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1 Introduction

For a superconformal theory the index introduced in [1–3] encodes a large amount of in-
formation about the BPS spectrum. It may be regarded as the Witten index [4] in radial
quantization and is invariant under smooth supersymmetric deformations. Indices are nowa-
days a standard and major tool for the investigation of superconformal theories [5]. Their
applications range from the study of their dualities, strongly coupled fixed points, and even
black hole physics in the context of AdS/CFT, see e.g. in AdS4 [6–8] and in AdS5 [9–11].
A review can be found in [12].

For U(N) gauge invariant theories, the index admits a large N limit with finite N

corrections coming from U(N) trace relations that spoil orthogonality of single-trace operators.
When the superconformal theory has a gravity dual, the interpretation of these corrections is
far deeper. In the simplest example of four dimensional N = 4 U(N) super Yang-Mills (SYM)
theory dual to type IIB superstring in AdS5 × S5, finite N effects originate from wrapped D3
brane states maximally stretched in S5 called giant gravitons [13] and having charge of order
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N .1 From the corresponding giant-graviton expansion of the index, it is possible to reproduce
the entropy of dual black holes in AdS5 × S5 as first shown in [15] for small black holes
with charge Q ≪ N2 and later generalized to black holes with charge Q ∼ N2, first in [16],
using a large-charge expansion, and later in [17], using a large N expansion. Recently, the
giant graviton expansion has also been described by enumerating BPS geometries studying
bubbling solutions in supergravity [18, 19].

The contribution to the index from a certain wrapped D3 brane state may be identified
with the index of the theory living on the brane world-volume and having reduced unbroken
superconformal invariance [20–22]. The computation of this “brane index” is a non-trivial
issue. The superconformal index of 4d N = 4 U(N) SYM is defined as

IU(N)(y, u; q) = TrBPS[(−1)F qH+J̄y2JuR1
1 uR2

2 uR3
3 ], u1u2u3 = 1 , (1.1)

where the Hamiltonian H , the spins J, J̄ , and the R-charges R1, R2, R3 are Cartan generators
of the superconformal algebra psu(2, 2|4) and the trace is restricted to states obeying certain
BPS conditions.2 The giant graviton expansion of the index reads [20, 21]

IU(N)(y, u; q) = IKK(y, u; q)
∞∑

n1,n2,n3=0
(qu1)n1N (qu2)n2N (qu3)n3N ID3

n1,n2,n3(y, u; q) , (1.2)

where each piece has a definite meaning on gravity dual side. The N → ∞ factor IKK(y, u; q)
matches the index from IIB supergravity Kaluza-Klein states. The triple summation is over
wrapped D3 branes with topology S1 × S3 where S1 is in AdS5 and S3 ⊂ S5 with winding
nI along the 3-cycle obtained setting zI = 0 in S5 realized in C3 as |z1|2 + |z2|2 + |z3|2 = 1.
The quantities ID3

n1,n2,n3(y, u; q) represent the superconformal index of the theory living on
the wrapped branes world-volume, i.e. a U(n1)×U(n2)×U(n3) quiver gauge theory with
three bi-fundamental hyper multiplets. The prefactor

∏3
I=1(quI)nIN in (1.2) comes from

the classical charges and energy of the brane system.
At generic values of fugacities y, u, q, the brane indices ID3

n1,n2,n3 do not depend on N

and (1.2) organizes finite N corrections ∼ qnN as a series of contributions from wrapped branes
with increasing total winding number.3 At large N , the corrections are non-perturbative in
the small q expansion. When algebraic constraints are imposed on fugacities to get simplified
unrefined indices, extra polynomial contributions in N may appear. This is often referred to
as a “wall-crossing” effect. It was discussed in [21, 22, 28] and explained in [29, 30] on gravity
side in terms of zero modes of fluctuations on the wrapped branes, see also [31]. These zero
modes are fully regularized when all fugacities are switched on and take generic values.

In this paper, we focus on some technical aspects of the determination of the brane
indices ID3

n1,n2,n3 in (1.2). To this aim, it will be convenient to consider the so-called Schur
limit of the index [32, 33]. For a general N = 2 superconformal theory, the Schur index
gives the vacuum character of the associated chiral algebra [34]. Here, it corresponds to the

1See [14] for a recent analysis of the precise correspondence between states of certain D3 giant gravitons
branes in AdS5 × S5 and auxiliary ghost states in N = 4 U(N) SYM.

