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1 Introduction

The transverse momentum dependent (TMD) factorization theorem is known to be an
invaluable tool in understanding the transverse momentum distribution of inclusive and
semi-inclusive processes across a wide range of energy regimes. The transverse momentum
distribution of Z-boson or Higgs bosons, semi-inclusive deep-inelastic scattering (SIDIS),
single- and double-spin asymmetries — these are only a few examples of successes of TMD
factorization approach (for review see [1, 2]). As the list of accomplished applications
continues to expand, it becomes evident that the current form of TMD factorization has
practical limitations. It can only be confidently applied within a restricted phase-space,
which leads to many problems and tensions already today (see f.i. discussions in [3–5]), and
will be critical for the future generation of colliders [6, 7]. Therefore, a systematic extension
and refinement of the TMD factorization approach are crucial priorities for modern studies.

A principal feature of the TMD factorization approach is its ability to systematically
account for the transverse momenta of partons within the hadron. As a result, the main
application domain is processes characterized by transverse momenta compatible with
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typical hadronic scales. At the same time, the characteristic longitudinal momenta must
be large enough to justify the application of the parton model. In this study, I focus
on the Drell-Yan reaction (h1 + h2 → γ∗ + X), which is the classical case of the TMD
factorization [8]. In this particular reaction, the relevant momenta are the transverse (qT )
and longitudinal (q±) components of the produced-photon momentum.

The leading term of the TMD factorization theorem is derived [9–11] in the limit
of the longitudinal momenta being greater than any other scales. In the position-space
representation, the leading term has the general form (omitting the scaling arguments
for brevity)

dσ

dqT
∼ σ0

∫ ∞

−∞

d2b

(2π)2 ei(bqT ) C0 F̃1(x1, b)F̃2(x2, b), (1.1)

where F̃1,2 are TMD parton distribution functions (TMDPDFs) in the Drell-Yan case, x1,2
are the longitudinal momentum fractions of partons. C0 is the hard coefficient function
which depends on q+q−/µ2 with µ being the factorization scale. TMD distributions satisfy
the pair of evolution equations [12–14], which have multiplicative kernels in the position
space. Due to it, the position-space representation (1.1) is convenient in practice. The
momentum-space representation of (1.1) is

dσ

dqT
∼ σ0

∫ ∞

−∞
d2k1T d2k2T C0 δ(2)(qT − k1T − k2T )F1(x1, k1T )F2(x2, k2T ), (1.2)

where F1,2 are TMDPDFs in the momentum space obtained by the Fourier transform of
F̃1,2. Explicit examples of these structures for various processes can be found in refs. [15–17].
The perturbative elements of the factorization formula (1.1) (the hard coefficient function
and the evolution kernels) are known up to next-to-next-to-next-to-next-to-leading order
(N4LO), making it one of the most developed formula in the perturbation theory.

The corrections to the leading term are suppressed by powers of q±. To simplify the
exposition, I generally refer to the large scale as Q (∼ q+ ∼ q−). The power corrections
can be categorized into four conceptual types:

kT /Q power corrections: in the position-space representation, these corrections mani-
fest as transverse derivatives of TMD distributions, while in the momentum representation,
as the powers of kT ’s. These corrections are commonly known as kinematic power correc-
tions (KPCs).

qT /Q power corrections: in the position space, these corrections arise as terms ac-
companied by inverse powers of b. Once integrated, such factors transform into powers
of qT .

Λ/Q power corrections: these corrections indicate terms that contain nonperturba-
tive distributions of higher twist. Generally, a TMD distribution of twist-n is consid-
ered as a (Λ/Q)n−2 correction. These corrections are often referred to as higher twist
power corrections.
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Target-mass corrections: these corrections account for the finite mass of the hadron.
Currently, they are the least studied corrections.

Let me emphasize the difference between kT /Q and qT /Q power corrections since they
were not distinguished until recently. Indeed, in the momentum-space representation (1.2),
these corrections can be confused with each other due to the relation qT = k1T + k2T .
Nonetheless, they have conceptually different origins. The qT /Q-corrections are related
to the common ultra-violet (UV) singular behavior at b → 0 and are merely a part of
the hard scattering sub-process. The kT /Q-corrections are UV-finite and are a part of
low-energy dynamics. In the position space, the kT /Q-corrections appear as the transverse
derivatives of F̃ (x, b)’s that turn to parton’s kT ’s in the momentum space representation,
which suggests the name. Therefore, these corrections are entirely independent from the
theory point of view. Practically, these power corrections are also distinct. KPCs are
non-vanishing in the limit qT → 0 (the traditional TMD limit) and remain of the same order
for larger qT . On the contrary, the qT /Q-corrections vanish at qT → 0 and grow at larger
qT (as suggested by name), and constitute the major part of the famous Y-term [2, 8, 9].
Below, I present more details on their definition.

Together, four types of power corrections form a complex system, which is discussed
further in the remaining part of the introduction. Importantly, each type of power correction
exhibits distinct theoretical and practical features, making some corrections more significant
than others in different circumstances. In this study, I present the derivation, summation,
and discussion of (pure) KPCs and examine their practical importance.

In recent years, there has been significant progress in the study of power corrections
to the TMD factorization theorem [18–25]. This progress has been made possible by
formulating the TMD factorization on the operator level, as opposed to the method-of-
region analysis [9] used in the original derivation of the leading power (LP) term. As
a matter of fact, the power corrections are simpler to analyze with operator methods
since they allow for unambiguous identification of the different types of power corrections.
This is crucial for a comprehensive understanding of the structure of the factorization
theorem beyond the LP approximation. Still, the status of the TMD factorization theorem
beyond the LP approximation remains an open problem. Currently, there exists a complete
expression for TMD factorization at the next-to-leading power (NLP) level. It has been
derived with three different methods [21–23] (and agrees between them), and checked at
next-to-leading order (NLO) [22, 24, 26]. Furthermore, several general statements (such
as the all-order structure of rapidity divergences for twist-three distributions [22, 23], the
cancellation of special rapidity divergences [24, 26]) provide us hope that the NLP TMD
factorization is valid at all perturbative orders. The research on the next-to-next-to-leading
power (NNLP) TMD factorization is very limited [19–21].

The straight evaluation of power corrections is impractical. Already at NNLP, one faces
many novel theoretical problems and a vast number of structures. Therefore, to proceed
further, it is crucial to understand and account for the general hierarchy of power-suppressed
terms in the TMD factorization framework. This hierarchy can be deduced from the power
counting and the dimension analysis. Naturally, there is a degree of arbitrariness in such
a generalization. Nonetheless, if TMD factorization holds at higher powers, one should
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expect it to exhibit the following general structure (omitting target-mass corrections for
simplicity)

W µν = 1
Nc

∫
d2b

(2π)2 e−i(qT b)
{

(1.3)

Φ2×Φ2

+ 1
Q

(
D Φ2×Φ2+ Φ2×Φ3

)
+ 1

Q2

(
D2Φ2×Φ2+D Φ2×Φ3+ Φ3×Φ3+ Φ2×Φ4+

Φ2×Φ2

b2

)
+ 1

Q3

(
D3Φ2×Φ2+D2Φ2×Φ3+DΦ3×Φ3+DΦ2×Φ4+

DΦ2×Φ2

b2
+Φ3×Φ4+. . .

)
+· · ·

}µν

,

where Φn is a TMD distribution of twist-n, which depends on b and some number of collinear-
momentum fractions. The power of D indicates the number of boost-invariant transverse
derivatives (defined in (3.39)) in the term, which acts to TMD distributions in various
combinations. The symbol × indicates an integral convolution in the collinear-momentum
fractions. Each term is equipped with a coefficient function which is not shown. The first
line in the brackets is the LP term (1.1). The second line is the NLP term (see [19, 22]),
and so on. Each term in expression (1.3) represents a complicated composition of various
distributions.

In expression (1.3), one can easily recognize power corrections of different types. So,
the first term in the third line (DΦ2 × Φ2) is the correction ∼ kT /Q, and the second term
(Φ2 × Φ3) is the correction Λ/Q. In the fourth line, the first term (D2Φ2 × Φ2) is k2

T /Q2,
the second term (DΦ2 × Φ3) is kTΛ/Q2, the third and forth terms (Φ3 × Φ3 and Φ2 × Φ4)
are Λ2/Q2, and the last term (Φ2 × Φ2/b2) is q2T /Q2. And so on.

In eq. (1.3), the terms with different order of kT /Q corrections but the same order of
other corrections are aligned into columns. These columns represent a series of KPCs to
the first term. Each column incorporates unique nonperturbative content, as it contains
a combination of TMD distributions that do not appear in other columns. Hence, each
column can be considered as an independent contribution to the TMD factorization theorem.
All global properties expected from the hadronic tensor, such as charge conservation and
frame invariance, must hold for each column individually.

It is important to emphasize that the decomposition (1.3) is based on the assumption
that TMD distributions of different twists (i.e., Φn and Φm for n ̸= m) are completely
independent functions. This assumption holds if these distributions do not mix under TMD
evolution. The requirement for non-mixture is a fundamental prerequisite because otherwise,
power corrections of different types would entangle due to evolution or by higher perturbative
orders of coefficient functions, and the presentation form (1.3) would be impossible. Moreover,
it would violate the universality property of nonperturbative distributions.1 Therefore, the

1In principle, one could allow for the triangular mixture, such that higher-twist distributions depend on
lower-twist. The presence of a mixture is inconvenient and makes the analysis of the factorization theorem
difficult. In this case, one can always eliminate the mixture by a proper change of the basis.
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problem of systematization of power corrections in TMD factorization is equivalent to the
problem of the definition of TMD-twist. This work adopts the definition of TMD twist
introduced in ref. [22], which constitutes a TMD generalization of the concept of geometrical
twist (aka “dimension minus spin”) used for collinear operators [27, 28]. This definition
ensures, at least, the independence of non-mixture under ultraviolet renormalization.

Apart from the theoretical challenges posed by power-suppressed terms, there is also a
practical concern regarding their relevance. It is evident that a plethora of TMD distributions
appear in the power corrections, and the number of new functions grows faster than the
number of observables. Already at NLP, one encounters 32 twist-three TMDPDFs [26] (in
addition to the 8 TMDPDFs at the leading power). Identifying and constraining all these
functions from experimental data alone is practically impossible. In this regard, higher
twist power corrections can be characterized as “bad” as they introduce unknown functions
(although offering insights into new facets of quantum physics). The other types of power
corrections are “better” as they do not increase the number of unknowns but instead refine
and extend the LP term.

Thus, it is sensible to incorporate power corrections by types rather than by orders.
First, this approach preserves the validity of the factorization theorem, as different types
of power corrections are additive and do not interfere with each other. Secondly, each
type of correction contributes to a specific kinematic region and could be distinguished
phenomenologically. Neglecting power corrections put the requirements to the applicability
range of the factorization theorem. Each power correction leads to its own limitation, and
therefore, the LP TMD factorization is valid in the regime

kT ≪ Q, qT ≪ Q, Λ≪ Q, m≪ Q. (1.4)

Including power corrections of a specific type softens the corresponding restriction, while
summing the power corrections of a specific type eliminates the restriction (or replaces
it with a strict inequality). At low Q, all types of power corrections are significant
simultaneously. Notably, the qT /Q corrections are special, as their magnitude is controlled
by the experimental kinematics. By including only qT /Q corrections, the cross-section can
be described up to qT ∼ Q, while the other corrections remain negligible (for large Q). The
remaining corrections follow a hierarchy of kT > m > Λ and are valid in the regime qT ≪ Q.

In this work, I study KPCs for the LP term. Within the expression (1.3), these power
corrections are represented by the first column. Notably, these power corrections are of
utmost importance within the conventional range of application for TMD factorization
qT ≪ Q. Primarily, KPCs play a crucial role in restoring the electromagnetic (EM) gauge
invariance (charge conservation) and frame invariance of the hadronic tensor, both of which
are explicitly broken in the LP term. Consequently, KPCs can be viewed as an integral
part of the LP factorization, as the absence of these corrections render the LP factorization
inconsistent. Furthermore, unlike other scales such as qT , Λ, or m, the scale kT is not
fixed but rather an integration variable (1.2). This introduces a self-contradiction, as
the factorization formula includes values of kT that exceed Q, contradicting the initial
assumption that Q is the largest scale. Moreover, the average value of kT is of the order
of the ultraviolet cut-off due to the large-kT asymptotic behavior of TMD distributions
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(∼ k−2
T ). An extra point in favor of KPCs is that the factorization theorem for them does

not require a dedicated proof. KPCs inherit the factorization property from the LP term,
for which the theorem is already proven. Considering these reasons, it is sufficient to include
KPCs independently of other power corrections.

The paper is structured as follows. In section 2 I review the concept of the TMD-twist
and present in detail the simplest (but the most useful) example of twist-decomposition for
the quark operator (section 2.2) and for a general bi-quark TMD distribution (section 2.3).
section 3 is dedicated to the derivation of KPCs order-by-order in power expansion. Here, I
start from the sketch of the operator derivation of the LP term (section 3.1) and continue
to this derivation to all-powers (section 3.2). In section 3, I inspect the influence of loop
corrections for KPCs and derive the argument of the coefficient function. The summation
of the KPC series is done in section 4. To perform the summation, I first sum the series
of twist-two terms for a general TMD correlator (section 4.1) and then insert it into the
factorized expression (section 4.2). In section 5, I inspect the properties of the summed
expression, using the example of a completely unpolarized contribution to hadron tensor of
Drell-Yan. The subsections 5.1 and 5.2 are devoted to the EM gauge invariance and the
frame invariance, correspondingly. Finally, the estimation of numerical impact is presented
in section 5.3.

