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We compare two competing relativistic approaches to the N-body simulation of the Universe large-
scale structure. To this end, employing the corresponding alternative computer codes (“gevolution” and 
“screening”), we conduct a series of cosmological simulations in boxes of different sizes and calculate 
the power spectra of the scalar perturbation �, the frame-dragging vector potential B and the difference 
between scalar modes χ = � −�. We demonstrate that the corresponding power spectra are in very good 
agreement between the compared schemes. For example, the relative difference of the power spectra for 
� is 0.04% maximum. Since the perturbed Einstein equations have much simpler form in the screening 
approach, the simulation with this code consumes less computational time, saving almost 40% of CPU 
hours.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The starry sky overhead is one of the most beautiful phenomena on Earth. Therefore, since its inception, humanity has tried to com-
prehend the nature of this phenomenon. Our ideas changed in the course of technological progress from observations with the naked eye 
to powerful ground-based and space telescopes. Due to these telescopes, we found that the Universe is filled with a cosmic web which is 
composed of interconnected filaments of galaxies separated by giant voids [1]. The emergence of this large-scale structure is one of the 
major challenges of modern cosmology.

The formation of structures with matter density contrast less than unity (linear regime) is well described by analytical methods [2,3]. 
However, this task becomes much more difficult in the nonlinear regime, when the density contrast exceeds unity. In this case, the process 
of structure growth is described employing numerical simulations [4]. Gravity is the main force in cosmology responsible for the structure 
formation [5]. It is known that Newtonian N-body simulations describe well this process in the case of the �CDM (Lambda cold dark 
matter) model [6]. However, the Newtonian approach has a number of limitations. Firstly, the Newtonian approximation does not take 
into account relativistic effects that occur at large cosmological scales. For example, it is insensitive to the existence of a particle horizon. 
Secondly, it is not applicable for objects with relativistic peculiar velocities. Thirdly, it is problematic to apply the Newtonian approach to 
theories beyond the �CDM model. Fourthly, the Newtonian approximation is not appropriate for calculating the effect of backreaction of 
perturbations on the metric. Although such an effect might be not large, it can nevertheless be measured in the near future. This becomes 
relevant in the light of upcoming surveys like Euclid, Square Kilometre Array and Large Synoptic Survey Telescope [7–9]. Therefore, it 
seems very desirable to formulate a theory that eliminates the shortcomings of Newtonian cosmology and works at all scales, from 
relatively small astrophysical ones (although not in immediate proximity to black holes or neutron stars) to largest cosmological distances. 
Hence, such a theory must be valid for both the nonlinear and linear regimes. It is clear that this goal can be achieved in the framework 
of general relativity. Since the gravitational field is weak at the considered scales, one can apply the theory of perturbations.
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The corresponding scheme was developed in [10,11], serving as the foundation for the N-body cosmological simulation code “gevo-
lution” [12,13]. This is a relativistic code based on the weak field expansion. Along with the gravitational potential �, which is also 
determined within the Newtonian approximation, the code makes it possible to determine the non-Newtonian degrees of freedom of the 
metric: the scalar one � − �, the frame-dragging vector potential B, and two helicities hij of gravitational waves. A characteristic feature 
of this scheme is that the equations include not only linear terms, but also those which are quadratic in scalar perturbations. As a result, 
metric corrections represent mixtures of the first- and second-order quantities.

Mixing of orders of smallness leads to a rather complicated form of equations. Therefore, it seems logical to construct a perturbation 
theory where orders of smallness are not mixed. In this case, the lowest-order metric perturbations are determined first, and then they 
serve as sources for the higher-order quantities. Such a theory was proposed in [14–16]. Here, the gravitational field is weak and peculiar 
velocities are much less than the speed of light. These are the only limitations of this scheme. All equations are linear that allows to solve 
them analytically in the case of the �CDM model [14,16]. A characteristic feature of this approach is that the equation for the first-order 
gravitational potential has the form of the Helmholtz equation, not the Poisson one. As a result, its solution has the form of the Yukawa 
potential with an exponential cutoff at large cosmological distances [14,17]. This “screening” scheme was generalized in [18–21] to the 
cases of models with perfect fluids, both with linear and nonlinear equations of state.

