been introduced for later convenience. Notice that the terms in the charge density possess

different scale dimensions; i.e. deg(u2) = 4, deg(u2
x) = 6. The time-integrated anomaly

vanishes provided that the fields satisfy the parity transformations (2.12)–(2.14), i.e.∫ +t̃

−t̃
α̃2 dt =

α3ε2
2632

∫ +t̃

−t̃
dt

∫ +x̃

−x̃
dx wxvtux (4.12)

= 0. (4.13)

So, integrating in time (4.10) and making x̃→ +∞ one can write for t̃→ +∞

Q̃(2)
a (+t̃) = Q̃(2)

a (−t̃), (4.14)

provided that the vanishing of the time-integrated anomaly (4.12) is taken into account.

Similarly, from X in (2.7) and multiplying (2.8) on the both sides by 3u2, the following

non-homogeneous conservation law can be obtained

∂t[u
3 + 3ε1uu

2
x] + ∂x

[
3α

4
u4 + u3 +

3α

4
ε2wxvtu

2 − 3ε1uxtu
2

]
= 3(ε1 − 1)uxxxu

2 +

3αε2
2

wxvtuux + 3ε1u
2
xut.

(4.15)
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So, the generalization of this sequence for higher order quasi-conservation laws become

∂t

[
un+

n(n−1)ε1
2

un−2u2
x

]
+∂x

[
nun−1

(
α

n+1
u2+

u

n
+
αε2
4
wxvt−ε1uxt

)]
= An, n ≥ 3

(4.16)

An ≡ nun−3

[
(ε1−1)u2uxxx+

αε2(n−1)

4
wxvtuux+

(n−1)(n−2)

2
ε1u

2
xut

]
.

From (4.16) one can define the asymptotically conserved charges

d

dt
Q̃(n)
a = α̃n, n ≥ 3 (4.17)

Q̃(n)
a ≡ αn

22n+13n

∫ +x̃

−x̃
dx

[
un +

n(n− 1)ε1
2

un−2u2
x

]
; α̃n ≡

αn+1

22n+23n

∫ +x̃

−x̃
An dx.

(4.18)

One can show that the anomaly density terms of An are odd functions under the parity

transformation (2.12)–(2.14); so, following similar arguments as above one can conclude

that the charges Q̃
(n)
a are asymptotically conserved.

In section 7, we will numerically simulate the anomaly α̃2 in (4.11) of the quasi-

conservation law (4.10) for 2-soliton and 3-soliton scatterings.

Next, let us search for another set of charges. So, write the eq. (2.8) in the form of an

evolution equation

ut = − 6

α
Fx, (4.19)

F ≡ X +
α

6
u+

α

6

(α
2
u2 + uxx

)
.

Multiplying the both sides of (4.19) by F and using the expression for X in (2.7) one can

get the quasi-conservation law

∂t

[α
3
u3 + u2 + (ε1 − 1)u2

x

]
+ ∂x

[
36

α2
F 2 − ε1u2

t − 2(ε1 − 1)utux

]
= −αε2

2
wxvtut.

(4.20)

Clearly, for ε2 = 0 it provides an exact conservation law. In fact, for ε2 = 0, ε1 = 1 it

provides the third conserved charge of the RLW model [44]. In addition, it will give the

third conserved charge of the KdV-RLW model defined for ε2 = 0, ε1 6= {0, 1}. In fact, the

eq. (2.1) for ε2 = 0, ε1 6= {0, 1} can be written as

ut + ∂x[R] = 0, R ≡ u+
α

2
u2 + uxx − ε1(uxt + uxx). (4.21)

So, multiplying by R the eq. (4.21) on can rewrite it as

∂t

[
1

2
u2 +

α

3
u3 − (1− ε1)(ux)2

]
+ ∂x

[
(1− ε1)utux − ε1(ut)

2 +
1

2
R2

]
= 0. (4.22)
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The last construction provides the third conserved charge of the KdV-RLW model. For

other choices of the set of parameters {ε1, ε2}, from (4.20) one can define the asymptotically

conserved charge

d

dt
Q(3)
a = α3 (4.23)

Q(3)
a ≡ α2

2532

∫ +x̃

−x̃

[α
3
u3 + u2 + (ε1 − 1)u2

x

]
dx, α3 ≡ −

α3ε2
2632

∫ +x̃

−x̃
wxvtut dx.

(4.24)

Since the anomaly α3 vanishes when integrated in space-time and evaluated on fields sat-

isfying the parity symmetry (2.12)–(2.14), following similar steps as above one can define

the asymptotically conserved charge

Q(3)
a (t̃→∞) = Q(3)

a (t̃→ −∞). (4.25)

Next, let us construct the sequence of quasi-conservation laws containing the eq. (4.20).

So, substitute u = vx into the l.h.s. of the evolution eq. (4.19) and perform a x integration

once, the outcome will be

vt = − 6

α
F. (4.26)

Multiplying on the both hand sides of the eq. above by ut and performing some algebraic

manipulations one can get

∂t

[α
3
u3 + u2 + (ε1 − 1)u2

x

]
+ ∂x[v2

t + 2(1− ε1)utux − ε1u2
t ] = −α

2
ε2wxvtut. (4.27)

One can show that this eq. is the same as the quasi-conservation law obtained above

in (4.20). Next, let us multiply by unut on the both hand sides of the eq. (4.26) and

perform some algebraic manipulations in order to get

∂t

[
α

2(n+ 1)
un+2 +

un+1

n+ 1
+ (1− ε1)unuxx

]
+

1

2
∂x[vn−1

x v2
t − ε1u2

tu
n−1] = Cn, n ≥ 2,

(4.28)

Cn ≡ −
α

4
ε2wxvtu

n−1ut +
n− 1

2
vn−2
x vxxv

2
t −

ε1(n− 1)

2
un−2uxu

2
t + n(1− ε1)unuxxt.

(4.29)

For n = 1 the last eq. can be rewritten as (4.27) after some algebraic manipulations. Then,

for n ≥ 2 from (4.28) one can define the asymptotically conserved charges

d

dt
Q(n+2)
a = τn, n ≥ 2 (4.30)

Q(n+2)
a ≡ αn+1

22n+13n

∫ +x̃

−x̃
dx

[
α

2(n+ 1)
un+2 +

un+1

n+ 1
+ (1− ε1)unuxx

]
; (4.31)

τn ≡
αn+1

22n+23n

∫ +x̃

−x̃
Cn dx. (4.32)
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The anomaly density terms of Cn are odd functions under the parity transformation (2.12)–

(2.14); so, following similar arguments as above one can conclude that the charges Q(n)
a are

asymptotically conserved.

In section 7, we will numerically simulate the anomaly α3 in (4.24) of the quasi-

conservation law (4.23) for 2-soliton and 3-soliton scatterings.

Next, let us discuss some relationships between the lowest order charges. The density

of KdV-type charge Q
(−5)
a defined in (3.19) does not depend explicitly on the deformation

parameters {ε1, ε2}; however, it can be related to the charges Q̃
(2)
a and Q(3)

a of (4.11)

and (4.24), respectively, and they satisfy the relationship

Q(−5)
a =

1

22
[Q(3)

a − Q̃(2)
a ]. (4.33)

Let us compute the first conserved charges Q̃
(2)
a , Q(3)

a and Q
(−5)
a defined in (4.11), (4.24)

and (3.19), respectively, for the general 1-soliton solution presented in (2.20). So, one has

Q̃(2)
a =

k3(5a2 + ε1k
2)

15a(a2 − ε1k2)2(2 + ε2)2
; (4.34)

Q(3)
a =

5a4k3(2 + ε2)− k7(ε1 − 1)ε1(2 + ε2) + a2k5(6− ε2 − 4ε1(2 + ε2))

15a(a2 − k2ε1)3(2 + ε2)3
(4.35)

Q(−5)
a =

a2k5(6− ε2) + k7ε1(2 + ε2)

60a(a2 − k2ε1)3(2 + ε2)3
. (4.36)

For these values one can perform a direct verification of the relationship (4.33) for 1-soliton.

In section 7 we will verify numerically the relationship (4.33) for 1-soliton.

The RLW model (ε2 = 0, ε1 = 1) possesses only three independent conserved charges,

defined by the following charge densities [44]: u, u2 + u2
x and u2 + α

3u
3, which we have

identified above. Moreover, we have found the three conserved charges of the KdV-RLW

model (ε2 = 0, ε1 6= {0, 1}) with charge densities: u, u2+ε1u
2
x and u2+ α

3u
3+(ε1−1)u2

x. The

above towers of infinite number of asymptotically conservation laws, (4.5), (4.17) and (4.30),

respectively, can be considered as generalizations of these charges such that each conserved

charge constitutes the lowest order charge of a family of infinite tower of higher order

asymptotically conserved charges. So, it seems to be that for each exact conservation law

of the deformed model one can construct a tower of related family of higher order infinite

number of quasi-conservation laws.

The above charge densities and anomalies show different degrees of dependence on the

parameters ε1,2, and since each tower of quasi-conservation law defines an infinite set of

asymptotically conserved charges, we may argue that they probe the degree of deformation

away form the usual KdV-type charges. In fact, in comparison to the KdV-type charges,

Q
(−2n−1)
a in (3.3), the charges Q̃

(n)
a in (4.17) and Q(n+2)

a in (4.30) encode more accurately

the property of being nearly conserved, since their densities incorporate additional terms

possessing explicit dependence on the deformation parameters. Each tower encapsulates

different degree of deformation away from KdV-type charges, so we could argue that they

probe more accurately the regions of interactions of the solitons.