2 Twist decomposition in TMD factorization

The definition of TMD-twist is vital for systematisation of power corrections. Given this
definition, it becomes possible to decompose operators of any dimension into irreducible
components and express their matrix elements in terms of universal and independent
nonperturbative TMD distributions. A suitable definition of TMD-twist was proposed in
reference [22]. TMD-twist is determined by a pair of geometrical twists associated with the
semi-compact operators that constitute any TMD operator. This approach strictly ensures
non-mixture of operators with distinct TMD-twists under evolution with the ultraviolet
(UV) renormalization scale µ. Although the non-mixture under the rapidity evolution
remains questionable, this property has been demonstrated in [22] for a wide range of TMD
distributions (given by quasi-partonic operators), which encompasses all TMD distributions
of twist-two and twist-three. Furthermore, the equivalence of rapidity evolution between
TMD distributions of TMD-twist two and three was established in [23]. Therefore, this
definition is satisfactory for the current objective, namely the determination of KPCs for
the LP term, as they solely include TMD distributions of twist-two.

In this section, I provide a review of the general definition of TMD-twist and present
the simplest yet non-trivial example of twist-decomposition. This example serves as the
foundation for the subsequent computation of KPCs.

2.1 TMD-twist

At any power of TMD factorization theorem TMD distributions have the same
general structure,

Φ̃AB({z}A, {z}B; b) ∼ ⟨p, s|UA({z}A; b)UB({z}B; 0)|p, s⟩, (2.1)
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where U is a light-cone operator, labels A and B indicate the quantum numbers of U , and
{z}A is a set of coordinates z. The operator U({z}A; b) is a T-ordered product of QCD
fields positioned at (zin + b) for zi ∈ {z}A. The fields in the operator are connected by
light-like Wilson lines, which continue to the light-cone infinity. So, the operator U spans
an infinite range, and for that reason it is called semi-compact.

The renormalization of TMD distribution consists of two renormalization factors — one
for each operator U . These factors are independent since the distance between operators is
transverse and thus UV finite. The evolution equation reads

µ2 d

dµ2 Φ̃AB({z}A, {z}B; b) = (γ̃A({z}A) + γ̃B({z}B))⊗ Φ̃AB({z}A, {z}B; b), (2.2)

where γ̃A is the anomalous dimension of UA and ⊗ is the integral convolution in corre-
sponding positions {zi}. Note, that anomalous dimensions γ̃ contain the double logarithmic
part, which is resulted from gluon propagated along Wilson line to the infinity (collinear
singularity). The same singularity is presented in the rapidity renormalization factor
(or soft factor). Their cancellation leads to a logarithm contribution ∼ ln(µ2/ζ) in the
anomalous dimensions.

The equation (2.2) describes only the UV evolution, while TMD distributions also
obey rapidity evolution equation (2.26). Currently, there is no general consensus regarding
the rapidity divergences of operators that arise at higher powers. The only established
result is that all quasi-partonic TMD operators conform to the leading power (LP) rapidity
evolution [22]. Thus, it is plausible that the present definition of TMD-twist is incomplete,
and some operators could potentially mix due to the rapidity evolution. However, this
hypothetical situation would only apply to non-quasi-partonic TMD distributions, which
have a minimum twist-four and emerge at NNLP for the first time, and thus, are irrelevant
for the present discussion.

The light-cone operators UA and UB have independent anomalous dimensions if they
have different geometrical twist (defined as “dimension-minus-spin” of the operator). Con-
sequently, TMD distributions Φ̃AB and Φ̃A′B′ do not mix with each other if the geometrical
twist of UA or UB is different from the geometrical twist of UA′ or UB′ . It gives raise to
a natural definition of TMD-twist for Φ̃AB, as a pair of integer numbers (N, M), where
N(M) is a geometrical twist of semi-compact operator UA(B).

Formally, the definition of geometrical twist is defined only for local operators. Its
generalization for semi-compact operator can be done by the following procedure. First,
one selects L such that {|z|} < |L|, and drop the part of Wilson line from Ln to infinity.
Next, the operator is expanded as series at L. It takes a form UA(z, 0) ∼

∑
n(z − L)nUA,n,

where UA,n are local operators. The geometric twist of local operators UA,n is the geometric
twist of semi-compact operator UA. After the decomposition of operator into components
with the same twist, each component can be summed over n. Finally, the limit L→∞ is
taken. This method properly reconstructs the properties of semi-compact operators, as it is
demonstrated in ref. [29].

An indication of twist for TMD operator by a single number (used so far), refers
to (N + M). For example, it was used in the expression (1.3), where Φn = ΦMN with
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N+M = n. Meanwhile, all TMD distributions of twist-two have TMD-twist (1, 1). However,
the single-number terminology is ambiguous beyond the twist-two case. For example, a
TMD distribution of twist-three can have TMD-twist (1, 2) or (2, 1), which are two entirely
independent distributions with separate evolution equations (see ref. [26]). TMD distribution
of twist-four can have TMD-twist (1, 3), (3, 1) or (2, 2), and so on. Still, the single-number
indication is shorter and it is convenient to use if it does not create a confusion.

2.2 Example of twist-decomposition

As an example of twist decomposition let me consider the simplest semi-compact operator
that appears in the TMD factorization. It is a quark field with an attached semi-infinite
Wilson line

Uq(0, 0T ) = [−∞n, 0]q(0), (2.3)

where [an, bn] is a Wilson line along n

[an, bn] = P exp
(
−ig

∫ b

a
dsA+(sn)

)
. (2.4)

As usually, the vectors nµ and n̄µ are two independent light-cone vectors with normalization

n2 = n̄2 = 0, (nn̄) = 1. (2.5)

The decomposition of any vector vµ reads

vµ = n̄µv+ + nµv− + vµ
T , (2.6)

where v+ = (nv), v− = (n̄v) and vT is the transverse component orthogonal to (n, n̄)-plane
vµ

T = gµν
T vν with

gµν
T = gµν − nµn̄ν − n̄µnν . (2.7)

Following the procedure described above the operator (2.3) can be presented as

Uq(0, 0T ) = lim
L→−∞

∞∑
n=0

inLn

n! Dn
+q(Ln), (2.8)

where Dµ = ∂µ − igAµ is the QCD covariant derivative. The local operator Dµ1 . . . Dµnqi

has the mass-dimension n+3/2. It is a Lorenz tensor of mixed nature with n vector indices
and one spinor index. The maximum possible spin of this tensor is n + 1/2. To achieve
it, one should symmetrize indices µ, subtract traces (in the present case, it automatically
achieved by contraction with nµ1 . . . nµn), and make the spinor index γ-traceless [30], i.e.
such that γµj Dµ1 . . . Dµj . . . Dµnq = 0 (for a more formal discussion see refs. [31, 32]). For
the present tensor (that is contracted with nµ1 . . . nµn) it implies that the maximum-spin
operator should vanish after multiplication by γ−. It leads to a natural decomposition of
the spinor into “good” and “bad” components [33], as q = ξn̄ + ηn̄, where

ξn̄ = γ−γ+

2 q, ηn̄ = γ+γ−

2 q. (2.9)
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Here, the subscript n̄ indicates that these components are defined with respect to γ−. Since
γ−ξ = 0, the operator Dn

+ξ has the maximum spin, and its geometrical twist equals one.
Summing the series over n and limiting L→ −∞, the twist-one part of (2.3) is

Uq(0, 0T )
∣∣∣
tw-1

= U1(0, 0T ) = [−∞n, 0]ξn̄(0). (2.10)

The remaining part of Uq is [−∞n, 0]ηn̄(0). It is twist-two, but the field η is not
dynamically independent. The components η and ξ are related to each other via the QCD
equation of motion (EOM). The EOM is /Dq = 0 for massless quark. After projection (2.9)
EOM splits into two equations, which are convenient to write as

D+ηn̄ = −1
2γ+ /DT ξn̄, D−ξn̄ = −1

2γ− /DT ηn̄. (2.11)

Inserting the left equation into eq. (2.8) and commuting the transverse derivative to the
outer position one gets

Dn
+ηn̄(Ln) = −12 γ+γµ

T Dn−1
+ Dµξn̄(Ln) (2.12)

= −12 γ+γµ
T

(
DµDn−1

+ ξn̄(Ln) + ig
n−1∑
m=0

Dn−m
+ Fµ+Dm

+ ξn̄(Ln)
)

,

where Fµν = ig−1[Dµ, Dν ] is the gluon field-strength tensor. The subscript on a gamma-
matrix indicates that its index is transverse. The summing over n gives

[Ln,0]ηn̄(0)=
−1
2 γ+γµ

T

∫ 0

−∞
ds

(
Dµ[Ln,sn]ξn̄(sn)+ig

∫ s

L
ds1[Ln,s1n]Fµ+[s1n,sn]ξn̄(sn)

)
.

(2.13)
The spin of the last term is n− 1/2, since it is traceless and γ-traceless, and has all, except
one, indices symmetrized. Thus, the last term is twist-two operator.

The final expression for twist-decomposition of Uq can be assembled. Let the transverse
component of the gluon field vanish at light-cone infinity,2 so limL→∞ Dµ(L) = ∂µ. Then
combining (2.10) and (2.13), one receives

Uq(0, 0T ) = U1(0, 0T )−
γ+γµ

T

2

∫ 0

−∞
ds∂µU1(s, 0T )− i

γ+γµ
T

2

∫ 0

−∞
ds

∫ s

−∞
ds1U2,µ(s1, s, 0T ),

(2.14)
where U1 is the twist-one operator (2.10) and U2 is the twist-two operator

U2,µ(z1, z2, 0T ) = g[−∞n, z1n]Fµ+[z1n, z2n]ξn̄(z2n). (2.15)

Therefore, the operator Uq is decomposed into operators of twist-one (first term) and
twist-two (last term), and the total derivative of twist-one operator (second term). The
procedure presented above is standard for analysis of higher-twist collinear operators, see

2This assumption is valid in any regular gauge, and could be used as the boundary condition of singular
gauges (such as the light-cone gauge). It is known that in the absence of such condition one should attach the
link along transverse direction [−∞n + ∞T ,−∞n] [34]. However, such link could not be incorporated into
the definition of twist in any form. Therefore, all presented consideration is done assuming that component
of the gluon field is vanishing at appropriate light-cone infinity. Since the final result is gauge invariant the
necessary transverse links can be inserted into the formulas after all derivatives are resolved.
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e.g. examples in refs. [35–37]. The only difference in the present case is the open spinor
index, which should be extra treated in the tensor decomposition.

Note that the “good” and “bad” components has also different counting with respect to
λ ∼ kT /k+. Assuming that a quark field has large k+ and almost massless k2 ∼ 0, one finds
that ηn̄ ∼ λξn̄ from EOMs (2.11). This counting is convenient to use for sorting operators
in the power series, and it is widely used.

2.3 Twist-decomposition for bi-quark TMD distribution

The procedure of twist-decomposition for semi-compact operators leads to the decomposition
of TMD matrix elements to definite twist parts. Let me demonstrate it for the bi-quark TMD
matrix element, which is also important for derivation of KPCs. The matrix element reads

Φ̃[γµ]
q̄q (x, b) =

∫ ∞

−∞

dz

2π
e−ixzp+⟨p|U q(zn, b)γµ

2 Uq(0, 0T )|p⟩, (2.16)

=
∫ ∞

−∞

dz

2π
e−ixzp+⟨p|q̄(zn + b)[zn + b,−∞n + b]γ

µ

2 [−∞n, 0]q(0)|p⟩,

where |p⟩ is a hadron state with momentum p, b is a transverse vector and U = U †γ0.
Being contracted with nµ this matrix element results into the unpolarized and Sivers
TMD distributions that are twist-two TMD distribution. For a general γµ, the matrix
element Φ̃[γµ]

q̄q does not represent a conventional distribution, but is a sum of distributions
with different properties. It can be checked by computing the renormalization of matrix
element (2.16) and observing that it could not be expressed via Φ̃[γµ] (see f.i. computations
in refs. [26, 38]). The reason is that the operator (2.16) has an undefinite twist.

Inserting the decomposition (2.14) into (2.16), the correlator Φ̃[γµ]
q̄q turns into

Φ̃[γµ]
q̄q (x,b)= (2.17)∫ ∞

−∞

dz

2π
e−ixzp+

[
⟨p|U1(z,b)γµ

2 U1(0,0T )|p⟩

− 1
2

∫ 0

−∞
ds
〈
p
∣∣∣U1(z,b)γµγ+γν

T

2
−→
∂ νU1(s,0T )+U1(z+s,b)

←−
∂ ν

γν
T γ+γµ

2 U1(0,0T )
∣∣∣p〉

+1
4

∫ 0

−∞
dsdt⟨p|U1(z+s,b)

←−
∂ ν

γν
T γ+γµγ+γρ

T

2
−→
∂ ρU1(t,0T )|p⟩

+ i

2

∫ 0

−∞
ds

∫ s

−∞
ds1〈

p
∣∣∣U2,ν(z+s,z+s1, b)

γν
T γ+γµ

2 U1(0,0T )−U1(z,b)γµγ+γν
T

2 U2,ν(s1,s,0T )
∣∣∣p〉

− i

4

∫ 0

−∞
dt

∫ 0

−∞
ds

∫ s

−∞
ds1
〈
p
∣∣∣U2,ν(z+s,z+s1, b)

γν
T γ+γµγ+γρ

T

2 ∂ρU1(t,0T )

−U1(z+t,b)∂ρ
γρ

T γ+γµγ+γν
T

2 U2,ν(s1,s,0T )
∣∣∣p〉

+1
4

∫ 0

−∞
dt

∫ t

−∞
dt1

∫ 0

−∞
ds

∫ s

−∞
ds1
〈
p
∣∣∣U2,ν(z+s,z+s1, b)

γν
T γ+γµγ+γρ

T

2 U2,ρ(t, t1,0T )
∣∣∣p〉] ,
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where U = U †γ0. The matrix element in the first three lines are the TMD distributions of
TMD-twist-(1,1). The lines fifth to seventh are TMD distributions with TMD-twists-(2,1)
and (1,2). The last line is the TMD distribution of TMD-twist-(2,2).