2We follow the conventions in [23] where, in particular, details on the BPS condition can be found.
3It is possible to discuss (1.2) in the U(N) SYM theory without reference to its string dual description [24–26],

up to possible non-trivial reorderings of the sum [27].
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specialization y = q
1
2 , u = (u, u−1, 1) of (1.1), i.e.4

IU(N)(u; q) = TrBPS[(−1)F qH+J+J̄uR1−R2 ] . (1.3)

The specific structure of the giant-graviton expansion of the Schur index of N = 4 U(N) SYM
was first discussed in [35]. Quite remarkably, in this limit the right hand side of (1.2) can
be written in terms of the SYM index itself, up to a tricky analytic continuation proposed
in [23]. The explicit formula reads

IU(N)(u; q) = IKK(u; q)
∞∑

n=0

n∑
p=0

(uq)(n−p)N ID3
n−p(u; q)q2(n−p)p(u−1q)pN ID3

p (u−1; q) , (1.4)

where the Kaluza-Klein factor is explicitly (see appendix A for special functions notation)

IKK(u; q) = (q2)∞
(uq)∞(u−1q)∞

, (1.5)

and the brane indices are given by the key relation

ID3
n (u; q) = IU(n)(u− 1

2 q−
3
2 ;u− 1

2 q
1
2 ) . (1.6)

Thus, finite N corrections ∼ qnN to the Schur index of U(N) SYM are captured by the index
of the U(n) SYM theory by means of the above fugacity transformation. As a technical
remark, the reduction of the triple sum in (1.2) to the single sum in (1.4) is a simplification
due to vanishing of contribution from the cycle z3 = 0 and a Weyl symmetry u → u−1 relating
contributions from the other two cycles z1 = 0 and z2 = 0.

The analytic continuation rule (1.6) follows from the analysis of the unbroken super-
conformal symmetry on the wrapped brane system. This symmetry-based approach to the
construction of brane indices was recently reconsidered in [30, 36] by a full calculation of
fluctuation effects from all fields living on the brane world-volume. A similar treatment of
finite N corrections to superconformal index was previously carried out in the case of the 6d
(2, 0) theory from semiclassical M2 brane wrapped on S1 × S2 in the M-theory background
AdS7 × S4 [37], and for the 3d N = 8 supersymmetric level-one U(N)× U(N) ABJM theory
from semiclassical M5 brane wrapped on S1×S5 in AdS4×S7 [29]. Alternatively, localization
on the wrapped brane was recently used in [38] to discuss the giant graviton expansion of
the 1

2 -BPS conformal index in N = 4 U(N) SYM.
Technically, a major problem in making use of (1.6) is that it cannot be applied when the

U(n) Schur index is only given as a (truncated) q-series. Reason is that the transformation (1.6)
is actually an analytic continuation outside the convergence domain of the Schur index around
q = 0. As a consequence, the strategy adopted in [35] to overcome this difficulty was to (i)
apply the transformation (u; q) → (u− 1

2 q−
3
2 ;u− 1

2 q
1
2 ) to the integrand of the holonomy integral

representation of the U(n) index and (ii) perform the contour integrations along suitable cycles
by a prescription determining the set of relevant poles. The same technique was successfully
applied in a variety of other models in [39–44] and further developed and clarified in [44, 45].

4To keep notation simple, the Schur index is denoted by the same symbol as the general index and only
two arguments u, q instead of the five y, u1, u2, u3, q.
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The outcome of the symmetry-based approach were explicit expansions for the brane
indices in (1.6). At leading and next-to-leading wrapping order, i.e. for n = 1, 2, they
take the form

ID3
1 (u; q) = u3

1− u2 q + (1− u2)q2 + (u−3 − u3) q3 + · · · ,

ID3
2 (u; q) = u10(2− u2)

(1− u2)(1− u4) q4 + u5 (2− u4) q5 + (2 + 2u6 − u12) q6 + · · · ,

(1.7)

and were computed in [35] up to wrapping n = 4. Expressions (1.7) have a very rich
dependence on u and q that can be (minimally) tested by matching the exact prediction for
the index in the unflavored case u = 1. This was obtained in [46] and reads

IU(N)(1; q) = IKK(1; q)
∞∑

n=0
(−1)n

[(
N + n

N

)
+
(

N + n − 1
N

)]
qnN+n2

,

= IKK(1; q)
[
1− (N + 2) qN+1 + 1

2(1 + N)(4 + N) q2N+4 + · · ·
]

,

(1.8)

where the Kaluza-Klein contribution is given by

IKK(1; q) = 1
ϑ4(0)

= (q2)∞
(q)2∞

=
∞∏

n=1

1 + qn

1− qn
. (1.9)

Checking agreement between (1.4) and (1.8) turns out to be a non-trivial issue, because of
the poles at u = 1 in the q-series of the brane indices (1.7). These have to cancel, but produce
leftover powers of N , well visible in (1.8), due to the mentioned wall-crossing effect.

Besides, higher order terms of the expansion do not follow from an explicit closed formula
and are not under full analytical control. Still, truncating the q-series at some high finite
order, one empirically matches (1.8) [35].

