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1 Introduction

Supersymmetry, a global symmetry between bosons and fermions, provides invaluable insights
to the non-perturbative aspects of general strongly coupled quantum field theories, and
is deeply related to various areas of mathematics. This was elucidated by E. Witten in
papers [39] and [40], written from physics and mathematics perspective.

Specifically, the Hilbert space H = H + ⊕ H − of a supersymmetric quantum theory
is graded by a fermion number and has an operator (−1)F , which counts the number of
fermions modulo two. The precise non-perturbative information about the ground states of a
supersymmetric quantum Hamiltonian1 Ĥ is given by the Witten index

I = Str e−βĤ = Tr(−1)F e−βĤ ,

which mathematically is related to the index of the Dirac operator associated with the
supersymmetry algebra.

1We use notation Ĥ to distinguish from the classical Hamiltonian H.
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Remarkably, this interpretation led to a beautiful derivation of the Atiyah-Singer formula
for the index of a Dirac operator using supersymmetric quantum mechanics [2]. In this context,
the index of a Dirac operator is the Witten index, represented as a path integral for a certain
supersymmetric sigma model. Since the index does not depend on the parameter β (playing
the role of inverse temperature), in the high-temperature limit β → 0, the path integral
localizes to the constant maps and becomes a finite-dimensional integral representing the
Â -genus of a corresponding spin manifold. As it was eloquently explained by Atiyah [3], this
approach admits a natural equivariant cohomological interpretation as an infinite-dimensional
version of the Duistermaat-Heckman formula for the loop space of a spin manifold, where
the fixed points of the circle action are constant loops. This is a paradigmatic example of
localization of a path integral, where the original infinite dimensional path integral reduces
to a finite dimensional integral around the fixed points.

Subsequently, the idea of localization was extended to quantum field theories and led
to many discoveries. To name a few, earlier important milestones of localizations were on
topological and cohomological quantum field theories: computation of Donaldson invariant
from a twisted four-dimensional supersymmetric gauge theory [41], exact path integrals
on 2d Yang-Mills theories [42] (see review [13]), and the computation of Seiberg-Witten
prepotential [30] building upon [27, 29]. More recently, the localization has been successfully
applied to non-topological supersymmetric field theories, starting from four dimensional
N = 2 gauge theories [31], which then has been extended to three dimensions [24] and two
dimensions [4, 5, 16], see [32] for more comprehensive reviews. These discoveries confirm the
common belief that localization of a supersymmetric path integral is always a computation
of the supertrace and not of the trace.

Indeed, in all these examples the localization has been applied to ‘supersymmetric’
observables, which are invariant under at least a single supercharge of the theory. However,
it is clear that supersymmetric observables alone do not characterize the full physical theory.
Therefore, a somewhat unorthodox question is the following: can one apply localization to
the computation of a non-supersymmetric observable? In this paper, we focus on quantum
mechanics and find that the answer is positive by extending the applicability of localization
to a certain class of non-supersymmetric observables. Here we show that for some specific
theories, it is possible to extend the localization principle to non-supersymmetric observables
used to compute the partition function.

Namely, a fundamental object of a quantum theory is the partition function of a system,

Z(β) = Tr e−βĤ ,

whose dependence on the inverse temperature β is highly non-trivial. In the spectral geometry
one studies Z(β) in case Ĥ = 1

2∆, the Laplace operator on a compact Riemannian manifold
M , acting on the Hilbert space L2(M) of square-integrable functions with respect to the
Riemannian volume form on M . By definition,

Z(β) =
∞∑
n=0

e−βλn/2,
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where λn are the eigenvalues of ∆. In general, only asymptotics of Z(β) = Tr e− 1
2β∆ and

of the corresponding heat kernel are known as β → 0, and no closed expression for Z(β)
exists in geometric terms.

In special cases when M is either a flat torus or a hyperbolic Riemann surface, the
partition function Z(β) = Tr e− 1

2β∆ can be computed exactly in terms of the underlying
geometry of M . Thus in case M = S1 classical Jacobi inversion formula for the theta-
series [23] represents Z(β) as a sum over closed geodesics of the flat metric on S1. In case M
is a hyperbolic compact Riemann surface, the corresponding result is the celebrated Selberg
trace formula [37], which expresses Z(β) as a sum over closed geodesics of the hyperbolic
metric on M . These formulas can be thought of as a manifestation of the principle “Spectral
trace = Matrix trace” in the abelian and non-abelian settings. An easier case is an explicit
formula for the heat kernel of a Laplace operator for the bi-invariant metric on a compact
semi-simple Lie group G, first obtained by L.D. Eskin [19], and later rediscovered and used
by many authors [12, 17, 18, 20, 28, 33, 36].

One may ask when the matrix trace can be exactly computed by the path integral
for a quantum particle on a Riemannian manifold M . This is obviously so in case of S1,
since the path integral is Gaussian and can be computed exactly. In case when M = G, a
compact simple Lie group with a bi-invariant metric, M.S. Marinov and M.V. Terentyev [28]
considered a semi-classical approximation of the path integral for a free quantum particle
on G and obtained the Eskin formula for the heat kernel, generalizing the observations of
the exactness of semi-classical approximation in SU(2) and SU(N) cases by L. Schulman and
J.S. Dowker [18, 36]. It was indicated by R.F. Picken [33] that this remarkable property of
purely bosonic path integral on G is related to the infinite-dimensional Duistermaat-Heckman
formalism, outlined by Atiyah [3]. However, all these papers use an ad hoc addition of
the so-called DeWitt term [15], a ‘notorious’ quantum correction to the Lagrangian for the
path integral on curved spaces. Further, M. Gutzwiller [21] observed that when M is a
hyperbolic Riemann surface, the critical points of the path integral in the semi-classical
approximation are closed geodesics; the resulting formula, called ‘Gutzwiller trace formula’,
is quite similar to the Selberg trace formula. However, Gutzwiller trace formula does not
adequately reproduce the contribution of the identity element to the Selberg trace formula,
and also uses an ad hoc addition of the DeWitt term.

Naturally, this calls for a question of whether there is a new localization principle that
allows to compute pure bosonic partition function Z(β) by localizing some supersymmetric
path integral to the closed geodesics. At first glance, this sounds rather counter-intuitive
since, unlike the Witten index I, Z(β) non-trivially depends on β, so the standard localization
principle does not apply. Nevertheless, here we introduce a new principle of supersymmetric
localization, and use it to obtain trace formulas for S1 and G by localizing on closed geodesics.
Note that in this examples we have I = 0, and it is rather amusing that this vanishing of
the Witten index provides a key for the answer!

Namely, consider the supersymmetric Lagrangian L with the action S, in which fermion
degrees of freedom totally decouple, so the Hamiltonian H is purely bosonic. Then the
fermion part (assuming that it is contains only first time derivatives) has zero modes and
the Witten index I, the supersymmetric path integral with periodic boundary conditions, is
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zero. Insertion of the fermion zero modes χ1, . . . , χn into the path integral gives

I(β) = Tr χ̂1 · · · χ̂n(−1)F e−βĤ ,

which is non-zero. If, in addition, the operator χ̂1 · · · χ̂n is proportional to (−1)F , then the
index with zero modes insertion I(β) is equal to the partition function Z(β)! However, due
to the presence of zero modes the functional χ1 · · ·χne−SE , where SE is the Euclidean action,
is no longer invariant under supersymmetry transformation, δ(χ1 · · ·χne−SE ) ̸= 0. Thus
the path integral of χ1 · · ·χne−SE+sδV , where V is standard supersymmetric deformation
associated with the circle action, is no longer s-independent (otherwise it would localize on
constant loops). However, in many cases there is another deformation V , containing higher
derivatives of the fields, such that the path integral of χ1 · · ·χne−S+sV is s-independent and
in the limit s → ∞ localizes on the closed geodesics!

The present paper was greatly influenced by the work of J.-M. Bismut in [8–10], and it is
illuminating to compare our approaches. Thus Bismut uses hypoelliptic deformation on the
cotangent bundle of the manifold that smoothly interpolates between the Laplacian and the
geodesic flow; as it is clearly explained in [8], such hypoelliptic deformation is a generalization
of Witten’s twist in Morse theory [40]. Henceforth such approach can be thought of as a
generalization of the Hamiltonian approach to supersymmetry, and one needs to find its
physics interpretation. On the other hand, our approach is purely Lagrangian and extends
the equivariant cohomology used for supersymmetric path integrals.

The content of the paper is the following. In section 2.1 we recall standard basic facts
on supersymmetric localization in the Hamiltonian (using equivariant cohomology) and in
the Lagrangian (using path integral) approaches. In section 2.2 we explicitly formulate our
new localization principle. Namely, we start with elementary finite-dimensional Lemma 1
and carefully list all necessary conditions. They are based on the zero Witten index and
assume that the system has fermion zero modes satisfying conditions (i)–(ii). Conditions
(A)–(B) represent requirements on the deformation V , necessary for the Proposition 1 on
the independence of the path integral of the parameter s.

In section 3 we use Proposition 1 to evaluate the partition function Z(β) on the circle
S1 with the flat metric using supersymmetric localization, which yields classical Jacobi
inversion formula for theta-series. In section 4 we derive the Eskin trace formula on the
compact semi-simple Lie group G. Specifically, in section 4.1 we present necessary facts
about supersymmetric particle on G, relegating standard details to appendices A, B and C.
Finally, in section 4.2 we prove Theorem 1, which gives a supersymmetric derivation of
the Eskin trace formula on G.
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2 General remarks on new localization principle

2.1 Standard localization principle

We start by briefly recalling a finite-dimensional localization principle. Let M be compact
orientable n-dimensional manifold with an action of the abelian group U(1) = S1, and let v
the vector field corresponding to this action. The corresponding equivariant differential is

D = d− ιv (2.1)

where ιv is the inner product operator with v. It satisfies

D2 = −Lv,

where Lv stands for the Lie derivative, and is a differential in the subcomplex Ω•
S1(M) of the

complex Ω•(M), consisting of S1-invariant differential forms on M ; α ∈ Ω•
S1(M) if Lvα = 0.

Let α ∈ Ω•(M) be an equivariantly closed form, Dα = 0. The localization principle is
the statement that for every V ∈ Ω1

S1(M) and s ∈ R we have∫
M
α =

∫
M
α ∧ e−sDV . (2.2)

By a suitable choice of V one can make (DV )0, a component of DV in Ω0(M), positive
semi-definite, so in the limit s→ ∞ the integral

∫
M α localizes onto the zero loci of (DV )0.

In case when M is even-dimensional and the circle action has only isolated fixed points,
one gets Berline-Vergne localization formula [6].

