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We study the phase structure of the two-flavor Nambu–Jona-Lasinio (NJL) model in the chiral limit,
extending a previous study of the competition of an inhomogeneous chiral phase and a two-flavor color-
superconducting (2SC) phase [M. Sadzikowski, Phys. Lett. B 553, 45 (2003); M. Sadzikowski, Phys. Lett.
B 642, 238 (2006)]. There, an analytic expression for the dispersion relations for quasiparticle excitations in
the presence of both a particular inhomogeneous chiral condensate, the so-called chiral density wave
(CDW), and a homogeneous 2SC condensate was found. In this work we show how to determine the
dispersion relations for arbitrary modulations of the chiral condensate in the presence of a homogeneous
2SC condensate, if the dispersion relations in the absence of color superconductivity are known. In our
calculations, we employ two different Ansätze for the inhomogeneous chiral condensate, the CDWas well
as the real-kink crystal (RKC). Depending on the value of the diquark coupling we find a region of the
phase diagram where the inhomogeneous chiral and the 2SC condensates coexist, confirming results of M.
Sadzikowski [Phys. Lett. B 553, 45 (2003); 642, 238 (2006)]. Decreasing the diquark coupling favors the
inhomogeneous phase over the coexistence phase. On the other hand, increasing the diquark coupling leads
to a larger 2SC phase, while the inhomogeneous chiral and the coexistence phases become smaller. In
agreement with previous studies the RKC Ansatz is energetically preferred over the CDW Ansatz. Both
Ansätze lead to a qualitatively similar phase diagram, however, the coexistence phase is smaller for the
RKC Ansatz.
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I. INTRODUCTION

The exploration of the QCD phase diagram is one of the
major topics in contemporary high-energy nuclear physics.
The chiral symmetry of QCD, which is broken in the
vacuum and restored at high temperatures and densities,
plays an important role in determining the structure of the
QCD phase diagram. Lattice-QCD studies have shown that
chiral symmetry is restored in a crossover transition at a
temperature T ∼ ð156.5� 1.5Þ MeV at physical values of
the quark mass [1]. However, due to the fermion sign
problem these methods are not applicable for nonvanishing
quark chemical potentials μ. Several calculations within
continuum approaches suggest that the transition becomes

of first order at large μ and moderate T, which terminates at
a second-order critical endpoint (for a compilation of recent
results for the location of this endpoint, see Ref. [2]).
Calculations in various QCD-inspired models, like the

Gross-Neveu (GN) [3], the Nambu–Jona-Lasinio (NJL) [4–
6], the quark-meson (QM) [6–8], and the parity-doublet
model [9], suggest that, within mean-field approximation,
the first-order chiral phase transition is superseded by an
inhomogeneous phase, where the chiral condensate varies
as a function of spatial coordinates, for a review, see
Ref. [10]. In most of these studies, specific Ansätze for the
shape of the chiral order parameter are chosen that allow for
an analytic treatment of the problem, such as the chiral
density wave (CDW) or the real-kink crystal (RKC) Ansatz.
Alternative approaches to inhomogeneous chiral phases,
which are not based on a specific Ansatz for the shape of the
condensate, are, e.g., Ginzburg-Landau theory [11,12] and
studies where the shape of the condensate is determined by
minimization of the action of the theory in mean-field
approximation [13]. The existence of an inhomogeneous
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phase was recently confirmed in calculations within the
1+1-dimensional GN model in full quantum field theory on
the lattice [14]. At asymptotically large μ and moderate T,
asymptotic freedom predicts that quark matter is a color
superconductor [15–17]. It is an interesting open question,
how far this color-superconducting phase extends towards
lower μ and whether it competes with the inhomogeneous
chiral phase.
The only works which, to our knowledge, have