Since we have two competing relativistic approaches, it is very interesting to compare them with respect to the N-body simulation of 
the large-scale structure formation. This is the main goal of the present paper. With the help of the corresponding alternative computer 
codes, we calculate the power spectra of �, B and � − � for different box sizes. One should keep in mind that we use the same 
notation for these degrees of freedom, although the “gevolution” quantities � and B have the second-order admixtures. Nevertheless, we 
demonstrate that the corresponding power spectra are in very good agreement between the compared schemes. Hence, the effect of the 
second-order admixtures is indeed small. For example, the relative difference of the power spectra for � is 0.04% maximum. On the other 
hand, employing the simpler “screening” code saves almost 40% of the expensive computational time. Additionally, for the fixed allotted 
time, the faster code makes it possible to simulate a larger box or to probe higher resolution, which is a definite advantage.

The paper is structured as follows. In Section 2, we briefly describe the “gevolution” scheme. Section 3 is devoted to the “screening” 
one. In Section 4, we present the simulation outcomes for both of these approaches, namely, the power spectra of the metric perturbations, 
their relative difference, and the computational time consumption. The main results are summarized in concluding Section 5.

2. Gevolution

This section is devoted to the equations underlying simulations by means of the original “gevolution” code [12,13]. First of all, let us 
write down the perturbed Friedmann-Lemaître-Robertson-Walker metric

ds2 = a2
[
−(1 + 2�)dτ 2 − 2Bidxidτ + (1 − 2�)δi jdxidx j

]
, i, j = 1,2,3 , (1)

in the Poisson gauge. Here a(τ ) is the scale factor (depending on the conformal time τ ); xi denote the comoving coordinates; � and �
represent the scalar perturbations, while Bi constitute the vector perturbation and satisfy the gauge condition δi j Bi, j = 0 (where , j stands 
for ∂/∂x j ). Throughout the narration, tensor modes are disregarded.

If one demands the smallness of metric corrections �, �, Bi (the weak gravitational field regime) and keeps those terms which are 
linear in them, along with the terms quadratic in �, � which contain two spatial derivatives (see the summands proportional to �	�, 
�,i�, j , χ�,i j and ��,i j below), then the Einstein equations are reduced to the following ones (see Eqs. (2.9), (2.11) and (2.10) in [13], 
respectively):

(1 + 4�)	� − 3H�′ + 3H2(χ − �) + 3

2
δi j�,i�, j = −4πGa2

(
T 0

0 − T 0
0

)
, (2)

−1

4
	Bi − �′

,i −H(�,i − χ,i) = 4πGa2T 0
i , (3)(

δi
kδ

j
l − 1

3
δi jδkl

)[
B ′

(i, j) + 2HB(i, j) + χ,i j − 2χ�,i j + 2�,i�, j + 4��,i j

]

= 8πGa2
(

δik T i
l − 1

3
δkl T

i
i

)
, (4)

where 	 ≡ δi j∂2/∂xi∂x j is the Laplacian in comoving coordinates; H ≡ a′/a, with prime denoting the derivative with respect to τ ; 
χ ≡ � −� represents the difference between scalar modes; G is the gravitational constant; finally, (i j) stands for the symmetrization over 
indexes i, j. We regard Eqs. (2), (3) and (4) as equations for �, Bi and χ , respectively. Components of the energy-momentum tensor in 
their right-hand sides follow from corresponding Eqs. (3.7), (3.10) and (3.8) in [13], when Eq. (3.11) therein is taken into account:

T 0
0 = − 1

a4

∑
n

δ(r − rn)

√
q2

n + m2
na2

(
1 + 3� + q2

n

q2
n + m2

na2
�

)
, (5)

T 0
i = 1

a4

∑
n

δ(r − rn)(qn)i(1 + 2� + χ) , (6)

T i
j = δik

a4

∑
n

δ(r − rn)
(qn) j(qn)k√
q2

n + m2
na2

(
1 + 4� + m2

na2

q2
n + m2

na2
�

)
, (7)

where q2
n ≡ δi j(qn)i(qn) j . These components describe a system of point-like particles with masses mn , comoving radius-vectors rn , and 

momenta qn , which satisfy the equation of motion (see Eq. (3.5) in [13])
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d(qn)i

dτ
= −

√
q2

n + m2
na2

[(
1 + q2

n

q2
n + m2

na2

)
�,i − χ,i + δ jk(qn)k B j,i√

q2
n + m2

na2

]
. (8)

It is very important to emphasize that the presented formalism covers the whole space (except for its small portion where gravity is 
strong) as the smallness of energy-momentum fluctuations (generating the inhomogeneous gravitational field) is not demanded [12,13]. 
In particular, there exist spatial regions where the absolute value of T 0

0 is much larger than that of the background quantity T 0
0 . The latter 

enters into the Friedmann equation for the scale factor a(τ ):

−3H2

a2
= 8πG

(
T 0

0 + . . .
)

, (9)

where marks of omission . . . comprise additional contributions from radiation (treated as homogeneous) and the cosmological constant 
(in the case of concordance �CDM model).