Summary of new results. In this paper, we begin by considering the u → 1 limit of (1.4)
at all orders in q. To this aim, we exploit recent exact results about the flavored Schur
index of N = 4 U(N) SYM [47, 48], see also [49] for other gauge groups. We show that
its available explicit representations allow to evaluate the analytic continuation in (1.6)
and to get closed form expressions for the brane indices ID3

n (u; q) in agreement with the
expansions (1.7), and extending them at all orders in q. As a consequence, we prove that
the u → 1 limit of (1.4) reproduces the exact result (1.8). In more details, we find that
the general structure of the brane index is

ID3
n (u; q) = un(2n+1)An(u)∏n

m=1(1− u2m)qn2 + Bn(u; q)
(1− u2)n−2 qn2+1 , (1.10)

where An(u) are polynomials in u with degree n(n − 1) and integer coefficients that we
compute explicitly for all n. The functions Bn(u; q) have q-series with coefficients that are
rational functions of u, smooth for u → 1. They can be computed exactly near the point
u = 1 and have the structure

Bn(u; q) =
1
q

∞∑
m=0

1
m!B

(m)
n (q) (u − 1)m , (1.11)
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where B
(m)
n (q) are quasimodular forms, i.e. polynomials in the classical Eisenstein series E2(q),

E4(q), E6(q). Similar quasimodular properties were previously observed in the unflavored
Schur indices of class S theories [47, 50], see also [51–54].

From these expressions, one can extend systematically the unrefined expansion (1.8)
by including near-unflavored corrections in powers of the deviation u − 1, and correct to
all orders in q. To give an example, the leading term in the giant graviton expansion, i.e.
the correction with weight ∼ qN , reads

IU(N)(u; q) = IKK(1; q)
[
1 + qN+1

(
− (2 + N) +

∞∑
p=2

∆(p)
1 (q;N) (u − 1)p

)
+ O(q2N )

]
, (1.12)

with
∆(2)

1 (q;N) = 1
72 [−12(2 + N)((2 + N)2 − E2(q))− E2

2(q) + E4(q)] , (1.13)

and similar expressions for the higher functions ∆(p)
1 (q;N) that we give in explicit form and

involve higher powers of Eisenstein series, as p is increased.
As a further simple application of our analysis, we present novel exact predictions for

the giant graviton expansion of the Schur index of a class of non-Lagrangian 4d N = 2
superconformal theories with equal central charges a = c, introduced in [55, 56]. They are
denoted Γ̂(SU(N)) with Γ = D4, E6, E7, E8, and are built by gauging part of the flavor
symmetry of a product of Dp(SU(N)) theories [57, 58]. In these models, the unflavored
Schur index is equal to certain specializations of the flavored Schur index of N = 4 SU(N)
SYM [55, 56].5 This identification come from an isomorphism between the chiral algebras
of the respective theories and was explicitly checked for the Schur index of the Ê6(SU(2))
theory [55, 60] showing that it is same as the vacuum character of the A(6) algebra [61, 62].
To exploit this relation to derive a giant graviton expansion requires more information than
the unflavored limit in (1.8). From our results in flavored case we can work out the giant
graviton expansion of the Γ̂(SU(N)) theories from the D3 brane representation (1.4). For
instance, for the Γ = E6 theory, the first two terms in its giant graviton expansion read

IÊ6(SU(N))(q) = (q; q3)∞(q2; q3)∞
(q)∞(q2)∞(q3)∞

[
1 + qN+1 F1(q) + q2N+3

(
N + F2(q)

)
+ O(q3N )

]
,

F1(q) = − (q2)2∞
(q; q2)2∞

= −1
4 q

1
4 ϑ2(

√
q)2, F2(q) = 3 + 1

8
∂2

z ϑ4(0; q)
ϑ4(q)

.

(1.14)

As we remarked, results like (1.14) originate from a fruitful combination of the D3 brane giant
graviton expansion of the N = 4 SYM U(N) Schur index and the remarkable relation with
the index of the Γ̂(SU(N)) theories. It would be interesting to give a gravity interpretation
of these new brane-like expansions by exploring their large N limit and associating each
qnN term to suitable non-perturbative corrections. For instance, working with truncated
expansions in q, this was shown to be possible in [43] for Argyres-Douglas [63, 64] and
Minahan-Nemeschansky theories [65, 66] which are 4d N = 2 theories on D3-branes in 7-brane
backgrounds with constant axio-dilaton.