– 18 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
6

4.3 Non-local charges and mixed scale dimensions

The asymptotically conserved charges we have found so far incorporate only local expres-

sions in their charge densities; so, since the deformed KdV (2.1) possesses the nonlocal

terms vt, wx, one could inquire about the existence of non-local charges, e.g. those incor-

porating these terms and their x and t derivatives. Then, in the next steps we construct

nonlocal asymptotically conserved charges.

Let us consider the evolution eq. (4.19) and multiply it by (n+1)Fn on the both sides;

so, after some algebraic computations one can define the following anomalous conserva-

tion laws

∂t[uF
n] + ∂x

[
6

α(n+ 1)
Fn+1

]
= u∂tF

n, n = 1, 2, 3, . . . (4.37)

where F has been defined in (4.19). Therefore, one can define

d

dt
Q̂

(n)
nonl,a = Bn, n = 1, 2, 3, . . . (4.38)

Q̂
(n)
nonl,a ≡

∫
dxuFn, Bn ≡

∫
dxu∂tF

n . (4.39)

The case n = 1 of the eq. (4.37), after some algebraic manipulations, can be rewritten

as (4.20) or (4.27). The anomaly u∂tF
n on the r.h.s. of (4.37) is an odd function provided

that the fields satisfy the parity transformations (2.11) and the properties (2.12)–(2.14).

In general, one can show the vanishing of the space-time integrated anomaly u∂tF
n on the

r.h.s. of (4.37), and so, making |x̃| → +∞ in (4.38)–(4.39) one can write

Q̂
(n)
nonl,a(t̃→∞) = Q̂

(n)
nonl,a(t̃→ −∞). (4.40)

Next, let us examine the conserved charges of the deformed KdV written in terms of the

q field. In fact, the deformed KdV can be written as a local equation of motion in terms

of this field (2.6). So, take the x-derivative of the eq. (2.2) and use the first eq. in (2.5) in

order to get

ux = wxt ⇒
8

α
∂t(−qxx)− ux = 0. (4.41)

This eq. allows us to define the next conserved charge

Q̄1 = − 8

α

∫ +∞

−∞
dx qxx. (4.42)

It can directly be verified by taking

d

dt
Q̄1 = − 8

α

∫ +∞

−∞
dx qxxt (4.43)

= u(+∞)− u(−∞) (4.44)

= 0, (4.45)
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where in the second line the relationship (2.4) has been used. It is a remarkable fact that

this charge is conserved for the deformed KdV model, for any set of values of the parameters

ε1 and ε2. In addition, the conservation law in (4.41) and the charge (4.42) can easily be

constructed by taking the x-derivative of the eq. (2.6). The next order quasi-conservation

law can be constructed by taking firstly the x-derivative of (2.6) and then by multiplying

the resulting eq. by 2qxx. So, one can write

∂t
[
q2
xx−2qtqxxx−(1−ε1)q2

xxx+2ε1qxxxqxxt
]
+∂x

[
2qxxH+2qtqtxx−q2

xt−ε1q2
xxt

]
= H1

(4.46)

H1 ≡ −4qxxx
(
2q2
xt+ε2qxxqtt

)
,

H ≡ −qtt+4q2
xt+2ε2qxxqtt−qxxxt+ε1(qxxtt+qxxxt). (4.47)

Therefore, one can define the asymptotically conserved charge

d

dt
Q̄2 = h1, (4.48)

Q̄2 =
24

α2

∫
dx
[
q2
xx − 2qtqxxx − (1− ε1)q2

xxx + 2ε1qxxxqxxt
]
, h1 ≡

∫
dxH1. (4.49)

Notice that, taking into account the symmetry property of q (2.13), the anomalyH1 exhibits

odd parity under (2.11).

The higher order quasi-conservation laws of this sequence can be constructed similarly,

taking firstly the x-derivative of (2.6) and then by multiplying the resulting eq. by (n+1)qnxx.

Afterwards, one can write

∂t

[
qn+1
xx − n(n+ 1)qtqxxxq

n−1
xx +

n(n+ 1)(ε1 − 1)

2
qn−1
xx q2

xxx + n(n+ 1)ε1q
n−1
xx qxxxqxxt

]
−

∂x [(n+ 1)Hqnxx] = Hn, n ≥ 2 (4.50)

Hn ≡ −n(n+ 1)qt∂t(qxxxq
n−1
xx ) +

(n− 1)n(n+ 1)(ε1 − 1)

2
qn−2
xx qxxtq

2
xxx −

n(n+ 1)qn−1
xx qxxx(4q2

xt + 2ε2qxxqtt) + (n+ 1)ε1∂x∂t(q
n
xx)qxxt, (4.51)

where H is defined in (4.47). Notice that the anomaly Hn exhibits odd parity under (2.11).

Therefore, the quasi-conservation law (4.46) and the infinite tower of eqs. (4.50), following

similar discussions as above, will present asymptotically conserved charges. Moreover,

when expressed in terms of the u field, using the relationship (2.4), they will become

highly non-local charges.

In section 7, we will numerically simulate the anomaly h1 in (4.49) of the quasi-

conservation law (4.48) for 2-soliton and 3-soliton scatterings.

5 The mRLW theory and the quasi-conservation laws

For the non-integrable modified regularized long-wave (mRLW) model (ε1 = ε2 = 1) we

have an analytical form of a 2-soliton solution, whose P invariant representation was ob-

tained in (2.28). So, taking into account this symmetry of the 2-soliton in (2.28), which
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satisfies the parity symmetry (2.31), and the symmetries of the auxiliary fields in (2.32),

one can show analytically the vanishing of the anomalies belonging to the various infinite

towers of new quasi-conservation laws presented above. Thus, it is an analytical proof of

the quasi-integrability of the mRLW theory. Notice that similar argument has been used

in order to present this proof for the KdV-like quasi-conservation laws in [10]. Here, we are

generalizing this proof for the new quasi-conservation laws presented in the last section.

Then, it is worth to mention that this adds a new strong result on the analytical proof,

not only numerical, of the quasi-integrability of a (non-integrable) theory, first discussed

in [10].

6 Standard KdV: quasi-conservations and anomalies for N -soliton

Next, we show by direct construction that the standard KdV model possesses some towers

of infinite number of anomalous conservation laws. In this way, higher order analogs to the

series (4.3) and (4.37), respectively, will be constructed for the standard KdV model. Subse-

quently, it will be shown analytically the quasi-conservation of the infinite towers of anoma-

lous charges for N -soliton solution satisfying the special parity symmetry (2.11)–(2.12).

So, let us rewrite the eq. (2.1) for ε1 = ε2 = 0, as

∂tu+ ∂xK = 0, K ≡ u+
α

2
u2 + uxx. (6.1)

This KdV equation is not written in the standard form. The standard form of the KdV

model can be written as [24, 25, 42]

∂tu+ αuux + uxxx = 0, α = 6, (6.2)

which can be obtained from (6.1) provided the transformation u→ u− 1
α is performed.

Multiplying by un the eq. (6.1) and rewritten conveniently one has

∂t

[
un+1

n+ 1

]
+ ∂x[unK] = nun−1∂xK, n = 2, 3, . . . (6.3)

So, one can define the higher order moment charges and anomalies as

d

dt
Mn+1 = Ankdv (6.4)

Mn+1 =

∫ +∞

−∞

un+1

n+ 1
, Ankdv ≡

∫ +∞

−∞
nun−1∂xK, n = 2, 3, . . . (6.5)

Then, these eqs. are the quasi-conservation laws satisfied by the higher order moments of

the usual KdV model defined in (4.1). Then, following the discussion above, one has that

for the field u satisfying the property (2.12) under the parity transformation (2.11) one can

show that the anomaly [nun−1∂xK] is an odd function. So, the vanishing of these anomalies

upon integration in space and time will provide an infinite series of asymptotically conserved

charges, even for the standard KdV model. We will find below other type of anomalous

charges for the standard KdV. These new kind of anomalous charges are expected to appear

in the other quasi-integrable theories considered in the literature [12].
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Moreover, an analogous series to the asymptotically conservation laws in (4.37) can

be constructed even for the standard KdV model. So, multiplying by K the eq. (6.1) and

after some algebraic manipulations, one has

∂t

[
1

2
u2 +

α

6
u3 − 1

2
(ux)2

]
+ ∂x

[
1

2
K2

]
= 0. (6.6)

This eq. is simply the linear combination of the exact conservation laws for the KdV charges

Q(−3) and Q(−5) in (3.10) and (3.15), respectively, provided that one sets X = 0 for the

standard KdV.