3. Screening

In this section we simplify the aforesaid equations in the spirit of the all-scale cosmological perturbation theory formulated in [14,15]
(subsequently also referred to as the cosmic screening approach [16,17] due to its prediction of Yukawa interparticle interaction). The 
corresponding (modified “gevolution”) N-body code we call “screening”.

Similarly to [12,13], the first-order formalism [14] is valid for all distances, provided that the metric corrections �, �, Bi are small in 
every place of interest (unlike the energy-momentum fluctuations which may be large). However, these corrections are strictly assigned 
the first order of smallness, and so the terms quadratic in them are left out as belonging to the second-order theory, irrespective of the 
presence of spatial derivatives (see [15] for compelling evidence of self-consistency of such assignments). Furthermore, since nonrelativistic 
matter is in the focus of attention, only terms which are linear in particles’ momenta (and do not contain metric perturbations) are kept, 
resulting in the coincidence � = � and automatically turning χ into a second-order quantity. Then, instead of Eqs. (2) and (3), the Einstein 
equations for � and Bi take the form

	� − 3H�′ − 3H2� = −4πGa2
(

T 0
0 − T 0

0

)
, (10)

−1

4
	Bi − �′

,i −H�,i = 4πGa2T 0
i , (11)

where, replacing Eqs. (5) and (6),

T 0
0 = − 1

a3

∑
n

mnδ(r − rn) (1 + 3�) , (12)

T 0
i = 1

a4

∑
n

δ(r − rn)(qn)i . (13)

Moreover, introducing the mass density

ρ =
∑

n

mnδ(r − rn) , (14)

along with its background value ρ and the corresponding fluctuation δρ ≡ ρ − ρ , from (12) we derive (see Eq. (2.13) in [14])

T 0
0 − T 0

0 = − 1

a3
δρ − 3

a3
ρ�. (15)

Here T 0
0 = −ρ/a3, and ρ in the term ∝ ρ� is replaced by ρ in view of the fact that |δρ�| � |δρ| for |�| � 1 (the omitted term ∝ δρ�

generates the second-order perturbations [15]). Substituting (15) into (10), one easily recognizes Eq. (2.15) in [14]. Obviously, this linear 
equation for � is much simpler than nonlinear Eq. (2). It is worth mentioning that Eq. (10) with the right-hand side proportional to (15)
admits the exact analytical solution [14].

Finally, the equation of motion (8) is noticeably simplified as well:

d(qn)i

dτ
= −mna�,i . (16)

Now, if we would like to take into account the summands quadratic in �, Bi , (qn)i and δρ in order to investigate such nonlinear effects 
as, for instance, cosmological backreaction, then the second-order formalism [15] should be employed. In its framework, such summands 
play the role of sources for second-order metric corrections, which can be easily determined from the corresponding bulky, but linear 
equations. When further simplified, these equations can be even solved analytically [16]. In particular, the metric coefficients g00 and 
g11,22,33 acquire the second-order scalar perturbations −2a2�(2) and −2a2�(2) , respectively. Hence, now χ ≡ �(2) − �(2) . The direct way 
to estimate this difference between scalar modes with the help of the existing algorithm is to employ Eq. (C.9) from [13], substituting 
there � determined from (10) and neglecting the higher-order terms such as those containing simultaneously both χ and �. Instead of 
computing χ at each iteration step, one can calculate this and other second-order quantities only at redshifts of interest, thereby saving 
valuable computational time (which may be already substantially reduced owing to modification of equations).

It is important to keep in mind that we use the same letter for the function � from the previous section (“gevolution”) and for the 
first-order function � from the current section (“screening”), though actually �gevolution (following from Eq. (2)) equals �screening (the 
3



Table 1
Computational time (in CPU hours) for the “gevolution” (tg) and “screening” (ts) approaches and the 
relative deviation 	t (in %) for different simulation box sizes L and for two resolutions: 1 Mpc/h 
(left chart) and 2 Mpc/h (right chart).

