
Eur. Phys. J. C (2022) 82:566
https://doi.org/10.1140/epjc/s10052-022-10508-5

Letter

Complete complementarity relations for quantum correlations
in neutrino oscillations

V. A. S. V. Bittencourt1, M. Blasone2,3, S. De Siena4,a, C. Matrella2,3,b

1 Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
2 Dipartimento di Fisica, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
3 INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano, Italy
4 Università degli Studi di Salerno (Ret.), Fisciano, Italy

Received: 10 May 2022 / Accepted: 8 June 2022 / Published online: 27 June 2022
© The Author(s) 2022

Abstract We analyze quantum correlations and quantum
coherence in neutrino oscillations. To this end, we exploit
complete complementarity relations (CCR) that fully char-
acterize the interplay between different correlations encoded
in a quantum system both for pure and mixed states. We con-
sider the CCR for neutrino oscillations both in the case of
plane-waves (pure state) and of wave packets (mixed state).
In this last case we find a complex structure of correlations
depending on the mixing angle, and we show the connec-
tion with the non local advantage of quantum coherence, a
relevant quantifier of coherence.

1 Introduction

Neutrino oscillations are intrinsically linked to quantum cor-
relations, such as entanglement and coherence, encoded in a
flavor neutrino state. Such interface between neutrino physics
and quantum information theory has recently attracted much
attention [1–16], since it can catch fundamental properties
of these fundamental particles and drive the possibility of
exploiting neutrinos as a resource for quantum information
tasks, with distinct characteristics with respect to photons.
The quantum nature of neutrino oscillations has been inves-
tigated in terms of entanglement [1–4], Bell and Leggett–
Garg inequalities [8–11], and various aspects of quantum
coherence including steering [12,13], NAQC [13–15], and
entropic uncertainty relations [14]. It would be desirable to
find the connections among such many different facets of
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quantumness in such a system, thus unifying the description
of quantum correlations in neutrino oscillations.

In the last few years, the investigation of the interplay
between different types of quantum correlations, and on
quantum coherence, has led to considerable advancement and
understanding on the relation between these concepts [17–
19]. In particular, complete complementarity relations (CCR)
[20–23] allow the full characterization of different correla-
tions encoded in a quantum system, both for pure and mixed
states. The concept of complementarity has been originally
formulated in the context of two-slit experiment, where one
defines a predictability, associated to the knowledge of the
path of the particle, and the visibility, connected to the capac-
ity of distinguishing interference fringes [24]. By denoting
the predictability as P and the visibility as V , the comple-
mentarity relation takes the form:

P2 + V 2 ≤ 1. (1)

This equation is saturated only for pure states. For mixed
states the strict inequality holds. In Ref. [25] it is shown that
the lack of knowledge implied by the strict inequality is due
to the presence of entanglement between two subsystems.
However, as pointed out in Ref. [26], entanglement is not the
only quantum correlation existing in multipartite systems and
consequently a modification of the predictability is required
in order to obtain a CCR for mixed states.

In this Letter we consider the CCR for neutrino oscil-
lations, both in the plane-wave case and in the wave-packet
approach. In the first instance, we deal with a pure state, while
for the case of wave-packets, one has a mixed state leading
to a complex internal structure of correlations. We achieve
a complete characterization of correlations occurring in the
system of oscillating neutrinos. We find that some of these
correlations persist also when oscillations are washed out,
i.e. in the long-distance limit. We are also able to recognize
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various quantities already studied in the literature, within the
different terms of CCR.

In the following, we first briefly introduce CCR for pure
and mixed states and then apply these relations to the case of
neutrinos both in the plane wave description and in the wave
packet approach. We consider data for three different exper-
iments, Daya Bay, MINOS and KAMLAND. Mathematical
details are included as Supplementary Material in a separate
file.