Non-trivial anomalies appear for the higher order constructions of this sequence. Let

us multiply by 1
n+1K

n, (n ≥ 2), the eq. (6.1); so, rewritten conveniently one gets

∂t

[
1

n+ 1
uKn

]
+ ∂x

[
Kn+1

]
=

u

n+ 1
∂t(K

n), n ≥ 2. (6.7)

So, one can define the next anomalous charges and their relevant anomalies as

d

dt
Vn = Bnkdv (6.8)

Vn =

∫ +∞

−∞

1

n+ 1
uKn, Bnkdv ≡

∫ +∞

−∞

1

n+ 1
u∂t(K

n), n = 2, 3, . . . (6.9)

By inspecting the anomaly density
[

u
n+1∂t(K

n)
]

on the r.h.s. of (6.7) one can see that

it is an odd function provided that the field u satisfies the parity transformations (2.11)

and (2.12). As discussed above, these series of quasi-conservation laws will provide a tower

of anomalous conserved charges for the standard KdV model. So, these kind of anomalous

charges and the higher order moments, we have described above in (6.3), appear for the

standard KdV model. We have mentioned above some physical consequences and certain

patterns that might be expected for the higher order moments of the undeformed KdV

when evaluated for the two-soliton collisions.

The dynamical mechanism responsible for the behavior of the anomalous charges

from (6.7) for general solutions of the integrable KdV, to our knowledge, has not been

studied in the literature yet. However, we will use the symmetry argument to advance

the, so far, only plausible explanation for the presence of those set of anomalous charges

and the N -soliton collision of the integrable KdV. So, let us construct N-soliton solutions

of KdV satisfying the symmetry property (2.11) and (2.12). The relevant construction

of the solutions for the cases N = 1, 2 and 3 have been discussed in [10]; however, for

the case N = 3 it has been discussed a particular case x∆ = t∆ = 0. Here, we follow

the approach of [24, 25] in order to construct a general N -soliton solution possessing the

space-time parity symmetry (2.11)–(2.12), for any shifted point and delayed time (x∆, t∆)

in space-time.

The Hirota’s tau function for the eq. (6.2) is introduced as

u =
12

α
∂2
x log τ. (6.10)
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The N -soliton solutions of the equation (6.2) possesses the well known form [42]

τN =
∑
µ

exp

 N∑
j=1

µjΓj +
N∑

1≤j<l
µjµlθjl

 (6.11)

where the µ−summation is performed in all the permutations of µi = 0, 1, for i =

1, 2, . . . N , and

Γj = kix− wit+ ξ0j , eθij =

(
ki − kj
ki + kj

)2

, wi = k3
i . (6.12)

Notice that the ξ0j are arbitrary constants revealing the space-time translation invariance

of the KdV equation, such that each j-soliton component of the N -soliton can be located

anywhere ξ0j . In order to construct a subset of solutions possessing the space-time sym-

metry (2.11)–(2.12) we follow the method of [24, 25]. The key idea is to make a convenient

choice of the set of parameters ξ0j , such that the space-time translation symmetry of the

solution (6.11) is broken. So, let us consider [24, 25]

Γj = kj(x−x∆)−wj(t−t∆)+η0j−
1

2

j−1∑
i=1

θij−
1

2

N∑
i=j+1

θji ≡ ηj−
1

2

j−1∑
i=1

θij−
1

2

N∑
i=j+1

θji.

(6.13)

With the redefinitions above, the N -soliton solutions (6.11) take the equivalent form

uN =
12

α
∂2
x

log
∑
ν

kν cosh

1

2

N∑
j=1

νjηj

 , (6.14)

where the summation in ν is performed in all the permutations of νi = 1,−1, i = 1, 2, . . . N ,

and Kν = Πi>j(ki − νiνjkj).
Therefore, the shifted parity and delayed time inversion symmetric N -soliton solution

is directly obtained from (6.14) as

uN = u|η0j=0. (6.15)

It is clear that this solution uN will exhibit the symmetry (2.11)–(2.12), i.e.

P(uN ) = uN . (6.16)

Next, we follow the above construction to write explicitly the tau functions for the cases

N = 1, 2, 3, and obtain their associated solitons and describe their main properties.

The case N = 1, τ1 = 1 + eΓ1 , becomes

τ1 = 2e−
η1
2

[
cosh

η1

2

]
, η1 = k1(x− x∆)− w1(t− t∆) + η01. (6.17)

Therefore, using (6.14) and (6.15) one can get

u1 =
3

α
k2

1 sech2

[
k1(x− x∆)− w1(t− t∆)

2

]
. (6.18)

In fact, it is an even parity 1-soliton under P, i.e. P(u1) = u1.
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The case N = 2 tau function becomes

τ2 = 1 + eΓ1 + eΓ2 + eΓ1+Γ2+θ12 , (6.19)

which, taking into account the above construction, can be rewritten as

τ2 =
2

k1 − k2
e(η1+η2)/2

[
(k1 − k2) cosh

(
η1 + η2

2

)
+ (k1 + k2) cosh

(
η1 − η2

2

)]
. (6.20)

ηi = ki(x− x∆)− wi(t− t∆) + η0i, i = 1, 2. (6.21)

Then, it is straightforward to construct a P invariant 2-soliton as

u2 =
12

α
∂2
x log

[
(k1 − k2) cosh

(
η1 + η2

2

)
+ (k1 + k2) cosh

(
η1 − η2

2

)]∣∣∣
η01=η02=0

. (6.22)

Thus, this KdV 2-soliton solution is even under the parity transformation P : (x̃, t̃) →
(−x̃,−t̃). It is interesting to determine (from the conditions η01 = η02 = 0) the coordinates

of the special point (x∆, t∆) provided by

x∆ =
w1

(
ξ02 + 1

2θ12

)
− w2

(
ξ01 + 1

2θ12

)
k1w2 − k2w1

, (6.23)

t∆ =
k1

(
ξ02 + 1

2θ12

)
− k2

(
ξ01 + 1

2θ12

)
k1w2 − k2w1

. (6.24)

Notice that this point depends on the initial space coordinate positions x0i = − ξ0i
ki
, (i =

1, 2), assumed at initial time to = 0, of the 2-soliton components, as well as on the wave

numbers ki, i = 1, 2.

The N = 3 case follows similarly. So, the tau function τ3

τ3 = 1+eΓ1+eΓ2+eΓ3+eΓ1+Γ2+θ12+eΓ1+Γ3+θ13+eΓ2+Γ3+θ23+eΓ1+Γ2+Γ3+θ12+θ13+θ23 ,

(6.25)

can be rewritten as

τ3 =
2e(η1+η2+η3)/2

(k1 − k2)(k1 − k3)(k2 − k3)
[C(x, t)] (6.26)

C(x, t) ≡ (k1 − k2)(k1 − k3)(k2 − k3) cosh [(η1 + η2 + η3)/2] +

(k1 + k2)(k1 + k3)(k2 − k3) cosh [(−η1 + η2 + η3)/2] +

(k1 + k2)(k1 − k3)(k2 + k3) cosh [(η1 − η2 + η3)/2] +

(k1 − k2)(k1 + k3)(k2 + k3) cosh [(η1 + η2 − η3)/2],

ηi = ki(x− x∆)− wi(t− t∆) + η0i, i = 1, 2, 3.

Similarly, it is straightforward to construct a P invariant 3-soliton as

u3 =
12

α
∂2
x logC(x, t)

∣∣∣
η01=η02=η03=0

. (6.27)
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Clearly, this KdV 3-soliton solution is even under the parity transformation P(u3) = u3.

The point (x∆, t∆), upon imposing η01 = η02 = η03 = 0, becomes

x∆ =
E1w2 − E2w1

k1w2 − k2w1
(6.28)

t∆ =
E1k2 − E2k1

k1w2 − k2w1
(6.29)

Ei ≡ −(ξ0i + Θi), i = 1, 2, 3 (6.30)

Θ1 ≡
1

2
(θ12 + θ13), Θ2 ≡

1

2
(θ12 + θ23), Θ3 ≡

1

2
(θ13 + θ23). (6.31)

For the solution above the initial positions (x0i = − ξ0i
ki
, i = 1, 2) of the first two solitons

are assumed to be fixed a priori for initial time t0 = 0. Then, the position of the third

soliton (x03, at t0 = 0) must be fixed as

x03 = −ξ03

k3
(6.32)

ξ03 =
w3(E1k2 − E2k1)− k3(E1w2 − E2w1)

k1w2 − k2w1
. (6.33)

Notice that the initial position of the third soliton is not completely arbitrary, but depends

on the initial positions of the other two solitons x01 and x02 previously fixed, as well as on

the wave numbers ki, i = 1, 2, 3.

Then, one must conclude that the above anomalies Ankdv in (6.4) and Bnkdv in (6.8) will

vanish upon integration in space-time for all the N-soliton configurations (6.15), since the

relevant anomaly densities possess odd parities for soliton configurations satisfying the par-

ity symmetry (6.16). Consequently, the quantities Mn, (n = 3, 4, . . .), and Vn, (n = 2, 3 . . .),

in (6.4) and (6.8), respectively, are asymptotically conserved charges of the standard KdV

model. Thus, the above results show the first example of an analytical, and not only nu-

merical, demonstration of the vanishing of the anomalies for N -soliton, associated to an

infinite series of quasi-conservation laws in soliton theory.

We believe that, for deformed models, the existence of asymptotically conserved

charges associated to several towers of infinite number of quasi-conservation laws reflects,

as in the integrable soliton theories, in the special behavior of the dynamics of the de-

formed model in such a way that the soliton-like solutions emerge from the scattering

region basically as they have entered it.