addressed this question are those of Refs. [18–20].
References [18,19] found a solution for the dispersion
relations of quasiparticle excitations in the presence of both
a CDW-modulated chiral condensate and a homogeneous
2SC condensate. A region in the phase diagram was
identified where an inhomogeneous chiral condensate
and a 2SC diquark condensate coexist.1 However, the
Lifshitz and the tricritical point do not coincide, which
contradicts the Ginzburg-Landau studies of Ref. [12]. A
possible source for this discrepancy could be the particular
regularization scheme used in Refs. [18,19], which is based
on a Taylor expansion of the grand potential in the wave
number q. Reference [20] confirmed the existence of a
coexistence phase at T ¼ 0 using the Pauli-Villars regu-
larization scheme and extended this study to nonvanishing
isospin chemical potential.
In this work, we extend Refs. [18–20] in the following

ways. First, we investigate the phase diagram at finite T and
μ (but at vanishing isospin chemical potential) using the
Pauli-Villars regularization. Second, we derive a method to
compute the quasiparticle dispersion relations for arbitrary
modulations of the chiral condensate in the presence of a
homogeneous 2SC condensate, if the dispersion relations in
the absence of the latter are known. We subsequently apply
this method to the RKC in addition to the CDW.
This paper is organized as follows: In Sec. II we present

the NJL model and extend it by a quark-quark interaction
term that corresponds to the spin-zero color-antitriplet
channel and allows for 2SC color-superconducting con-
densates. We then present the method to compute the
quasiparticle dispersion relations for arbitrary modulations
of the chiral condensate in the presence of a 2SC color-
superconducting condensate and apply this to compute the
grand potential for the CDW and the RKC Ansatz,
respectively. In Sec. III we present the phase diagrams
for the two inhomogeneous Ansätze and different values of
the diquark coupling. We conclude this work with a
summary and an outlook in Sec. IV.

II. THE MODEL

A. The NJL model with diquarks

We consider the Lagrangian

LNJLþΔ ¼ LNJL þ LΔ; ð1Þ

where

LNJL ¼ ψ̄ðiγμ∂μ þ μγ0Þψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2� ð2Þ

is the standard Lagrangian of the NJL model for Nf ¼ 2
quark flavors and Nc ¼ 3 color degrees of freedom in the
chiral limit and at finite quark chemical potential μ,
with ψ being a 4NcNf-dimensional quark spinor, G the
four-fermion coupling, γμ the Dirac matrices, and τ⃗ ¼
ðτ1; τ2; τ3Þ the vector of Pauli matrices in flavor space.
The second term in Eq. (1) is added in order to describe
diquark condensation in the spin-zero color-antitriplet
channel,

LΔ ¼ GΔðψ̄ciγ5τ2λAψÞðψ̄iγ5τ2λAψcÞ; ð3Þ

where ψc ¼ Cψ̄T, with C ¼ iγ2γ0 being the charge-
conjugation matrix, and λA; A ¼ 2, 5, 7, are the antisym-
metric Gell-Mann matrices in color space.
We bosonize the action of the model by performing a

Hubbard-Stratonovich transformation and double the fer-
mion degrees of freedoms in such a way that it leaves the
total path integral unchanged [22]. This yields the effective
Lagrangian

Leff ¼
1

2

�
ψ̄ði∂ þ μγ0 þ σ þ iγ5π⃗ · τ⃗Þψ

þ ψ̄cði∂ − μγ0 þ σ þ iγ5π⃗ · τ⃗Þψc

þ ΔAðψ̄ciγ5τ2λAψÞ þ Δ�
Aðψ̄iγ5τ2λAψcÞ

−
σ2 þ π⃗2

2G
−
jΔAj2
2GΔ

�

≡ 1

2

�
Ψ̄S−1Ψ −

σ2 þ π⃗2

2G
−
jΔAj2
2GΔ

�
; ð4Þ

with the real auxiliary fields σ and π⃗, corresponding to
scalar- and pseudoscalar-meson degrees of freedom, and
the complex auxiliary fields ΔA, corresponding to diquarks.
In the last step we introduced Nambu-Gor’kov spinorsΨ ¼
ðψ ;ψcÞT and defined the inverse propagator

S−1 ¼
�
i∂ − M̂ þ μγ0 Δ̂

−Δ̂† i∂ − M̂ − μγ0

�
; ð5Þ

with

M̂ ¼ −σ − iγ5τ⃗ · π⃗ ð6Þ

and

Δ̂ ¼ iγ5τ2λ2Δ: ð7Þ
1Phase coexistence between a homogeneous chiral and a 2SC

color-superconducting phase has been found in Ref. [21].
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B. Grand potential