The proof of (2.2) is very simple. We have

− d

ds

∫
M
α ∧ e−sDV =

∫
M
α ∧DV ∧ e−sDV

=
∫
M
D(V ∧ α ∧ e−sDV ) +

∫
M
V ∧D(α ∧ e−sDV )

= 0.

Here the first integral in the second line is zero by the Stokes’ theorem since the top component
of an equivariantly exact form is exact, and the second integral is zero because of Dα = 0
and D2V = 0.

The infinite-dimensional case was eloquently explained by Atiyah [3], elaborating the
observation by Witten. Namely, one replaces a finite-dimensional Riemannian manifold M by
its loop space LM = Map(S1

β ,M) where S1
β = R/βZ is a ‘thermal’ circle. The loop space LM

is orientable when M is a spin manifold and has a natural circle action with the vector field v.
The equivariant differential on LM has the same form (2.1), where now d stands for the de
Rham differential on LM . The cotangent bundle T ∗LM carries a natural S1-invariant 1-form
θ, dual to the vector field v with respect to the Riemannian metric on LM . The closed 2-form
ω = dθ plays the role of symplectic form on LM (which is degenerate along closed geodesics),
and the circle action on LM is Hamiltonian: there is a function H : LM → R such that

ivω = −dH.
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Since −H + ω = Dθ, the differential form α = e−H+ω ∈ Ω•(LM) is equivariantly closed,
so analogously to (2.2) for any V ∈ Ω1

S1LM we have∫
LM

e−H+ω =
∫
LM

e−H+ω−sDV . (2.3)

Here integral over LM stands for the integration of the top component of a differential
form on the loop space. In particular, putting V = θ, in the limit s → ∞ we obtain the
Atiyah-Singer formula for the index of the Dirac operator on M .

This approach can be also formulated using supersymmetric quantum mechanics, as
was originally proposed by Witten. Namely, consider a classical supersymmetric mechanical
system with the Lagrangian L and Hamiltonian H, having a single real supercharge Q

satisfying {Q,Q} = 2iH, where { , } is the graded Poisson bracket. After the quantization
we get the simplest N = 1/2 supersymmetric quantum system with real supercharge Q̂

satisfying Q̂2 = Ĥ, where quantum Hamiltonian Ĥ acts in the Hilbert space2 H , naturally
Z2-graded by a fermion number operator (−1)F .

The Witten index is given by the path integral

I = Tr(−1)F e−βĤ =
∫∫∫
e−SE [x,ψ]DxDψ, (2.4)

where

SE [x, ψ] =
∫ β

0
LE(x, ẋ;ψ, ψ̇)dτ

is the Euclidean action for the Lagrangian L, and DxDψ is a suitable supersymmetric path
integration measure for the bosonic and fermionic degrees of freedom. The integration in (2.4)
goes over for the periodic boundary conditions and we have

δSE = 0 and δ(DxDψ) = 0,

where δ is the Wick rotated (for Euclidean time) classical supersymmetry transformation
generated by a supercharge Q — the analogue of the equivariant differential D in the loop space
approach. Let V [x, ψ] be an invariant deformation, a functional of classical fields satisfying

δ2V = 0.

Formally repeating the proof of (2.2), we obtain that for all s∫∫∫
e−SEDxDψ =

∫∫∫
e−SE−sδV DxDψ. (2.5)

In case SE = δV one can take V = SE , so in the limit s→ ∞ the path integral localizes on
the zero locus of SE . The latter is nothing but the set of constant loops, arising from the
standard kinetic term in the action. Finally, the relation V = δθ and the identification of
δ with D establishes equivalence with the loop space approach.

2Here it is assumed that we have even number of Majorana fermions.
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2.2 New supersymmetric localization principle

We start by considering the following simple finite-dimensional example.
Let M be compact orientable n-dimensional manifold with circle action and let N =

M × S1. The n + 1-dimensional manifold N has an obvious circle action and let α be an
equivariant closed form on N such that iuα = 0, where u is a vector filed on N which at
a point (p, φ) ∈ N is d/dφ, where φ mod 2π is the coordinate on S1. In other words, α
does not contain the 1-form dφ as a factor and the top component of α has degree n. The
standard localization principle applies to the integral

∫
N α, which is obviously 0, but does not

apply to the integral
∫
N dφ ∧ α, since the form dφ ∧ α is not equivariantly closed. However,

we have the following statement.

Lemma 1. Let V ∈ Ω1
S1(N) be such that iuV = 0 and iuDV = 0. Then for all s∫

N
dφ ∧ α =

∫
N
dφ ∧ α ∧ e−sDV .

Proof. It follows the derivation of (2.2). Namely,

− d

ds

∫
N
dφ ∧ α ∧ e−sDV =

∫
N
dφ ∧ α ∧DV ∧ e−sDV

=
∫
N
D(V ∧ dφ ∧ α ∧ e−sDV ) +

∫
N
V ∧D(dφ ∧ α ∧ e−sDV )

=
∫
N
V ∧D(dφ) ∧ α ∧ e−sDV −

∫
N
V ∧ dφ ∧D(α ∧ e−sDV )

= 0.

As before, the first integral in the second line is zero by the Stokes’ theorem, and the last
integral in the third line is zero because Dα = 0 and D2V = 0. The new feature is first
integral in the third line, which is zero because D(dφ) = −1 and conditions iuV = 0 and
iuDV = 0 imply that the form V ∧ α ∧ e−sDV does not contain dφ, so its top component is
zero.

As in the previous section, in the infinite-dimensional case, we start with a classical
supersymmetric mechanical system with the Lagrangian L and Hamiltonian H, having a
single real supercharge Q satisfying {Q,Q} = 2iH , where { , } is the graded Poisson bracket.
As a basic example, consider a supersymmetric particle on the n-dimensional Riemannian
manifold M with the Lagrangian3

L = 1
2⟨ẋ, ẋ⟩+

i

2⟨ψ,∇ẋψ⟩. (2.6)

Here x(t) is a path in M expressed in terms of local coordinates x = (x1, . . . , xn), ẋ is
the velocity vector field along the path, ⟨ , ⟩ is the Riemannian inner product in Tx(t)M

and ψ(t) = (ψ1(t), . . . , ψn(t)) ∈ ΠTx(t)M is a tangent vector field along the path with the
reverse parity (i.e, with the anti-commuting values). Finally, ∇ in (2.6) is an arbitrary metric

3Here we use the ‘physical’ time and imaginary i is needed to make quadratic expressions in ψ “real”, that
is, iψµψν = −iψνψµ = iψµψν .
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connection in TM with totally anti-symmetric torsion. The latter condition guarantees
the standard supersymmetry

δxµ = iψµ, δψµ = −ẋµ, µ = 1, . . . , n, (2.7)

with a real supercharge Q, obtained by the Noether theorem (see sections 3 and 4).

Remark 1. In case of even n, after the quantization we get N = 1/2 supersymmetric quantum
particle on M with a single real supercharge Q̂ and quantum Hamiltonian Ĥ = 1

2Q̂
2 acting

in the Z2-graded Hilbert space H with the fermion number operator

(−1)F = 2n/2ψ̂1 · · · ψ̂n.

Here ψ̂µ are Majorana fermion operators satisfying canonical anti-commutation relations

[ψ̂µ, ψ̂ν ] = δµν Î , (2.8)

where [ , ] is a graded commutator and Î is an identity operator acting on the Hilbert space.
In the case of odd n it is well-known (see [14] for the recent discussion and the references
therein) that Majorana fermions are anomalous in the sense that there is no Hilbert space
interpretation.4 To remedy this situation, we replace M by M × S1 and trivially add a single
term ψn+1ψ̇n+1 to the Lagrangian, while keeping the kinetic term unchanged. Thus in this
case we also have a graded Hilbert space H where Ĥ acts, and it what follows we will always
assume such modification for odd n.

Like in the finite-dimensional example, our new localization principle applies to the
systems with zero Witten index,

I = Tr(−1)F e−βĤ =
∫∫∫
e−SE [x,ψ]DxDψ = 0.

This situation is quite general: the index of the standard Dirac operator vanishes on arbitrary
odd-dimensional spin manifolds, on compact Lie groups, etc. Specifically, we assume the
following conditions.

(i) The vanishing of the index is solely due to the presence of certain fermionic zero modes
χ1, . . . , χn in the path integral.5

(ii) In the Hilbert space H the operators χ̂µ satisfy (2.8) and

χ̂1 · · · χ̂n = 2−n/2(−1)F ,

where n = dimM if M is even-dimensional, and n = dimM + 1 otherwise.
4Nevertheless, such system with an odd number of Majorana fermions are still physically well-defined in

terms of path integral formulation.
5In some cases, when one starts with a supersymmetric system with a vanishing I but without fermionic

zero modes, the robustness of the index allows one to smoothly deform the system for which I vanishes
exclusively due to the presence of fermionic zero modes.
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It follows from (i)–(ii) that

2−n/2Tr e−βĤ = Str χ̂1 · · · χ̂ne−βĤ =
∫∫∫
χ1 · · ·χne−SE [x,ψ]DxDψ, (2.9)

so the path integral with periodic boundary conditions for fermions, with insertion of the
zero modes, computes the trace in the Hilbert space H and not the supertrace!

However, the standard supersymmetric localization discussed in section 2.1 no longer
applies, because

δ(χ1 · · ·χne−SE ) ̸= 0,

and the path integral in (2.9) non-trivially depends on β.
To formulate our new localization principle, we further assume that fermion zero modes

satisfy the following conditions∫
δχµdχµ = 0, µ = 1, . . . , n, (2.10)

which mean that δχµ does not contain fermion degree freedom χµ, which we will indicate
as δχµ ⊥ χµ. The following definition is fundamental.

Definition. Invariant deformation for a supersymmetric system with fermion zero modes
χ1, . . . , χn satisfying (2.10) is a functional V with a Grassmannian odd parity, satisfying the
following conditions.

(A) V is invariant,
δ2V = 0.

(B) V, δV ⊥ χµ, i.e. ∫
V dχµ =

∫
δV dχµ = 0, µ = 1, . . . , n.

Note that condition (A) is standard, while condition (B), the absence of fermion zero
modes in V and δV , is a completely new requirement. It is rather constraining and forces V
to explicitly depend on the first time derivatives of fermion degrees of freedom. The analog
of Lemma 1 is the following surprisingly simple statement.

Proposition 1. Let SE be the Euclidean action of the supersymmetric theory with fermion
zero modes χ1, . . . , χn satisfying (2.10). Then for all s we have∫∫∫

χ1 · · ·χne−SEDxDψ =
∫∫∫
χ1 · · ·χne−SE−sδV DxDψ,

where V is a deformation satisfying conditions (A)–(B).