The above patterns will be qualitatively reproduced below in our numerical simulations

of the relevant anomalies for the 2-soliton and 3-soliton interactions of the deformed KdV

model, for a variety of soliton configurations and a wide range of values of the set of

deformation parameters {ε1, ε2}.
The Liouville’s integrability criterion stated for a system with a finite number of de-

grees of freedom goes through for a system with an infinite number of degrees of freedom

with convenient modifications [26]. Some qualitative features of the Liouville’s theorem re-

main true for continuous non-linear systems admitting a zero-curvature formulation (Lax

representation). So, one must have an infinite number of conservation laws whose conserved
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charges are in involution [26, 27]. In this context, the appearance of the novel towers of

asymptotically conserved charges as above, even in the standard KdV model, are restricted

to special field configurations satisfying the symmetry property (2.11) and (2.12). There-

fore, one can not use these types of charges, even though they are infinitely many, in order

to match to the number of degrees of freedom of the KdV model. Of course, the true

conserved charges hold for general field configurations, i.e. being solitonic or not. So, the

relationships between the anomalous charges and the set of true conserved charges of the

standard KdV model remains to be investigated. Moreover, since the quasi-conservation

laws give rise to asymptotically conserved charges for the N-soliton sector of the models, it

would be interesting to study the solitons of the deformed model as an N -body problem,

in analogy to the approach followed in [28, 29] for the restricted sine-Gordon model. Inter-

estingly, the relationship between the restricted SG model and the KdV model has been

described in the last reference.

In [30, 31], in the harmonic analysis approach, it has been introduced the method of

almost conservation laws (I-method) for integrable systems. In particular, they considered

the KdV model and provided a rigorous proof on how the so-called almost conservation

laws can be used to recover infinitely many conserved charges that make the KdV model

an integrable system. We think that our results will be useful for some analysts in order to

tackle these problems and try to establish more definitive statements about the role played

by the above anomalous charges for general field configurations and, then, provide some

clarifications on the quasi-integrability approach to deformations of integrable systems.

7 Numerical treatment of the anomalies

We have found an analytical expression for a general one soliton solution of the model for

any set of values of the deformation parameters {ε1, ε2} in (2.20), and it involves itself

a general dispersion relation (2.19). It reduces to the two different expressions provided

in [10] when appropriate limits for the parameters {ε1, ε2, a} are chosen. The simulations

of [10] started with a slightly incorrect initial condition for the individual solitons (e.g.

solitons that do not solve the RLW equation analytically for any choice of the parameters).

However, the justification to such an initial condition would be that the radiation effects are

small and restricted to the initial re-adjustments. They argued that the initial radiation

has not interfered considerably and the results were in good agreement with the quasi-

integrability expectations. Here, we will use general exact one soliton solutions located far

apart as the initial conditions in order to simulate two and three-soliton collisions for the

deformed model. So, our initial conditions will avoid the emissions of radiation and we

expect to provide a strong result for the quasi-conservation of the charges.
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Figure 1. The initial profiles of the fields q2s(x, ti), p2s(x, ti) and the 2-soliton u2s(x, ti) for initial

time ti = −17 and parameter values ε1 = 1.2, ε2 = 0.9, b1 = b2 = c1 = c2 = 0, δ1 = 1, δ2 =

1, α = 1, a1 = 1, a2 = 0.8, k1 = 0.8 and k2 = 0.5.

An analytical solution for 2-soliton, for any values of ε1 and ε2, of (2.1) is not known;

so, we will take as an initial condition the superposition of two solitons of the general

type (2.20) located far away from each other. So, let us consider the next linear superpo-

sition of two expressions of type (2.18)

q2s(x, t) = q1

{
log cosh

[
ζ1

2a1

]
+b1ζ1+c1

}
+q2

{
log cosh

[
ζ2

2a2

]
+b2ζ2+c2

}
, (7.1)

wj =
a2
jkj+(1−ε1)k3

j

a2
j−ε1k2

j

; qj =
3a2

j

[a2
j+(1−ε1)k2

j ](2+ε2)
; ζj = kjx−wjt+δj , j = 1, 2;

(7.2)

such that aj , bj and cj , j = 1, 2, are arbitrary real parameters. The relevant form of each

component of the field q2s(x, t) is presented in (2.18). Let us define the field p(x, t) as

p(x, t) =
∂

∂t
q(x, t). (7.3)

We plot the functions q2s(x, ti), p2s(x, ti) and u2s(x, ti) = − 8
α

∂2

∂x∂tq2s(x, t)|t=ti for initial

time ti = −17 in the figure 1. The field u2s(x, ti) (green) represents the initial configu-

ration of our numerical solution of the model (2.1) for two-soliton collision. Notice that

the function q2s(x, ti) (gray) undergoes significant changes only around the soliton regions

from an approximately linear behavior in regions far away from the solitons, whereas the

field p2s(x, ti) (brown) behaves as a kink-like function around each soliton and approaches

approximately constant values outside those regions, and tends to constant values asymp-

totically for x → ±∞. These patterns and properties will be useful when imposing the

relevant initial and boundary conditions of our numerical simulations. In the appendix B

we provide more details on the numerical techniques we have used.

In the figures 2 and 3 we present the plots of the numerical simulations of 2-soliton

and 3-soliton collisions for three successive times. In these simulations we have used the
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Figure 2. Numerical simulation of 2-soliton collision for three successive times, ti, before collision

(green); tc, collision (blue) and tf , after collision (red); for the parameter values ε1 = 1.2, ε2 =

0.9, α = 4, k1 = 0.75, k2 = 0.71, a1 = a2 = 1, such that the initial condition in (7.1) considers

δ1 = 87, δ2 = 62, ti = 0 and bj = cj = 0 (j = 1, 2).

Figure 3. Numerical simulation of 3-soliton collision for three successive times, ti, before collision

(green); tc, collision (blue) and tf , after collision (red); for the parameter values ε1 = 1.2, ε2 =

0.9, α = 4, k1 = 0.75, k2 = 0.71, k3 = 0.67, a1 = a2 = a3 = 1, such that the initial condition

parameters are: δ1 = 87, δ2 = 69, δ3 = 52, ti = 0 and bj = cj = 0 (j = 1, 2, 3).

LU decomposition method and considered the time steps and spatial grid as τ = 0.0025

and h = 0.14, and τ = 0.0045 and h = 0.184, for 2-soliton and 3-soliton, respectively.

Notice that, as an initial configuration, in the case of the 2-soliton we have assumed a

linear superposition of two expressions of type (2.18) (see (7.1)); similarly, in the case of

the 3-soliton we have assumed a linear superposition of three expressions of type (2.18),

i.e. in this case one considers three solitons of the general type (2.20) located far away from

each other. So, in the both cases one considers the general solutions (2.20) conveniently

located some distance apart from each other. In fact, they turn out to be adequate initial

conditions, since there were no visible loss of radiation in the relevant interaction regions.
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Moreover, in order to check our numerical methods we have verified numerically the

relationship (4.33) between the conserved charges Q̃
(2)
a , Q(3)

a and Q
(−5)
a defined in (4.11),

(4.24) and (3.19), respectively, for the general 1-soliton solution presented in (2.20). The

1-soliton with the parameter values ε1 = 1.2, ε2 = 0.9, α = 3, a = 1, k = 0.72 is allowed

to evolve in time, and the relevant charge densities are integrated in x. So, one gets

Q̃
(2)
a = 0.116468237,Q(3)

a = 0.184120199 and Q
(−5)
a = 0.0169129905, which satisfy (4.33)

with good accuracy.

7.1 2-soliton charges and anomalies

In the following we present the simulations of four lowest order nontrivial anomalies of the

towers of infinite series of quasi-conservation laws, defined in (4.3), (4.16), (4.28) and (4.50),

for the 2-soliton collision of the figure 2.

For the series (4.3) we will simulate the anomaly for the case n = 3, the case n = 1

is trivial anomaly, and for n = 2 the relevant charge is of the KdV-type in (3.10). So, the

case n = 3 is new and so, we consider the anomaly in eq. (4.6) for n = 3, with density

function taking the form −6uuxvt. The figure 4 presents the behavior of the anomaly

density versus x-coordinate for three successive times, before collision, during collision and

after the collision of the 2-soliton presented in the figure 2. Notice the vanishing of the

anomaly and its t-integrated anomaly functions of t, within numerical accuracy; in fact, the

anomaly β̃(3)(t) ≈ 0 within the order of 10−5, whereas the t-integrated anomaly vanishes

within the order of 10−7. Therefore, according to (4.7) and (4.8) one can argue that the

charge q̃
(3)
a in (4.6) is asymptotically conserved, i.e. it satisfies q̃

(3)
a (+t̃) = q̃

(3)
a (−t̃) for large

time t̃.

For the series (4.16) the lowest order quasi-conservation law becomes (4.9). So, we

will simulate the anomaly α̃2 in (4.11) whose corresponding density is wxvtux. The fig-

ure 5 presents the behavior of α̃2(t) versus x-coordinate for three successive times, before

collision, during collision and after the collision of the 2-soliton presented in the figure 2.

Notice the vanishing of the anomaly and its t-integrated anomaly functions of t, within

numerical accuracy; in fact, one has α̃2(t) ≈ 0 within the order of 10−7, whereas the

t-integrated anomaly vanishes within the order of 10−9. Therefore, according to (4.12)

and (4.14) one can argue that the charge q̃
(3)
a in (4.11) is asymptotically conserved, i.e. it

satisfies Q̃
(2)
a (+t̃) = Q̃

(2)
a (−t̃) for large time t̃.