The gamma-structure of (2.17) can be simplified using that the spinor indices of
operators U projected by matrices (2.9). For example, one finds that U1γ

µU1 = n̄µU1γ
+U1.

The total derivatives of operators U can be pushed outside of matrix elements using that

⟨p|∂µ(. . .)|p⟩ = 0. (2.18)

After these simplifications the result reads

Φ̃[γµ]
q̄q (x, b) =

(
n̄µ + i

xp+
∂

∂bµ
+ nµ

2(xp+)2
∂2

∂bν∂bν

)
Φ̃[γ+]
11 (x, b) + . . . , (2.19)

where Φ[γ+]
11 is a TMD distribution of TMD-twist-(1,1)

Φ̃[Γ]
11 (x, b) =

∫ ∞

−∞

dz

2π
e−ixzp+⟨p|U1(z, b)Γ2U1(0, 0T )|p⟩, (2.20)

and dots denote contributions with TMD-twist-(1,2), (2,1) and (2,2) resulted from the last
five lines of (2.17). The expression (2.19) is the twist-two part of the correlator (2.16).

The momentum space representation of TMD distribution is obtained by

Φ̃[Γ](x, b) =
∫

d2kT ei(bkT )Φ[Γ](x, kT ). (2.21)

Here and in the following, I use the (un)tilded notation to indicate the distributions in the
(momentum) position space. The momentum space representation of (2.19) is

Φ[γµ]
q̄q (x, kT ) =

(
n̄µ + kµ

T

xp+
− nµk2

T

2(xp+)2

)
Φ[γ+]
11 (x, kT ) + . . . . (2.22)

The derivatives over b turn into powers of kT .
It is also critical to observe that total derivatives of semi-compact operators does not

always result to the definite-twist TMD distributions. It works out for total derivatives ∂+
(which produces factors of x in the momentum space), and ∂µT (which produces factors of
kµ

T ). However, total derivatives ∂− cannot be moved outside of the operator. Nonetheless,
they could be always expressed via ∂+, ∂µT and extra gluon fields, thanks to EOMs (2.11).
The example is given in section 3.2.

The expression (2.22) can be written as

Φ[γµ]
q̄q (x, kT ) = 2

∫ ∞

−∞
dk− kµδ(k2)Φ[γ+]

11 (x, kT ) + . . . , (2.23)

with kµ = xp+n̄µ+kµ
T +nµk− being the four-momentum of the parton. This respresentation

gives rise to an interpretation of the leading twist distributions, as the part of the hadron’s
structure carried by the free-quark approximation. In the section 4.1 I provide a further
generalization of eq. (2.23).
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The twist-decomposition is a standard procedure for consideration of power corrections
for factorization theorems, and the expressions (2.14) and (2.19) are rather typical for such
kind of calculus. Many analogies can be found in the literature related to the collinear
factorization. For example, the expressions (2.19) and (2.22) are ideologically analogous to
the Wandzura-Wilczek approximation for collinear distributions [39]. In the present work,
the main interest is the terms with total derivatives of the leading twist operator. These
terms are responsible for generation of KPCs. It is analogous to the case of Deeply-Virtual
Compton Scattering (DVCS) and Generalized parton distributions (GPDs) [40, 41].

Note that for the operator with a differently oriented light-like Wilson line, the vectors
n and n̄ should be swapped. For example, for decomposition for the operator [−∞n̄, 0]q(0)
is the same as (2.14) but with n↔ n̄. The “good” and “bad” components are defined as

ξn = γ+γ−

2 q, ηn = γ−γ+

2 q. (2.24)

The direction of Wilson line (future vs. past) does not play a role in this example.
For the following discussion, it is important to specify the evolution equation for

twist-two TMDPDFs. these equations are [12, 13]

µ2 d

dµ2 Φ̃
[Γ]
11 (x, b;µ, ζ) =

(
Γcusp(µ)

2 ln
(

µ2

ζ

)
− γV (µ)

2

)
Φ̃[Γ]
11 (x, b;µ, ζ), (2.25)

ζ
d

dζ
Φ̃[Γ]
11 (x, b;µ, ζ) = −D(b, µ)Φ̃[Γ]

11 (x, b;µ, ζ), (2.26)

where Γcusp, γV and D are the cusp, quark-vector and rapidity anomalous dimensions,
correspondingly. The rapidity anomalous dimension is also known as the Collins-Soper
kernel [42]. It is a nonperturbative function that is associated with the properties of QCD
vacuum [43]. In the momentum space the equation (2.26) turns to an integral equation [44].

3 KPCs for LP term

TMD operators of twist-two have a crucial property of incorporating only two “good”
components of fields (quark and anti-quark, or two gluon fields). This simplifies the procedure
of their extraction from higher-dimensional operators and allows for the unambiguous
elimination of higher twist contributions at an early stage of computation. As a result, the
determination of KPCs for the LP term can be achieved at all orders of the power series, as
presented in this section. For concreteness, I focus on the Drell-Yan process

h1(p1) + h2(p2)→ γ∗(q) + X, (3.1)

where the arguments denote the momenta of the respective particles. The generalization for
other processes, such Semi-Inclusive Deep-Inelastic Scattering (SIDIS) or e+e− → h1h2+X,
is straightforward. I start with the schematic review of the derivation of LP term, and then
generalize this example including KPCs.
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A

y0

k1 k1

k2 k2

p2 p2

p1 p1

B C D

Figure 1. Example of diagrams contributing to the DY process. Gray blobs show the hadron
nonperturbative state. The vertical dashed line denote the insertion of complete set of states.

3.1 TMD factorization at LP

The derivation of the LP term of the TMD factorization theorem has been extensively
discussed in numerous references employing various formulations. Here are only some of
them [9–11, 15–17, 22, 45]. In this section, I provide an overview of the derivation from
the perspective of operator manipulations, similar to the TMD operator expansion, Soft-
Collinear effective theories or High-Energy expansion. Emphasis is done on the technical
aspects that are relevant for further explanations. I omit detailed proofs that can be found
in the literature.

The QCD part of the cross-section for a hard reactions is given by the hadronic tensor.
For the Drell-Yan process (3.1) the hadronic tensor reads

W µν =
∫

d4y

(2π)4 e−i(yq)∑
X

⟨p1, p2|Jµ(y)|X⟩⟨X|Jν(0)|p1, p2⟩, (3.2)

where Jµ is the electromagnetic (EM) current

Jµ(y) = q̄(y)γµq(y), (3.3)

with q being the quark field. The quark charges and flavor part of the current are omitted
for brevity and restored in the following sections.

The kinematics of the process is defined by the photon momentum qµ and the hadrons
momenta pµ

1 and pµ
2 . To avoid complications related to the target mass corrections, the

hadrons are considered as massless p21 = p22 = 0. These momenta introduce the natural
system of vectors n and n̄ (2.5)

pµ
1 = n̄µp+1 , pµ

2 = nµp−2 . (3.4)

The leading perturbative order contribution to the hadronic tensor of Drell-Yan pro-
cess (3.2) is shown in figure 1(A). This diagram and its charge-conjugated are convenient
to write as

W µν =
∫

d4y

(2π)4 e−i(yq)⟨p1|⟨p2|Jµ
n̄n(y)Jν

nn̄(0) + Jµ
nn̄(y)Jν

n̄n(0)|p1⟩|p2⟩+ . . . , (3.5)

where dots represent the sub-leading terms, and

Jµ
n̄n = q̄n̄γµqn, Jµ

nn̄ = q̄nγµqn̄. (3.6)
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The fields qn̄ (qn) are created by |p1⟩ (|p2⟩) states, and, according to the parton model,
have momentum almost along p1(p2). Usually, fields qn̄ and qn are referred as collinear and
anti-collinear fields. At LP approximation the states |p1⟩ and |p2⟩ do not interact with each
other directly. The complete set of states in-between currents is omitted for simplicity.

To proceed further, one should specify the counting rules for the elements of equa-
tion (3.5). For the TMD factorization the counting rules are [10, 11, 22]

∂µqn̄ ∼ Aµ,n̄ ∼ {1, λ2, λ}, ∂µqn ∼ Aµ,n ∼ {λ2, 1, λ}, (3.7)

where λ ∼ Q−1. The components are presented in the order {+,−, T}. In the regime
q± ∼ Q and qT ∼ Q0 the vector y satisfies the counting

yµ ∼ Q−1{1, 1, λ−1} (3.8)

The inhomogeneity of counting for components of yµ is the only conceptual difference
between collinear and TMD factorizations.

The counting rules imply that the interactions between fields along certain directions
are power-suppressed. The field must be expanded around these directions3

qn̄(y) = qn̄(y−n + yT ) + y+∂−qn̄(y−n + yT ) + . . . , (3.9)

where the first term is ∼ λ0, the second term is ∼ λ2, and the dots indicate the further
suppressed terms. Importantly, there is no expansion in the transverse direction, because
yµ

T ∂µqn̄ ∼ λ0 according to (3.7) and (3.8). Meanwhile, the transverse derivatives that appear
in other parts of computation (e.g. in the loops) and that are not accompanied by yT ,
produce power suppressed terms.

In addition to the diagram A, one should take into account the diagrams that are of the
same order of power counting. These are diagrams with radiation of collinear components
of gluon, such as diagram B in figure 1. Accounting of all such diagrams restores the QCD
gauge invariance and equips the collinear and anti-collinear quark fields by half-infinite
Wilson lines [34, 45]. Practically, it is convenient to impose the light-cone gauge for the
background field. The gauge can be fixed for each collinear sector such that gluon fields
with a ∼ λ0 power counting vanish, i.e. An̄,+ = 0 and An,− = 0. The detailed justification
of such choice can be found e.g. in ref. [22]. For the present work, it is enough to know that
this set of gauges provides the correct factorization.

Dropping the power-suppressed terms in eq. (3.9), one gets the hadronic tensor in
the form

W µν =
∫

d4y

(2π)4 e−i(yq) (3.10)

× ⟨p1|⟨p2|q̄n̄(y−n + yT )γµqn(y+n̄ + yT )q̄n(0)γνqn̄(0) + {n̄↔ n}|p1⟩|p2⟩+ . . . .

3For definiteness, the expansion is made at the origin. However, any other point can be used. The result
is independent on this choice, thanks to eq. (2.18). However, in the factorization theorems for off-forward
processes, which involve generalized TMD (GTMD) distributions, such as [46, 47], the result depends on the
reference point. The independence on reference point should be restored in the sum of all KPCs similarly to
the DVCS case [48].
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The central assumption of the parton model is that a high-energy hadron consists of fields
with corresponding collinear counting rules. Therefore, we can sort the fields with different
collinearity into separate matrix elements. To do so, one needs to recouple the spinor and
color indices, which could be done using the completeness relation of Dirac matrices

A = 1
2
∑

a

ΓaA[Γa], A[Γ] = 1
2Tr (AΓ) , (3.11)

for any matrix A. Here, Γ is a complete basis of Dirac matrices. The result reads

W µν = − 1
4Nc

∫
d4y

(2π)4 e−i(yq)∑
a,b

(
Tr
(
γµΓbγ

νΓa

)
Ψ̃[Γa]

n̄ (y−n + yT )Ψ̃[Γb]
n (−y+n̄− yT )

+ Tr
(
γµΓaγνΓb

)
Ψ̃[Γa]

n̄ (−y−n− yT )Ψ̃[Γb]
n (y+n̄ + yT )

)
+ . . . , (3.12)

where the common minus sing appears from the anti-commutation of the quark fields, and
the factor 1/Nc is due to the recoupling of color indices. The matrix elements are

Ψ̃[Γ]
n̄ (y−n+yT )= ⟨p1|q̄n̄(y−n+yT )[y−n+yT ,−∞n+yT ]

Γ
2 [−∞n,0]qn̄(0)|p1⟩, (3.13)

Ψ̃[Γ]
n (y+n̄+yT )= ⟨p2|q̄n(y+n̄+yT )[y+n̄+yT ,−∞n̄+yT ]

Γ
2 [−∞n̄,0]qn(0)|p2⟩. (3.14)

These distributions are Fourier images of distributions Φ̃ (2.16) over the variables x. In
expressions (3.13), (3.14) the complete set of states in-between quark fields can be omitted
because all distances are space-like.