5See [59] for a recent discussion of modular properties in these models.
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Plan of the paper. In section 2, we review explicit formulas for the exact Schur index
in N = 4 U(N) SYM in terms of twisted Weierstrass functions. In section 3, we examine
the corresponding expressions after application of the analytic continuation relation (1.6).
We discuss the associated explicit brane indices ID3

n and their general structure at increasing
n. In section 4, we show how the exact unflavored index is recovered at all orders in q by
presenting the quasimodular expressions of the coefficient functions in (1.11). Section 5 is
devoted to the analysis of the corrections in the near-unflavored limit, i.e. the expansion
of the index around in powers of u − 1. Finally, in section 6, we discuss the giant graviton
expansion of the N = 2 Γ̂(SU(N)) theories with a = c. Several appendices contain technical
details and additional remarks.

2 Schur index of N = 4 U(N) SYM from Fermi gas

To simplify some of the following expressions, let us introduce a separate notation for the
Schur index of N = 4 U(N) SYM in (1.3) with the replacement q → q1/2

ĨU(N)(u; q) = IU(N)(u; q
1
2 ) . (2.1)

The index may be computed by the following holonomy multiple contour integral represen-
tation (see for instance eq. (2.6) of [67])

ĨU(N)(u; q) = 1
N !

(q)2N
∞

(q
1
2 u±1; q)N

∞

∮
|zi|=1

N∏
i=1

dzi

2πizi

∏
i ̸=j( zi

zj
; q)∞(q zi

zj
; q)∞∏

i ̸=j(q
1
2 u−1 zi

zj
; q)∞(q

1
2 u zi

zj
; q)∞

. (2.2)

The multiple integrals (2.2) have been computed in [48] by Fermi gas methods. To present
their result, we define ξ, ζ, and τ by relations

ξ = u q−
1
2 = e2πiζ , q = e2πiτ , (2.3)

and introduce an auxiliary fugacity w with associated chemical potential ν

w = e2πiν . (2.4)

Then, the function of ξ and q defined as6

ĪU(N)(ξ; q) ≡ ĨU(N)(ξ q
1
2 ; q) , (2.5)

is given by

ĪU(N)(ξ; q) = (−1)N ξ
N2
2 ϑ(w, q)

ϑ(wξ−N , q) ZN (w, ξ, q) . (2.6)

In this expression, the q-theta function ϑ is defined in (A.7) and the functions ZN (w, ξ, q)
are given by

ZN (w, ξ, q) =
∑
Λ⊢N

(−1)N−|Λ|
r∏

i=1

1
λmi

i mi!
Zλi

(w, ξ, q)mi , (2.7)

6This is simply ĨU(N)(u; q) with u given in terms of ξ in (2.3). For later use, it will be convenient to avoid
the common shortcut of using the same name for a function expressed in different variables.
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where as usual Λ ⊢ N means that Λ is a partition of N represented as

Λ = (λm1
1 · · ·λmr

r ),
r∑

i=1
miλi = N, λ1 > λ2 > · · · > λr > 0, |Λ| =

r∑
i=1

mi , (2.8)

i.e. Λ corresponds to a Young tableau with m1 rows with λ1 columns, etc.. The quantities
Zℓ in (2.7) are computed explicitly by the relations

Z1(w, ξ, q) = P1

[
ξ

1

]
(ν, τ) ,

Zℓ(w, ξ, q) = w−(ℓ−1)

(ℓ − 1)!

ℓ−1∑
k=1

k! |sℓ−1,k|Pk+1

[
qℓ−1ξℓ

1

]
(ν, τ) (ℓ ≥ 2) ,

(2.9)

where sa,b are Stirling number of the first kind and Pk are twisted Weierstrass functions
defined in (A.16). It can be shown that the index expression (2.6) does not depend on the
choice of the auxiliary fugacity w and special choices of w may simplify expressions.

Let us give some explicit examples, following [48], for the purpose of illustration and
to give an idea of the typical expressions. In the simplest U(1) case, the index expressed
in terms of ξ and q reads

ĪU(1)(ξ; q) = ĨU(1)(ξ q
1
2 ; q) = − ξ

1
2 ϑ(w, q)

ϑ(wξ−1, q) P1

[
ξ

1

]
(ν, τ) . (2.10)

Using (A.16), we get the simple result

ĪU(1)(ξ; q) = (q)2∞
(ξ−1, q)∞(qξ, q)∞

= −
√

ξ
(q)3∞

ϑ(ξ−1; q) , (2.11)

that, in particular, shows explicitly the independence on the auxiliary fugacity w. Going
back to (u; q) variables, this is

ĨU(1)(u; q) = (q)2∞
(q

1
2 u±1, q)∞

, (2.12)

whose q-series is

ĨU(1)(u; q) = 1 + (u + u−1) q
1
2 + (u2 − 1 + u−1) q + (u3 + u−3) q

3
2

+ (u4 + u−4) q2 + (u5 − u − u−1 + u−5) q
5
2 + · · · , (2.13)

and of course agrees with the explicit evaluation of (2.2). For the U(2) theory, we have

ĪU(2)(ξ, q) = ξ2ϑ(w; q)
2ϑ(wξ−2; q)

[
P1

[
ξ

1

]2
(ν, τ)− 1

w
P2

[
qξ2

1

]
(ν, τ)

]
(2.14)

To derive a q-expansion, it is convenient to fix the freedom in the choice of w by taking
w = ξ. This gives the simpler result7

ĪU(2)(ξ, q) = ξ

2P2

[
qξ2

1

]
(ζ, τ) (2.15)

7From (A.16) we have P1

[
ξ

1

]
(ζ, τ) = (q)3

∞ϑ(1,q)
ϑ(ξ−1,q)ϑ(ξ,q) = 0 because ϑ(1, q) ∼ (1, q)∞ = 0.