2 CCR for pure and mixed states

Consider a bipartite state represented as a vector in the Hilbert
state HA ⊗ HB of dimension d = dAdB , where dA and dB
are the dimension of the subsystem A and B, respectively. If
we label with {|i〉A}dA−1

i=0 and {| j〉B}dB−1
j=0 the local basis for

the spaces HA and HB , {|i〉A ⊗ | j〉B = |i, j〉AB}dA−1,dB−1
i, j=0

represents an orthonormal basis for HA ⊗HB . In this basis,
the density matrix of any bipartite state is given by

ρA,B =
dA−1∑

i,k=0

dB−1∑

j,l=0

ρi j,kl |i, j〉〈k, l|. (2)

For pure states ρi j,kl = ai j a∗
kl . The state of subsystem A(B)

is obtained by tracing over B(A). For example, for subsystem
A, we have:

ρA =
dA−1∑

i,k=0

⎛

⎝
dB−1∑

j=0

ρi j,k j

⎞

⎠ |i〉A〈k| ≡
dA−1∑

i,k=0

ρA
ik |i〉A〈k|, (3)

with a similar form for the subsystem B.
In general, even if the joint state ρA,B is pure, the states of

the subsystems A and B are not pure, which implies that some
information is missing when the state of a single subsystem
is considered. If the state of the subsystem A is mixed then
1−Trρ2

A > 0, which yields a complementarity relation [26]:

Phs(ρA) + Chs(ρA) <
dA − 1

dA
(4)

where Phs(ρA) = ∑dA−1
i=0 (ρA

ii )
2 − 1

dA
is the predictability

measure andChs(ρA) = ∑dA−1
i �=k |ρA

ik |2 is the Hilbert-Schmidt
quantum coherence [27]. The information content absent
from system A is represented by the strict inequality. The
missing information is being shared via correlations with the
subsystem B [28]. In fact, for pure states the unity of the
density matrix’s trace 1 − Trρ2

A,B = 0 can be written in the
form of the complete complementarity relation:

Phs(ρA) + Chs(ρA) + Cnl
hs(ρA|B) = dA − 1

dA
(5)

where Cnl
hs(ρA|B) = ∑

i �=k, j �=l |ρi j,kl |2 − 2
∑

i �=k, j<l
Re(ρi j,k jρ∗

il,kl) is called non local quantum coherence, that

is the coherence shared between A and B. In Ref. [26] it is
shown that, in the case of a pure global state, Cnl

hs(ρA|B) is
equivalent to the linear entropy of subsystem A, that is in gen-
eral a mixed state. In fact, if the subsystem A is not correlated
with B, then ρA must be a pure state and Cnl

hs(ρA|B) = 0.
Another form of CCR can be obtained by defining the

predictability and the coherence measures in terms of the
von Neumann entropy. In this case, the CCR reads [29]

Cre(ρA) + Pvn(ρA) + Svn(ρA) = log2 dA. (6)

Here Cre(ρA) = Svn(ρA, diag) − Svn(ρA) is the relative
entropy of coherence, with Svn(ρ) denoting the von Neu-
mann entropy of ρ, and ρA, diag = ∑dA

i=1 ρA
ii |i〉〈i |. Pvn(ρA) ≡

log2 dA − Svn(ρA, diag), is a measure of predictability. For
pure states Svn(ρA) is a measure of entanglement between A
and B.

We now turn our attention to the case of a neutrino state,

|να(t)〉 = aαα(t)|να〉 + aαβ(t)|νβ〉, (7)

where α(β) denote flavors. We can then using the following
correspondence [1,2]

|να〉 = |1〉α ⊗ |0〉β = |10〉,
|νβ〉 = |0〉α ⊗ |1〉β = |01〉, (8)

where it is highlighted the composite nature of neutrino flavor
states. Equation (7) for an initial electronic neutrino becomes:

|νe(t)〉 = aee(t)|10〉 + aeμ(t)|01〉, (9)

and the density matrix, in the basis {|00〉, |01〉, |10〉, |11〉},
reads:

ρA,B =

⎛

⎜⎜⎝

0 0 0 0
0 |aeμ(t)|2 aee(t)a∗

eμ(t) 0
0 aeμ(t)a∗

ee(t) |aee(t)|2 0
0 0 0 0

⎞

⎟⎟⎠ . (10)

The state of subsystems A and B are:

ρA =
(|aee(t)|2 0

0 |aeμ(t)|2
)

, ρB =
(|aeμ(t)|2 0

0 |aee(t)|2
)

(11)

From Eqs. (10), (11) we find that Phs(ρA) = P2
ee+P2

eμ− 1
2 ,

Chs(ρA) = 0 and Cnl
hs(ρAB) = 2Pee Peμ, where we use

|aee(t)|2 = Pee, |aeμ(t)|2 = Peμ and Pee + Peμ = 1. Since
the state (10) is pure, Eq. (5) is verified. Furthermore, con-
sidering Eq. (11) is simple to see that ρA = ρA, diag and, con-
sequently, Svn(ρA) = Svn(ρA, diag). As result, Cre(ρA) =
0, Pvn(ρA) = |aee|2 log2 |aee|2 + |aeμ|2 log2 |aeμ|2 and
Svn(ρA) = −|aee|2 log2 |aee|2 −|aeμ|2 log2 |aeμ|2. Since the
dimension of subsystem A is dA = 1 then log2 dA = 0 and
Eq. (6) is satisfied.

The CCRs (5) and (6) are valid only for a pure density
matrix ρAB . For mixed states, the CCR have to be modified
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to correctly quantify the complementarity behaviour of sub-
system A [30,31]. For instance, in this case Svn(ρA) cannot
be considered as a measure of entanglement, but it is just
a measure of mixedness of A. For mixed states, the correct
CCR is given by

log2 dA= IA:B(ρAB)+SA|B(ρAB)+Pvn(ρA) + Cre(ρA),

(12)

where IA:B(ρAB) is the mutual information of A and B and
SA|B(ρAB) = Svn(ρAB) − Svn(ρB). This CCR constrains
the local aspects of A by its correlations with B, given by
IA:B(ρAB) and the remaining ignorance about A given that
we have access to the system B. In other words, we can
consider SA|B(ρAB) as a quantity that measures the ignorance
about the whole system that we have by looking only to
subsystem A.

3 Correlations in neutrino wave-packets with
mixed-state CCR

In principle, a neutrino system is described by a pure state,
such as the one in Eq. (7). By using a wave packet approach
[32,33], the density matrix describing the evolution of a neu-
trino state ρα(x, t) depends on both the position and time.
Typically, such density matrix is integrated over time, which
yields [34]

ρα(x) =
∑

k, j

UαkU
∗
α j f jk(x)|ν j 〉〈νk |, (13)

where f jk(x) = exp

[
−i

Δm2
jk x

2E −
(

Δm2
jk x

4
√

2E2σx

)2]
. We express

ρα(x) in terms of flavor eigenstates by establishing the iden-
tification |να〉 = |δαe〉e|δαμ〉μ|δατ 〉τ . By using the relation
|νi 〉 = ∑

α Uαi |να〉, we can write:

ρα(x) =
∑

βγ

Fα
βγ (x)|δβeδβμδβτ 〉〈δγ eδγμδγ τ | (14)

where

Fα
βγ (x) =

∑

k j

U∗
α jUαk f jk(x)Uβ jU

∗
γ k . (15)

The density matrix (13) represents a mixed state, and con-
sequently to understand the interplay between the different
quantum correlations encoded in the state, one has to consider
the CCR given by Eq. (12) (see Supplementary Material). In
the following, we show results for two-flavor neutrino mixing
and a state that is initially an electron neutrino, such that:

ρeμ(x) =

⎛

⎜⎜⎝

0 0 0 0
0 Fe

ee(x) Fe
eμ(x) 0

0 Fe
μe(x) Fe

μμ(x) 0
0 0 0 0

⎞

⎟⎟⎠ . (16)

The right hand side terms of Eq. (12) can then be evalu-
ated, with the explicit expressions given in the supplementary
material. In particular, the local coherence of the subsystem
ρe (the last term of Eq. (12)) vanishes for the state (16) indi-
cating that the two subsystems do not display an internal
structure.