Next, for the series (4.28) the lowest order quasi-conservation law becomes (4.20). So,

we will simulate the anomaly α3 in (4.24) whose corresponding density is wxvtut. The

figure 6 presents the behavior of α3 versus x-coordinate for three successive times, before

collision, during collision and after the collision of the 2-soliton presented in the figure 2.

Notice the vanishing of the anomaly and its t-integrated anomaly functions of t, within

numerical accuracy; in fact, one has α3 ≈ 0 within the order of 10−9, whereas the t-

integrated anomaly vanishes within the order of 10−10. Therefore, according to (4.25)

one can argue that the charge Q(3)
a in (4.24) is asymptotically conserved, i.e. it satisfies

Q(3)
a (+t̃) = Q(3)

a (−t̃) for large time t̃.

Similarly, for the series (4.50) the lowest order quasi-conservation law becomes (4.46).

So, we will simulate the anomaly h1 in (4.49) whose corresponding density is −4qxxx(2q2
xt+
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Figure 4. Top figure shows the anomaly density of β̃(3) (4.5); i.e. the function (−6uuxvt) plotted

in x-coordinate for three successive times, ti = before collision (green), tc = collision (blue) and

tf = after collision (red), for the 2-soliton collision of figure 2. Bottom figures show the plots of the

anomaly β̃(3)(t) vs. t and the t-integrated anomaly
∫ t

ti
β̃(3) vs. t, respectively.

Figure 5. Top figure shows the anomaly density of α̃2 in (4.11); i.e. the function (wxvtux) plotted

in x-coordinate for three successive times, ti = before collision (green), tc = collision (blue) and

tf = after collision (red), for the 2-soliton of figure 2. Bottom figures show the plots of the anomaly

α̃2 vs. t and the t-integrated anomaly
∫ t

ti
α̃2 vs. t, respectively.
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Figure 6. Top figure shows the anomaly density of α3 in (4.24); i.e. the function (wxvtut) plotted

in x-coordinate for three successive times, ti = before collision (green), tc = collision (blue) and

tf = after collision (red), for the 2-soliton of figure 2. Bottom figures show the plots of the anomaly

α3 vs. t and the t-integrated anomaly
∫ t

ti
α3 vs. t, respectively.

ε2qxxqtt). The figure 7 presents the behaviour of h1 versus x-coordinate for three successive

times, before collision, during collision and after the collision of the 2-soliton presented in

the figure 2. Notice the vanishing of the anomaly and its t-integrated anomaly functions

of t, within numerical accuracy; in fact, one has h1 ≈ 0 within the order of 10−8, whereas

the t-integrated anomaly vanishes within the order of 10−9. Therefore, as in the previous

discussions one can argue that the charge Q̄2 in (4.49) is asymptotically conserved, i.e. one

has Q̄2(+t̃) = Q̄2(−t̃) for large time t̃.

7.2 3-soliton charges and anomalies

Likewise, in this subsection we present the simulations of four lowest order nontrivial

anomalies of the towers of infinite series of quasi-conservation laws, defined in (4.3), (4.16),

(4.28) and (4.50), for the 3-soliton collision of the figure 3.

In the figure 8 we consider the anomaly β̃(3) in eq. (4.6), with density function taking

the form −6uuxvt. We plot the anomaly density versus x-coordinate for three successive

times, before collision, during collision and after the collision of the 3-soliton presented in

the figure 3. Notice the vanishing of the anomaly and its t-integrated anomaly functions

of t, within numerical accuracy; in fact, the anomaly β̃(3)(t) ≈ 0 within the order of 10−6,

whereas the t-integrated anomaly vanishes within the order of 10−7. Therefore, according

to (4.7) and (4.8) one has that the charge q̃
(3)
a in (4.6) is asymptotically conserved for the

collision of three solitons, i.e. q̃
(3)
a (+t̃) = q̃

(3)
a (−t̃) for large time t̃.

– 31 –



J
H
E
P
0
3
(
2
0
2
0
)
1
3
6

Figure 7. Top figure shows the anomaly density of h1 in (4.49); i.e. the function −4qxxx(2q2xt +

ε2qxxqtt) plotted in x-coordinate for three successive times, ti = before collision (green), tc =

collision (blue) and tf = after collision (red), for the 2-soliton of figure 2. Bottom figures show the

plots of the anomaly h1 vs. t and the t-integrated anomaly
∫ t

ti
h1 vs. t, respectively.

In figure 9 we simulate the anomaly α̃2 in (4.11) whose corresponding density is wxvtux.

It is plotted α̃2(t) versus x-coordinate for three successive times, before collision, during col-

lision and after the collision of the 3-soliton presented in the figure 3. Notice the vanishing

of the anomaly and its t-integrated anomaly functions of t, within numerical accuracy; in

fact, one has α̃2(t) ≈ 0 within the order of 10−6, whereas the t-integrated anomaly vanishes

within the order of 10−7. Therefore, according to (4.12) and (4.14) the charge q̃
(3)
a in (4.11)

is asymptotically conserved for the collision of three solitons, i.e. Q̃
(2)
a (+t̃) = Q̃

(2)
a (−t̃) for

large t̃.

figure 10 presents the anomaly α3 in (4.24) whose corresponding density is wxvtut. It

presents the behavior of α3 versus x-coordinate for three successive times, before collision,

during collision and after the collision of the 3-soliton presented in the figure 3. Notice

the vanishing of the anomaly and its t-integrated anomaly functions of t, within numerical

accuracy; in fact, one has α3 ≈ 0 within the order of 10−8, whereas the t-integrated anomaly

vanishes within the order of 10−10. Therefore, according to (4.25), the charge Q(3)
a in (4.24)

is asymptotically conserved for the collision of three solitons, i.e. Q(3)
a (+t̃) = Q(3)

a (−t̃) for

large t̃.

Similarly, figure 11 shows the simulation of the anomaly h1 in (4.49) whose correspond-

ing density is −4qxxx(2q2
xt + ε2qxxqtt). It shows the behavior of h1 versus x-coordinate for

three successive times, before collision, during collision and after the collision of the 3-

soliton presented in the figure 3. The anomaly and its t-integrated anomaly functions of t,
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Figure 8. Top figure shows the anomaly density of β̃(3) (4.5); i.e. the function (−6uuxvt) plotted

in x-coordinate for three successive times, ti = before collision (green), tc = collision (blue) and

tf = after collision (red), for the 3-soliton collision of figure 3. Bottom figures show the plots of the

anomaly β̃(3)(t) vs. t and the t-integrated anomaly
∫ t

ti
β̃(3) vs. t, respectively.

vanish within numerical accuracy; in fact, one has h1 ≈ 0 within the order of 10−5, whereas

the t-integrated anomaly vanishes within the order of 10−6. Therefore, the charge Q̄2

in (4.49) is asymptotically conserved for the collision of three solitons, i.e. Q̄2(+t̃) = Q̄2(−t̃)
for large t̃.

The vanishing of the anomalies and time-integrated anomalies were true for the lowest

order quasi-conservation laws but it was also true for the next order anomalies. However,

the expressions for higher order anomalies, such as the anomaly densities in (4.39) or the

expression of Hn in (4.51), involved more derivatives of the fields and so, our results were

more liable to suffer from numerical errors. Thus, although their behavior are consistent

with our claims, we have not included them in this paper.

8 Riccati-type pseudo-potentials and general deformations of KdV

In the search for additional conservation laws and relevant properties next we consider

the deformations of the KdV model in the context of the Riccati-type pseudo-potential

approach. So, let us consider the Riccati-type system of equations

rx = U + 2r2 − 2λr, (8.1)

rt = −4λ2U − 4U2 − 8(λ2 + U)r2 + 2r(4λ3 + 4λU − 2Ux) + 2λUx − Uxx + Y + χ, (8.2)
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Figure 9. Top figure shows the anomaly density of α̃2 in (4.11); i.e. the function (wxvtux) plotted

in x-coordinate for three successive times, ti = before collision (green), tc = collision (blue) and

tf = after collision (red), for the 3-soliton of figure 3. Bottom figures show the plots of the anomaly

α̃2 vs. t and the t-integrated anomaly
∫ t

ti
α̃2 vs. t, respectively.

where the field U(x, t) is a KdV type field, the field Y (x, t) encodes the deformation away

from the KdV model, r(x, t) is a Riccati-type pseudo-potential and χ is an auxiliary field

satisfying

∂xχ+ 2(λ− 2r)χ = −2(λ− 2r)Y. (8.3)

In the above eqs. λ plays the role of a spectral parameter. Notice that for Y = 0 and χ = 0

one has the Riccati system (8.1)–(8.2) approach for the usual KdV equation.