– 7 –
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We have the explicit expression of the twisted Weiserstrass function

P2

[
x

1

]
(ν, τ) = (q)3∞ϑ(x−1w; q)

ϑ(x−1; q)ϑ(w; q)

[
w

ϑ′(w; q)
ϑ(w; q) − x−1w

ϑ′(x−1w; q)
ϑ(x−1w; q)

]
, (2.16)

and thus we can write

ĪU(2)(ξ, q) = ξ

2
(q)3∞ϑ( 1

qξ ; q)
ϑ( 1

qξ2 ; q)ϑ(ξ; q)

[
ξ

ϑ′(ξ; q)
ϑ(ξ; q) − 1

qξ

ϑ′( 1
qξ ; q)

ϑ( 1
qξ ; q)

]
(2.17)

Replacing ξ = uq−
1
2 and expanding in small q gives same as evaluation of (2.2) as one can

check, i.e. one obtains the q-series

ĨU(2)(u; q) = 1 + (u + u−1)q
1
2 + 2(u2 + u−2)q + 2(u3 + u−3)q

3
2

+ 3(u4 + u−4)q2 + (3u5 + u + u−1 + 3u−5)q
5
2 + · · · . (2.18)

3 Wrapped D3 brane indices from analytic continuation

The giant-graviton expansion of the N = 4 U(N) SYM Schur index is given by the repre-
sentation (1.4) and requires the brane indices defined by the analytic continuation (1.6).
We have, cf. (2.1),

ID3
n (u; q) = IU(n)(q−

3
2 u− 1

2 ; q
1
2 u− 1

2 ) = ĨU(n)
(

q−
3
2 u− 1

2 ; q

u

)
, (3.1)

In the right hand side the combination ξ is 1/q2, cf. (2.3), and therefore relation (1.6)
amounts to the simple correspondence

ID3
n (u; q) = ĪU(n)

( 1
q2

,
q

u

)
. (3.2)

Let us apply systematically this transformation to the U(n) indices discussed in the pre-
vious section.

Single wrapping. At leading order in the giant graviton expansion, we apply (3.2) to (2.11)
and get immediately the expression

ID3
1 (u; q) = −1

q

( q
u)

3
∞

ϑ(q2; q
u)

= −qu2 ( q
u)

3
∞

ϑ(u2; q
u)

, (3.3)

where we used (A.9). Expanding in small q gives

ID3
1 (u; q) = u3

1− u2 q + (1− u2)q2 + (u−3 − u3)q3 + · · · . (3.4)

in agreement with the result (1.7) in [35]. Eq. (3.3) represents its closed expression at
any q. The above derivation is straightforward. Other more compact representations of
the U(N) index turn out to be less convenient for analytic continuation, but will play a
role in later section 3.1.
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Double wrapping. At wrapping 2, i.e. at subleading order in the giant graviton expansion,
we apply (3.2) to (2.17) and get the expression

ID3
2 (u; q) = 1

2q2
( q

u)
3
∞ϑ(qu; q

u)
ϑ(q3u; q

u)ϑ(
1
q2 ;

q
u)

[ 1
q2

ϑ′( 1
q2 ;

q
u)

ϑ( 1
q2 ;

q
u)

− qu
ϑ′(qu; q

u)
ϑ(qu; q

u)

]
. (3.5)

We can use (from (A.8)) the relations

ϑ(x; q) = −ϑ(x−1; q), ϑ′(x; q)
ϑ(x; q) = − 1

x2
ϑ′(x−1; q)
ϑ(x−1; q) , (3.6)

to simplify it into

ID3
2 (u; q) = 1

2q

( q
u)

3
∞ϑ(qu; q

u)
ϑ(q3u; q

u)ϑ(q2;
q
u)

[
q

ϑ′(q2; q
u)

ϑ(q2; q
u)

+ u
ϑ′(qu; q

u)
ϑ(qu; q

u)

]
. (3.7)

We cannot naively expand the ratios ϑ′/ϑ = ∂x log ϑ inside bracket by first expanding ϑ

when the first argument of the ϑ function has an explicit integer power of q. However, using
systematically (A.9) and (A.11), we get bring (3.7) to the form