The expression (3.12) is of indefinite power, because the TMD distribution Ψ[γµ] is
a mixture of terms with different power counting. It follows form eq. (2.17), where the
first line is ∼ λ0, the second and fourth lines are ∼ λ1, etc. Therefore, the pure LP term is
obtained by eliminating all, except the first, terms in eq. (2.17). It can be done by selecting
only those Γ-matrices that project only “good” components. For the collinear part these
matrices are

Γ+
a = {γ+, γ+γ5, iσα+γ5}, (3.15)

with α being transverse index. The corresponding elements of the basis are

Γ−
a = {γ−,−γ−γ5,− i

2σα−γ5}. (3.16)

For the decomposition in the anti-collinear sector one should use Γ−
a and Γ+

a that are
obtained by the replacement n↔ n̄ in (3.15) and (3.16), correspondingly. After restriction
of Γ-matrices to the set (3.15) the hadronic tensor contains only the LP contribution.

Finally, one passes to the momentum-fraction representation for TMD distributions
and integrates over y±. The result is

W µν
LP =−p+1 p−2

4Nc

∫
d2b

(2π)2 e−i(bqT )
∫

dxdx̃δ(xp+1 −q+)δ(x̃p−2 −q−)
∑
a,b

(
(3.17)

Tr
(

γµΓ+
b γνΓ−

a

)
Φ̃[Γ+

a ]
n̄11 (x,b)Φ̃[Γ−

b
]

n11 (−x̃,−b)+Tr
(

γµΓ−
a γνΓ+

b

)
Φ̃[Γ+

a ]
n̄11 (−x,−b)Φ̃[Γ−

b
]

n11 (x̃, b)
)

,
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where yT is renamed as b, to match the standard notation. The expression (3.17) is the
celebrated expression for the LP TMD factorization. The TMD distributions with negative
x are related to the anti-quark distributions.

This is a complete derivation of LP TMD factorization at the tree order. To go beyond
LO, one should include interaction diagrams. Some examples are presented in figure 1.
The diagrams of type B (with a non-collinear gluon) or C do not contribute to the LP
factorization. Indeed, any addition interaction with the hadrons (such as figure 1B) increases
the number of fields in the operator, and hence increases its dimension. The only exception
is the radiation of collinear gluons, which is already accounted in the LP term. Therefore,
the interactions that do not violate the power counting are possible only in-between the
hard fields. Even so, some hard interactions are power suppressed, due to inhomogeneous
counting rules for y. Indeed, the diagram 1C is ∼ 1/b2 in the position space, which leads
to ∼ q2T /Q2 in the momentum space.4 Therefore, the perturbative correction at LP are
given by the interactions in the vicinity of currents, such as the diagram 1D. As the result,
the coefficient function is the product of coefficient functions for each current. It is in the
one-to-one correspondence with the TMD-twist idea. Each semi-compact operator produces
independent UV renormalization factor, that cancels the infrared poles of a corresponding
part of coefficient function. This structure of pole cancellations is preserved at all powers of
TMD factorization.

Finally, one should also take into account that separation of collinear and anti-collinear
modes is ambiguous. For the small values of momenta the collinear and anti-collinear
sectors overlap. There are several methods to avoid it. The double-counting of modes can
be subtracted by means of the soft factor [9, 49] or rapidity renormalization factor [50],
or modes can be defined with explicit cut parameter that prevents the overlap [22, 51].
The results coincide.5 This procedure leads to an extra scales ζ and ζ̄, and corresponding
evolution equations (2.26).

3.2 KPC for LP term at all orders

The extension of the TMD factorization beyond LP is conceptually straightforward (although
very complicated technically). One should systematically expand the interaction vertices
in the background fields, and sort operators over the twists and power counting. Detailed
discussions are presented in refs. [19, 22]. Performing this procedure, one receives the
structure (1.3). In the following, I concentrate on the KPCs to the LP term. They are much
simpler than other types of power corrections, because they incorporate only the TMD
distributions of twist-two. Let me consider the series of power corrections and extract only
the twist-two component from it. This component produces the complete series of KPCs.

The key observation is that the TMD distributions of twist-two are given by only two-
point operators. Indeed, an insertion of any extra field increases the dimension and, thus,

4Since these power corrections appears due to the expansion of the propagator, they produces only even
powers of qT /Q-corrections. That describes the structure of eq. (1.3).

5To reach a complete agreement, different schemes of the rapidity renomalization must satisfy the same
renormalization condition. Traditionally the TMDPDFs are defined such that the Drell-Yan cross-section
does not incorporate any extra nonperturbative factor [50].
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the TMD-twist by at least one. The geometrical-twist-three operators are all three-point
operators. Such a simple rule (twist ∼ number of fields) does not hold for higher-twist
operators starting from twist-four, which could be three-point or four-point operators [52].
Still, one can formulate a rule: any two-point operator can contain geometrical twist-
two part, but any three-point and higher-number-of-points operators necessarily have
geometrical twist higher than two. It implies that any diagram with three or more particles
in a single collinear sector (such as diagram B) does not contribute to KPCs for LP term.
Consequently, the diagram A contains full information about twist-two part at all powers
at LO in perturbative expansion.

Inspecting the LP derivation in section 3.1, one finds that the power corrections
were dropped in two places: the multipole decomposition (3.9) and selection of “good”
components of fields. If one does not perform these approximation the result will contain
full information on KPCs. Lets release these approximations.

Starting with eq. (3.5) and performing the multipole expansion one obtains

W µν =
∫

d4y

(2π)4 e−i(yq)
∞∑

n,m=0

(y+)n(y−)m

n!m! (3.18)

× ⟨p1|⟨p2|q̄n̄(y−n + yT )
←−
∂−

nγµ−→∂+
mqn(y+n̄ + yT )Jν

nn̄(0) + {n̄↔ n}|p1⟩|p2⟩+ . . . .

Here, the dots represent contributions with larger number of fields. The LP term (3.10) is
at n = m = 0. Expressing the Γ-structure in the standard basis gives

W µν = −14Nc

∫
d4y

(2π)4 e−i(yq)
∑
a,b

∞∑
n,m=0

(y+)n(y−)m

n!m!

[
(3.19)

Tr
(
γµΓbγνΓa

)
⟨p1|Uq(y−,yT )

←−
∂−

nΓa

2 Uq(0,0T )|p1⟩ ⟨p2|U q(−y+,−yT )
Γb

2
−→
∂+

mUq(0,0T )|p2⟩

+{n̄↔n}
]
+. . . ,

where the I use the notation (2.3) to highlight the semi-compact operators. Note that
operators in the matrix elements with p1(p2) are (anti-)collinear. In contrast to the LP
term, there are no constraints on Γ-matrices, since any Dirac component could produce a
twist-two contribution, see example in eq. (2.19).

The semi-compact operators in eq. (3.19) contain the mixture of TMD distribution,
and should be decomposed over the definite twist contributions. For the pure Uq operators
the decomposition is given in eq. (2.14). However, the “improper” derivatives of Uq (such as
∂−qn̄) demolish this decomposition because they could not be presented as total derivatives
of distributions. This issue is resolved by application of EOMs (2.11). The analysis of
these operators is complicated in the general case, but essentially simpler if one seeks for
only twist-one contribution. In this case, all gluon fields in EOMs could be dropped (since
gluon-fields necessarily turn one-point operator to a higher-number-of-points operators),
resulting to a simple rule

∂−ξn̄ = − ∂2
T

2∂+
ξn̄ + . . . , ∂−ηn̄ = γ+/∂T ∂2

T

4∂2
+

ξn̄ + . . . , (3.20)
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where dots represent the terms with two or larger number of fields. Here inverse derivatives
are understood as the integral, alike (2.13). Basically, the equation (3.20) tells that at the
leading-twist approximation partons are free massless fields. The higher powers of ∂− are

∂n
−ξn̄ =

(
− ∂2

T

2∂+

)n

ξn̄ + . . . , ∂n
−ηn̄ = −γ+/∂T

2∂+

(
− ∂2

T

2∂+

)n

ξn̄ + . . . . (3.21)

After these transformations, the fields ξ could be promoted to the semi-compact operators
U1, by equipping them by semi-infinite Wilson lines, as it is demanded by the QCD gauge
invariance.

As a result of these manipulations, one obtains a long expression

W µν
KPC = −14Nc

∫
d4y

(2π)4 e−i(yq)
∑
a,b

∞∑
n,m=0

(y+)n(y−)m

n!m!
(−1)n+m

2n+m

{
(3.22)

Tr[γµ
TΓ

+
b γν

TΓ
−
a ]

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

−
(

nνTr[γµ
TΓ

+
b γα

TΓ
−
a ]+nµTr[γα

TΓ
+
b γν

TΓ
−
a ]
) ∂α

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

−
(

n̄νTr[γµ
TΓ

+
b γα

TΓ
−
a ]+n̄µTr[γα

TΓ
+
b γν

TΓ
−
a ]
) ∂2n

T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂α

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

− 1
2

(
Tr[γµ

TΓ
+
b γβ

T γν
T γα

TΓ
−
a ]+Tr[γα

T γµ
T γβ

TΓ
+
b γν

TΓ
−
a ]
) ∂α

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂β

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

+
(

n̄µnνTr[γβ
TΓ

+
b γα

TΓ
−
a ]+nµn̄νTr[γα

TΓ
+
b γβ

TΓ
−
a ]
) ∂α

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂β

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

+Tr[γα
TΓ

+
b γβ

TΓ
−
a ]
(

n̄µn̄ν ∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂α

∂−

∂β

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11 +nµnν ∂α

∂+

∂β

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

)
+1
2

(
n̄µTr[γσ

TΓ
+
b γβ

T γνγαΓ−
a ]+n̄νTr[γα

T γµ
T γβ

TΓ
+
b γσ

TΓ
−
a ]
) ∂α

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂β

∂−

∂σ

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

+1
2

(
nµTr[γα

TΓ
+
b γσ

T γνγβΓ−
a ]+nνTr[γβ

T γµ
T γσ

TΓ
+
b γα

TΓ
−
a ]
) ∂α

∂+

∂β

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂σ

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

+1
4Tr[γ

α
T γµ

T γσ
TΓ

+
b γρ

T γνγβ
TΓ

−
a ]

∂α

∂+

∂β

∂+

∂2n
T

∂n
+
Ψ̃[Γ+

a ]
n̄11

∂σ

∂−

∂ρ

∂−

∂2m
T

∂m
−

Ψ̃[Γ−
b
]

n11

}
+(n↔ n̄),

where the argument of Ψ̃n̄11 is (y−n + yT ), and the argument of Ψ̃n11 is (−y+n̄ − yT ).
This expression contains all twist-two terms of TMD factorization that appear at LO in
perturbation theory. The eliminated terms have higher twist.

Finally, one integrates over y± and obtains

W µν
KPC (3.23)

= −p+1 p−2
4Nc

∫
d2b

(2π)2 e−i(bqT )
∫

dxdx̃δ(xp+1 −q+)δ(x̃p−2 −q−)

∑
q,q̄

∑
a,b

∞∑
n,m=0

∂n
x̃ ∂m

x

n!m!
(−1)n+m

(2p+1 p−2 )n+m

1
xnx̃m

{
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Tr[γµ
TΓ

+
b γν

TΓ
−
a ] ∂2n

T Φ̃[Γ+
a ]

n̄11 ∂2m
T Φ̃[Γ−

b
]

n11

+ i

xp+1

(
nνTr[γµ

TΓ
+
b γα

TΓ
−
a ]+nµTr[γα

TΓ
+
b γν

TΓ
−
a ]
)

∂α∂2n
T Φ̃[Γ+

a ]
n̄11 ∂2m

T Φ̃[Γ−
b
]

n11

+ i

x̃p−2

(
n̄νTr[γµ

TΓ
+
b γα

TΓ
−
a ]+n̄µTr[γα

TΓ
+
b γν

TΓ
−
a ]
)

∂2n
T Φ̃[Γ+

a ]
n̄11 ∂α∂2m

T Φ̃[Γ−
b
]

n11

+ 1
2xx̃p+1 p−2

(
Tr[γµ

TΓ
+
b γβ

T γν
T γα

TΓ
−
a ]+Tr[γα

T γµ
T γβ

TΓ
+
b γν

TΓ
−
a ]

+2n̄µnνTr[γβ
TΓ

+
b γα

TΓ
−
a ]+2nµn̄νTr[γα

TΓ
+
b γβ

TΓ
−
a ]
)

∂α∂2n
T Φ̃[Γ+

a ]
n̄11 ∂β∂2m

T Φ̃[Γ−
b
]

n11

−Tr[γα
TΓ

+
b γβ

TΓ
−
a ]
(

n̄µn̄ν

x̃2(p−2 )2
∂2n

T Φ̃[Γ+
a ]

n̄11 ∂α∂β∂2m
T Φ̃[Γ−

b
]

n11 + nµnν

x2(p+1 )2
∂α∂β∂2n

T Φ̃[Γ+
a ]

n̄11 ∂2m
T Φ̃[Γ−

b
]

n11

)
+ i

2xx̃2p+1 (p−2 )2
(

n̄µTr[γσ
TΓ

+
b γβ

T γνγαΓ−
a ]+n̄νTr[γα

T γµ
T γβ

TΓ
+
b γσ

TΓ
−
a ]
)

∂α∂2n
T Φ̃[Γ+

a ]
n̄11 ∂β∂σ∂2m

T Φ̃[Γ−
b
]

n11

+ i

2x2x̃(p+1 )2p−2

(
nµTr[γα

TΓ
+
b γσ

T γνγβΓ−
a ]+nνTr[γβ

T γµ
T γσ

TΓ
+
b γα

TΓ
−
a ]
)

∂α∂β∂2n
T Φ̃[Γ+

a ]
n̄11 ∂σ∂2m

T Φ̃[Γ−
b
]

n11

+ 1
4(xx̃p+1 p−2 )2

Tr[γα
T γµ

T γσ
TΓ

+
b γρ

T γνγβ
TΓ

−
a ]∂α∂β∂2n

T Φ̃[Γ+
a ]

n̄11 ∂σ∂ρ∂2m
T Φ̃[Γ−

b
]

n11

}
,

where arguments of the TMD-distributions are (x, b) for Φ̃n̄11 and (x̃, b) for Φ̃n11. The
derivatives ∂x = ∂

∂x (∂x̃ = ∂
∂x̃) comes from the integration over y−(y+). Herewith, distribu-

tions Φ̃n̄11 are quark distributions and Φ̃n11 are anti-quark distributions. The sum
∑

q,q̄

indicates the addition of the term with quark and anti-quark distributions exchanged. This
expression is valid for any polarizations. The example of unpolarized cases are given in
section 5. In particular, the LP expression is given in eq. (5.8), NLP in eq. (5.9), and NNLP
in eq. (5.10). The NLP part of eq. (3.23) exactly reproduces the KPC-part of the full NLP
expression derived in refs. [19, 22].