Next, through the compatibility condition for the system (8.1)–(8.2), i.e. (∂t∂xr −
∂x∂tr) = 0, and provided that the auxiliary eq. (8.3) is taken into account, one has the

equation

Ut + 12UUx + Uxxx = Yx. (8.4)

Since the form of Y can be assumed to be an arbitrary functional of U and its derivatives

(containing local and nonlocal terms, as well as some deformation parameters), one can

regard the eq. (8.4) as a general deformation of the KdV model in the pseudo-potential

approach. Therefore, the whole problem is transferred to that of the existence of the

auxiliary field χ.
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Figure 10. Top figure shows the anomaly density of α3 in (4.24); i.e. the function (wxvtut) plotted

in x-coordinate for three successive times, ti = before collision (green), tc = collision (blue) and

tf = after collision (red), for the 3-soliton of figure 3. Bottom figures show the plots of the anomaly

α3 vs. t and the t-integrated anomaly
∫ t

ti
α3 vs. t, respectively.

The eq. (8.3) is a non-homogeneous ordinary differential equation for χ in the variable

x, which can be integrated by quadratures. Its general solution becomes

χ(x, t) = C e−2
∫ x [λ−2r(x′,t)]dx′ − 2e−2

∫ x [λ−2r(x′,t)]dx′ ×∫ x

e2
∫ x′′ [λ−2r(x′,t)dx′]Y (x′′, t)

[
λ− 2r(x′′, t)

]
dx′′. (8.5)

Imposing the condition χ = 0 for Y = 0 to this solution, as it must hold for the usual KdV

model, one must set C = 0. In fact, the contribution of the homogeneous sector of the

differential equation (8.3) of the general solution in (8.5) must be removed. So, one has

χ(x, t) = −2e−2
∫ x [λ−2r(x′,t)]dx′

∫ x

e2
∫ x′′ [λ−2r(x′,t)dx′]Y (x′′, t)

[
λ− 2r(x′′, t)

]
dx′′. (8.6)

The expression for χ in (8.6) is highly non-local and, once inserted into (8.2), the new

system of eqs. (8.1) and (8.2) will provide a new non-local Riccati-type representation for

the dKdV model (8.4).

It is a remarkable fact that in the Riccati-type approach as presented above it is

possible to consider more general deformations, since the field Y may depend on arbitrary

functions of U and its derivatives, as well as on some auxiliary fields. In the class of non-

local deformations, it would be interesting to consider the Alice-Bob (AB) physics recently

proposed in [24, 25] in the framework of quasi-integrability.
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Figure 11. Top figure shows the anomaly density of h1 in (4.49); i.e. the function −4qxxx(2q2xt +

ε2qxxqtt) plotted in x-coordinate for three successive times, ti = before collision (green), tc =

collision (blue) and tf = after collision (red), for the 3-soliton of figure 3. Bottom figures show the

plots of the anomaly h1 vs. t and the t-integrated anomaly
∫ t

ti
h1 vs. t, respectively.

The eq. (8.4) is equivalent to the particular deformation of the KdV equation intro-

duced in (2.1) as presented in the form (2.8). In fact, by making the identifications

U =
α

12
u+

α

144
, (8.7)

Y = −1

2
X, (8.8)

one gets the eq. (2.8). However, in the pseudo-potential approach the variable Y encodes

a general deformation, including non-local terms. The deformation can be introduced

through a set of parameters {εi} such that for εi = 0, one recovers the usual KdV model.

As an example, for the particular deformations considered in (2.8) the field Y can be

written as

Y = − α

12

[
α

4
ε2wxvt −

12ε1
α

(Uxt + Uxx)

]
. (8.9)

For the type of deformations Y satisfying the symmetry P(Y ) = Y , in analogy to X

in (2.14), one concludes that the deformed KdV model (8.4) will be quasi-integrable.

Next, we examine the anomalous conservation laws in the pseudo-potential approach.

Let us consider the relevant (quasi-)conservation law in terms of the pseudo-potential field
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r and the auxiliary field χ. So, from (8.1)–(8.2) one can write the next equation4

∂

∂t
r +

∂

∂x
(4λ2r + 4Ur − 2λU + Ux) = Y + χ. (8.10)

From this point forward, we construct the relevant (quasi-)conservation laws in terms of

the fields of de deformed KdV model. So, consider the expansions in powers of the λ

parameter

r =
∑
n=0

cnλ
−n−1, (8.11)

χ =
∑
n=1

dnλ
−n+1. (8.12)

The first cn’s and dn’s are provided in appendix C.

Notice that setting Y = 0 and χ = 0 on the r.h.s. of the eq. (8.10) it becomes a truly

exact conservation law, and then one can construct the infinite tower of exact conservation

laws for the usual KdV equation. Next, making use of the power expansions of r (8.11)

and χ (8.12) on the λ−1 parameter one gets, substituting them into the eq. (8.10), a

polynomial in powers of λ−n, (n = −1, 0, 1, 2, 3 . . .). Then, taking into account the cn’s and

dn’s expressions in the appendix C, one finds that the first two of this series (n = −1, 0)

provide trivial equations. Likewise, for n ≥ 1, one can write

∂t (cn−1) + ∂x (4cn+1 + 4Ucn−1) = dn+1, n = 1, 2, 3 . . . (8.13)

This is an infinite set of quasi-conservation laws for the deformed KdV model (8.4) in the

Riccati-type pseudo-potential approach.

Moreover, for the particular deformation (8.7)–(8.9) from the eq. (8.10) one can get

the tower of quasi-conservation laws presented in (3.2)–(3.3). For n = 1, 3, 5, 7, using the

identifications (8.7) one can get, up to overall constant factors, the anomalous conservation

laws (3.8), (3.10), (3.15) and (3.20), respectively. We have carefully examined the conser-

vation laws associated to the even order powers λ−n, n = 2, 4, 6 and observed that those

eqs. are simply the x-derivatives of the relevant conservation laws associated to the orders

n = 1, 3, 5, respectively; so, they do not exhibit new conservation laws.

In the next steps we will pursue a linear system of equations associated to the deformed

KdV. So, consider the transformation

r = −1

2
∂x log φ, (8.14)

where φ represents a new pseudo-potential. Next, consider the quasi-conservation

law (8.10) and integrate that eq. once in x. Then one gets

s(x, t) = − 1

2φ

[
φt + 4(λ2 + U)φx + 2(2λU − Ux)φ

]
, (8.15)

4Different expressions of this type can be written, we adopt the construction below such that the non-

homogeneous r.h.s. terms contain the deformation variable χ, such that when χ = 0(Y = 0) one must

reconstruct in the l.h.s., order by order in λ−1, the usual conservation laws of the standard KdV model.
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where

s(x, t) ≡
∫ x

dx′(Y + χ). (8.16)

With the substitution (8.14) the Riccati eq. (8.1) becomes

φxx = −2[λφx + Uφ]. (8.17)

The auxiliary eq. (8.3) upon substitution of (8.14) becomes

sxx = Yx − 2[λ+ ∂x log φ]sx. (8.18)

Substituting (8.15) into the last eq. and provided that φ satisfies (8.17) one gets the eq. of

motion of the deformed KdV (8.4).

Some comments are in order here. First, in the absence of deformations the auxiliary

eq. (8.18) becomes a trivial one, i.e. χ = Y = 0 implies s = 0. Second, for undeformed

KdV and by making the substitution (8.14) into the Riccati eq. (8.1) and the eq. (8.10),

one can get a linear system of eqs. (8.15) (set s ≡ 0 in the l.h.s.) and (8.17) for the usual

KdV model.

So, following analogous constructions presented in [12] related to the deformations of

the sine-Gordon model, we look for a linear system of eqs. associated to the deformed KdV.

Notice that the function s in (8.15)–(8.16) will inherit from χ in (8.3) a highly nonlinear

dependence on r; then, through the transformation (8.14), s will have in general a nonlinear

dependence on φ. However, one can argue that the eq. (8.15) would represent a linear eq.

for the pseudo-potential φ provided that the auxiliary field s is written solely in terms of

the fields U and Y and their derivatives. So, let us assume the next Ansatz

∂xφ = Axφ, (8.19)

∂tφ = Atφ. (8.20)

The compatibility condition of the above system provides the eq. of motion

∂tAx − ∂xAt = 0. (8.21)

Using (8.19) into (8.17) one gets the following Riccati eq. for Ax

∂xAx = −
[
2U + 2λAx + (Ax)2

]
. (8.22)

Likewise, replacing (8.19)–(8.20) into (8.15) one gets a relationship for the quantity s

s = ∂xU − 2λU − 2Ax(λ2 + U)− 1

2
At. (8.23)

Substituting this form of s into the eq. (8.18) and using the eqs. (8.22) and (8.21) one gets

the eq. of motion of the deformed KdV (8.4). So, the form of s in (8.23) is consistent with

the dynamics of the deformed model.
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Notice that the system of eqs. (8.19)–(8.20) are defined up to a gauge transformation

of the type

φ → eΛφ (8.24)

Ax → Ax + ∂xΛ (8.25)

At → At + ∂tΛ, (8.26)

for an arbitrary function Λ.