L [Mpc/h] tg ts 	t [%]

280 6.2 3.8 38.7
336 11.5 7.1 38.3
560 47.1 29.2 38.0
980 294.9 180.9 38.7
1680 1551.1 939.6 39.4

L [Mpc/h] tg ts 	t [%]

280 0.8 0.5 37.5
560 4.3 2.7 37.2
1120 34.8 21.2 39.1
2016 216.2 132.1 38.9
2800 563.9 347.0 38.5

solution of Eq. (10)) plus a higher-order admixture. A similar remark applies to Bi too (see Eqs. (3), (11)). Generally, from the point of 
view of [14,15], the first and second orders of perturbations are mixed in [12,13], and this is, in our opinion, an unnecessary complication, 
provided that they can be successfully separated. It should be acknowledged though that apart from our interpretation, one can also argue 
that the intention of [12,13] is to compute the “full” metric without invoking its order expansion.

4. Simulations

4.1. Inputs

A couple of relevant questions arises immediately. First, do the “gevolution” and “screening” codes produce different or almost identical 
results? Second, which code runs faster?

Looking for the answers, we have conducted a series of cosmological N-body simulations in boxes of sizes 280, 336, 560, 980, 
1680 Mpc/h with 1 Mpc/h resolution as well as an additional series in boxes of sizes 280, 560, 1120, 2016, 2800 Mpc/h with 2 Mpc/h 
resolution. The specified comoving dimensions L of cubic boxes coincide with the physical ones Lph = L/(1 + z) at the present time (when 
the redshift z is 0). The initial redshift has been set to 100 for all simulations.

Regarding the Universe ingredients, baryons have been treated similarly to cold dark matter. In addition, radiation has been neglected 
in both codes, with no effect on the conclusions.

In order to generate initial conditions, we have used the code CLASS [22]. Finally, the following values of standard cosmological param-
eters have been chosen [23]: �bh2 = 0.02242, �ch2 = 0.11933 (where h = 0.6766), ns = 0.9665, As = 2.105 × 10−9, kpivot = 0.05 Mpc−1.

4.2. Outputs

The main outcomes of our simulations by both the “gevolution” and “screening” codes are the power spectra of �, Bi and χ . These 
power spectra (P� , P B and Pχ , respectively) are defined by the formulas [12]

4πk3 〈
�(k, z)�(k′, z)

〉 = (2π)3δ(k − k′)P�(k, z) , (17)

4πk3 〈
Bi(k, z)B j(k′, z)

〉 = (2π)3δ(k − k′)Pij P B(k, z) , Pij ≡ δi j − kik j

k2
, (18)

4πk3 〈
χ(k, z)χ(k′, z)

〉 = (2π)3δ(k − k′)Pχ (k, z) . (19)

To estimate quantitatively the difference between two analyzed competing approaches, we introduce the relative deviation

	P ≡
∣∣∣∣ Pscreening − Pgevolution

Pgevolution

∣∣∣∣ (20)

for each power spectrum. In Figs. 1-3 we depict the sought power spectra and relative deviations for two boxes with comoving sizes 
980 Mpc/h and 1680 Mpc/h, at redshifts z = 15 and z = 0. For the former box, k ranges from 2π/980 ≈ 6.4 × 10−3 h/Mpc to π h/Mpc, 
while for the latter one, k ranges from 2π/1680 ≈ 3.7 × 10−3 h/Mpc again to π h/Mpc. These figures demonstrate that the results of 
“gevolution” and “screening” simulations remarkably coincide with each other. For example, the maxima of relative deviations at the 
present time (z = 0) are approximately 0.04%, 0.4% and 1% for P� , P B and Pχ , respectively. At redshift z = 15, the corresponding relative 
deviations are much less than these values.