ID3
2 (u; q) = q4u8

2
( q

u)
3
∞

ϑ(u4; q
u)

[
2u2ϑ′(u2, q

u)
ϑ(u2, q

u)
− 3

]
. (3.8)

Expanding this expression at small q gives the series

ID3
2 (u; q) = u10(2− u2)q4

(1− u2)(1− u4) + u5(2− u4)q5 + (2 + 2u6 − u12)q6 + (2u−5 + 3u7 − u15)q7

+ (3 + 2u−10 + 3u8 − u18)q8 + (2u−15 + u−3 + 4u9 − u21)q9 + · · · , (3.9)

which is again in agreement with (1.7) and extends it to all orders in q.

Higher wrapping. The same procedure can be repeated at higher wrapping without
difficulty, because the steps we illustrated for the U(1) and U(2) cases are fully algorithmic
and easily coded. To present the results in compact form it is convenient to define the quantities

Q =
(

q

u

)
∞

, Rk,p = Rk

(
up,

q

u

)
, Θp = ϑ

(
up,

q

u

)
, (3.10)

where the function Rk(x; q) is defined in (A.10). At wrapping 3,4,5, we obtain the brane indices

ID3
3 (u;q)=−q9u14Q3

6Θ6
[20u4+2R2

1,−2−8u8R1,4+R1,−2(8u2−2u6R1,4)−R2,−2+u12R2,4] , (3.11)

ID3
4 (u;q)= 1

24q16Q3u26
[
3Q3u2Θ2

2(3u2+R1,−2−u4R1,2)2

Θ−2Θ2
4Θ6

+ 1
Θ8

[−210u6−6R3
1,−2

+6u2R2
1,−2(−5+u6R1,6)+15u2R2,−2+R1,6(90u12−3u8R2,−2)−15u18R2,6

+R1,−2(−90u4+30u10R1,6+6R2,−2−3u16R2,6)−R3,−2+u24R3,6]
]

, (3.12)

ID3
5 (u;q)= 1

120q25Q3u42
[
− 10Q3u2Θ2

Θ−2Θ6Θ8
[(−3u2−R1,−2+u4R1,2)(20u4+2R2

1,−2−8u8R1,4

+R1,−2(8u2−2u6R1,4)−R2,−2+u12R2,4)]+
1

Θ10
[−3024u8−24R4

1,−2
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+24u2R3
1,−2(−6+u8 R1,8)+252u4R2,−2−6R2

2,−2−252u24R2,8+6u20R2,−2R2,8

−12R2
1,−2(42u4−12u12R1,8−3R2,−2+u20R2,8)−24u2R3,−2

+4u10R1,8(336u6−18u2R2,−2+R3,−2)+24u32R3,8

+4R1,−2(−336u6+6u10R1,8(21u4−R2,−2)+36u2R2,−2−18u22R2,8−2R3,−2+u30R3,8)

+R4,−2−u40R4,8]
]

. (3.13)

Although the expressions have increasing complexity, their expansion in powers of q is
straightforward and one finds (we write only the first terms for brevity, but it is clear that
the expansions can be lengthen at will)

ID3
3 (u;q)= u21(5−3u2−3u4+2u6)

(1−u2)(1−u4)(1−u6) q9+ u14(5−3u4−3u6+2u10)
1−u4 q10 (3.14)

+ u7(5−5u4+2u6+4u8−2u14−u16−2u18+2u22)
1−u4 q11+··· ,

ID3
4 (u;q)=−u36(−14+9u2+10u4+2u6−6u8−7u10+5u12)

(1−u2)(1−u4)(1−u6)(1−u8) q16 (3.15)

− u27(−14+9u4+9u6+10u8−6u10−7u12−7u14+5u18)
(1−u4)(1−u6) q17

− u18(−14+14u2+14u4−19u6+2u12+u14+u16+2u18+3u24−5u26−5u28+5u30)
(1−u2)(1−u4) q18+··· ,

ID3
5 (u;q)= u55(42−28u2−32u4−9u6−6u8+45u10+3u12+7u14−16u16−19u18+14u20)

(1−u2)(1−u4)(1−u6)(1−u8)(1−u10) q25 (3.16)

+ u44

(1−u4)(1−u6)(1−u8) (42−28u4−28u6−32u8−9u10+15u12+45u14+29u16+7u18

−16u20−19u22−19u24+14u28)q26+ u33

(1−u4)(1−u6)(1−u8) (42−42u4−28u6−28u8

+42u10+52u12+15u14−13u16−38u18−8u20−9u22−3u24+2u26+3u28−11u30

+10u32+29u34+12u36+14u38−19u40−19u42−14u44+14u48)q27+··· .