In order to find a linear system it is needed a guesswork out of the eq. (8.15), and due

to the gauge symmetry (8.24)–(8.26) a particular choice for the connections Ax and At.
Let us propose the following linear system of equations as the linear formulation of the

deformed KdV5

∂tΦ = AtΦ (8.27)

∂xΦ = AxΦ (8.28)

Ax ≡
1

2λ2 − U
[Ux − 2λU ] (8.29)

At ≡
1

2λ2 − U
[
12λU2 − 6UUx + (2λ2 − U)ζ

]
, (8.30)

with

∂xζ =
1

(2λ2 − U)2

[
UxYx + 6U2Uxx − UYxx − UxUxxx + UUxxxx + 12λU2Ux−

2λ2(6U2
x + 6UUxx − Yxx + Uxxxx)− 4λ3(Yx − Uxxx)

]
. (8.31)

The compatibility condition of the system of eqs. (8.27)–(8.28); i.e. ∂t∂x(Φ)−∂x∂t(Φ) = 0,

furnishes the next expression which is a polynomial in powers of λ

−4λ3[Ut + 12UUx + Uxxx − Yx] + 2λ2∂x[Ut + 12UUx + Uxxx − Yx]+

λ0[UtUx − UxYx − 12U2Uxx + UxUxxx − U(Uxt − Yxx + Uxxxx)] ≡ 0. (8.32)

Therefore, equating to zero the coefficient of λ3 provides the deformed KdV equation of

motion (8.4). The remaining terms in the coefficients of λ2 and the zeroth order λ0, vanish

identically provided that the eq. of motion (8.4) is assumed.

Moreover, from the identity ∂t[∂x log Φ] − ∂x[∂t log Φ] ≡ 0 and the linear system of

eqs. (8.27)–(8.28) one can get the conservation law

∂Ax
∂t
− ∂At

∂x
= 0. (8.33)

Substituting the expressions for A and At the last equation turns out to be the same as the

eq. (8.32). So, the coefficients of the polynomial in powers of λ of the conservation law (8.33)

can directly be verified to vanish by using the equation of motion (8.4). Since the deformed

5Below we will provide a gauge transformation between the system (8.27)–(8.28) and the above sys-

tem (8.19)–(8.20).
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KdV eq. (8.4) can be written as a conservation law, i.e. ∂t[U ] + ∂x[6U2 +Uxx−Y ] = 0, the

third order term in λ of the conservation law (8.33), which is the same as the relevant term

in (8.32), only reproduces the own deformed KdV equation and the “mass” conservation

law (3.8).

For completeness we provide a gauge transformation between the system (8.19)–(8.20)

and the above system (8.27)–(8.28). So, the gauge transformation (8.24)–(8.26) can be

written as

φ = e−ΛΦ (8.34)

Ax = Ax + ∂xΛ (8.35)

At = At + ∂tΛ, (8.36)

where Ω ≡ ∂xΛ satisfies the Riccati eq.

∂xΩ = Ω2 − 2

(
2λ3 − 3λU + ∂xU

2λ2 − U

)
Ω +

(2λ2 − U)∂2
xU + 2[U3 − 3λU∂xU + (∂xU)2]

(2λ2 − U)2
.

(8.37)

Next, for certain deformed models satisfying the parity symmetry (2.11) one can rewrite

the system (8.27)–(8.28) as

∂tΦ̃ = ÃtΦ̃ (8.38)

∂xΦ̃ = ÃxΦ̃ (8.39)

Ãx ≡
1

2λ2 − U
[Ux + 2λU ] (8.40)

Ãt ≡ −
1

2λ2 − U

[
12λU2 + 6UUx + (2λ2 − U)ζ̃

]
, (8.41)

with

∂xζ̃ = − 1

(2λ2 − U)2

[
UxYx + 6U2Uxx − UYxx − UxUxxx + UUxxxx − 12λU2Ux− (8.42)

2λ2(6U2
x + 6UUxx − Yxx + Uxxxx) + 4λ3(Yx − Uxxx)

]
. (8.43)

Thus, it is a second linear representation of the deformed KdV model, such that the soliton

solutions satisfy the parity symmetry (2.11).

8.1 Infinite set of non-local conserved charges

For linear systems as above it is possible to construct a set of non-local conserved charges.

So, let us construct a set of infinite number of non-local conservation laws using the iterative

approach introduced by Brézin et al. [45]. In fact, the system (8.27)–(8.28) satisfies the

properties: i) (Ax, At) is a “pure gauge”; i.e. Aµ = ∂µΦΦ−1, µ = x, t; ii) Jµ = (Ax, At)

defines a conserved current according to (8.33). So, one can construct an infinite set of

non-local conserved currents through an inductive procedure following [45]. Let us define
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the currents

J (n)
µ =

∂

∂xµ
χ(n), xµ ≡ x, t; n = 0, 1, 2, . . . (8.44)

dχ(1) = Aµdxµ (8.45)

≡ Axdx+Atdt, (8.46)

J (n+1)
µ =

∂

∂xµ
χ(n) −Aµχ(n); χ(0) = 1. (8.47)

Then one can show by an inductive procedure that the (non-local) currents J
(n)
µ are

conserved

∂tJ
(n)
t − ∂xJ (n)

x = 0, n = 1, 2, 3, . . . (8.48)

The first non-trivial current becomes J
(1)
µ = (Ax, At) whose conservation law ∂tA−∂xAt = 0

reproduces the eq. (8.33), and then provides the “mass” conservation law. The second order

current becomes J
(2)
µ = (Ax − Axχ(1), At − Atχ(1)), and from the conservation law (8.48),

using the first order conservation law (8.33), one gets

∂t[Axχ
(1)]− ∂x[Atχ

(1)] = 0. (8.49)

The third order current becomes J
(3)
µ =

(
∂
∂xχ

(2) −Axχ(2), ∂∂tχ
(2) −Atχ(2)

)
. The conserva-

tion law (8.48), upon using the first and second order conservation laws, can be written as

∂t[Axχ
(2)]− ∂x[Atχ

(2)] = 0. (8.50)

where

∂xχ
(2) = Ax −Axχ(1), ∂tχ

(2) = At −Atχ(1). (8.51)

In summary, one can write the infinite tower of non-local conservation laws as

∂t[Axχ
(1)]− ∂x[Atχ

(1)] = 0, (8.52)

∂t[Axχ
(n)]− ∂x[Atχ

(n)] = 0, n = 2, 3, 4, . . . (8.53)

∂xχ
(n) = Ax −Axχ(n−1), ∂tχ

(n) = At −Atχ(n−1). (8.54)

The construction of analogous linear systems and their associated non-local charges

have recently been performed for some deformations of the sine-Gordon model [12]. So,

it would be interesting to search for the classical Yangian as a Poisson-Hopf type algebra

related to those set of non-local currents and charges [46] for the deformations of the

known integrable models. The non-local conserved charges, as in the non-linear σ−model,

are relevant at the quantum level and they imply absence of particle production and the

first non-trivial charge fixes almost completely the on-shell dynamics of the model (see

e.g. [47, 48]).

Moreover, in view of the ubiquitous presence of the KdV-type models in the various

areas of nonlinear science it would be interesting to investigate the relevance and physical
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consequences of the various towers of asymptotically conserved charges discovered above.

For example, it is known the relationship between gravitation in three-dimensional space-

times and two-dimensional integrable systems. In particular, the KdV-type and KdV-

Gardner models have recently been uncovered as describing the dynamics of the boundary

degrees of freedom of General Relativity on AdS3 (see e.g. [20] and references therein). We

will postpone those important issues and some relevant applications for a future work.

9 Discussions and some conclusions

We have studied the quasi-integrability properties of certain deformations of the KdV

model. The charges introduced in [10], in the anomalous zero-curvature approach, were

carefully examined. The non-homogeneous (anomalous) conservation laws (3.1) were consi-

dered and verified that they give rise to vanishing trivial charges, q(−2n−1) = 0, n = 1, 2, . . . ,

provided that the anomalies are rewritten conveniently such that the quasi-conservation

laws are expressed as exact conservation laws. Our computations considered the first four

cases for n = 0, 1, 2, 3. The first charge Q(−1), for n = 0, becomes a non-trivial exactly

conserved charge, which maintains the same form as in the usual KdV model.

By direct construction in section 4, we have obtained additional towers of quasi-

conservation laws with true anomalies such that each of their densities exhibit the special

space-time symmetry (2.11)–(2.12) for definite parity N -soliton configurations. We have

considered the exact conservation laws of the deformed model, and constructed a tower of

quasi-conservation laws as extensions of them with higher order derivatives. So, for each

exact conservation law of the deformed model it has been constructed a tower of related

family of higher order infinite number of quasi-conservation laws.

In section 5 it has been performed an analytical and not only numerical, proof, of

the quasi-integrability of a well known non-integrable theory. We have showed that the

2-soliton solution of the mRLW theory, written as a P invariant solution, was analytically

quasi-integrable. The proof of this result holds for all the anomalous charges from the

various towers of infinite number of quasi-conservation laws presented in section 4.

Moreover, we showed, in section 6, that even the standard KdV model possesses some

towers of infinite number of anomalous conservation laws. Subsequently, we showed analyt-

ically the vanishing of each anomaly and then the quasi-conservation of the infinite tower

of anomalous charges for N -soliton solution satisfying the special parity symmetry (2.11)–

(2.12). So, our results show the first example of an analytical, and not only numerical,

demonstration of the vanishing of the anomalies associated to the quasi-conservation laws

in an integrable system. These kind of anomalous charges also appear in the standard

sine-Gordon model [12], and they are expected to appear in the other integrable systems

and their quasi-integrable deformations.