We recognize in the non-local terms of the CCR several
quantum correlations already studied in literature. We find
that the sum of the first two terms of Eq. (12) is equal to
the Quantum Discord, a measure of nonclassical correlations
between two subsystems of a quantum system, defined as
[35]:

QD(ρAB) = I (ρAB) − CC(ρAB), (17)

where I (ρAB) = Svn(ρA) + Svn(ρB) − Svn(ρAB) represent
the total correlations between the subsystems A and B and

CC(ρAB) = max{Πb
i }

(
Svn(ρB) − Svn,{Πb

i }(ρA|B)

)
, quanti-

fies the classical correlations obtained with a maximization
over the set of all possible positive operator-valued measures
{Πb

i } on the subsystem B with outcomes b = {0, 1}. Hence,
the quantum part is:

QD(ρAB) = Svn(ρB) − Svn(ρAB) + min
{Πb

i }
Svn,{Πb

i }(ρA|B).

(18)

The evaluation of the Quantum Discord for the density matrix
in Eq. (16) gives us:

QD(ρeμ) = −Fe
ee log2 F

e
ee − Fe

μμ log2 F
e
μμ, (19)

which corresponds precisely to the sum of the first two terms
of the right hand side of Eq. (12) (see Supplementary Mate-
rial).

It is also interesting to investigate the connection exist-
ing with the Non-Local Advantage of Quantum Coherence
(NAQC) [36]. Such quantum correlation occurs in a bipar-
tite system when the average coherence of the conditional
state of a subsystem B, after a local measurements on A,
exceeds the coherence limit of the single subsystem. In the
hierarchy of quantum correlations, NAQC has been classified
as the strongest, overtaking the Bell non-locality [37]. Sev-
eral definitions of NAQC have been formulated which differ
in the distinct coherence measures used. Here, we consider
that based on the relative entropy of coherence (see Eq. (6)).
Given a state ρ in the reference basis {|i〉}, a measure of
coherence takes the form CD(ρ) = minδ∈I D(ρ, δ), that is
the minimum distance between ρ and the set of incoherent
states I . D(ρ, δ) is a distance measure between two quantum
states. For example, one can consider D(ρ, δ) = S(ρ||δ), the
quantum relative entropy. By minimizing over the set of inco-
herent states, one can obtain a bona fide measure of coherence
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[38] as:

Cre(ρ) = Svn(ρdiag) − Svn(ρ), (20)

where Svn(ρ) is the von Neumann entropy of ρ and ρdiag is
the matrix of the diagonal elements of ρ.

Mondal et al. [36] defined the NAQC of a bipartite state
ρAB considering the average coherence of the post measure-
ment state {pB|Πa

i
, ρB|Πa

i
} of B after a local measurement

Πa
i on A:

N (ρAB) = 1

2

∑

i �= j,a=±
pB|Πa

i
Cσ j (ρB|Πa

i
), (21)

where Π±
i = I±σi

2 , with I and σi , (i = 1, 2, 3) being the
identity and the three Pauli operators; pB|Πa

i
= Tr(Πa

i ρAB),
ρB|Πa

i
= TrA(Πa

i ρAB)/pB|Πa
i

. Cσ j (ρB|Πa
i
) is the coherence

of the conditional state of B with respect to the eigenbasis of
σ j .

Evaluating Eq. (21) for the state Eq. (16), we find (see
Supplementary Material):

N (ρeμ) = 2 − Fe
ee log2 F

e
ee − Fe

μμ log2 F
e
μμ, (22)

and it is immediate to find the relation N (ρeμ) = 2 +
Ie:μ(ρeμ) + Se|μ(ρeμ), i.e.:

N (ρeμ) = 2 + QD(ρeμ). (23)

Let us now analyze the neutrino oscillation in the light
of CCR, by using the parameters (see Table) from the Daya
Bay [39,40], KamLAND [41,42] and MINOS [43,44] exper-
iments. Daya-Bay and KamLAND are electron-antineutrino
disappearance experiments, while MINOS is a muonic neu-
trino disappearance experiment.