Proof. We have

− d

ds

∫∫∫
χ1 · · ·χne−SE−sδV DxDψ =

∫∫∫
χ1 · · ·χnδV e−SE−sδV DxDψ

= (−1)n
∫∫∫

[δ(χ1 · · ·χnV )− δ(χ1 · · ·χn)V ] e−SE−sδV DxDψ

= 0.

– 9 –
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Here the integral of the first term in the second line is zero by Stokes’ theorem, and the
integral of the second term is zero since by conditions (2.10) and (A)–(B) it does not contain
zero modes.

As was remarked before, conditions (A)–(B) imply that localization V contains higher
derivatives and when δV is positive semi-definite, the path integral localizes to the solutions
of the second or higher order ordinary differential equations. In particular, such V provides
a mechanism for localizing on the geodesic locus. We will consider this application of the
new localization principle in sections 3 and 4.

Note that Proposition 1 is rather general and does not use condition (ii). Actually, one
can relax the condition (ii) and still obtain the information about the partition function
when the corresponding supersymmetric system has decoupled bosonic and fermionic degrees
of freedom, so

H = HB ⊗ HF and Ĥ = ĤB ⊗ IF + IB ⊗ ĤF ,

where the fermion Hilbert space HF is irreducible 2n/2-dimensional Clifford module (see
Remark 1). In this case, the supertrace in (2.9) is proportional to bosonic trace,

Str χ̂1 · · · χ̂ne−βĤ = 2−n/2Tr e−βĤB ⊗ e−βĤF = 2−n/2TrHF
e−βĤF · TrHB

e−βĤ .

In particular, if the supersymmetric system has free fermion part, then quantum Hamiltonian
Ĥ acts as identity operator on the fermion Hilbert space HF and

Str χ̂1 · · · χ̂ne−βĤ = TrHB
e−βĤ .

Using the representation (2.9) and Proposition 1, we obtain a pure bosonic trace formula by
localizing the supersymmetric path integral (2.9) in the limit s → ∞.

We will illustrate this general procedure in the next two sections by considering a simple
case M = S1 with the flat metric, and M = G, a compact connected semi-simple Lie group
with the bi-invariant metric. In the first case the Lagrangian is quadratic so fermion degrees
of freedom trivially decouple, while in the second case instead of the Levi-Civita connection
we use invariant flat connection on G and corresponding Kostant cubic Dirac operator.

3 Localization proof of the trace formula on S1

In this section, we consider the simplest application of the localization principle explained in
section 2 by providing localization proof of the trace formula on S1. This identity, the famous

Jacobi inversion formula,6 is related to the spectrum of the Laplace operator ∆ = − d2

dx2
on

HB = L2(S1), where S1 = R/2πZ. Namely, consider a free quantum particle of mass 1 on
S1 with the Hamiltonian Ĥ = 1

2P
2 = 1

2∆, and let Z(β) = TrHB
e−βĤ be the corresponding

thermal partition function. We have

Z(β) =
∞∑

n=−∞
e−βn

2/2 =
√

2π
β

∞∑
n=−∞

e−2π2n2/β , β > 0. (3.1)

6It is a special case of general formula for Jacobi theta-function [23] and was already known to Poisson [34].
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Remark 2. In the number theory, Jacobi inversion formula is usually written as

θ

(
−1
z

)
=
√
z

i
θ(z), where θ(z) =

∞∑
n=−∞

eπin
2z and Im z > 0

is the Jacobi theta series; the branch of the square root is defined by
√
1 = 1. Of course,

Jacobi inversion formula can be easily obtained from the Poisson summation formula
∞∑

n=−∞
f(n) =

∞∑
n=−∞

f̂(n),

where
f̂(k) =

∫ ∞

−∞
f(x)e2πikxdx.

Conversely, multiplying the Jacobi inversion formula for z = it by a ‘nice’ function g(t),
integrating over t and denoting

f(x) =
∫ ∞

0
e−πtx

2
g(t)dt,

we get the Poisson summation formula.
It is rather remarkable that one can get Jacobi inversion formula (3.1) as an elementary

application of the new supersymmetric localization principle, formulated in section 2.2.
Namely, consider the simplest supersymmetric Lagrangian

L = 1
2(ẋ

2 + iψψ̇) (3.2)

which has a standard N = 1/2 supersymmetry (2.7). We have

δL = 1
2(2δẋ ẋ+ iδψψ̇ − iψδψ̇) = i

2
d

dt
(ẋψ),

so by the Noether theorem,

iQ = δx
∂L
∂ẋ

+ δψ
∂L
∂ψ̇

− i

2(ẋψ) = iẋψ,

where ∂

∂ψ̇
stands for the left partial derivative in Grassmann variable. Using the graded

Poisson bracket

{ψ,ψ} = i

for Majorana fermion, we get the classical Hamiltonian

H = − i

2{Q,Q} = 1
2p

2, (3.3)

where p = ẋ by the Legendre transform.
The corresponding Witten index I is given by (2.4), where the Euclidean action is

SE =
∫ β

0

1
2(ẋ

2 + ψψ̇)dτ,
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where now dot stands for the derivative to the Euclidean time τ ; due to the presence of
the zero mode

χ = 1
β

∫ β

0
ψ dτ

we have I = 0. Since after the quantization we have χ̂2 = 1
2I, conditions (i)–(ii) of our

localization principle are satisfied (here we are using Remark 1). Moreover, Ĥ = 1
2Q̂

2 = 1
2∆,

so the fermion degrees of freedom totally decouple and we have

Str χ̂e−βĤ = TrHB
e−βĤ = Z(β). (3.4)

On the path integral side, we have

I(χ, β) =
∫∫∫

ΠTLS1
χe−SEDxDψ. (3.5)

Here eix(τ) ∈ LS1 = Map(S1
β , S

1) is the loop group of the circle S1, where S1
β = R/βZ

the ‘thermal’ circle, ψ(τ) ∈ ΠLR are β-periodic functions with anticommuting values, and
integration goes over ΠTLS1 = LS1×ΠLR, the tangent bundle of LS1 with the reverse parity
of the fibers, and DxDψ denotes the path integral ‘measure’ in ΠTLS1, defined as follows.

Lett u0(τ) =
1√
β

, un(τ) =
√

2
β
sinωnτ for n > 0 and un(τ) =

√
2
β
cosωnτ for n < 0,

where ωn = 2πn
β

, be the orthonormal eigenfunctions of the operator − d2

dτ2
in the real Hilbert

space L2(S1
β;R). Consider the eigenfunction expansions

x(τ) =
∞∑

n=−∞
cnun(τ) and ψ(τ) =

∞∑
n=−∞

ψnun(τ),

where7 c̄n = cn, ψ̄n = ψn, and put

DxDψ = dc0

∞∏
n=1

dcndc−n dψ0

∞∏
n=1

dψ−ndψn. (3.6)

As the result, bosonic and fermionic Gaussian path integrals with respect to DxDψ are
expressed in terms of the regularized determinants and Pfaffians of the corresponding dif-
ferential operators in the real Hilbert space L2(S1

β;R). In particular, since the eigenvalues

of − d2

dτ2
are ω2

n, we have by the standard zeta function regularization

det(−∂2τ ) =
∞∏
n=1

ω4
n = β2, (3.7)

which coincides with det(−∂2τ ) in the complex Hilbert space L2(S1
β). For the skew-symmetric

operator ∂τ in L2(S1
β;R) we have

∂τ

(
un
u−n

)
=
(

0 ωn
−ωn 0

)(
un
u−n

)
, n > 0,

7This reflects the fact that x(τ) are real-valued and ψ(τ) is Majorana fermion.
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so

Pf(∂2l+1
τ ) =

∞∏
n=1

ω2l+1
n = βl+

1
2 . (3.8)

Remark 3. The bosonic and fermionic measures Dx and Dψ have remarkable scaling property:
they are invariant under the change of variables c0 7→ ac0 and cn 7→ acn for any a > 0, and
ψ0 7→ bψ0 and ψn 7→ bψn for any b > 0. Indeed, the Jacobian for the bosonic change of
variables is

a
∞∏
n=1

a2 = a e2ζ(0) log a = 1,

since for the Riemann zeta-function ζ(0) = −1/2, and similarly for the fermionic variables.
We choose a = b = 1/

√
β, so that ac0 varies from 0 to 2π = Vol(S1), and χ = aψ0 satisfies

condition (ii) in section 2.2.

It follows from the discussion in section 2.2. that the simplest invariant deformation of
I(χ, β) is given by the following higher-derivative functional8

V = −1
2

∫ β

0
ψ̇ẍ dτ, (3.9)

so

δV = 1
2

∫ β

0
(ẍ2 + ψ̇ψ̈)dτ, (3.10)

where we are using Euclidean version of formulas (2.7),

δx = ψ and δψ = −ẋ. (3.11)

Indeed, it is elementary to verify that δχ ⊥ χ and V, δV ⊥ χ. Thus

I(χ, β) =
∫∫∫

ΠTLS1
χe−SE−sδV DxDψ (3.12)

and according to (3.10), in the limit s→ ∞ the path integral localizes on closed geodesics
satisfying ẍ = 0, i.e., x(τ) = c + ωnτ .

Let ΩS1 be the space of based loops,

D ′xD ′ψ =
∞∏
n=1

dcndc−n

∞∏
n=1

dψ−ndψn

be the corresponding path integral measure on ΠTΩS1, and xcl(τ) = ωnτ be isolated geodesics
in ΩS1. Using functional analog of the elementary formula

δ(f(x)) =
∑

f(xl)=0

δ(x− xl)
|f ′(xl)|

,

8It is noteworthy that such higher-derivative term resembles the one in the linearized Schwarzian action as
in [38].
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translation invariance of the action, Vol(S1) = 2π, and formulas (3.7)–(3.8), we easily compute

I(χ, β) = 2π lim
s→∞

∫∫∫
ΠTΩS1

e−SE−sδV D ′xD ′ψ

= 2π · (2π)ζ(0)
∫∫∫

ΠTΩS1
e−SE [x,ψ]δ(ẍ)δ(ψ)Pf(−∂3τ )D ′xD ′ψ

= 2π · (2π)ζ(0)
∫∫∫

ΩS1
e−SE [x,0]∑

xcl

δ(x− xcl)
| det(∂2τ )|

Pf(−∂3τ )D ′x

= 2π · (2π)ζ(0)
∑
xcl

e−
1
2

∫ β

0 ẋ2
cldτ

Pf(−∂3τ )
det(−∂2τ )

=
√

2π
β

∞∑
n=−∞

e−2π2n2/β .