Continuing this way, the general structure of ID3
n (u; q) turns out to be

ID3
n (u; q) = un(2n+1)An(u)∏n

k=1(1− u2k)qn2 + Bn(u; q)
(1− u2)n−2 qn2+1 , (3.17)

where An(u) are polynomial in u with degree n(n − 1) and Bn(u; q) has a q-series with
coefficients that are rational functions of u, smooth for u → 1. The first cases of the
polynomials An(u) are

A1(u)=1, A2(u)=2−u2, A3(u)=5−3u2−3u4+2u6,

A4(u)=14−9u2−10u4−2u6+6u8+7u10−5u12,

A5(u)=42−28u2−32u4−9u6−6u8+45u10+3u12+7u14−16u16−19u18+14u20,

A6(u)=132−90u2−104u4−31u6−29u8+71u10+80u12+99u14−41u16−52u18

−60u20−15u22−20u24+47u26+56u28−42u30, (3.18)
A7(u)=429−297u2−345u4−104u6−104u8+210u10+12u12+582u14+102u16−103u18

−188u20−201u22−309u24−83u26+328u28−50u30+203u32+47u34+60u36−146u38

−174u40+132u42,
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A8(u)=1430−1001u2−1166u4−351u6−359u8+695u10−64u12+1149u14+1177u16

+497u18−427u20−524u22−1715u24−344u26−318u28−507u30+1076u32+682u34

+826u36+304u38−398u40−361u42+86u44−652u46−149u48−188u50

+471u52+561u54−429u56 ,

and one can check that in all cases An(1) = 1 and coefficients are integer. An explicit
formula for them is illustrated in next section, see in particular formula (3.39). The functions
Bn(u; q) are non-trivial, even at a fixed value of u, having a full expansion in powers of
q, and will be discussed later on.

3.1 Other representations of the U(N) index and polynomials AN(u)

We now show how to get an explicit formula for the polynomials AN (u) in (3.17). We start
from an alternative compact representation of the indices ĪU(N)(ξ; q) derived in [48]

ĪU(N)(ξ; q) = −
∑

p1,··· ,pN∈Z
p1<···<pN

ξ
N2
2

N∏
n=1

ξ−pn

1− ξ
N
2 qpn

. (3.19)

In the simplest U(1) case, it is

ĪU(1)(ξ; q) = −
∑
p∈Z

ξ−p+ 1
2

1− ξ
1
2 qp

, (3.20)

and the associated brane index is obtained from relation (3.2). Applying it to the sum-
mand, we get

ID3
1 (u; q) = −

∑
p∈Z

q2p−1

1− u−pqp−1 . (3.21)

We now split the sum with positive and negative indices and write

ID3
1 (u; q) = −

∞∑
p=0

q2p−1

1− u−pqp−1 −
∞∑

p=1

q−2p−1

1− upq−p−1 = −
∞∑

p=0

q2p−1

1− u−pqp−1 +
∞∑

p=1

u−pq−p

1− u−pqp+1 .

(3.22)

In the last term, we expand the denominator and exchange the order of the two sums
∞∑

p=1

u−pq−p

1− u−pqp+1 =
∞∑

p=1

∞∑
n=0

u−pq−pu−pnqn(p+1) = −
∞∑

n=0

q2n−1

qn−1 − un+1 . (3.23)

Thus, we can write

ID3
1 (u; q) =

∞∑
p=0

1
u2

(
q

u

)2p−1 up(1− up+1)− qp−1(1− up)
(1− u−pqp−1)(1− u−p−1qp−1) (3.24)

This expression can be expanded at small q with the result

F (u; q) = u3q

1− u2+(1−u2)q2+(u−3−u3)q3+(1+u−6−u−2−u4)q4+(u−9−u5)q5+· · · , (3.25)
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in agreement with (3.4). Extending this procedure to higher N by the same methods provides
a way to compute the leading term ∼ qn2 in ID3

n (u; q), i.e. the polynomials An(u) in (3.18).
To show this, we begin with the algebraic identity, following from Polya theory [68], (cf.
(2.8) for notation of partitions)

∑
0≤i1<···<ik

xi1+···+ik = xk(k−1)/2

(1− x)(1− x2) · · · (1− xk) =
∑
Λ⊢k

(−1)k+|Λ|
p∏

i=1

1
λmi

i (mi!)
1

(1− xλi)mi
.

(3.26)
Eq. (3.26) determines the coefficients in the decomposition of the total trace of a symmetric
tensor with summation restricted to ordered indices in terms of unrestricted traces. For a
symmetric tensor Ti1,...,ik

we have from (3.26)

∑
i1<···<ik

Ti1,...,ik
=
∑
Λ⊢k

(−1)k+|Λ|∏p
q=1 λ

mq
q (mq!)