For spatially varying scalar and pseudoscalar fields
σðxÞ; π⃗ðxÞ and a constant color-superconducting gap
parameter ΔA ¼ δA2Δ, the grand potential reads in
mean-field approximation

Ω ¼ Ωkin þ
1

4G
1

V

Z
d3x½σ2ðxÞ þ π⃗2ðxÞ� þ jΔj2

4GΔ
; ð8Þ

where

Ωkin ≡ −
1

2

T
V
Tr ln

�
S−1

T

�
: ð9Þ

Here, the functional trace is taken over space-time, spin,
color, and flavor. The factor 1=2 in front of the trace
corrects for the artificial doubling of the quark degrees of
freedom in the Nambu-Gor’kov formalism.
In order to evaluate the functional trace, we follow the

approach of Refs. [6,23] and isolate the time derivative

S−1 ¼ γ0ði∂0 −HNGÞ; ð10Þ

with the effective Dirac Hamiltonian

HNG ¼
�
H − μ −γ0Δ̂
γ0Δ̂† H þ μ

�
; ð11Þ

where

H ≡ −iγ0γ ·∇þ γ0M̂ ð12Þ

is the effective Hamiltonian in the case without diquark
pairing. Equation (9) can then be written as

Ωkin ¼ −
T
2V

X
n

X
λ

ln

�
iωn þ Eλ

T

�
; ð13Þ

where Eλ are the eigenvalues of HNG.
The Matsubara sum can be evaluated with standard

techniques [24] and yields

T
X
n

ln

�
iωn þ Eλ

T

�
¼ jEλj

2
þ T ln ð1þ e−jEλj=TÞ: ð14Þ

We determine the eigenvalues Eλ by squaring HNG, which
yields the block-diagonal matrix

H2
NG ¼

 
ðH − μÞ2 þ jΔj2Prg 0

0 ðH þ μÞ2 þ jΔj2Prg

!
:

ð15Þ

Here

Prg ¼ λ22 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA ð16Þ

is the projector onto the space of gapped quark colors.
The eigenvalues can now be read off from those of the

squared Hamiltonian, which are ðEλ ∓ μÞ2 for the
ungapped quark/antiquark and, with twofold degeneracy,
ðEλ ∓ μÞ2 þ jΔj2 for the gapped quarks/antiquarks, where
Eλ are the eigenvalues of H. The absolute values ϵλ;� ≡
jEλ;�j for quarks/antiquarks are thus found to be

ϵλ;� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEλ ∓ μÞ2 þ jΔj2

q
for the gapped quarks; ð17Þ

ϵð0Þλ;� ¼ jEλ ∓ μj for the ungapped quark: ð18Þ

Inserting these into Eq. (13) yields the expression

Ωkin ¼ −
1

2

X
i¼�

1

V

X
λ

�
ϵλ;i þ 2T lnð1þ e−ϵλ;i=TÞ

þ ϵð0Þλ;i

2
þ T lnð1þ e−ϵ

ð0Þ
λ;i =TÞ

�
: ð19Þ

Finally, we introduce the density of states of the spectrum
of H (i.e., the Hamiltonian in the absence of diquark
pairing) as

ρðEÞ ¼ 1

V

X
λ

δðE − EλÞ; ð20Þ

in order to rewrite the sum over λ in terms of an integral
over the energy E. This yields

Ωkin ¼ −
1

2

X
i¼�

Z
∞

−∞
dE ρðEÞ

�
ϵi þ 2T lnð1þ e−ϵi=TÞ

þ ϵð0Þi

2
þ T lnð1þ e−ϵ

ð0Þ
i =TÞ

�
; ð21Þ

with

ϵ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE ∓ μÞ2 þ jΔj2

q
and ϵð0Þ� ¼ jE ∓ μj: ð22Þ

Since the original spectrum and, as a consequence, ρðEÞ are
symmetric around zero, we can replace 1

2

R∞
−∞ dE by

R∞
0 dE.