Remark 4. One can think of 2ζ(0) = 2∑∞
n=1 1 = −1 as the regularized dimension of ΩS1,

so the prefactor (2π)ζ(0) is analogous to the prefactor (2π)dimM/2 in the finite-dimensional
Gaussian integration.

4 Localization proof of the Eskin trace formula on G

4.1 Supersymmetric particle on G

Here we describe classical and quantum aspects of the supersymmetric particle on a compact
semi-simple Lie group G. We summarized some basic facts on G in the appendix A.2. As in
section 2.2, let xµ(t) be local coordinates in the neighborhood of g(t) for a path g(t) in G, and
let ψ(t) ∈ ΠTg(t)G be a vector field along the path with the reverse parity. We consider the
following Lagrangian L of a free supersymmetric particle on G endowed with the connection
with totally anti-symmetric parallelizing torsion,

L = 1
2(ẋ, ẋ) +

i

2(ψ,∇
−
ẋ ψ), (4.1)

where ∇− is a flat connection on G,9 defined by the condition that the elements of g are
parallel vector fields with the parallel transport given by the left translations (Lg)∗. In terms
of the local coordinates the Lagrangian takes the form

L = 1
2gµν ẋ

µẋν + i

2gµν(ψ
µψ̇ν + Γνλρẋλψµψρ), (4.2)

where Christoffel symbols are given by Γνρλ are

Γνλµ = θνa∂λθ
a
µ (4.3)

(see appendix A.2 for notations). The supersymmetry transformation10 is given by standard
formulas (2.7),

δxµ = iψµ, δψµ = −ẋµ, µ = 1, . . . , n. (4.4)
9Equivalently, we could start with the choice of the right-invariant flat connection ∇+.

10Here we use the Lorentzian time and imaginary i is needed to make quadratic expressions in ψ “real”,
that is, iψµψν = −iψνψµ = iψµψν .
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In terms of the current J = g−1ġ = JaTa ∈ g and ψ = ψaTa ∈ Πg, where ψa = θaµψ
µ,

the supersymmetry transformation takes the following form

δg = igψ, (4.5)
δψ = −J − iψψ, (4.6)
δJ = i(∂t + adJ)ψ, (4.7)

where the formula for δJ is a direct consequence of the first two. In the formula (4.5) it
is understood that gψ = (Lg)∗ψ, and in (4.6)

ψψ = 1
2ψ

aψb(TaTb − TbTa) =
1
2[ψ,ψ].

Indeed, formula (4.5) immediately follows from the first formula in (4.4), while for (4.6)
we have the following simple computation, using (A.3):

δψa = −θaµẋµ + i∂νθ
a
µψ

νψµ = −Ja + i

2(∂νθ
a
µ − ∂µθ

a
ν)ψνψµ

= −Ja − i

2f
a
bcθ

b
νθ
c
µψ

νψµ = −Ja − i

2f
a
bcψ

bψc

= −Ja − i(ψψ)a.

In the Hamiltonian formalism, Legendre transform associated with the Lagrangian (4.1)
formally gives11

p̃µ = ∂L
∂ẋµ

= gµν ẋ
ν + i

2gρνΓ
ν
λµψ

ρψλ and π̃µ = ∂L
∂ψ̇µ

= − i

2gµνψ
ν (4.8)

as canonically conjugated variables to xµ and ψµ. However, we have constraints

Φ̃a = π̃µ +
i

2gµνψ
ν = 0,

and one needs to use the Dirac formalism of Poisson brackets with constraints (see, e.g., [11,
35]). Due to the simple nature of the flat connection ∇−, it is convenient to use variables
ψa instead of ψµ. Namely, using (4.3), we have

L = 1
2gµν ẋ

µẋν + i

2gabψ
aψ̇b, (4.9)

so defining

pµ = ∂L
∂ẋµ

= gµν ẋ
ν and πa =

∂L
∂ψ̇a

= − i

2gabψ
b

we see that the fermion degrees of freedom decouple. The corresponding constraints are

Φa = πa +
i

2gabψ
b = 0,

11Here ∂

∂ψ̇µ
stands for the left partial derivative in Grassmann variables.
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and the matrix

Cab = {Φa,Φb} = igab

does not depends on the coordinates xµ. Thus in the Dirac formalism the canonical coordinates
of the reduced phase space are pµ, xµ and ψa with the following non-vanishing Poisson brackets

{pµ, xν} = δνµ and {ψa, ψb} = igab. (4.10)

For the corresponding Hamiltonian, we have from (4.9)

H = ẋµpµ + ψ̇aπa − L = 1
2g

µνpµpν , (4.11)

and as in section C we obtain

H = 1
2g

ablalb. (4.12)

To establish the classical supersymmetry algebra, it is convenient to write

L = 1
2(J, J) +

i

2(ψ, ψ̇),
(4.13)

where (u, v) = gabu
avb and to represent ad-invariance of the Killing form as

([x, y], z) = (x, [y, z]), (4.14)

where x, y, z ∈ g can be even or odd elements. Also, when x, y are odd elements of g, we have

[x, y] = [y, x] and [x, [x, x]] = 0,

so
([x, x], [x, x]) = (x, [x, [x, x]]) = 0. (4.15)

Using equations (4.6)–(4.7) and (4.14), we readily compute

δL = 1
2(δJ, J) +

1
2(J, δJ) +

i

2(δψ, ψ̇)−
i

2(ψ, δψ̇)

= 1
2
d

dt

(
i(ψ, J)− 1

6(ψ, [ψ,ψ])
)
,

so by the Noether theorem, the supercharge Q is given by

iQ = δxµ
∂L
∂ẋµ

+ δψa
∂L
∂ψ̇a

− 1
2

(
i(ψ, J)− 1

6(ψ, [ψ,ψ])
)

= i(ψ, J)− 1
6(ψ, [ψ,ψ]).

Using the Legendre transform, we get the following formula for the supercharge in
the phase space

Q = (ψ,L) + i

6(ψ, [ψ,ψ]),
(4.16)
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where, according to (C.4),

L = laTa, la = gablb.

It follows from (C.6) that

{Q, ra} = 0.

The following result manifests classical supersymmetry.

Lemma 2. The following classical supersymmetry algebra relation holds

{Q,Q} = 2iH. (4.17)

Proof. Indeed, we have, using (4.10), (4.12) and (4.15),

{Q,Q} = {ψala, ψblb}+
i

6 (la{ψa, (ψ, [ψ,ψ])}+ la{(ψ, [ψ,ψ]), ψa})

− 1
36{(ψ, [ψ,ψ]), (ψ, [ψ,ψ])}

= igablalb + ([ψ,ψ], L)− ([ψ,ψ], L)− 1
4([ψ,ψ], [ψ,ψ])

= 2iH.

Since bosonic and fermionic degrees of freedom in the Lagrangian (4.9) are totally
decoupled, quantization of the classical system is straightforward.

First, the Hilbert space is

H = L2(G)⊗ HF , (4.18)

where, according to the Remark 1, HF is irreducible Clifford algebra module of dimension 2n/2.
Second, classical variables la and ψa are replaced by quantum operators l̂a and ψ̂a acting

on H and satisfying the following graded commutation relations

[ψ̂a, ψ̂b] = gab and [l̂a, l̂a] = −if cab l̂c (4.19)

— quantization of the graded Poisson brackets in appendices B and C. In particular, l̂a = −iea,
where ea are left-invariant vector fields on G, realized as the first order differential operators
on G. Correspondingly,

∆ = gab l̂a l̂b = −gabeaeb (4.20)

is the Laplace operator on G, the quadratic Casimir operator C2 on the universal enveloping
algebra Ug, realized as algebra of differential operators on L2(G).

The quantum supercharge Q̂ is defined unambiguously (i.e., there is no problem of
ordering the quantum operators) by the following formula

Q̂ = ψ̂a l̂a +
i

6fabcψ̂
aψ̂bψ̂c, fabc = gaef

e
bc. (4.21)

Since l̂a and r̂a = −ifa commute, where fa are right-invariant vector fields on G, realized
as the first order differential operators on G, we have

[Q̂, r̂a] = 0.

The following result is fundamental.
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Proposition 2. Defined by the supersymmetry algebra the quantum Hamiltonian Ĥ = Q̂2 is
given by

Ĥ = 1
2g

ab l̂a l̂b +
1
48fabcf

abcÎ = 1
2∆ + R

12 Î ,
(4.22)

where ∆ is the Laplace operator on L2(G) and

R = 1
4fabcf

abc = n

4
is the scalar curvature of the Cartan-Killing metric on G.

Proof. From the commutation relations in (4.19) we readily obtain

[ψ̂a l̂a, ψ̂b l̂b] = gab l̂a l̂b − if cab l̂cψ̂
aψ̂b,

[ψ̂a l̂a, fbcdψ̂bψ̂cψ̂d] = 3fabc l̂aψ̂bψ̂c,

[fabcψ̂aψ̂bψ̂c, fdef ψ̂dψ̂eψ̂f ] = −3
2fabcf

abc.

Using these relations, it is straightforward to verify that

Q̂2 = 1
2 [Q̂, Q̂] = 1

2[ψ̂
a l̂a +

i

6fabcψ̂
aψ̂bψ̂c, ψ̂d l̂d +

i

6fdef ψ̂
dψ̂eψ̂f ]

= 1
2g

ab l̂a l̂b +
1
48fabcf

abcÎ .

Remark 5. It should be noted that in representation theory the quantum supercharge Q̂ is
just the Kostant’s cubic Dirac operator on G, introduced in [26] (see also [1]). According
to [7], it is just a G-invariant Dirac operator, associated with the invariant flat connection ∇−.
In the physics literature, such operator was first obtained by H.W. Braden [11] for canonical
quantization of the N = 1/2 supersymmetric sigma model. Our elementary derivation of the
supersymmetry algebra (cf. with [9, 11]) is possible due to commutation relations (4.19).
Remark 6. It is quite remarkable that proportional to the scalar curvature innocuously looking
constant term in Ĥ is precisely the well-known ‘notorious’ DeWitt term for the bosonic
quantum particle on curved manifold [15]. It is proportional to ℏ2 quantum correction to the
action in the path integral for the propagator of a pure bosonic quantum particle moving
on a curved manifold, and is obtained by a tedious analysis of the discretized path integral.
It is really striking that such term naturally appears through the quantum supersymmetry
algebra! This clearly supports the idea of using supersymmetry to derive pure bosonic trace
formulas, and will be a crucial ingredient in the derivation of the trace formula on G.