It is complicated to investigate the properties (3.23) in the general form. However, one
can confirm that the expression (3.23) is exactly EM-gauge invariant,

qµW µν
KPC = 0. (3.24)

The truncated at NnLP order part of series (3.23) is not transverse, but violates EM-gauge
invariance up to order Nn+1LP. The exact restoration involves all terms. Moreover, the
series (3.23) could not be split into independently gauge-invariant parts or at least such
a split is not natural. The terms with derivatives ∂x and ∂x̃ play important role in the
restoration of gauge invariance, since they (after integration by parts) turn q± to p±, which
is required for the cancellation between different orders. The expression (3.23) is also
frame-invariant, although it is complicated to confirm. These invariances are discussed
explicitly with the unpolarized example in section 5.1 and section 5.2, and they are obvious
in the summed form (4.17).

3.3 KPCs beyond LO and the argument of the coefficient function

In the present approximation (solely twist-two TMD operators, neglecting qT /Q corrections)
the perturbative corrections come only from the corrections to the EM currents. Indeed,
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an inclusion of a non-collinear external gluon increases the twist of operators, and the
in-between currents interaction (alike figure 1C) induces qT /Q corrections. Therefore, one
can consider perturbative corrections for the currents Jn̄n and Jnn̄ (3.6) independently.
The NLO LP computation the coefficient function is performed in multiple works, see f.i.
refs. [9–11, 22, 53]. Presently, it is known up to N4LO accuracy (4-loop) [54, 55]. The NLP
NLO computation has been done explicitly in ref. [22], and the result coincides with LP. It
is a non-trivial check since, intermediate expressions and the algebra of NLP computation
are different from those at LP (see the detailed discussion in section 6 of ref. [22]). As it is
explained above, the coefficient function of KPC must be the same as the LP coefficient
function. In this section 1 would like to confirm it by explicit computation.

The perturbative computations beyond LP are much simpler in the position space. It
is because Feynman propagators in the position space are free of external momenta, which
appear only in the numerator of diagrams. Therefore, one should not worry about increasing
singularity of power suppressed parts of integrals as it happen in the momentum space.
The explanation of convenient technique for loop-computation with multiple examples can
be found f.i. in refs. [22, 36, 56, 57].

The NLO correction for EM current is given by the diagram shown in figure 1 D. In
the position space, this diagram (here for Jn̄n(0)) reads

diag = g2CF
Γ2(2− ϵ)Γ(1− ϵ)

16πd/2

∫
ddxddz

q̄n̄(x)γν /xγµ/zγνqn(z)
[−x2 + i0]2−ϵ[−z2 + i0]2−ϵ[−(x− z)2 + i0]1−ϵ

,

(3.25)
where CF = (N2

c −1)/(2Nc) and d = 4−2ϵ is the parameter of the dimensional regularization.
This expression incorporates operators of all powers and twists. The power expansion is
obtained from the decomposition of external quark fields over “good” and “bad” components,
and their expansion in the vicinity of the collinear direction. Importantly, the power
expansion can be done at the level of the integrand (since integral is convergent due
to the dimensional regularization). In this way, the only complications of higher-power
computation is the increasing (from power to power) size of the numerator.

The LP and NLP computation has been carried out in ref. [22]. It is convenient to
write the result in the mixed momentum-coordinate representation

diagLP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

ξ̄n̄γµ
T ξn, (3.26)

diagNLP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

−nµξ̄n̄

←−
/∂ T
←−
∂ +

ξn − n̄µξ̄n̄

−→
/∂ T
−→
∂ +

ξn

 (3.27)

where
C(ϵ) = 2CF

Γ(ϵ)Γ(−ϵ)Γ(2− ϵ)
Γ(3− 2ϵ) (2− ϵ + 2ϵ2), (3.28)

and k1 and k2 are the momenta of quark fields q̄n̄ and qn (in the position space they appear
as derivatives). The terms (3.26) and (3.27) provide the coefficient function for the LP and
NLP parts EM-current. In this way, one confirms that the coefficient function of KPC at
NLP is the same as for LP term (at least at NLO).
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The coefficient C(ϵ) contains infra-red divergences (since Jµ is a conserved current,
C(ϵ) is UV finite). These divergences are compensated by the UV renormalization factors
of operators U1. These factors are ZU1 for U1 (anti-collinear) and Z†

U1 for U1 (collinear).
These factors contain collinear divergence, which is removed by the analogous divergence in
the rapidity renormalization. The LO expression for ZU1 is

ZU1(ζ) = 1 + asCF

ϵ

(
1
ϵ
+ 3

2 + ln
(

µ2

ζ

))
+O(a2

s), (3.29)

where ζ is the scale of the rapidity renormalization. Performing the renormalization
procedure, one obtains

(1 + asC(ϵ) +O(a2
s))Z

†
U1(ζ)ZU1(ζ̄) = CV , (3.30)

where as = g2/(4π)2. Importantly, for the cancellation of poles one must impose ζζ̄ =
(2q+q−)2, where it is used that k+

1 = q+ and k−
2 = q− due to the δ-functions (3.17). The

coefficient function CV is

CV = 1 + asCF

(
−L2 + 3L− 8 + π2

6

)
+O(a2

s), (3.31)

where L = ln(−2q+q−/µ2). The coefficient function is multiplicative. The product of
current has the coefficient function

C0 = |CV |2 = 1 + 2asCF

(
−|L|2 + 3|L| − 8 + 7π2

6

)
+O(a2

s), (3.32)

where it has been taken into account that q+q− > 0.
Let me emphasize that the argument of the coefficient function is 2q+q−. This is the

result of the formal computation in the factorization approach (see e.g. [22, 53]). Often,
the argument of coefficient function at LP is replaced by q2 for simplicity. However, it is
not entirely correct since q2 = 2q+q− + q2T has an indefinite power counting.

The NLO computation can be easily automatized (necessary integrals in general form
are given in appendix B or ref. [22]). Using the package FeynCalc [58], I have generated
the first few powers.6 They are

diagN2LP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

−1
2 ξ̄n̄

←−
/∂ T
←−
∂ +

γµ
T

−→
/∂ T
−→
∂ +

ξn−ϵ
(k1k2)T

k+
1 k−

2
ξ̄n̄γµ

T ξn

 , (3.33)

diagN3LP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

(
−ϵ

(k1k2)T

k+
1 k−

2

)−nµξ̄n̄

←−
/∂ T
←−
∂ +

ξn−n̄µξ̄n̄

−→
/∂ T
−→
∂ +

ξn

 ,

diagN4LP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

 ϵ

2
(k1k2)T

k+
1 k−

2
ξ̄n̄

←−
/∂ T
←−
∂ +

γµ
T

−→
/∂ T
−→
∂ +

ξn+
(

ϵ(1+ϵ)
2

(k1k2)T

k+
1 k−

2
− ϵ

4
k2
1T k2

2T

(k+
1 k−

2 )2

)
ξ̄n̄γµ

T ξn

 ,

diagN5LP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

(
ϵ(1+ϵ)

2
(k1k2)2T
(k+

1 k−
2 )2
− ϵ

4
k2
1T k2

2T

(k+
1 k−

2 )2

)−nµξ̄n̄

←−
/∂ T
←−
∂ +

ξn−n̄µξ̄n̄

−→
/∂ T
−→
∂ +

ξn

 ,

6I thank Oscar del Rio for the cross-check of the N2LP computation.
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diagN6LP = asC(ϵ)
(−2k+

1 k−
2 )ϵ

[(
ϵ(1+ϵ)

2
(k1k2)2T
(k+

1 k−
2 )2
− ϵ

4
k2
1T k2

2T

(k+
1 k−

2 )2

)
ξ̄n̄

←−
/∂ T
←−
∂ +

γµ
T

−→
/∂ T
−→
∂ +

ξn

+
(
−ϵ(1+ϵ)(2+ϵ)

6
(k1k2)3T
(k+

1 k−
2 )3
− ϵ(1+ϵ)

4
k2
1T k2

2T (k1k2)T

(k+
1 k−

2 )3

)
ξ̄n̄γµ

T ξn

]
,

and so on. For the convincingness, the computation has been performed up to N10LP, and
it reproduces the presented pattern.

At the first glance, expressions (3.33) demonstrate the violation of the factorization
theorem. Indeed, naively, one should expect to obtain the effective current (3.35) multiplied
by C(ϵ). I.e. all terms except the first for diagN2LP should vanish. Instead, the expressions
contain the new terms, equipped by different coefficients. It is especially confusing that
these new terms have different order of ϵ singularities. Due to the latter, these terms cannot
be renormalized by ZU1’s (3.30), and the factorization theorem seems to be violated at
NNLP and higher.

Further inspection of corrections (3.33) reveals a certain pattern. The all-power
series (3.33) can be rewritten as

∞∑
k=0

diagNkLP = asC(ϵ)(
−2k+

1 k−
2 − 2(k1k2)T −

k2
1T k2

2T

2k+
1 k−

2

)ϵ J tw2
n̄n , (3.34)

where

J tw2
n̄n = ξ̄n̄γµ

T ξn − nµξ̄n̄

←−
/∂ T
←−
∂ +

ξn − n̄µξ̄n̄

−→
/∂ T
−→
∂ +

ξn −
1
2 ξ̄n̄

←−
/∂ T
←−
∂ +

γµ
T

−→
/∂ T
−→
∂ +

ξn, (3.35)

is the twist-two part of the EM current. Therefore, the coefficient function for all KPCs is
the same, but has a different argument. The argument of the coefficient function is

X = (2q+q− − 2(k1k2)T − k2
1T k2

2T /(2q+q−)), (3.36)

instead of 2q+q−, that appears at LP and NLP cases. The cancellation of poles also imposes

ζζ̄ = X2.

The coefficient function C0(X) can be used only as the whole, because any strict fixed-
power expansion would lead to the non-cancellation of poles between infra-red poles of
coefficient function, and UV poles of twist-one operators. To my best knowledge, it is the
first example of accumulation of power corrections into the argument of the coefficient
function in factorization theorems. In section 4.2, it is shown that X2 turns to Q2 once
KPCs are summed.

In the position space the variables k1,2 are represented by the differential operators.
Therefore, in the position space, the coefficient function (3.34) is a differential operator in
the transverse space. That is the main reasons to switch to the momentum space in the
following discussions.

Another contribution that reveals only beyond LO is the restoration of the boost-
invariance. The boost-invariance demands that the factorization theorem is independent of
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the values of ζ’s as far as ζζ̄ = X2 (this can be demonstrated using different approaches [50,
59, 60]). Therefore, the factorized expression should be invariant under

ζ → αζ, ζ̄ → α−1ζ̄, (3.37)

at each given power. The expression (3.23) does not preserve this property. Indeed, the
combinations with transverse derivatives, such as Φn̄(ζ)∂T µΦn(ζ̄) are not invariant but
produces the terms ∼ (α− 1)∂µD (for α ∼ 1), where D is the Collins-Soper kernel (2.26).

The restoration of the boost-invariance happens with the accounting of the higher-twist
terms. The higher-twist distributions appears in the factorized expressions with the divergent
convolution. These divergences are called the special rapidity divergences [26]. They are
somewhat similar to the end-point divergences in the heavy-quark factorizations [61, 62], but
have a different nature, and are rapidity divergences according to the general criterion [50].
The leading contribution of these divergences is proportional to the derivative of the Collins-
Soper kernel and twist-two TMD distributions. In the sum of all terms these divergences
cancel, and leave the remnant proportional to ln(ζ/ζ̄), which restores the boost-invariance.
Practically, it leads to the replacement

∂T µΦn → Dµ

(
ζ̄

ζ

)
Φn =

[
∂

∂bµ
− 1

2

(
∂D(b, µ)

∂bµ

)
ln
(

ζ̄

ζ

)]
Φn, (3.38)

and analogous for Φn̄. Here,

Dρ

(
ζ̄

ζ

)
= ∂

∂bρ
− 1

2

(
∂D(b, µ)

∂bρ

)
ln
(

ζ̄

ζ

)
. (3.39)

It is straightforward to check that the structure Φn̄(ζ)Dµ(ζ̄/ζ)Φn(ζ̄) is invariant under (3.37)
The mechanism of special rapidity divergences is well-understood at NLP, [24, 25],

but not beyond. The explicit check requires the computation with increased number of
loops for each next power. The terms ∼ (∂TD)n, which required at n’th order, are O(an

s )
in perturbative order and could be obtained only with n-loop computation. Also, one
needs the complete higher-twist structure to extract the divergences. Such computation
goes far beyond the present work.7 Nonetheless, it seems safe to extend the NLP case
to all powers and declare that the complete expression for KPCs (3.23) requires the
replacement (3.38). This replacement restores the boost-invariance (3.37) at each order of
power expansion independently.