We have checked through numerical simulations of soliton collisions, in section 7,

the conservation properties of the lowest order charges appearing in the towers of quasi-

conservation laws defined in (4.3), (4.16), (4.28) and (4.50), for the 2-soliton and 3-soliton

collisions. We have used, as a particular example, the model of Ferreira et al. [10], which

depends on two deformation parameters {ε1, ε2} (such that for ε1 − ε2 = 0 it reduces to
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the usual KdV model) and possesses a general soliton solution (for any real set {ε1, ε2}).
We have studied these models numerically and computed the anomalies β̃(3) in eq. (4.6),

α̃2 in (4.11), α3 in (4.24), and h1 in (4.49), for various N-soliton (N = 2, 3) configurations.

In our numerical simulations presented in the figures 4–11 we have observed that the non-

trivial lowest order anomalies, and their t-integrated anomalies, of the various towers of

quasi-conservation laws, vanish for the 2-soliton and 3-soliton collisions. So, our numerical

simulations allow us to argue that for 2-soliton and 3-soliton configurations the relevant

charges are exactly conserved, within numerical accuracy.

We have applied the pseudo-potential approach to deformations of KdV model in

section 8. We showed that when the Riccati-type pseudo-potential equations are deformed,

away from the KdV model, one can construct infinite towers of quasi-conservation laws

associated to general deformations of KdV as in (8.4). It has been constructed an infinite set

of quasi-conservation laws for the deformed KdV model (8.4) in this approach (8.13). This

construction reproduced the KdV-type quasi-conservation laws presented in the anomalous

zero-curvature approach of [10].

In the framework of the Riccati-type pseudo-potential approach we have constructed a

couple of linear systems of equations, (8.27)–(8.28) and (8.38)–(8.39), whose relevant com-

patibility conditions furnish the deformed KdV model (8.4). The second system of linear

eqs. (8.38)–(8.39) holds for certain deformed models satisfying the parity symmetry (2.11).

In subsection 8.1 we have constructed an infinite set of non-local charges associated to

the linear formulation of the deformed model. The study of the properties of these linear

systems deserves more careful consideration; in particular, the relation of their associated

non-local currents with the so-called classical Yangians [46].

In view of the recent results, on deformations of sine-Gordon [12], and the present

paper on deformations of KdV, one can inquire about the non-local properties of the

quasi-integrable systems studied in the literature, such as the deformations of the non-

linear Schrödinger, Bullough-Dodd, Toda and SUSY sine-Gordon systems [7–9, 11, 13–15],

and more specific structures, such as an infinite number of (non-local) exact conservation

laws and new towers of quasi-conservation laws. So, they deserve careful considerations in

the lines discussed above.

Finally, it would be an interesting issue to analyze, in the context of the quasi-integrable

KdV models, the behavior of the so-called statistical moments defined by the integrals of the

type (4.1), which would be relevant to the study of certain structures in (quasi-)integrable

systems, such as soliton turbulence, soliton gas dynamics and rogue waves [21–23].
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A The first few current components

For completeness we record the first few current and anomaly components as provided

in [10]

a(−1)
x =

α

223
u,

a(−3)
x =

α2

2532
u2,

a(−5)
x =

α3

2733
u3 +

α2

2732
uuxx, (A.1)

a(−7)
x =

5α4

21134
u4 +

α3

2733
u2uxx +

1

2932

(
α3uu2

x + α2uuxxxx
)
.

Let us define the potential Γ(−2n−1) such that

γ(−2n−1) = −∂xΓ(−2n−1), n = 0, 1, 2, 3, . . . ; (A.2)

where

Γ(−1) = 0,

Γ(−3) =
α

233
u,

Γ(−5) =
α2

263
u2 +

α

253
uxx, (A.3)

Γ(−7) =
5α3

2833
u3 +

5α2

2832
u2
x +

5α2

2732
uuxx +

α

273
uxxxx.

B Numerical methods

The suitable form of the model (2.1), in order to undertake a numerical simulation of its

soliton solutions, is provided by the eq. (2.6). Next, taking into account the eq. (7.3) one

can rewrite the eq. (2.6) as

pt + px − 4p2
x − 2ε2qxxpt + pxxx − ε1(pxxt + pxxx) = 0. (B.1)

We will apply a finite difference method in order to perform numerical simulations of

the equation (B.1). Notice that the two and three-soliton solutions for RLW (ε1 = 1, ε2 = 0

case of eq. ( B.1)) are only known numerically and were obtained in [32, 33]. We follow the

methods discussed by J.C. Eilbeck and G.R. McGuire [32, 33] and Ferreira et al. [10]. The

equation requires the introduction of implicit methods and we will use the LU method, in

order to solve for the vector P of a linear system AP = D with tri-diagonal matrix A.

So, let us discretize the coordinates x and t by the set of points x0, x1, . . . , xN and

t0, t1, . . . , tK . Next, we will use the notation pmj ≡ p(jh,mτ) and qmj ≡ q(jh,mτ), where h

and τ denote the step size in space and time, respectively. In order to denote the relevant

approximations to qmj and pmj we will use the same notations, respectively.
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Applying the central finite difference operators on pmj and qmj one can write the fol-

lowing system of equations

b̃m2 pm+1
2 + δ pm+1

3 = d̃m2 − 2τ δ d̃m1 , (B.2)

δ pm+1
j−1 + b̃mj p

m+1
j + δ pm+1

j+1 = d̃mj , j = 3, . . . , N − 3 (B.3)

δ pm+1
N−3 + b̃mN−2 p

m+1
N−2 = d̃mN−2 − 2τ δ dmN−1, (B.4)

where

δ ≡ − ε1
2h2τ

, (B.5)

b̃mj ≡
1

2τ
− ε2

qmj+1 − 2qmj + qmj−1

h2τ
+ ε1

1

h2τ
, (B.6)

d̃mj ≡
pm−1
j

2τ
−
pmj+1 − pmj−1

2h
− ε1

pm−1
j+1 − 2pm−1

j + pm−1
j−1

2h2τ

−ε2
(
qmj+1 − 2qmj + qmj−1

h2τ

)
pm−1
j (B.7)

+
(pmj+1 − pmj−1)2

h2

−(1− ε1)
pmj+2 − 2pmj+1 + 2pmj−1 − pmj−2

2h3
, j = 2, 3, . . . , N − 2,

and the next boundary conditions will be imposed

d̃m0 ≡
1

2τ
pm+1

0 , d̃mN ≡
1

2τ
pm+1
N . (B.8)

d̃m1 =
1

2τ
pm+1

1 , d̃mN−1 =
1

2τ
pm+1
N−1. (B.9)

The boundary conditions (B.8)–(B.9) are consistent with the behaviours of the fields q(x, t)

and p(x, t) at the both ends of the interval x ∈ [−75, 75], as presented in figure 1 for ti.

For any fixed time t and for regions far away from the solitons, represented by the field

u(x, t), one has approximately a linear behavior of q(x, t) and an approximately constant

function behaviour of p(x, t). Notice that the term containing pxxx implied the appearance

of the two relationships per boundary in (B.8)–(B.9) as the relevant boundary conditions.

Next, our problem reduces to solving the linear system of equations (B.2)–(B.4) for

the unknown variables pm+1
j for each time step provided that the pmj ’s are known. In fact,

one has the matrix equation

AP = D, (B.10)

where A is a tridiagonal matrix with relevant components provided by the l.h.s. of the

system of eqs. (B.2)–(B.4). As mentioned above, we have used the LU method in order

to solve for the vector P . Moreover, we realized that, alternatively to the LU method,

the tridiagonal matrix algorithm (Thomas algorithm) would be useful; however, we have

mainly used the LU method. These will provide us the values of pmj at the next time level
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tm+1. Therefore, equation (7.3) allows us to determine all the values of qmj at the next

time level tm+1 through the formula

pmj =
qm+1
j − qm−1

j

2τ
⇒ qm+1

j = 2τpmj + qm−1
j . (B.11)

So, the algorithm above allows us to determine the numerical time evolution of the system

by repeating the procedure for many time steps.

C The first cn’s and dn’s

Substituting (8.11) into (8.1) one can get the first six of the cn’s as

c0 =
1

2
U, (C.1)

c1 = −1

4
Ux, (C.2)

c2 =
1

4
(U2 +

1

2
Uxx), (C.3)

c3 = −1

2
(UUx +

1

8
Uxxx), (C.4)

c4 =
1

32
(8U3 + 10U2

x + 12UUxx + Uxxxx), (C.5)

c5 = − 1

64
(64U2Ux + 36UxUxx + 16UUxxx + Uxxxxx), (C.6)

c6 =
1

128
[40U4 + 120U2Uxx + 38U2

xx + 56UxUxxx + 20U(10U2
x + Uxxxx) + Uxxxxxx].

(C.7)

Further, by substituting these results into (8.3) and the expansion (8.12) one gets the first

six of the dn’s as

d1 = −Y, (C.8)

d2 =
1

2
Yx, (C.9)

d3 = −1

4
Yxx, (C.10)

d4 =
1

8
(4UYx+Yxxx), (C.11)

d5 = − 1

16
(8UxYx+8UYxx+Yxxxx), (C.12)

d6 =
1

32
(24U2Yx+12UxxYx+20UxYxx+12UYxxx+Yxxxxx), (C.13)

d7 = − 1

64
[64U2Yxx+36UxxYxx+16UxxxYx+36UxYxxx+16U(8UxYx+Yxxxx)+Yxxxxxx].

(C.14)
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