4.3. Computational time consumption

The resource consumption time is an important parameter of an N-body simulation: the smaller this time, the cheaper the project 
costs. This is especially important for projects running on supercomputers. It is also clear that the faster code can simulate a larger box for 
the allotted time. Therefore, we compare the computational time (in CPU hours) for the “gevolution” (tg) and “screening” (ts) approaches 
by estimating the relative deviation

	t ≡
∣∣∣∣ ts − tg

tg

∣∣∣∣ . (21)

The results of such a comparison are presented in Table 1 for different simulation box sizes and for two resolutions. As one can see from 
this table, in all cases the “screening” code runs approximately 40% faster than the rival.
M. Eingorn, A.E. Yükselci and A. Zhuk Physics Letters B 826 (2022) 136911
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Fig. 1. Power spectra of � (top curves), B (middle curves) and χ (bottom curves) from the “gevolution” code (green, blue and purple curves in the background, respectively) 
and from the “screening” code (red, orange and yellow curves in the foreground, respectively) at redshifts z = 15 (left graph) and z = 0 (right graph). The simulation box 
size amounts to 980 Mpc/h.

Fig. 2. Power spectra of � (top curves), B (middle curves) and χ (bottom curves) from the “gevolution” code (green, blue and purple curves in the background, respectively) 
and from the “screening” code (red, orange and yellow curves in the foreground, respectively) at redshifts z = 15 (left graph) and z = 0 (right graph). The simulation box 
size amounts to 1680 Mpc/h.
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Fig. 3. Relative deviations of the power spectra of � (top graphs), B (middle graphs) and χ (bottom graphs) predicted by the “screening” code from the “gevolution” code 
counterparts at redshifts z = 15 (red) and z = 0 (purple). The simulation box size amounts to 980 Mpc/h for all three left graphs and 1680 Mpc/h for all three right graphs.

5. Conclusion

In the present paper we have considered two alternative relativistic approaches to the N-body simulation of the Universe large-scale 
structure. The first one [10,11] is the basis for the simulation code “gevolution” [12,13]. The main features of this approach are the 
following ones: first, it determines non-Newtonian degrees of freedom, second, it works at all scales (from relatively small astrophysical 
ones to largest cosmological distances), third, it gives an opportunity to take into account relativistic particles. However, since the first 
and second orders of smallness are mixed, the corresponding perturbed Einstein equations have rather complicated form. These equations 
are greatly simplified if orders of smallness are clearly separated from each other. Such a scheme was proposed in [14–16]. Within this 
scheme, the first-order corrections for metric coefficients are determined first, and then they serve as sources for the second-order ones. 
All resulting equations are linear, which allows them to be solved analytically in the case of the �CDM model [14,16]. The simpler 
structure of equations makes it possible to clarify the physical properties of perturbations. For example, the equation for the first-order 
gravitational potential has the form of the Helmholtz equation. As a result, its solution has the form of the Yukawa potential with an 
exponential cutoff at large cosmological distances [14,17]. The only limitations of this “cosmic screening” approach [16,17] are as follows: 
the gravitational field is weak (similarly to “gevolution”) and peculiar velocities are much less than the speed of light. It should be noted 
that the second condition is alleviated due to the fact that this formalism allows one to take into account not only those summands in 
the perturbed Einstein equations, which are linear in velocities of particles, but also the quadratic ones [15].

The main goal of the present paper was to compare these two competing relativistic schemes with respect to the N-body simulation 
of the large-scale structure formation. To this end, we have conducted a series of simulations in boxes of sizes 280, 336, 560, 980, 
1680 Mpc/h with 1 Mpc/h resolution as well as an additional series in boxes of sizes 280, 560, 1120, 2016, 2800 Mpc/h with 2 Mpc/h 
resolution. Employing the corresponding alternative computer codes, we have calculated the power spectra of the scalar perturbation �, 
the frame-dragging vector potential B and the quantity χ = � − � within each of the considered approaches. Then, we have determined 
the relative deviations of the corresponding power spectra. Despite the fact that the “gevolution” quantities � and B have the second-order 
admixtures, we have demonstrated that the power spectra are in very good agreement between the compared schemes. For example, the 
relative difference of the power spectra for � is 0.04% maximum. Hence, the effect of the second-order admixtures is small, as it should 
be.

It is natural to expect that the code using simpler equations consumes less computational time. Indeed, we have shown that the 
simpler “screening” code saves almost 40% of CPU hours. Since the smaller the computational time, the cheaper the project costs, this is 
a definite advantage of the “screening” approach. Additionally, the faster “screening” code can simulate a larger box for the fixed allotted 
time.

Thus, our study shows that the use of the screening formalism is quite justified and can be successful for investigation of various 
problems in the N-body simulation of the Universe large-scale structure.
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