Our final result for the grand potential is then given by
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Ω ¼ −
X
i¼�

Z
∞

0

dEρðEÞ
�
ϵi þ 2T lnð1þ e−ϵi=TÞ

þ ϵð0Þi

2
þ T lnð1þ e−ϵ

ð0Þ
i =TÞ

�

þ 1

4G
1

V

Z
d3x½σ2ðxÞ þ π⃗2ðxÞ� þ jΔj2

4GΔ
: ð23Þ

Note again that ρðEÞ is the density of states for the case
without diquark pairing, while the effects of the latter enter
only through the energies ϵ�, see Eq. (22), and the last term
in Eq. (23). Hence, if ρðEÞ is known, the extension to
include homogeneous 2SC condensates is straightforward.

C. Inhomogeneous chiral condensates

We now evaluate the grand potential (23) for the CDW
and RKC configurations. The respective densities of states
have been found in Ref. [6]. It is already known that,
without diquark condensation, the RKC solution is pre-
ferred over the CDW one, and we do not expect that this

will change when accounting for diquark condensation.
Nevertheless, here we study both Ansätze, in order to
confirm this expectation.

1. Chiral density wave

For the one-dimensional CDW the Ansatz for the
inhomogeneous chiral condensate is given as

σðzÞ þ iγ5π⃗ðzÞ · τ⃗ ¼ −M eiγ5τ3qz; ð24Þ

with an amplitude M and the wave number q of the CDW.
Without loss of generality, we have chosen the one-dimen-
sional modulation to align with the z axis. In the case
q ¼ 0, M is equal to the constituent quark mass.
The eigenvalues Eλ for the CDW without a color-

superconducting condensate have been determined in
Refs. [25,26]. Inserting these into Eqs. (17), (18) yields
the respective eigenvalues in the presence of a color-
superconducting condensate, which are identical to those
found in Ref. [18].

The density of states (20) for the CDW has been found in Ref. [6],

ρCDWðEÞ ¼
NfE

2π2

�
θðE − q −MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − qÞ2 −M2

q
þ θðE − qþMÞθðEþ q −MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ qÞ2 −M2

q

þ θðq −M − EÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEþ qÞ2 −M2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − qÞ2 −M2

q ��
: ð25Þ

With Eq. (24), the grand potential (23) reads

ΩCDW ¼ −
X
i¼�

Z
∞

0

dE ρCDWðEÞ
�
ϵi þ

ϵð0Þi

2
þ 2T ln ð1þ e−ϵi=TÞ þ T ln ð1þ e−ϵ

ð0Þ
i =TÞ

�
þM2

4G
þ jΔj2
4GΔ

: ð26Þ

2. Real-kink crystal

For the one-dimensional RKC, the pion field is set to zero and the Ansatz for the sigma field reads

σðzÞ≡ νD
snðDzjνÞcnðDzjνÞ

dnðDzjνÞ ; ð27Þ

where sn, cn, dn are Jacobi elliptic functions. The parameter ν determines the shape of the condensate: For ν → 1 the Ansatz
becomes D tanhðDzÞ, i.e., a kink-like soliton of amplitude D and width 1=D. For ν → 0 it becomes a sine of infinitesimal
amplitude.
The density of states for the RKC has already been computed in Ref. [6],

ρRKCðEÞ ¼
NfED

π2

�
θð ffiffiffĩ

ν
p

D − EÞ
�
Eðθ̃jν̃Þ þ

�
EðνÞ
KðνÞ − 1

�
Fðθ̃jν̃Þ

�

þ θðE −
ffiffiffĩ
ν

p
DÞθðD − EÞ

�
Eðν̃Þ þ

�
EðνÞ
KðνÞ − 1

�
Kðν̃Þ

�

þ θðE −DÞ
�
Eðθjν̃Þ þ

�
EðνÞ
KðνÞ − 1

�
Fðθjν̃Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 −D2ÞðE2 − ν̃D2Þ

p
ED

��
; ð28Þ
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where Kð·Þ are the complete and Fð·j·Þ the incomplete
elliptic integrals of the first kind, respectively, while Eð·Þ
are the complete and Eð·j·Þ the incomplete elliptic integral
of the second kind. We followed the notational convention
of Ref. [6], where ν̃ ¼ 1 − ν, θ̃ ¼ arcsin½E=ð ffiffiffĩ