4.2 Eskin’s trace formula on G

The supersymmetric particle on G with the connection ∇− considered satisfies all conditions of
our new localization principle formulated in section 2.2. Namely, it has n fermion zero modes

χa = 1
β

∫ β

0
ψa dτ

such that

χ̂1 · · · χ̂n = 2−n/2(−1)F ,
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so according to (4.22), bosonic and fermionic degrees of freedom are totally decoupled and

Str
(
χ̂1 . . . χ̂ne−βĤ

)
= e−

1
12βR Tr e−

1
2β∆.

Since ∆ commutes with left and right translations, one can also express the heat kernel
on G as a supertrace. Namely, we recall that the heat kernel is a fundamental solution
Kτ (g1, g2) of the heat equation on G

∂K

∂τ
= −1

2∆K

with respect to g1, satisfying

lim
τ→0

Kτ (g1, g2) = δG(g1g−1
2 ),

where δG is the Dirac delta-function on G with respect to the Cartan-Killing volume form. Fix
a Cartan subgroup T in G and corresponding Cartan subalgebra t in g, dim t = r, the rank
of g. It follows from the bi-invariance of the heat kernel that it only depends on g1g

−1
2 ∈ T ,

and we will denote it by kt(eh), where h ∈ t and eh ∈ T . Using Dirac notation,

kτ (eh) = Kτ (eh, 1) = ⟨eh|e−
1
2 τ∆|1⟩,

where 1 is the identity element in G.
Correspondingly, Tr e− 1

2β∆ = VGkβ(1), where VG is the volume of G, and more generally

Tr e−
1
2β∆+i(h,r̂) = VGkβ(eh),

where r̂ = r̂aTa. The extra term i(h, r̂) in the exponent can be thought as a (imaginary)
‘chemical potential’ added to the Hamiltonian Ĥ. Since the operators r̂a commute with
Q̂, we have

Str χ̂1 . . . χ̂ne−βĤ+i(h,r̂) = VGe
− 1

12βRkβ(eh). (4.23)

Here the supertrace is given by the following path integral∫
ΠTLG

χ1 . . . χne−S
h
E DgDψ (4.24)

with the Euclidean action

ShE = 1
2

∫ β

0

(
(J, J) + (ψ, ψ̇)

)
dτ + 1

β

∫ β

0
(Adg−1h, J)dτ + 1

2β (h, h)
(4.25)

and G-invariant ‘measure’ Dg. Because of the additional term (Adg−1h, J) in the action, it
is easy to verify that ShE is now invariant under the modified supersymmetry transformation
δh, which in the Euclidean time for fixed h ∈ t has the form

δhg = gψ,

δhψ = −Jh − ψψ,

δhJ
h = (∂τ + adJh)ψ,

where Jh = J + 1
β

Adg−1h.
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The spectral representation of kβ(eh) is well-known since ∆ = C2, the quadratic Casimir
operator. Namely, we have

kβ(eh) =
1
VG

∑
λ∈IrrepG

dλ χλ(h)e−
1
2βC2(λ), (4.26)

where χλ is the character for an irreducible representation λ of G, dλ is its dimension, and
C2(λ) is the eigenvalue of C2. We have (see appendix A.1 for notation)

C2(λ) = ⟨λ+ ρ, λ+ ρ⟩ − ⟨ρ, ρ⟩, where ρ = 1
2
∑
α∈R+

α ∈ P+,

where R+ is the set of positive roots and P+ is the set of dominant weights. Using Weyl
dimension formula

dλ =
∏
α∈R+

⟨λ+ ρ, α⟩
⟨ρ, α⟩

,

one can rewrite (4.26) as

kβ(eh) =
1
VG

e
1
2β⟨ρ,ρ⟩

∑
λ∈P+

χλ(h)
∏
α∈R+

⟨λ+ ρ, α⟩
⟨ρ, α⟩

e−
1
2β(λ+ρ,λ+ρ). (4.27)

The Freudenthal-de Vries’s ‘strange formula’

⟨ρ, ρ⟩ = n

24 ,

ensures that the prefactor in (4.27) exactly cancels the factor e− 1
2βR = e−

1
48nβ in (4.23)!

It is remarkable, that there is another representation for kβ(eh) as a sum over so-called
characteristic lattice, obtained by L.D. Eskin [19]. Namely, suppose (which is the main
assumption) that Cartan element h is regular, which means that ⟨h, α⟩ /∈ 2πiZ for any root
α ∈ R. Then one has the following representation

kβ(eh) =
e

1
2β⟨ρ,ρ⟩

(2πβ)n/2
∑
γ∈Γ

∏
α∈R+

1
2⟨α, h+ γ⟩

sinh 1
2⟨α, h+ γ⟩

e
− 1

2β
(h+γ,h+γ)

, (4.28)

where Γ = {γ ∈ t : eγ = 1} is the characteristic lattice,12 which is related to the maximal
torus of G by T = t/Γ. Comparing formulas (4.27) and (4.28) yields Eskin trace formula.13

Up to a DeWitt term e
1
2β⟨ρ,ρ⟩, the right hand side in (4.28) exhibits a nature of the exact

semi-classical approximation with geodesics exp((h + γ)τ/β), γ ∈ Γ, connecting 1 and eh.
The regularity condition ensures that each denominator in (4.28) is non zero, since for γ ∈ Γ∏

α∈R+

sinh 1
2⟨α, h+ γ⟩ = ±

∏
α∈R+

sinh 1
2⟨α, h⟩. (4.29)

Here we show that the Eskin trace formula can be obtained very naturally as a result of
supersymmetric localization of the path integral (4.24). Namely, we have the following result.

12In case G is simple and simply connected, Γ = 2πiQ∨ where Q∨ is a coroot lattice.
13Note that Eskin was using the convention that R ⊂ t, which explains the difference between hyperbolic

sine functions in (4.28) and trigonometric sine functions in [19].
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Theorem 1. We have the following exact localization formula

∫
ΠTLG

χ1 . . . χne−S
h
E DgDψ = VG

(2πβ)n/2
∑
γ∈Γ

∏
α∈R+

1
2⟨α, h+ γ⟩

sinh 1
2⟨α, h+ γ⟩

e
− 1

2β
(h+γ,h+γ)

.

Proof. Put

V = −1
2

∫ β

0
(J̇h, ψ̇) dτ, (4.30)

so

δhV = 1
2

∫ β

0

(
(J̇h, J̇h) + (ψ̇, (∂τ + adJh)ψ̇)

)
dτ. (4.31)

It is straightforward to check that δ2hV = 0 and V, δhV ⊥ χa, a = 1, . . . , n. Hence V is an
invariant deformation to the path integral (4.24), and according to Proposition 1,∫

ΠTLG

χ1 . . . χne−S
h
EDgDψ =

∫
ΠTLG

χ1 . . . χne−S
h
E−sδhV DgDψ. (4.32)

Moreover, purely bosonic part of δhV is positive semi-definite with zeros at J̇h = 0, so in
the limit s → ∞, the path integral (4.32) localizes on the locus J̇h = 0. To facilitate the
computation, we use the left G-invariance and integrate over fermionic zero modes to obtain∫

ΠTLG

χ1 . . . χne−S
h
E−sδhV DgDψ = VG

∫
ΠTΩG

e−S
h
E−sδhV D ′gD ′ψ, (4.33)

where ΩG is the space of based loops on G, g(0) = g(β) = 1. Since h ∈ t is regular, solutions
of the equation J̇h = 0 in ΩG are isolated geodesics parameterized by the lattice Γ,

gγ(τ) = e
1
β
τγ and Jhγ = h+ γ

β
, γ ∈ Γ. (4.34)

Indeed, we have

Jh = g−1
(
ġ + 1

β
hg

)
= g̃−1 ˙̃g,

where g̃(τ) = ehτ/βg(τ). Hence equation J̇h = 0 implies Jh(τ) = c/β with some c ∈ g, so
g̃(τ) = g̃(0)ecτ/β and g(τ) = e−hτ/βg(0)ecτ/β. The condition g ∈ ΩG gives eh = ec, and
h ∈ t being regular implies that c ∈ t (see Lemma 3 in appendix A.1). Thus ec−h = 1 and
c − h = gγ̃g−1 for some γ̃ ∈ Γ and g ∈ G, and since c − h ∈ t, we have g ∈ W , the Weyl
group of G, and γ = gγ̃g−1 ∈ Γ.

Similarly, since h is nonsingular, it is easly to see that solution of the equation

∂τ (∂τ + adJh)ψ̇ = 0

in ΠΩg gives ψcl = 0.
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Now as in section 3, using (4.31) we readily obtain

lim
s→∞

∫
ΠTΩG

e−S
h
E−sδhV D ′gD ′ψ

= 1
(2π)n

2

∫
ΠTΩG

e−S
h
E [g,ψ]δ(J̇h)δ(ψ)Pf(−∂3τ − adJh∂2τ )D ′gD ′ψ

= 1
(2π)n

2

∫
ΩG

∑
γ∈Γ

e−S
h
E [g,0] δ(gg−1

γ )
| det(dJ̇h)|

Pf(−∂3τ − adJh∂2τ )D ′g

= 1
(2π)n

2

∑
γ∈Γ

Pf(−∂3τ − ad(h+γ)/β∂
2
τ )

| det(dJ̇h)|
e
− (h+γ,h+γ)

2β , (4.35)

where the linear operator dJ̇h : Ωg → Ωg is the differential of the functional J̇h(τ) on ΩG at
the critical point Jhγ .