Daya-Bay KamLAND MINOS

Δm2
ee =

2.42+0.10
−0.11 ×

10−3 eV2

Δm2
12 =

7.49 × 10−5
Δm2

32 =
2.32+0.12

−0.08 ×
10−3 eV2

sin2 2θ13 =
0.084+0.005

−0.005

tan2 2θ12 =
0.47

sin2 2θ23 =
0.95+0.035

−0.036
L∈[364 m, 1912 m] L = 180 km L = 735 km
E∈[1 MeV, 8 MeV] E∈[2 MeV, 10 MeV] E∈[0.5 GeV, 50 GeV]

In Fig. 1 terms of Eq. (12) are shown for the Daya Bay,
Kamland and MINOS parameters, along with the survival
probability and the quantum discord, for comparison. We
see that, in the case of the wave-packet approach, the terms
included in the CCR, and their internal balancing, show non-
trivial characteristics. In fact, different values of the mixing
angle associated to the three experiments lead to very differ-
ent behaviors, especially in the asymptotic range.

In the KamLand and Minos experiments, associated to
higher values of the mixing angle, the mutual informa-

tion1 grows almost monotonically, “engulfing” the other two
terms, and keeping a high value even after oscillations are
washed out. Due to the low value of the mixing angle, this
aspect is not present for the Daya Bay parameters. Further-
more, by looking to the left panels for KamLand and Minos
experiments (high mixing angle values), it is very difficult
to recognize in the mutual information a behaviour exclu-
sively dependent on the oscillation probability. In fact, in
those cases one can show that the oscillations displayed by
all the quantities have components at different spatial fre-
quencies which, in their own, are different than the oscilla-
tion frequency of the survival probability. This is highlighted
for the Kamland parameters, for which Se|μ exhibits a spatial
frequency beating. In this case, the intermediate value of the
mixing angle gives rise to a not monotonically decreasing of
the oscillations, with the presence of partial revivals.

4 Conclusions

In this Letter, we have applied the recently formulated com-
plete complementarity relations (CCR) to neutrino flavor
oscillations, allowing us to completely characterize the quan-
tumness of this phenomenon. We find that the quantum nature
of mixed neutrinos contains features that go beyond the fla-
vor oscillations. Since the CCR formalism is complete, it
can be connected to various quantifiers previously studied
in connection with this system, such as entanglement and
NAQC. Our results confirms previous findings, showing that
even after the complete spatial separation of the wave pack-
ets composing a flavor state, quantum correlations still persist
[15].

We have considered the values of parameters associated
to three experiments (Daya Bay, MINOS and KAMLAND),
and found that the long-distance behavior of quantum corre-
lations is strongly dependent on the value of the mixing angle,
which differs for the three cases. It remains an open question
how such a quantumness associated to neutrino mixing and
oscillations could be exploited as a (quantum) resource.

As an extension of our work, we plan to consider the
instance of three flavor mixing and oscillations: in this case,
any bipartition of the system will exhibit an internal struc-
ture which we expect could give rise to a non vanishing local
coherence term, which is absent in the two flavor case. Fur-
thermore, the extension to a quantum field description of neu-
trino flavor oscillations [45,46] could reveal novel features
of the phenomena discussed here.

1 Note that for these two experiments, the mutual information asymp-
totically coincides with the quantum discord.
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(a)

(b)

(c)

Fig. 1 On the left panels are shown the survival probability Pνα→να ,
(α = e, μ), and the quantum discord QD as a function of the prop-
agation distance x (km) for a neutrino state (13). On the right panels

are shown the predictability Pvn(ρα), the conditional entropy Sα|β(ραβ)

and the mutual information IA:B(ραβ), (α, β = e, μ, τ), as a function
of distance x (km). Parameters are given in Table
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