ν
p

DÞ�, and
θ ¼ arcsinðD=EÞ.
The grand potential for the RKC Ansatz is found to be

ΩRKC ¼ −
X
i¼�

Z
∞

0

dEρRKCðEÞ
�
ϵi þ

ϵð0Þi

2

þ 2T ln ð1þ e−ϵi=TÞ þ T ln ð1þ e−ϵ
ð0Þ
i =TÞ

�

þM2

4G
þ jΔj2
4GΔ

; ð29Þ

where we introduced the average squared amplitude of the
RKC,

M2 ≡ 1

L

Z
L

0

dzjσðzÞj2; ð30Þ

with the period L≡ 4KðνÞ=D of the RKC. For later
purposes, we also define the effective wave number of
the RKC as q≡ 2π=L.

3. Regularization and model parameters

Because of scattering of the quarks with the crystal the
quasiparticle energies in the inhomogeneous phase cannot
be labeled by a conserved three-momentum. Thus the
commonly used three-dimensional momentum cutoff regu-
larization is not suitable here. In Refs. [18,19] this problem
was circumvented by isolating a wave-number independent
part of the grand potential and applying a momentum cutoff
only to this part. It turns out, however, that this regulari-
zation procedure leads to artifacts. For instance, even in the
absence of diquark condensates, the Lifshitz point does not
coincide with the tricritical point, in contradiction to the
general Ginzburg-Landau result of Ref. [12]. We therefore
follow Ref. [20] and apply a Pauli-Villars regularization
scheme, which acts on the energy spectrum and is com-
monly used in the context of inhomogeneous phases. In our
case this amounts to a replacement of

ϵ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� μÞ2 þ jΔj2

q

→
X
j

cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ jΛ2

q
� μÞ2 þ jΔj2

r
ð31Þ

FIG. 1. The phase boundaries for different diquark couplings GΔ ¼ 0; 0.3G;G=2; 3G=4. The solid lines correspond to the phase
transition line for the CDW Ansatz, while the dashed lines are associated with the RKC Ansatz. Where only solid lines are visible, the
phase boundaries for both Ansätze coincide. The ancillary files with the plot data are found in Ref. [31].
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in the temperature-independent part of the thermodynamic
potential. Following Ref. [6], we take three regulators with
the coefficients c0 ¼ −c3 ¼ 1; c1 ¼ −c2 ¼ −3, and fix the
cutoff parameter Λ together with the coupling constant G
by fitting [27] the constituent quark mass in vacuum to
M ¼ 300 MeV and the vacuum pion decay constant to its
(approximate) value in the chiral limit, fπ ¼ 88 MeV,
which yields Λ ¼ 757.048 MeV and GΛ2 ¼ 6.002.
In principle, the diquark coupling GΔ can be obtained

from a Fierz transformation of the interaction part of the
Lagrangian (2). In a color-current interaction model based
on one-gluon exchange, it is found to be GΔ ¼ 3=4G [28].
However, in our setup this value leads to diquark gap
parameters of about 200 MeV, which is significantly larger
than the value expected from perturbative QCD [16] and
other model calculations [15,29,30]. Therefore, we will
treat GΔ as a free parameter and present phase diagrams for
four different diquark couplings: GΔ ¼ 0, 0.3G, G=2,
and 3G=4.