In this section, I have demonstrated at NLO that the coefficient functions for all
KPCs are the same. It is in the full agreement with the expectations, since KPCs must
reproduce LP term, in order to preserve EM-gauge invariance (discussed in section 5.1).
However, it appears that the coefficient function has the mixed-power argument (as shown

7I have checked explicitly that the cancellation of special-rapidity divergences between twist-three part
of the NNLP terms, which are indicated as DΦ2 × Φ3 and Φ3 × Φ3 in the expression (1.3). These terms
are relatively simple to obtain using NLP factorization. I have found that their one-loop special rapidity
divergences produce the terms required for restoration of boost-invariance. The performed check in incomplete
(and for that reason is not presented here explicitly), because it was done using only one-loop computation
and caught only the terms ∼ ∂TD, but does not catch terms ∼ (∂TD)2.
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in eq. (3.34)). Also, I argue that the transverse derivatives must be replaced by the boost-
invariant transverse derivatives (3.38). Equipped by these modifications the expression (3.23)
represents the all-power part of the TMD factorization that contains solely twist-two
distributions, without qT /Q corrections.

4 Summation of KPC series

The series of KPCs can be summed to a simpler expression. The direct summation of
expression (3.33) is possible but very tedious. The main complication is the derivatives over
x and x̃ which produce generating functions with complicated argument (see (5.29)). The
simpler way is to sum the multipole expansion separately for each collinear sector before
the tensor decomposition. It leads a simple and intuitive picture of KPCs as the scattering
of free massless partons. The details of computation are presented in this section.

4.1 Twist-two part of a general TMD correlator

The procedure of the assembling fields into matrix elements and the multipole expansion
are commuting operations. Due to it, one can collect the fields of different modes into
matrix elements already in eq. (3.5). The result is (compare with (3.12))

W µν = − 1
4Nc

∫
d4y

(2π)4 e−i(yq)∑
a,b

(
Tr
(
γµΓbγ

νΓa

)
Ψ̃[Γa]

n̄ (y)Ψ̃[Γb]
n (−y)

+ Tr
(
γµΓaγνΓb

)
Ψ̃[Γa]

n̄ (−y)Ψ̃[Γb]
n (y)

)
, (4.1)

where Ψ(y) are the generalization of (3.13) for a four-dimensional argument,

Ψ̃[Γ]
n̄ (y) = ⟨p1|q̄n̄(y)[y,−∞n + yT + n̄y+]Γ2 [−∞n, 0]qn̄(0)|p1⟩, (4.2)

Ψ̃[Γ]
n (y) = ⟨p2|q̄n(y)[y,−∞n̄ + yT + ny−]Γ2 [−∞n̄, 0]qn(0)|p2⟩. (4.3)

These matrix elements are alike ordinary TMD distributions, but with a generally-valued
separation between semi-compact operators. The direction of Wilson lines is preserved.

The expression (4.2) is not a factorization theorem, but only an intermediate expression
that is used to sum KPCs. The functions Ψ should be understood as the generating
functions for the series of power corrections (3.19). I.e

Ψ̃[Γ]
n̄ (y) =

∞∑
n=0

(y+)n

n! [∂n
−Ψ̃

[Γ]
n̄ (y−n + yT )], (4.4)

where

[∂n
−Ψ̃

[Γ]
n̄ (y−n+yT )] = ⟨p1|q̄n̄(y−n+yT )[y−n+yT ,−∞n+yT ]

←−
∂ n

−
Γ
2 [−∞n,0]qn̄(0)|p1⟩,

(4.5)
and similar for Ψn. Substituting this expression into eq. (4.1) and making the twist-
decomposition one gets eq. (3.19).
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The function Ψ is an infinite series of TMD distributions of different twists. The
twist-two part of (4.4) can be extracted term-by-term using EOMs (2.11), (3.20) in the same
way as it was done in section 3.2. It is convenient to present the result in the following form

[
Ψ̃[Γ]

n̄ (y)
]

tw-2
=

∞∑
n=0

(y+)n

n!

(
−∂2

T

2∂+

)n [
Ψ̃JΓK

n̄11(y−n+yT )−
∂T α

2∂+
Ψ̃Jγαγ+Γ+Γγ+γαK

n̄11 (y−n+yT )

+ ∂T α∂T β

4∂2
+

Ψ̃Jγαγ+Γγ+γβK
n̄11 (y−n+yT )

]
, (4.6)

where ∂T α = ∂
∂yα

T
, ∂+ = ∂

∂y−
and

JΓK = [γ
+γ−

2 Γγ−γ+

2 ]. (4.7)

The dropped terms are the distributions of twist-three and higher. Note that on the level
of the cross-section the derivatives turns to the boost-invariant derivatives (3.39), and thus
the expression satisfy the leading-twist TMD evolution equation (2.25), (2.26).

The summation of series (4.6) is straightforward in the momentum space, where it reads

[
Ψ̃[Γ]

n̄ (y)
]

tw-2
=

∞∑
n=0

p+

n!

∫
dxd2kT eixp+y−+i(ky)T

(
−iy+k2

T

2xp+

)n [
(4.8)

ΦJΓK
n̄11(x, kT )−

kT α

2xp+
ΦJγαγ+Γ+Γγ+γαK

n̄11 (x, kT ) +
kT αkT β

4(xp+)2Φ
Jγαγ+Γγ+γβK
n̄11 (x, kT )

]
.

The sum over n produces the exponent exp(−iy+k2
T /(2xp+)). Introducing an auxiliary

variable k− = −k2
T /(2xp+), one can rewrite (4.8) in a compact form

[
Ψ̃[Γ]

n̄ (y)
]

tw-2
= p+

∫
dxd4k (2k+)ei(ky)δ(k+ − xp+)δ(k2)

[
(4.9)

ΦJΓK
n̄11(x, kT )−

kT α

2xp+
ΦJγαγ+Γ+Γγ+γαK

n̄11 (x, kT ) +
kT αkT β

4(xp+)2Φ
Jγαγ+Γγ+γβK
n̄11 (x, kT )

]
,

where the factor 2k+ is the Jacobian for δ(k2) and all scalar products are four-dimensional.
The same expression is valid for Ψ̃n after the replacement of n↔ n̄.

The twist-two part of a general TMD distribution is related to the matrix element of
the free massless parton. In fact, this statement is correct for leading-twist (twist-two)
distributions of any kind. For example, in the case of PDF the equivalent derivation can be
found in ref. [36].

The hadron tensor with inclusion of all KPCs is given by eq. (4.1) with replacement
Ψ̃→ [Ψ̃]tw-2. For the particular elements of the Dirac basis one finds[

Ψ̃[1]
n̄ (y)

]
tw-2

= 0, (4.10)[
Ψ̃[γ5]

n̄ (y)
]

tw-2
= 0, (4.11)[

Ψ̃[γµ]
n̄ (y)

]
tw-2

= 2p+
∫

dxd4k δ(k+ − xp+)δ(k2)ei(ky)kµΦ[γ+]
n̄11 (x, kT ), (4.12)
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[
Ψ̃[γµγ5]

n̄ (y)
]

tw-2
= 2p+

∫
dxd4k δ(k+ − xp+)δ(k2)ei(ky)kµΦ[γ+γ5]

n̄11 (x, kT ), (4.13)[
Ψ̃[iσµνγ5]

n̄ (y)
]

tw-2
= 2p+

∫
dxd4k δ(k+ − xp+)δ(k2)ei(ky)

(
(4.14)

gµα
T kν − gνα

T kµ + kµnν − nµkν

k+ kα
T

)
Φ[iσα+γ5]

n̄11 (x, kT ).

One can see that the TMD correlators are divergence-free and satisfy Laplace equation

∂2

∂yµ∂yµ

[
Ψ̃[Γ]

n̄ (y)
]

tw-2
= 0, (4.15)

∂

∂yµ

[
Ψ̃[γµ]

n̄ (y)
]

tw-2
= ∂

∂yµ

[
Ψ̃[γµγ5]

n̄ (y)
]

tw-2
= ∂

∂yµ

[
Ψ̃[iσµνγ5]

n̄ (y)
]

tw-2
= 0. (4.16)

These equations are identical to the equations for twist-two part of collinear operators [32,
36, 63].

4.2 Hadron tensor with summed KPCs

Substituting expressions (4.10)–(4.14) into (4.1) one obtains the hadron tensor with re-
summed KPCs. The general expression reads

W µν
KPC = −4p+1 p−2

Nc
C0

(
Q2

µ2

)∫
dξ1dξ2

∫
d4k1d

4k2 δ4(q − k1 − k2) (4.17)

δ(k+
1 − ξ1p

+
1 )δ(k

−
2 − ξ2p

−
2 )δ(k2

1)δ(k2
2)
{

((k1k2)gµν − kµ
1 kν

2 − kµ
2 kν

1 )
(
Φ[γ+]

n̄11 Φ
[γ−]
n11 +Φ[γ+γ5]

n̄11 Φ[γ−γ5]
n11

)
+ iϵµναβkα

1 kβ
2

(
Φ[γ+]

n̄11 Φ
[γ−γ5]
n11 − Φ[γ+γ5]

n̄11 Φ[γ−]
n11

)
+ tµν

αβΦ
[iσα+γ5]
n̄11 Φ[iσβ−γ5]

n11

}
,

where

tµν
αβ = Tr[γµσγργνσσδ]

16

(
gσα

T kδ
1−gδα

T kσ
1+

kσ
1nδ−nδkσ

1
k+
1

kα
T

)(
gγβ

T kρ
2−gρβ

T kγ
2+

kγ
2 n̄ρ−n̄ρkγ

k−
2

kβ
T

)

In this expression, the product of two distributions should be understood as following

Φ[Γ1]
n̄ Φ[Γ2]

n = Φ[Γ1]
n̄,q (ξ1, k1T ;µ2, Q2)Φ[Γ2]

n,q̄ (ξ2, k2T ;µ2, Q2) (4.18)

+Φ[Γ1]
n̄,q̄ (ξ1, k1T ;µ2, Q2)Φ[Γ2]

n,q (ξ2, k2T ;µ2, Q2),

where in the second term the quark and anti-quark TMDPDFs are exchanged. The collinear
momentum fractions are denoted by ξ in order to distinguish them from the ordinary
Drell-Yan momentum fractions x. Note, that in eq. (4.17) all indices and momenta are
four-dimensional. The argument of the coefficient function is restored to Q2. It is due
to the δ-functions in the integrand of eq. (4.17), which allows to rewrite X (3.36) as
X = 2(k1k2) = (k1 + k2)2 = Q2.
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The expression (4.17) has the same hard-coefficient function as the LP TMD factoriza-
tion, and the TMDPDFs are the usual TMDPDFs obeying the standard evolution equations.
The main limitation of eq. (4.17) is that the rapidity scales are taken in the symmetric
point, ζ = ζ̄ = Q2. It is necessary in order to remove the terms proportional to ∂µD ln(ζ̄/ζ).
Otherwise the summation of KPCs is not possible. However, if required, these terms could
be restored infinitesimally. Practically, the restriction ζ = ζ̄ = Q2 is not essential, since all
phenomenological applications are done at the symmetric point.

The expression (4.17) is the TMD factorization with resummed KPCs and the main
result of this work. The dropped terms either contain TMD distributions of higher-twist,
either proportional to qT /Q. Being expanded at large-Q W µν

KPC reproduces the ordinary
fixed-power TMD factorization power-by-power.

The hadron tensor W µν
KPC is exactly transverse to the vector qµ (3.24). It is also

frame-invariant, up to the corrections which come due to the selection direction of the
Wilson lines. The later follows from the initial assumption on the momenta counting rules
for partons. These counting rules also receive power corrections and modify the definition of
TMD distributions. The resulting factorization theorem does not depend on the definition
of vectors n and n̄. The inclusion of these corrections goes beyond the present work, and
will be performed in the future.

5 KPC for the unpolarized Drell-Yan reaction

To exemplify the general structure derived above, let me consider the case of the spherically-
symmetric contribution to the unpolarized Drell-Yan. In this case, the only8 contributing
TMDPDFs are unpolarized TMDPDFs f1. They are defined as

Φ[γ+]
11 (x, kT ) = f1(x, kT ) + . . . , (5.1)

where dots indicate the omitted Sivers function. In this case the series of KPCs (3.23) reads

W µν
f1f1

= p+1 p−2
Nc

∫
d2k1T d2k2T δ(2)(qT − k1 − k2)

∫
dxdx̃δ(q+ − xp+1 )δ(q− − x̃p−2 ) (5.2)

C0

(
X

µ2

) ∞∑
n,m=0

(∂x̃)n(∂x)m

n!m!
(k2

1T )n(k2
2T )m

(2p+1 p−2 )n+mxnx̃m

{

− gµν
T + nνkµ

1T + nµkν
1T

xp+1
+ n̄νkµ

2T + n̄µkν
2T

x̃p−2
− gµν(k1k2)T − kµ

1T kν
2T − kν

1T kµ
2T

xx̃p+1 p−2

− n̄µn̄νk2
2T

(x̃p−1 )2
− nµnνk2

1T

(xp+2 )2
− n̄µkν

1T + n̄νkµ
1T

2xp+1 (x̃p−2 )2
k2
2T −

nµkν
2T + nνkµ

2T

2(xp+1 )2x̃p−2
k2
1T

− gµν
T

k2
1T k2

2T

(2xx̃p+1 p−2 )2

}
f1(x, k1T ;µ, X)f1(x̃, k2T ;µ, X),

8Another pair of TMDPDFs that contributes to the unpolarized Drell-Yan hadronic tensor is the pair of
Boer-Mulder functions h⊥

1 . Generally, all angular structure functions contain contributions proportional
to f1f1 and h⊥

1 h⊥
1 , see f.i. refs. [17, 21]. I have checked explicitly that the spherically-symmetric structure

function with KPCs does not contain contribution ∼ h⊥
1 h⊥

1 .
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where X is given in eq. (3.36). The summed expression (4.17) turns to

W µν
KPCf1f1

= −4p+1 p−2
Nc

C0

(
Q2

µ2

)∫
dξ1dξ2

∫
d4k1d

4k2δ
4(q − k1 − k2) (5.3)

δ(k+
1 − ξ1p

+
1 )δ(k

−
2 − ξ2p

−
2 )δ(k2

1)δ(k2
2)

((k1k2)gµν − kµ
1 kν

2 − kµ
2 kν

1 ) f1(ξ1, k1T ;µ, Q2)f1(ξ2, k2T ;µ, Q2).