By definition of Jh we have

dJh(τ) = ∂τ + adJh(τ), (4.36)

so
dJ̇h(τ) = ∂2τ + ∂τadJh(τ). (4.37)

Indeed, put δg = gX, X ∈ g, so
δġ = ġX + gẊ

and for δJh = dJ̇h(τ)(X) we have

δJh = −g−1δgg−1ġ + g−1δġ + 1
β
(g−1hδg − g−1δgg−1hg) = Ẋ + [Jh, X],

which proves (4.36). Thus for each critical point Jh(τ) = (h+ γ)/β we obtain

dJ̇h(τ) = ∂2τ + ad(h+γ)/β∂τ . (4.38)

To compute the functional determinants in (4.35), we use the Cartan-Weyl basis (A.1)
for g (cf. [33]) and as in section 3 consider the expansions

X(τ) =
∑
n ̸=0

 r∑
j=1

cj,niHj +
∑
α∈R

c(1)α,nXα +
∑
α∈R

c(2)α,nYα

un(τ) ∈ Lg/g ≃ Ωg, (4.39)

ψ(τ) =
∑
n ̸=0

 r∑
j=1

ψj,niHj +
∑
α∈R

ψ(1)
α,nXα +

∑
α∈R

ψ(2)
α,nYα

un(τ) ∈ ΠΩg, (4.40)

where we put Xα = Eα − E−α and Yα = i(Eα + E−α). It follows from the commutation
relations

[H,Xα] = −i⟨H,α⟩Yα and [H,Yα] = i⟨H,α⟩Xα, where H ∈ it,

(see appendix A.1) that iHjun(τ) and Xαun(τ) + Yαu−n(τ) are the eigenfunctions of the

operator −∂2τ − ad(h+γ)/β∂τ with the eigenvalues ω2
n and ω2

n + i
⟨h+ γ, α⟩

β
ωn.
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Similarly, in the two-dimensional subspaces spanned by iHjun(τ), iHju−n(τ) and by
Xαun(τ) + Yαu−n(τ), Xαu−n(τ) − Yαun(τ), where n > 0, the skew-symmetric operator
−∂3τ − ad(h+γ)/β∂

2
τ acts by the following 2× 2 matrices

(
0 ω3

n

−ω3
n 0

)
and

 0 ω3
n + iω2

n

⟨h+ γ, α⟩
β

−ω3
n − iω2

n

⟨h+ γ, α⟩
β

0

 .
Finally, for the ratio of the functional determinants in (4.35) we have, using the standard
zeta function regularization,

Pf(−∂3τ − ad(h+γ)/β∂
2
τ )

det(−∂2τ − ad(h+γ)/β∂τ )

=
( ∞∏
n=1

ω3
n

)r ∏
α∈R

∞∏
n=1

(
ω3
n + i

⟨h+ γ, α⟩
β

ω2
n

)/( ∞∏
n=1

ω4
n

)r ∏
α∈R

∞∏
n=1

(
ω2
n + i

⟨h+ γ, α⟩
β

ωn

)2

=
( ∞∏
n=1

ωn

)−r ∏
α∈R

∞∏
n=1

(
ωn + i

⟨h+ γ, α⟩
β

)−1

= β−
n
2
∏
α∈R+

1
2⟨α, h+ γ⟩

sinh 1
2⟨α, h+ γ⟩

.

Remark 7. Using (4.23), (4.24) and (4.27), the statement of the theorem can be rewritten as
the equality “Spectral Trace = Matrix Trace” for the operator e− 1

2β∆,

e
1
2β⟨ρ,ρ⟩

∑
λ∈P+

χλ(h)
∏
α∈R+

⟨λ+ ρ, α⟩
⟨ρ, α⟩

e−
1
2β⟨λ+ρ,λ+ρ⟩

= VG
e

1
2β⟨ρ,ρ⟩

(2πβ)n/2
∑
γ∈Γ

∏
α∈R+

1
2⟨α, h+ γ⟩

sinh 1
2⟨α, h+ γ⟩

e
− 1

2β
(h+γ,h+γ)

,

which generalizes Jacobi inversion formula. After trivial rewriting, this formula is precisely
the Eskin trace formula! It should also be noted that when G is simply connected the sign in
formula (4.29) is plus for all γ ∈ Γ, and Eskin formula is proved in Theorem 4.3 in [9]. The
latter is obtained as a special case of Theorem 4.3.4 in [20], when one of Cartan elements
goes to 0.

5 Singular trace formula on G

Since the spectral side in Eskin formula is a smooth function of h ∈ t, it is natural to relax
the regularity condition on h. In particular, for h = 0 the spectral side is just Tr e− 1

2β∆.
However, for singular h the sum over Γ has vanishing denominators, and it was observed
in [19] that one needs to sum over the orbits of the Weyl group of G, and only then take
the limit h → 0. Physically, such singular behavior indicates that geodesics are no-longer
isolated, so the localization formalism should be modified. In this section, we consider the
most singular case h = 0; generalization to other singular cases is straightforward.
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Let’s start from the localization formula established in the previous section in the case
of h = 0.

1
VG

e−
1

12βR Tr e−
1
2β∆ =

∫
ΠTΩG

e−SE−sδV DgDψ ≡ I(s) (5.1)

We write the path integral as

I(s) =
∫
ΠTΩG

F (J, ψ) exp
{
−s2

∫ β

0

(
(J̇ , J̇) + (ψ̇, (∂τ + adJ)ψ̇)

)
dτ

}
DgDψ

where
F (J, ψ) = exp

{
−1
2

∫ β

0

(
(J, J) + (ψ, ψ̇)

)
dτ

}
,

We first analyze the critical points under the localization limit s → ∞.

5.1 Critical points

We have J̇ = 0, where J = g−1ġ, so equation J = const and g(0) = g(β) = 1 give
g(τ) = euτ , where euβ = 1. Therefore u = 1

β vγv
−1, where γ ∈ Γ, the characteristic lattice,

and v ∈ G/Cγ , where

Cγ = {g ∈ G : gγg−1 = γ}

is the centralizer of γ in G. Thus u ∈ Oγ , the orbit of γ/β in g under the adjoint action of
G. Clearly, Oγ = Oγ′ if γ′ = wγw−1, where w ∈W , the Weyl group of G. Thus connected
components for bosonic critical points are the sets Mγ in ΩG,

gcl(τ) = ve
τ
β
γ
v−1, Jcl =

1
β
vγv−1, (5.2)

parameterized by v ∈ G/Cγ , where γ ∈ Γ/W . In other words, Jcl ∈ Oγ .
As in section 4.2, for g ∈ ΩG we put X = g−1δg and rewrite the expansion (4.39)

in the form14

X(τ) =
∑
n,j

zj,nHje
iωnτ +

∑
n,α∈R

zα,nEαe
iωnτ ∈ Ωg, (5.3)

where zj,n = −zj,−n, zα,n = −z−α,−n and H1, . . . Hr, Eα, α ∈ R, is the orthonormal Cartan-
Weyl basis (see appendix A.1). Condition that X is a tangent vector to the image of ΩG under
the map g → J = g−1ġ is X(0) = 0, so the path integral measure D ′g becomes proportional to

∏
j

δ

∑
n∈Z

zj,n

 ∏
α∈R

δ

∑
n∈Z

zα,n


×
∏
j

dzj,0

∞∏
n=1

dzj,ndzj,−n
∏
α∈R

dzα,0

∞∏
n=1

dzα,ndzα,−n.

14In this section, we are not going to use the isomorphism Ωg ≃ Lg/g.
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For notational convenience, we put γ = 2πiν.15 Writing v = e
∑

uαEα with uα = −u−α,
where summation goes over α such that ⟨α, ν⟩ ̸= 0 and using

[γ,Eα] = 2πi⟨α, ν⟩Eα, (5.4)

we have for the corresponding tangent vector along Mγ

g−1
γ δgγ = uα

(
e
− τ

β
γ
Eαe

τ
β
γ − Eα

)
= uα(e−iω⟨α,ν⟩τ − 1)Eα.

(5.5)

The fermion critical points satisfy the equation

∂τ (∂τ + adJ)ψ̇ = 0, (5.6)

where J = Jcl. We have

(∂τ + adJ)ψ̇ = c,

and since ψ ∈ ΠΩg, using Fourier series we have c = 0, so

(∂τ + adJ)ψ̇ = 0. (5.7)

It is sufficient to solve this equation for v = 1. It is convenient to rewrite the expansion (4.40)
in the form

ψ =
∑
n,j

ψj,nHje
iωnτ +

∑
n,α

ψα,nEαe
iωnτ ∈ ΠΩg, (5.8)

where ψj,0 = ψα,0 = 0 and ψj,n = −ψj,−n, ψα,n = −ψ−α,−n. Then equation (5.7) gives∑
n,j

iωnψj,nHje
iωnτ +

∑
n,α

(
iωn + 2πi⟨α, ν⟩

β

)
ψα,nEαe

iωnτ = 0,

so that ψn,j = 0 and ψα,n = 0 except ψα,−⟨α,ν⟩ for ⟨α, ν⟩ ̸= 0, which are arbitrary. Thus
the general solution of (5.7) is

χ =
∑

⟨α,ν⟩̸=0
ψα,−⟨α,ν⟩Eαe

iω−⟨α,ν⟩τ
(5.9)

and is parameterized by Π(g/cγ), where cγ = {x ∈ g : [x, γ] = 0} the centralizer of γ in g.

5.2 Quadratic form

It is easy to show that the map J : ΩG→ Lg is injective and its image is a coadjoint orbit
Ô1 of the element 0 ∈ Lg (see appendix A.3). Correspondingly, a connected component of
the critical locus of Jcl is a coadjoint orbit Oγ of G in g, and we have Oγ ⊂ Ô1.

According to formula (4.36), the differential dJ of the map J : ΩG→ Lg is the differential
operator DJ = ∂τ + adJ . Let the vector X ∈ Ωg, given by (5.3), be the tangent vector to
ΩG at gcl. Then for g(τ) = gcl(τ)eX(τ) we obtain

J = g−1ġ = Jcl +DX + 1
2[DX,X] + higher order terms, (5.10)

where we denote D = DJcl
.

15When G is simple and simply connected we have ν ∈ Q∨.
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It follows from (5.3) that16

DX =
∑
n,j

iωnzj,nHje
iωnτ +

∑
n,α

iωn+⟨α,ν⟩zα,nEαe
iωnτ .

Using the AdG invariance of the localizing action we can reduce bosonic critical manifold
Mγ to a representative γ and according to (5.5) wet decompose

X(τ) = X⊥(τ) + uα(e−iω⟨α,ν⟩τ − 1)Eα,

where the vector X⊥(τ) is orthogonal to Mγ at γ and for its modes in addition to constraints
above, we have zα,0 = zα,−⟨α,ν⟩ for ⟨α, ν⟩ ̸= 0. Similarly, we decompose

ψ(τ) = η(τ) + χ(τ),

where χ is given by (5.9) and η is orthogonal to χ, so it does have fermion modes ψα,0, ψα,−⟨α,ν⟩
and ψj,0.

In the limit s → ∞ the path integral I(s) effectively reduces onto a small tubular
neighborhood of Mγ in ΩG. Indeed, rescale X⊥ and η such that X⊥ → X⊥

√
s

and η → η√
s
,

which according to Remark 3 does not change the integration measure. Next, consider the
terms in the action left over in the s → ∞ limit17 and use the delta-function constraints
δ(∑n∈Z zj,n), δ(

∑
n∈Z zα,n). The integral over modes describing the orbit Oγ naturally gives

the its volume vol(Oγ) with respect to the Cartan-Killing volume form on G and we obtain

lim
s→∞

I(s) =
∑

γ∈Γ/W
vol(Oγ)e−Sγ

∫∫∫
e−S

loc
γ DYDη dχ, (5.11)

where Sγ is the classical action,

Slocγ =∫ (1
2⟨DẎ ,DẎ ⟩+ 1

2⟨χ, χ̇⟩+
1
2⟨η̇, Dη̇⟩+

1
2⟨η̇, [DY, χ̇]⟩+

1
4⟨χ̇, [[DY, Y ], χ̇]⟩

)
dτ, (5.12)

the tangent vector Y does not contain modes zα,0, zα,−⟨α,ν⟩ and zj,0 and the integration
over χ is a finite-dimensional.