III. RESULTS

In this section we present the phase diagrams for the
CDW and RKC Ansätze, respectively, and elucidate the
resulting phase structure by comparing ΩCDW and ΩRKC
with the grand potential in the absence of chiral symmetry
breaking or color superconductivity.
The phase diagrams are shown in Fig. 1. We find five

different phases:
(i) The chiral symmetry-restored phase (R): M ¼ 0;

q ¼ 0;Δ ¼ 0.
(ii) The homogeneous chiral symmetry-broken phase

(Ch): M ≠ 0; q ¼ 0;Δ ¼ 0.
(iii) The inhomogeneous chiral phase (InhCh): M ≠ 0;

q ≠ 0;Δ ¼ 0.
(iv) The 2SC phase (2SC): M ¼ 0; q ¼ 0;Δ ≠ 0.
(v) The coexistence phase (C): M ≠ 0; q ≠ 0;Δ ≠ 0.
Regions with inhomogeneous chiral condensates are

bounded by green lines and regions with a nonvanishing
2SC condensate by blue lines. Solid lines represent the phase
boundaries for the CDW Ansatz, while dashed lines corre-
spond to the RKC Ansatz. The orange lines separate the
homogeneous chiral symmetry-broken phase from the
restored phase. Note that in all cases where an inhomo-
geneous phase occurs, the tricritical point coincides with the
Lifshitz point, in agreement with the results of Ref. [12].
In the upper left panel of Fig. 1 we present the phase

diagram in the case GΔ ¼ 0. For the RKC Ansatz, the
inhomogeneous region extends to slightly smaller μ as
compared to the CDW Ansatz. On the other hand, the
boundary between the inhomogeneous and the chiral
symmetry-restored phase coincides for both Ansätze. At
this boundary, the transition is of second order. These
features are in agreement with previous studies, see,
e.g., Ref. [32].

For GΔ ¼ 0.3G, cf. upper right panel of Fig. 1, we find
for both Ansätze a phase at low temperatures where an
inhomogeneous chiral condensate and a diquark gap
coexist (coexistence phase). Again, for the RKC this phase
sets in for slightly smaller μ compared to the CDW. On the
other hand, the transition temperature between the coex-
istence and the purely inhomogeneous phase is somewhat
smaller for the RKC Ansatz compared to the CDW Ansatz.
In this context, another interesting finding is that the

coexistence phase sets in at smaller values of the chemical
potential than a pure 2SC phase without inhomogeneous
chiral condensate. This effect is rather small, and it is
analogous to the fact that the phase transition between the
homogeneous chiral symmetry-broken phase to the inho-
mogeneous phase occurs at slightly smaller μ than the first-
order phase transition between the homogeneous chiral
symmetry-broken and the restored phase [5].
This is best seen in Fig. 2, where we compare the grand

potentials for the different homogeneous and inhomo-
geneous phases. Each line represents a local extremum
associated with the phase denoted in the legend of the
figure. Intersections of two lines correspond to first-order
phase transitions between the two respective phases, while
converging lines characterize two converging extrema,
corresponding to a second-order phase transition.
This figure yields several further insights. First, we can

verify the result of Ref. [32]. There the authors found that,
while for the CDW Ansatz we have a first-order phase
transition between the chiral symmetry-broken phase to the
inhomogeneous chiral phase, this becomes a second-order
transition when employing the RKC Ansatz. Second, this
qualitative finding remains valid when including a 2SC
phase, but here the second-order transition is to the
coexistence phase instead of to the inhomogeneous chiral
phase.
For further illustration we also provide three-dimen-

sional plots in Fig. 3, showing the values of the order
parameters over the T − μ plane. While both plots for the
CDW and the RKC Ansatz look very similar, one can see
the different behavior for the wave number close to the
Ch-C phase boundary line. For the CDW Ansatz, the wave
number jumps from zero to a finite value, corresponding to
the first-order transition, while for the RKC Ansatz, it
increases very steeply but continuously at the second-order
transition. Upon closer inspection, one can also see a small
discontinuous onset of the diquark gap for the CDW Ansatz,
while the onset becomes continuous for the RKC case.
Increasing the coupling GΔ, the 2SC grand potential

decreases while those of the phases without diquark pairing
remain unchanged. As a consequence the inhomogeneous
chiral phase becomes less favored compared to the 2SC
phase, in particular at low temperatures where the gap
parameter is largest. This can be seen when we return to the
discussion of Fig. 1. For GΔ ¼ G=2, lower left panel, the
maximum value of the diquark gap is ∼100 MeV. Here, the
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2SC phase is already dominant at low temperature, pushing
the coexistence phase to higher temperatures. The latter is
again smaller for the RKC Ansatz than for the CDW Ansatz.
Also, the inhomogeneous chiral phase shrinks significantly.
Finally, in the lower right panel of Fig. 1 we increased