The same expression could be obtained computing the Drell-Yan reaction with free massless
quarks produced by TMD distributions. In other words, this result exactly reproduces
the naive parton model. However, it is not naive, because it is known which terms of
factorization series were dropped and thus, it could be systematically improved.

For the examples discussed in this section, it is instructive to have the first three
terms of the standard power expansion in the explicit form. Let me denote the terms of
expansion as

W µν
f1f1

= W µν
0,f1f1

+ W µν
1,f1f1

+ W µν
2,f1f1

+ . . . , (5.4)

where Wn ∼ Q−n in power counting. Explicitly, these terms are

W µν
0,f1f1

= −gµν
T

Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0f1(x1, k1T )f1(x2, k2T ), (5.5)

W µν
1,f1f1

= 1
Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0 (5.6)

×
(

n̄µkν
2T + kµ

2T n̄ν

q−
+ nµkν

1T + kµ
1T nν

q+

)
f1(x1, k1T )f1(x2, k2T ),

W µν
2,f1f1

= 1
Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0 (5.7)

×
[
− gµν(k1 · k2)T − kµ

1T kν
2T − kµ

2T kν
1T

q+q−
− nµnν

(q+)2k2
1T −

n̄µn̄ν

(q−)2k2
2T

+ gµν
T

2q+q−

(
x2k

2
1T

∂

∂x2
+ x1k

2
2T

∂

∂x1

)]
f1(x1, k1T )f1(x2, k2T ),

where x1 = q+/p+1 and x2 = q−/p−2 . The rapidity-scaling arguments for the LP expression
are f1(x1, k1T ;µ, ζ)f1(x2, k2T ;µ, ζ̄), and for the NLP they are f1(x1, k1T ;µ, 2q+q−)f1(x2, k2T ;µ, 2q+q−).
The argument for the coefficient function at LP and NLP is 2q+q−/µ2. For the (pure)
NNLP term one could not specify rapidity scales and the argument of the coefficient function
without introducing higher-power terms as it is discussed above.

In the position space expressions for the first three power are

W µν
0,f1f1

= −gµν
T

Nc

∫
d2b

(2π)2 e−i(qT b)C0f̃1(x1, b)f̃1(x2, b), (5.8)

W µν
1,f1f1

= 1
Nc

∫
d2b

(2π)2 e−i(qT b)C0 (5.9)

×
(
− in̄µ

q−
f̃1(x1, b)Dν f̃1(x2, b)− inµ

q+
Dν f̃1(x1, b)f̃1(x2, b)

)
,
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W µν
2,f1f1

= 1
Nc

∫
d2b

(2π)2 e−i(qT b)C0

[
gµνDαf̃1D

αf̃1 −Dµf̃1D
ν f̃1 −Dν f̃1D

µf̃1
q+q−

(5.10)

+ nµnν

(q+)2D2f̃1f̃1 +
n̄µn̄ν

(q−)2 f̃1D
2f̃1 +

gµν
T

2q+q−

(
x1

∂f̃1
∂x1

D2f̃1 + x2D
2f̃1

∂f̃1
∂x2

)]
,

where arguments for TMDPDFs are omitted completely for the NNLP case. The operator
D is the “long” derivative defined in eq. (3.39). In contrast to the momentum-space
expressions (5.5)–(5.7), the position space expressions are boost-invariant (3.37), and the
rapidity-scaling arguments are ζ and ζ̄.

The expressions (5.8)–(5.10) can be compared to the literature. Naturally, the NLP
part agrees with the one computed in ref. [22]. Another computation was performed in
refs. [19, 21] using the small-x approximation. These results can be directly compared to
eq. (5.2). I have found that the LP and NLP parts (5.8), (5.9) agree with ref. [19], but
the NNLP part disagrees. The same holds for the double Boer-Mulders term, which is not
presented here. The hadron tensor derived in refs. [19, 21] is transverse exactly at NNLP,
while (5.2) is transverse in the sum of all powers. Possibly, it is due to the differences in
the definition of twist-four terms.

5.1 Restoration of EM gauge invariance

The EM gauge-invariance (or electric-charge conservation) imposes

∂µJµ = 0, (5.11)

which on the level hadronic tensor turns to

qµW µν = W νµqµ = 0. (5.12)

This statement is exact in QCD. Nonetheless, EM gauge-invariance is violated at each power
of TMD factorization. It is a consequence of the fact that the relation (5.12) does not have
a definite power counting, since it contains a sum of q± and qT . The EM gauge-invariance
is restored by the power corrections. Moreover, it is restored for each terms with unique
nonperturbative content by a the series of KPCs.

Let me demonstrate the restoration of EM gauge invariance using the unpolarized DY
example in the momentum space.9 Contracting the LP term (5.5) with qµ, one obtains

qµW µν
0,f1f1

= −1
Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0 (5.13)

× (kν
1T + kν

2T )f1(x1, k1T )f1(x2, k2T ) ̸= 0.

So, the EM gauge-invariance is violated, but the violation goes beyond the LP approximation,
because the left-hand-side(l.h.s.) of the formula is ∼ Q1 while the r.h.s. is ∼ Q0. The

9The same exercise can be done without assumptions on ζ’s in the position space. In this case, the
integrand of W̃ µν should be acted by the operator q̂µ = n̄µq+ + nµq− − i ∂

∂bµ
. The results of this section are

reproduced also for the terms that contain derivatives of the Collins-Soper kernel.
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inclusion of the NLP term (5.6) leads to

qµ(W µν
0,f1f1

+ W µν
1,f1f1

) = 1
Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0 (5.14)

×
[(

n̄ν(k2q)T

q−
+ nν(k1q)T

q+

)
f1(x1, k1T )f1(x2, k2T )

]
̸= 0.

The r.h.s. expression (5.14) is of order ∼ Q−1, i.e. NNLP in comparison to the l.h.s. The
LP violation term (5.13) is canceled by the NLP violation term, but leaves an NNLP
remnant. The twist-three contributions are not presented here, but it could be checked
using expression in refs. [21–23] that they also result into ∼ Q−1 terms. The NNLP remnant
in eq. (5.14) is then canceled by NNLP (5.7) term:

qµ(W µν
0,f1f1

+ W µν
1,f1f1

+ W µν
2,f1f1

) = (5.15)

1
Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0

×
[

kν
1T k2

2T + kν
2T k2

1T

q+q−
− qν

T

2q+q−

(
x2k

2
1T

∂

∂x2
+ x1k

2
2T

∂

∂x1

)]
f1(x1, k1T )f1(x2, k2T ) ̸= 0.

Here, the r.h.s. is of order ∼ Q−2, i.e. N3LP in comparison to l.h.s. This N3LP violation
term is to be canceled by the corresponding part of qµW µν

3 , and so on.
In this way, EM gauge invariance is restored only in the sum of all powers of TMD

factorization, and violated at any fixed power. A truncation of the series at power n results
into the violation of EM gauge invariance at order 1/Qn+1. This mechanism is standard for
the factorization theorems with inhomogeneous counting of qµ components. Another very
well studied example is DVCS, see refs. [40, 41, 64, 65] for detailed discussion.

Importantly, the restoration of EM gauge invariance takes place independently for the
terms proportional to twist-two TMDPDFs, and twist-three TMDPDFs. This is due to
the proper definition of the TMD-twist. With the present definition TMD distributions of
different twists do not mix with each other, and are entirely independent nonperturbative
functions. Each independent combination of TMDPDFs forms its own series of KPCs that
restores the EM gauge invariance.

The complete series (5.2) is exactly EM-gauge invariant. The check is straightforward,
one should only take into account that q± turns to xp by δ-function and does not commute
with the derivative. All terms of expression (5.2) participate in the restoration, which is
in contrast to the small-x-based derivation made in ref. [21], where NNLP term already
completes the gauge-invariant sequence. The summed expression (4.17) is also EM-gauge
invariant since qµ = kµ

1 + kµ
2 and

qµ ((k1k2)gµν − kµ
1 kν

2 − kµ
2 kν

1 ) = −k2
1kν

2 − k2
2kν

1 = 0, (5.16)

because k2
1,2 = 0 due to the δ-functions. The part ∼ tµν in (4.17) is also transverse.

The cancellation between successive terms takes place only if their hard coefficient
functions are identical. This has been checked up in section 3.3 explicitly at NLO, but
the gauge-invariance guaranties the equivalence at all perturbative orders. The EM-gauge
invariance does not determine the coefficient function of other genuine contributions, since
they have independent nonperturbative content.
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5.2 Restoration of frame invariance

Another important symmetry that is violated by the factorization approach is the Lorenz
invariance. In the factorization theorems approach it is often called the frame-invariance or
the reparameterization invariance. It has been intensively studied for the case of collinear
factorization for DVCS, see refs. [40, 66], and also in the soft-collinear/heavy-quark effective
fields theories, see refs. [67–69]. Meanwhile, I do not know any dedicated discussion for the
TMD factorization case.

The frame- or reparameterization-invariance is based on the fact that the field-mode
separation depends on the directions n and n̄, which, in turn, are defined only approximately.
In other words, the counting rules (3.7) can be modified by power corrections, if they preserve
the leading counting. The light-cone vector nµ, which defines the collinear direction, could
be turned nµ → n′µ by a power-suppressed amount such that n′2 = 0, and the factorization
theorem remains the same. If there are several collinear directions the transformation should
preserve the relation between them. This is an obvious statement in the deep-inelastic
scattering. In other cases the frame-invariance is rather involved, and usually is violated by
the LP term and restored by power corrections similarly to EM gauge invariance.

Let me inspect the implication of frame-invariance for the TMD factorization approach.
There are two collinear directions given by nµ and n̄µ, which satisfy (nn̄) = 1. It is
straightforward to see that there are two possible transformations n→ n′, that preserve
n′2 = n̄′2 = 0 and (n′n̄′) = 1. They are

I:

 nµ → n′µ = nµ + ∆µ

q−
− ∆2

2(q−)2 n̄µ,

n̄µ → n̄′µ = n̄µ,
II:


nµ → n′µ = nµ,

n̄µ → n̄′µ = n̄µ + ∆µ

q+
− ∆2

2(q+)2nµ,

(5.17)
where ∆ and ∆ are transverse vectors in the original frame, i.e. (∆n) = (∆n̄) = 0. The
vectors have the counting ∆ ∼ Q0, and could be treated as infinitesimal parameters.
Note, that one cannot transform n and n̄ simultaneously, because in this case, the equation
(nn̄) = 1 requires ∆ ∼ Q1, which is not a small transformation. Nonetheless, transformations
I and II can be applied successively, simulating a simultaneous rotation of n and n̄. It is
important to mention that the vectors pµ

1 and pµ
2 are external vectors, and thus they are

not transformed under (5.17). The definition (3.4) is not modified by ∆.
The transformations I and II are symmetric to each other. Therefore, the result valid

for one of them is automatically valid for another. Thus, in the rest of the section, I consider
only the transformation I.

On the level of factorized expression transformations (5.17) change the definition of
TMDPDFs, since (kT n′) ̸= 0. Therefore, for the comparison of momentum space integrands
(similar analysis can be done for position space integrands), one should compensate the
redefinition of k’s, such that the definition of f1(x, kT ) remains the same. Recalling that
TMDPDF is obtained by Fourier transforms (2.21) one finds that the same definitions can
be achieved by the contra-rotation

kµ
1T → k′µ

1T = kµ
1T , kµ

2T → k′µ
2T = kµ

2T −∆µ − ((k2∆)−∆2) n̄µ

q−
. (5.18)
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Here, (k1T∆) = 0 is imposed, in order to preserve the definition of TMDPDF f1(x1, k1T ).
The variables x are also impacted by the rotation because they are defined via q±. One
finds that

x1 → x′
1 = x1

(
1 + 2(k2∆)−∆2

2q+q−

)
, x2 → x′

2 = x2, (5.19)

where it is used that (q∆) = (k2∆), due to the delta-function. So, the simultaneous
transformations (5.17) (part I), (5.18) and (5.19) should keep the integrand of the factorized
hadronic tensor invariant.

Applying the transformation to the LP term (5.5) one finds

W µν
0,f1f1

→W µν
0,f1f1

+ 1
Nc

∫
d2k1T d2k2T δ(2)(qT − k1T − k2T )C0

{
(5.20)

n̄µ∆ν +∆µnν

q−
+ . . .