It is tempting to make a shift η̇ 7→ η̇ + [Y, χ̇] in the path integral (5.11). We write
[Y, χ̇] explicitly as ∑

j,n ̸=0
zj,nHje

iωnτ +
∑

α,n ̸=0,−⟨α,ν⟩
zα,nEαe

iωnτ ,−i
∑
β

ω⟨β,ν⟩ψβ,−⟨β,ν⟩Eβe
−iω⟨β,ν⟩τ

 (5.13)

The commutator does not contain modes Hj and Eαe−iω⟨α,ν⟩ . First, there is no constant
term Hj , since it could only comes from [Eα, E−α]eiωn+⟨α,ν⟩τ , but n+ ⟨α, ν⟩ ̸= 0. Similarly,

16Here we are not assuming that constant terms of X(τ) vanish but rather imposing the constraints
X(0) = X(τ) = 0, which follows from g ∈ ΩG.

17We could use this procedure for the derivation of the Eskin trace formula in section 4.2. Since the critical
points in that case are isolated, we obtain the same path integral (4.35).
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the term Eαe
−iω⟨α,ν⟩ cannot appear: it can come only from [Hj , Eα]eiωn−⟨α,ν⟩τ or from

[Eα, Eβ]eiωn−⟨β,ν⟩τ , but n ̸= 0.
However, (5.13) contains modes ψα,−⟨α,ν⟩ with ⟨α, ν⟩ ̸= 0. Namely, it is

ζ = 1
β

∫ β

0
[Y, χ̇]dτ

=
∑
j

∑
α∈R

ω⟨α,ν⟩αjzj,⟨α,ν⟩ψα,−⟨α,ν⟩Eα +
∑

α,β∈R,α+β ̸=0
ω⟨β,ν⟩N(α, β)zα,⟨β,ν⟩ψβ,−⟨β,ν⟩Eα+β .

Thus correct change of variables η̇ 7→ ϕ̇ = η̇ + [Y, χ̇] − ζ. As a result, we get the action
(renaming ϕ to η again)

Slocγ = 1
2

∫ (
⟨DẎ ,DẎ ⟩+ ⟨χ, χ̇⟩+ ⟨η̇, Dη̇⟩

+ ⟨ζ, adJcl
ζ⟩ − ⟨[Y, χ̇], [DY, χ̇]⟩+ 1

2⟨χ̇, [[DY, Y ], χ̇]⟩
)
dτ.

(5.14)

We have

[[DY, Y ]χ̇] =− [[Y, χ̇], DY ]− [[χ̇,DY ], Y ]
= [DY, [Y, χ̇]] + [Y, [χ̇,DY ]],

so

⟨χ̇, [[DY, Y ], χ̇]⟩ = ⟨χ̇, [DY, [Y, χ̇]]⟩+ ⟨χ̇, [Y, [χ̇,DY ]]⟩
= −⟨[DY, χ̇], [Y, χ̇]⟩ − ⟨[Y, χ̇], [χ̇,DY ]⟩
= 2⟨[Y, χ̇], [DY, χ̇]⟩

and we finally obtain

Slocγ = 1
2

∫ (
⟨DẎ ,DẎ ⟩+ ⟨χ, χ̇⟩+ ⟨η̇, Dη̇⟩+ ⟨ζ, adJζ⟩

)
dτ. (5.15)

Remark 8. The main reason that the shift η̇ → η̇+ [Y, χ̇] could be dangerous is because [Y, χ̇]
may contain a constant Fourier mode which cannot be integrated in Lg. Namely, consider
the following elementary example

I =
∫∫∫

ΠΩg
e−
∫ β

0 ⟨η̇,[A,η̇]⟩dτDη = Pf(∂2τadA), (5.16)

where A ∈ g is a constant, and consider the shift η̇ → φ̇ = η̇ + ε where ε ∈ Πg is a constant.
Obviously, after integration φ is no longer in Lg. Nevertheless, if we naively assume that the
path integral measure does not change, Dη = Dφ,and integration is still over ΠΩg, then we
obtain ∫ β

0
⟨η̇, [A, η̇]⟩dτ =

∫ β

0
⟨φ̇, [A, φ̇]⟩dτ − 2

∫ β

0
⟨φ̇[A, ε]⟩dτ +

∫ β

0
⟨ε, [A, ε]⟩dτ

=
∫ β

0
⟨φ̇, [A, φ̇]⟩dτ + β⟨ε, [A, ε]⟩,

(5.17)

where the middle term vanishes since it is a total derivative. Now since ⟨ε, [A, ε]⟩ is a non-zero
constant, we get that under such change of variables the path integral gets multiplied by
e−β⟨ε,[A,ε]⟩, which is a contradiction.
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To summarize, the integral over DY is Gaussian and everything reduces to evaluating
the regularized determinant of the following non-local linear operator

D2Ÿ (τ) + 1
β

[
χ̇(τ),

∫ β

0
[J, [Y (ξ), χ̇(ξ)]]dξ

]
= λY (τ), (5.18)

which will contain a finite product of eigenvalues that depend on the modes of χ(τ). Note that
according to the conditions on Y (τ), we need to evaluate in the Hilbert space L2

γ([0, β], g) of
the g-valued functions whose Fourier series do not contain coefficients zα,0, zα,−⟨α,ν⟩ and zj,0.

The second term in (5.18) can be written in a more suggestive form. Namely, let P
be a projection on a constant term operator,

PY = 1
β

∫ β

0
Y (ξ)dξ.

Using equation Dχ = 0, we have

[J, [Y, χ̇]] = [Y, [J, χ̇]]− [χ̇, [J, Y ]] = −[Y, χ̈]− [χ̇, [J, Y ]]

and integrating over ξ we get∫ β

0
[J, [Y (ξ), χ̇(ξ)]]dξ = −

∫ β

0
[χ̇(ξ), DY (ξ)]dξ,

so we can write our operator as

L = D2∂2τ − adχ̇Padχ̇D = (D∂2τ − adχ̇Padχ̇)D. (5.19)

This means that one needs to use another basis in the Y -space, adapted to the com-
mutativity of D and adχ̇.

Therefore, after integrating over Y and η, we finally obtain the following result.

Theorem 2. The following trace formula holds.

e−
1

12βR Tr e−
1
2β∆ =

VG
∑

γ∈Γ/W

vol(Oγ)
(2π)(dG+dOγ )/2

e−Sγ

∫ Pf(D∂2τ )√
det(D2∂2τ − adχ̇Padχ̇D)

e−
1
2

∫
⟨χ,χ̇⟩dτdχ,

where the Pfaffian and determinant are taken with respect to the real Hilbert space L2
γ([0, β], g)

and integration over χ is over the finite-dimensional space Πg/cγ defined in (5.9).

Remark 9. As an example, we apply Theorem 2 in the case of G = SU(2). For the spectral
side, we have

e−
1

12βR Tr e−
1
2β∆ =

∞∑
n=0

(n+ 1)2e−
β(n+1)2

16

Examining the localization side, there are two distinct classes of critical orbits, distin-
guished by γ = 0 or γ = 2πinσ3 with n ∈ N.
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For the trivial orbit ν = 0, there is no χ integral and therefore

Pf(D∂2τ )√
det(D2∂2τ − adχ̇Padχ̇D)

= 1
Pf(∂τ )

= 1
β3/2

For the non-trivial critical orbit ν ̸= 0, the classical action for the critical orbit γ = 2πinσ3
is Sγ = 16π2n2

β and the fermionic integral gives

∫ Pf(D∂2τ )√
det(D2∂2τ − adχ̇Padχ̇D)

e−
1
2

∫
⟨χ,χ̇⟩dτdχ = β − 32π2n2

2β5/2
.

Together with the volume factor VG = 32
√
2π2 and vol(Oγ ̸=0) = 8π, we get the expression

for the localization side

16
√
π

β3/2
+

∞∑
n=1

32
√
π(β − 32n2π2)

β5/2
e
− 16π2n2

β =
∞∑

n=−∞

16
√
π(β − 32n2π2)

β5/2
e
− 16π2n2

β

This expression matches precisely the spectral side, which can be shown using the Poisson
summation formula.

A Semi-simple Lie groups and algebras

Here we present, in a succinct form, basic necessary facts on semi-simple Lie groups and
algebras (see [22, 25] for details and proofs).

A.1 Basic facts on g

Let g be a semi-simple Lie algebra of dimension n, let g∗ be the dual vector space to g,
and let B be the Killing form on g,

B(u, v) = Tr(adu ◦ adv), u, v ∈ g.

If the Killing form B is negative-definite, the semi-simple Lie algebra g is called compact.
Let g be compact Lie algebra, t be its Cartan subalgebra of dimension r, and let gC = g⊗RC be
it complexification, a complex semi-simple Lie algebra with the Cartan subalgebra tC = t⊗RC.

It will be convenient to denote by ⟨ , ⟩ the Euclidean inner product on real vector space
it, defined by the Killing form, and to use the same notation for the induce inner product the
R-dual vector space it∗. Moreover, we will use ⟨ , ⟩ to denote the natural pairing between
it∗ and it, ⟨α, h⟩ = α(h), where α ∈ it∗ and h ∈ it. There will be no confusion since we will
always specify the spaces to which arguments of ⟨ , ⟩ belong.

Let R be the root system for the pair (gC, tC), so that

gC = tC ⊕
⊕
α∈R

gα,

where
gα = {x ∈ gC : [h, x] = α(h)x for all h ∈ tC}

– 29 –



J
H
E
P
0
6
(
2
0
2
4
)
0
2
6

and
R = {α ∈ it∗ − 0 : gα ̸= 0}.

For every root α ∈ R denote by α∨ ∈ it the corresponding coroot, defined by

⟨α∨, β⟩ = 2 ⟨α, β⟩
⟨α, α⟩

for all β ∈ it∗.

A basis of gC consisting of a basis of tC and bases of gα is called Cartan-Weyl basis.
Orthonormal Cartan-Weyl basis is given by Hj ∈ it and bases Eα of gα, satisfying

⟨Hi, Hj⟩ = δij , ⟨Eα, Eβ⟩ = δα,−β

and having commutation relations

[Hi, Eα] = α(Hi)Eα, [Eα, E−α] =
r∑
i=1

α(Hi)Hi,

and
[Eα, Eβ ] = Nα,βEα+β if 0 ̸= α+ β ∈ R.