the diquark coupling toGΔ ¼ 3G=4. For this parameter set,
neither an inhomogeneous chiral phase nor a coexistence
phase is found and therefore the phase boundaries for both
the CDW and the RKC Ansatz exactly align. Note that this
is in contrast to Ref. [19], where the inhomogeneous chiral
phase and the coexistence phase were also found in the case
GΔ ¼ 3G=4. We perceive this to be due to the different
regularization scheme used in that work. For a more
detailed discussion on the regularization dependence we
refer to Ref. [33], where the authors extended Ref. [18] by
comparing different regularization schemes.

IV. CONCLUSIONS

In this paperwe have investigated the phase diagramof the
chirally symmetric two-flavor NJL model with two-flavor

color superconductivity. The goal was to study the competi-
tion of inhomogeneous chiral phases and 2SC phases.
To this end, we derived the grand potential for the chirally

symmetric two-flavor NJL model with 2SC diquarks for a
generic inhomogeneous condensate, formulated as an energy
integral over a generic density of states. In this formulation
wewere able to employ already known densities of states for
nonuniform chiral condensates, namely the CDW and the
RKC Ansätze. We investigated both Ansätze because in
previous similar studies as in Refs. [18,19], the CDW has
been used, but since then it has been found that the RKC is in
most cases energetically preferred over the CDW Ansatz
[6,23], at least for vanishing vector interactions [34].
We have found that for some diquark couplings the

inhomogeneous chiral and the homogeneous 2SC phases
are not necessarily excluding each other, but that these two
phases may also coexist. For the CDW Ansatz, such a
coexistence phase was already found in Refs. [18,19].
Here, we confirm a coexistence phase also for the RKC
Ansatz.

FIG. 2. Comparison of the grand potentials for different scenarios at T ¼ 0 MeV and for GΔ ¼ 0.3G. Two intersecting lines represent
first-order transitions between the two respective phases, while converging lines characterize second-order phase transitions. For each
case we subtract the potential of the fully restored (M ¼ q ¼ Δ ¼ 0) solution.

FIG. 3. A detailed view of the order parameters for the CDW and the RKC Ansätze for GΔ ¼ 0.3G.
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A further result of our study is that the specific shape of
the inhomogeneous chiral condensate has an impact on the
size of the inhomogeneous region as well as the size of the
coexistence region. Since the RKC Ansatz is energetically
preferred over the CDW Ansatz, the inhomogeneous region
is larger for the former. On the other hand, this also implies
that the coexistence region becomes smaller for the RKC
Ansatz. Another interesting observation is that, in the case
where we allow for a coexistence phase, the onset of this
phase, and thus of diquark condensation, at T ¼ 0 occurs at
slightly smaller μ compared to a scenario where no
coexistence phase is allowed.
There are several ways to continue research in this

direction. The NJL model has already been studied in
many variations, e.g., by adding further degrees of freedom,
such as a vector-channel interactions and Polyakov-loop
dynamics [23,34–36], or by including finite quark-mass
effects [37] and considering isospin-asymmetric matter
[20,38]. All these extensions could in principle also be
studied together with color superconductivity.
Another direction when studying inhomogeneous phases

is the inclusion of bosonic fluctuations, which, with the
exception of Ref. [14], has so far been largely ignored (see,
however, Refs. [39–43] for thorough discussions of

fluctuation effects on inhomogeneous phases). In a recent
study [44], the authors performed a stability analysis in the
QM model within the functional renormalization-group
formalism [45]. In that study, the instability signals the
formation of an inhomogeneous phase and is found in a
region of the phase diagram where in mean-field studies
inhomogeneous phases are typically found as well. As a
next step, we would like to extend the study of Ref. [44] by
including two-flavor color superconductivity. It would be
interesting to see if the results of the present work also hold
when considering bosonic fluctuations. Finally, we note
that our results may have important implications for low-
energy heavy-ion collisions, the structure of neutron stars,
and the dynamics of binary neutron-star mergers.
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