}
f1(x1, k1T )f1(x2, k2T ),

where the dots denote the higher power terms. The first term in brackets is ∼ Q−1 i.e. NLP.
So, the LP term is frame-invariant up to NLP corrections. Adding the NLP contribution (5.6)
one obtains

W µν
0,f1f1

+W µν
1,f1f1

→W µν
0,f1f1

+W µν
1,f1f1

+ 1
Nc

∫
d2k1T d2k2T δ(2)(qT−k1T−k2T )C0

{
(

∆µkν
1T +kµ

1T ∆ν

q+q− + n̄µn̄ν(∆2−2(k2∆))
(q−)2

)
f1f1−x1g

µν
T

2(k2∆)−∆2

2q+q−
∂f1

∂x1
f1+. . .

}
.

(5.21)

The arguments of TMDPDFs are omitted but the relative order of TMDPDFs is preserved.
Again the violation term starts with ∼ Q−2 and is NNLP. The derivative term is obtained
from the expansion of x′

1. Finally, one can check that

W µν
0 + W µν

1 + W µν
2 →W µν

0 + W µν
1 + W µν

2 +O(N3LP), (5.22)

where O(N3LP) is a long expression. Importantly, that the frame-invariance involves the
derivative-of-TMDPDF terms, which do not participate in the check of gauge-invariance at
NNLP order. Therefore, the series of KPCs cannot be split into sub-series that are gauge
and frame invariant. Alike the gauge-invariance, the frame-invariance is not complete at
any given power-order. Moreover, at each power order it generates the infinite series of
derivative corrections, due to the Taylor expansion of f1(x′

1, k1T ), which altogether restore
the frame-invariance of the full series. The frame invariance holds for each nonperturbative
sector, i.e. separately for the power series involving twist-two TMDPDFs, separately for the
power series involving twist-three TMDPDFs, etc. The expression with summed KPCs (5.3)
is invariant under the transformations (5.17) since it does not depend vectors n and n̄.
Here, I recall that the external momenta pµ

1 , pµ
2 are not transformed, and thus δ-functions

with arguments (ξp± − k±) are not modified.

5.3 Estimation of numerical importance

The factorization theorem with summed KPCs is valid in the traditional regime of TMD
phenomenology, Q ≫ qT and Q ≫ Λ but does not have restriction Q ≫ kT . In fact, the

– 32 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
8

restriction Q ≫ kT was ignored in all phenomenological studies, assuming that kT ∼ Λ.
The assumption kT ∼ Λ is not entirely correct because kT is an integration variable. In this
section, I test the impact of inclusion of KPCs. For it, I compare LP and KPC-summed
cross-sections of the unpolarized Drell-Yan (only γ-channel for simplicity).

The cross-section for the Drell-Yan reaction is computed from the hadronic tensor by

dσ

dQ2dydq2
T

= 2αem
sQ4

∑
q

e2q

∫
dΩLµνW µν , (5.23)

where q2
T = −q2T > 0, αem is the QED coupling, and eq is the charge of the quark q. The

leptonic tensor is
Lµν = 4(lµl′ν + l′µlν − gµν(ll′)), (5.24)

where l and l′ are leptons’ momenta and l + l′ = q.
Substituting the hadronic tensor from eq. (5.5) one obtains the cross-section in the LP

TMD factorization

dσ

dQ2dydq2T

∣∣∣
LP

= (2π)2αem
3NcsQ2

(
1 + q2

T

2Q2

)∑
q

e2qC0

(
2q+q−

µ2

)
(5.25)

×
∫

d2k1T d2k2T δ(2)(qT − k1T − k2T )f1q(x1, k1T ;µ, ζ)f1q̄(x2, k2T ;µ, ζ̄),

where

x1 =
q+

p+1
= Qey

√
s

√
1 + q2

T

Q2 , x2 =
q−

p−2
= Qe−y

√
s

√
1 + q2

T

Q2 . (5.26)

The correction q2
T /2Q2 in the common factor is the result of convolution of the leptonic

tensor with gµν
T . The inhomogeneity of this factor in power-counting is due fact that

the leptonic tensor is exact (i.e. it contains all powers) while the hadronic tensor is pure
LP. Exactly this expression is usually used for the phenomenology of unpolarized TMD
distributions, see e.g. [70–72].

The integral over transverse momenta k1T and k2T is convenient to present as the
integral over k2

1T and k2
2T . The delta-function restricts the values of these variables as

RT : k2
1T > 0, k2

1T + q2
T −

√
k2

qT q2
T < k2

2T < k2
1T + q2

T +
√

k2
qT q2

T . (5.27)

The region RT is shown in the figure 2(left) by yellow color. Notably, the region spans to
infinite values of k2

T ’s, despite initial assumption of Q being the largest scale.
The cross-section with resummed KPC is obtained from eq. (4.17) and reads

dσ

dQ2dydq2T

∣∣∣
KPC

= (2π)2αem
3Ncs

∑
q

e2qC0

(
Q2

µ2

)∫
d4k1d

4k2

∫
dξ1dξ2δ

(4)(q−k1−k2)

δ(k2
1)δ(k2

2)δ(k+
1 −ξ1p

+
1 )δ(k

−
2 −ξ2p

−
2 )f1q(ξ1,k1T ;µ,Q2)f1q̄(ξ2,k2T ;µ,Q2).

(5.28)

It is straightforward to check that in the limit q± →∞ the expression (5.28) reproduces (5.25)
(up to the power-suppressed term in the common factor). Note that to make this comparison
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Figure 2. (left) The region of integration for variables k2
1T and k2

2T in the TMD factorization
formulas (5.25) and (5.28). (right) The region of values of parameters ξ1,2 (5.26) covered during the
integration over k2

1T and k2
2T . The points ai at both plots corresponds to the same values of k2

1T

and k2
2T .

one should commute the limit Q→∞ and the integration operation. In other words, one
should assume that k2

T ≪ Q2, despite the integral range of k2
T ’s is infinite.

The values collinear momentum-fractions of TMDPDFs are not fixed in the summed
formula (5.28), but integrated in a particular range. It could be anticipated apriory, because
the reparametrization invariance modifies the value of x’s (5.19), and thus any fixed choice
is not frame-invariant. The δ-functions express ξ’s as

ξ1 =
x1
2

1 + k2
1T

τ2 −
k2
2T

τ2 +

√
λ(k2

1T , k2
2T , τ2)

τ2

 , (5.29)

ξ2 =
x2
2

1− k2
1T

τ2 + k2
2T

τ2 +

√
λ(k2

1T , k2
2T , τ2)

τ2

 ,

where τ2 = 2q+q− = Q2+q2
T , and λ(a, b, c) = a2+ b2+ c2−2ab−2ac−2bc is the kinematic

function. The values of ξ1,2 are restricted 0 < ξ1,2 < 1 (due to the support properties of
TMDPDF), which constraints the integration region of k2

1T and k2
2T to

Rξ : 0 < k2
1T < τ2, 0 < k2

2T < τ + k2
1T − 2

√
k2
1T τ2. (5.30)

The region Rξ is shown in the figure 2(left) by blue color. The variables ξ (5.29) can be
seen as a kind-of-Nachmann variables [73, 74] for the TMD factorization theorem, which
correct for the convolution integral for non-zero transverse momenta of partons.

In full the integration region for (5.28) is Rξ ∩RT . It is compact. The maximum values
of k2

T are (
√

τ2 +
√

q2
T )2/4 (= Q2/4 at q2

T = 0) which are reached at the points a1,2 in
figure 2. The arguments ξ1,2 belongs to the region shown in figure 2(right). This region
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Figure 3. The difference of KPC-summed and LP cross-sections relative to the qT = 0 LP cross-
section for the Drell-Yan reaction at different qT and different x. The plot in left(right) panels are
based on SV19 [71] (ART23 [72]) extraction of TMDPDF. Upper row is for Q = 90GeV, and lower
row is for Q = 20GeV. Lines of different color corresponds to different values of x (at y = 0).

does not include the LP values of collinear momentum-fraction x1,2 (5.26), but it includes
the values

√
Q2/se±y, which are often used in the phenomenology and is shown by the red

star in figure 2.
In figures 3 and 4, the comparison of KPC-summed (5.28) and LP (5.25) cross-sections

is shown. For the comparison the extractions SV19 [71] (presented in the left panels)
and ART23 [72] (presented in the right panels) were used. The perturbative orders are
the same as used in the extractions. They are N3LL for SV19, and N4LL for ART23.
The evolution of distributions is performed in the position space, then the TMDPDFs are
Fourier-transformed and substituted into (5.28), (5.25). The results for different extraction
have generally the same size but somewhat different behavior at x > 10−2.

The inclusion of KPCs results into an almost flat increase of the cross-section as a
function of qT , see figure 3. The size of the shift grows at smaller x’s and Q. In other
words, the inclusion of KPCs does not significantly modify the shape of the LP prediction,
but significantly changes the normalization. At the typical kinematic of the LHC (aka
Z-boson production) the size of corrections is of the order of 1%. It grows to ∼ 30− 40% at
Q ∼ 10GeV. Using the presented curves one can estimate the effective size of KPCs. Their
order of magnitude is approximately described by

dσ|KPC
dσ|LP

∼ 1 + (2GeV)2

x0.4Q2 . (5.31)

This approximation is obtained by a two-parameter fit of SV19 and ART23 curves.
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Figure 4. The ratio of KPC-summed to LP cross-sections for the Drell-Yan reaction at qT = 0
at different Q and different x. The plot in left(right) panel is based on SV19 [71] (ART23 [72])
extraction of TMDPDF. Lines of different color corresponds to different values of x (at y = 0).

It is interesting to mention that the modern TMD phenomenology faces problems with
the description of normalization of cross-section, while perfectly describes the shape. For
LHC energies the issue is of order of few percents, while for low-energy fix-target data
(Q ∼ 5− 20GeV) is tenths of percents [3, 75, 76]. The situation is worse for Q ∼ 2− 4GeV
which are typical for Semi-Inclusive Deep-Inelastic Scattering (SIDIS). In this case the
problem with normalization is of order of factor 2-3 [5]. Therefore, one could hope that
inclusion of KPCs into the phenomenology will resolve this important problem.

6 Conclusion

The power corrections in the TMD factorization theorem provide a rich field for investigation.
As described in the introduction, there are four conceptual types of power corrections:
qT /Q, kT /Q, Λ/Q, and target-mass corrections. These corrections have distinct origins
and characteristics. Importantly, different power corrections are significant in different
kinematic regimes, which justifies considering them independently. In this work, I have
derived the series of kinematic power corrections (KPCs) or kT /Q-corrections that follow
the leading power (LP) term. These corrections play a special role for the factorization
theorem and are essential for its consistency because KPCs are responsible for restoring
electromagnetic (EM) gauge invariance (charge conservation) and frame invariance, which
are broken by the LP approximation. In that sense, the series of KPCs is the entailed part
of the LP factorization theorem.

The KPCs that follow the LP term possess a distinctive mark: they only involve TMD
distributions of twist-two. This feature allows for their straightforward extraction from the
generic power expansion of operators. The resulting series is presented in equation (3.23).
This series is summed in a simple expression (4.17), which is the main result of the work.
The computation is done for the Drell-Yan process but can be generalized for other processes
without conceptual problems.

One of the most significant features of KPCs is that they must obey the factorization
theorem, even if other types of power corrections may violate it. This statement follows

– 36 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
8

from the fact that KPCs are responsible for restoring the fundamental properties of the
LP term, namely charge conservation and frame invariance. Consequently, the coefficient
function for KPCs remains identical to the LP coefficient function. In section 3.3, I have
explicitly verified this statement at the next-to-leading order (NLO) and demonstrated the
restoration of the argument of the LP coefficient function to q2. The latter is a non-trivial
result as it indicates the impossibility of a strict power expansion beyond NLP.

The final formula for the cross-section is almost trivial — it tells that the cross-section
can be computed with free massless quarks similar to a naive parton picture. However,
with the present derivation, it attains a different status. It obeys the factorization theorem,
and it is clear which part of the power expansion is included and which is neglected. The
excluded terms consist of TMD distributions of twist-three and higher, as well as powers
of qT /Q.

It is important to note that the derivation of the series of KPCs is contingent upon
the definition of TMD-twist and higher twist distributions. The current derivation is based
on the approach outlined in ref. [22], which leads to a consistent result. However, if an
alternative definition is proposed, the series of KPCs could differ. In such a case, some of
the present higher twist terms would be absorbed into the KPC series. In particular, the
difference in the treatment of higher twist terms may describe the discrepancy between the
present computation and ref. [19].

Incorporating KPCs into TMD phenomenology is essential, as they play a crucial role
in restoring the consistency of the formalism. Moreover, all perturbative ingredients remain
unchanged since KPCs adhere to the LP factorization theorem. Therefore, including KPCs
in phenomenological studies can be done without encountering conceptual difficulties while
maintaining the achieved level of accuracy (currently at the N4LL order [72]). The summed
formula is valid in the same kinematic range of application as ordinary TMD factorization.
Estimations made in section 5.3 demonstrate that including KPCs results in an almost
constant increment of the cross-section. The magnitude of this correction depends on Q

and x. For typical LHC kinematics, the correction is around 1%, while at Q ∼ 4− 5GeV,
the correction can reach 100%. Interestingly, the deficiency in normalization for the TMD
factorization at low energies has been reported by multiple groups. One could expect that
these problems will be resolved with the inclusion of KPCs.
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