The compact Lie algebra g is the following R-linear subspace of gC

g =
r⊕
j=1

R · iHj ⊕
⊕
α∈R

R · (Eα − E−α)⊕
⊕
α∈R

R · i(Eα + E−α), (A.1)

since restriction of the Cartan-Killing form to it is negative definite.
A choice of element h ∈ t with α(h) ̸= 0 for all α ∈ R determines the set R+ of positive

roots. The set of simple roots S ⊂ R+ generates the root lattice Q in it∗ and the corresponding
set of coroots generates the coroot lattice Q∨ in it. The weight lattice P in it∗ is the dual
lattice to Q∨, and a weight λ ∈ P is called dominant if ⟨λ, α⟩ > 0 for all α ∈ R+. The set of
dominant weights P+ is isomorphic to IrrepG, and for λ ∈ P+ we have

C2(λ) = ⟨λ+ ρ, λ+ ρ⟩ − ⟨ρ, ρ⟩, where ρ = 1
2
∑
α∈R+

α ∈ P+.

Finally, an element h ∈ t is called regular, if α(h) /∈ 2πiZ for all α ∈ R. The following
statement is crucial for the derivation of the Eskin trace formula on G.

Lemma 3. If X ∈ t is a regular element and Y ∈ g satisfies eX = eY , then Y ∈ t.

Proof. First, eX = eY implies eX = ee
sY Xe−sY for all s ∈ R. Now suppose that [X,Y ] ̸= 0,

so AdesY X ̸= X, at least for some sufficiently small neighborhood of s = 0. This means that
the exponential map is singular at X. Now the differential of the exponential map at X is
given by

d expX = eX
1− eadX

adX
, (A.2)

and it is singular iff adX has an eigenvalue 2πiZ ̸=0. This is a contradiction since X is regular.
This proves that [X,Y ] = 0. Since X ∈ t is regular, this implies that Y ∈ t.
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A.2 Basic facts on G

Let G be connected semi-simple Lie group of dimension n, g be its Lie algebra, and let B
be the Killing form on g. Denote by Lg : G → G and Rg : G → G corresponding left and
right translations, Lgh = gh and Rgh = hg, h ∈ G, and denote by θ and θ̃ corresponding
left and right invariant Maurer-Cartan forms on G,

θg(v) = (Lg−1)∗v and θ̃g(v) = (Rg−1)∗v, v ∈ TgG.

They satisfy the Maurer-Cartan equations

dθ + 1
2[θ, θ] = 0 and dθ̃ − 1

2[θ̃, θ̃] = 0. (A.3)

It is convenient to use Cartan method of moving frames (also called a tetrad formalism
in general relativity). Namely, let T1, . . . , Tn be a basis of g,

[Ta, Tb] = f cabTc,

where f cab are the structure constants, and let x = (x1, . . . , xn) be local coordinates in the
neighborhood of g ∈ G. We have

θ = θaµ(x)Tadxµ and θ̃ = θ̃aµ(x)Tadxµ,

so corresponding bases of left-invariant and right-invariant vector fields on G are given by

ea = θµa (x)∂µ and fa = θ̃µa (x)∂µ, where ∂µ = ∂

∂xµ
. (A.4)

Here θµa (x) and θ̃µa (x) are inverse matrices to θaµ(x) and θ̃aµ(x). For v = vµ∂µ ∈ TgG we
put vL = θg(v) ∈ g and vR = θ̃g(v) ∈ g, so

vL = vaLTa and vR = vaRTa, where vaL = θaµ(x)vµ and vaR = θ̃aµ(x)vµ.

Equivalently, v = vaLea = vaRfa.
For compact G the bilinear form −B is positive-definite and determines a bi-invariant

Riemannian metric ( , ) on G, the Cartan-Killing metric

(u, v)g = −B(θg(u), θg(v)), u, v ∈ TgG. (A.5)

In local coordinates we have

(u, v)g = gµν(x)uµvν , where v = vµ∂µ, u = uµ∂µ,

and it follows from (A.5) that

gµν(x) = gabθ
a
µ(x)θbν(x), where gab = −B(Ta, Tb). (A.6)
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A.3 Coadjoint orbits of LG

Let LG be the loop group of G and L̂g = Lg⊕ R be the central extension of the Lie algebra
Lg by the 2-cocycle

c(X,Y ) = 1
β

∫ β

0
⟨Ẋ(τ), Y (τ)⟩dτ.

The adjoint action of LG on L̂g is given by

Adg(X,α) =
(
Adg(X), α+ 1

β

∫ β

0
⟨J(τ), X(τ)⟩dτ

)
, J = J(g) = g−1ġ.

The non-degenerate bilinear form on L̂g,

⟨(X1, α1), (X2, α2)⟩ =
1
β

∫ β

0
⟨X1(τ), X2(τ)⟩dτ + α1α2,

allows to identify L̂g
∗ with L̂g. Under this identification, the coadjoint action of LG on

L̂g
∗ takes the form

Ad∗g(X,α) = (Adg(X)− α ġg−1, α), (X,α) ∈ L̂g. (A.7)

The Lie algebra Lg is naturally identified with the hyperplane α = 1 in L̂g, and since
−ġg−1 = J(g−1), it follows from (A.7) that the image of the map J : LG→ Lg is a coadjoint
orbit Ô1 of the element (0, 1) ∈ L̂g.

B Symplectic geometry of T ∗G

Here G is a Lie group, g is its Lie algebra, and g∗ is the dual vector space to g with the
natural pairing which is this section we denote by ( , ) : g∗ × g → R.

B.1 The symplectic form

• The canonical 1-form ϑ on T ∗G (the Liouville 1-form on a cotangent bundle) is defined
as follows. Let π : T ∗G→ G be the natural projection and π∗ : T (T ∗G) → TG be its
differential. Then for ξ ∈ T(g,p)T

∗G, where g ∈ G and p ∈ T ∗
gG, we have

ϑ(ξ) = p(v), where v = π∗(ξ) ∈ TgG. (B.1)

• The canonical symplectic form on T ∗G is defined by ω = dϑ.

• The left translations (and also the right translations) trivialize the tangent and cotangent
bundles to G,

TG ≃ G× g and T ∗G ≃ G× g∗,

so putting in (B.1) p = (L∗
g)−1α, where α ∈ g∗, we obtain

ϑ(ξ) = (α, (Lg−1)∗v). (B.2)
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Using Maurer-Cartan form θ, (B.2) can be written as

ϑ(g,α) = (α, θg),

so using the Maurer-Cartan equation, we obtain a simple formula for the symplectic
form ω

ω = (dα, θ) + (α, dθ) = (dα, θ)− 1
2(α, [θ, θ]).

(B.3)

Explicitly, for X1 = (v1, α1), X2 = (v2, α2) ∈ T(g,α)T
∗G ≃ TgG× g∗ we have18

ω(X1, X2) = (α1, θ(v2))− (α2, θ(v1))− (α, [θ(v1), θ(v2)]). (B.4)

B.2 Poisson brackets

The Poisson bracket of smooth functions on T ∗G is defined by

{f1, f2} = ω(Xf1 , Xf2).

Here Xf is the Hamiltonian vector field for a function f , defined by

iXf
ω = −df.

• For every u ∈ g consider the function lu on T ∗G, defined by

lu(g, α) = (α, u).

The corresponding Hamiltonian vector field Xlu at a point (g, α) ∈ T ∗G is

Xlu = ((Lg)∗u, ad∗uα) ∈ T(g,α)T
∗G,

where ad∗ is the coadjoint action of g,

(ad∗uα, v) = (α, aduv) = (α, [u, v]).

Indeed, dlu = u and for a vector field Y = (v, β) on T ∗G we have

ω(Xlu , Y ) = (ad∗uα), θ(v))− (β, θ((Lg)∗u))− (α, [θ((Lg)∗u), θ(v)])
= (ad∗uα), θ(v))− (β, u)− (α, [u, θ(v)])
= −(β, u) = −dlu(Y ).

Then

{lu1 , lu2} = ω(Xlu1
, Xlu2

) = −(ad∗u2α, u1) = (α, [u1, u2]),

so
{lu1 , lu2} = l[u1,u2], u1, u2 ∈ g. (B.5)

18Note that due to the definition of the exterior product of two 1-forms, the factor 1
2 in the Maurer-Cartan

formula becomes 1.
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• Trivialization of TG and T ∗G by the right translations leads to the functions ru on
T ∗G, defined by

ru(g, α) = (α,Adg−1u).

The corresponding Hamiltonian vector field is Xru = ((Rg)∗u, 0), so

{ru1 , ru2} = −r[u1,u2] and {lu1 , ru2} = 0. (B.6)

• Another class of functions on T ∗G is given by smooth f : G→ R. It is easy to see that

Xf = (0,−(Lg)∗df).

Indeed, for Y = (v, β) be have

ω(Xf , Y ) = −((Lg)∗df, θ(v)) = −(df, (Lg)∗θ(v)) = −(df, v),

so such functions Poisson commute and

{lu, f} = ((Lg)∗df, θ((Lg)∗u)) = (df, (Lg)∗u) = eu(f). (B.7)

C Free particle on a Lie group

In local coordinates on G we have

L = 1
2gµν(x)ẋ

µẋν , (C.1)

where gµν(x) is given by (A.6). Consider left-invaraint conserved current J = g−1ġ

J = JaTa, Ja = θaµẋ
µ and ẋµ = θµaJ

a, (C.2)

so the Lagrangian (C.1) can be rewritten in terms of currents

L = 1
2gabJ

aJb.

By the Legendre transform

pµ = ∂L
∂ẋµ

= gµν ẋ
ν

so using ẋµ = gµνpν we have

H = pµẋ
µ − L = 1

2g
µνpµpν . (C.3)

Using (C.2), we can rewrite Legendre transform in terms of J

pµ = gabθ
a
µJ

b = θaµJa, Ja = gabJ
b.

Note that Ja are functions on TG, so introducing the functions la on T ∗G by

la = θµapµ, (C.4)
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we have

pµẋ
µ = gablalb and H = 1

2g
ablalb.

We see that la are precisely the functions lu on T ∗G, defined in the appendix B, for u = Ta.
According to (B.5), they have the following Poisson brackets

{la, lb} = f cablc. (C.5)

One can do exactly same exercise with a right-invariant conserved current J̃ = ġg−1 with a
similarly defined function ra = θ̃µapµ on T ∗G. Namely, it follows from (B.6) that

{ra, rb} = −f cabrc and {ra, lb} = 0. (C.6)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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