∑
j1,...,j|Λ|

TJ , (3.27)

where J is a multi-index with, for all p, mp groups of the same index repeated λp times.
The number of free indices is |Λ|. For instance, for a symmetric tensor with rank 3 or 4,
the expansion (3.27) gives the general identities∑

i<j<k

Tijk = 1
6
∑
i,j,k

Tijk − 1
2
∑
i,j

Tijj +
1
3
∑

i

Tiii, (3.28)

∑
i<j<k<ℓ

Tijkℓ =
1
24

∑
i,j,k,ℓ

Tijkℓ −
1
4
∑
i,j,k

Tijkk + 1
8
∑
i,j

Tiijj +
1
3
∑
i,j

Tijjj −
1
4
∑

i

Tiiii . (3.29)

Considering now the symmetric rank N tensor in (3.19)

Tp1,...,pN = −
N∏

n=1

ξ−pn+N
2

1− ξ
N
2 qpn

, (3.30)

we obtain from (3.27)

ID3
N (u; q) =

∑
λ⊢N

(−1)N+|λ|+1
p∏

q=1

1
λ

mq
q (mq!)

S
(N)
λq

(u; q)mq . (3.31)

The functions S
(N)
r (u; q) are obtained by applying the procedure we adopted to treat the

U(1) case to the single index sums. Their explicit expression is

S(N)
r (u; q) =

∞∑
n=0

[(
q2n−N

1− u−nqn−N

)r

+ (−1)r

(
n

r − 1

)
u−n−1q(n+1)(N+1)−r(N+2)

1− u−n−1qn−2r+1

]
, (3.32)

where we used

1
(1− x)r

=
∞∑

n=0

(
n

r − 1

)
xn−r+1 . (3.33)

To give an example, for N = 3, we have

ID3
3 (u; q) = −1

6(S
(3)
1 )3 + 1

2S
(3)
1 S

(3)
2 − 1

3S
(3)
3 , (3.34)
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with

S
(3)
1 (u;q)= u8q3

1+u−u3−u4 +(u4−u6)q4+(1−u3+u5−u8)q5+
(
−1+ 1

u4 +u6−u10
)

q6

+
(
1+ 1

u8 −
1
u3 −u4+u7−u12

)
q7+

( 1
u12 −

1
u6 +u8−u14

)
q8

+
( 1

u16 −
1
u9 +

1
u5 −u5+u9−u16

)
q9+ · · · , (3.35)

S
(3)
2 (u;q)= u15(4+u+u2−2u3)q6

(−1+u3)2(1+u+u2+u3)−2(u10(−2+u2))q7−u5(−4+u3−5u7+2u10)q8

+(4+6u14−2u18)q9+ · · · , (3.36)

S
(3)
3 (u;q)= u21(15−19u3+6u6)q9

(−1+u3)3(1+u3) + · · · , (3.37)

and from (3.34), we get

ID3
3 (u; q) = u21(5− 3u2 − 3u4 + 2u6)

(1− u2)(1− u4)(1− u6) q9 + · · · , (3.38)

in agreement with (3.14). The fact that ID3
N (u; q) starts at order qN2 is consistent with

S
(N)
r (u; q) = C

(N)
r (u) qNr + O(qNr+1) and therefore AN (u) in (3.18) can be read from (3.31)

that gives

AN (u) = u−N(2N+1)
N∏

k=1
(1− u2k)

∑
λ⊢N

(−1)N+|λ|+1
p∏

q=1

1
λ

mq
q (mq!)

[C(N)
λq

(u)]mq , (3.39)

C(N)
r (u) = (−1)r urN

[
(1− uN )−r −

(
2r − 1
r − 1

)
urN

1− u2r

]
− (−1)ruN

2r−2∑
n=0

(
n

r − 1

)
unN .

where the finite sum representation of C
(N)
r (u) may be find after some manipulation of (3.32).

Again, let us give an example by considering the case N = 4. From the formula in second
line of (3.39), we get

C
(4)
1 (u)= u10

1−u4 , C
(4)
2 (u)= u20

(1−u4)2 , (3.40)

C
(4)
3 (u)=−u28(15+5u2−19u4−4u6+6u8)

(1+u2)(1−u4)2(1−u6) , C
(4)
4 (u)=−u36(−56+119u4−85u8+20u12)

(1−u4)3(1−u8) ,

and the first line of (3.39) gives

A4(u) = 14− 9u2 − 10u4 − 2u6 + 6u8 + 7u10 − 5u12 , (3.41)

in agreement with (3.18). The representation (3.39) is quite efficient and for instance we
can get AN (u) for N = 20 in a few seconds.
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4 Giant-graviton expansion of the index in unflavored limit

The giant graviton expansion of the Schur index in (1.4) and can be regrouped as8

IU(N)(u; q)
IKK(u; q) =

∞∑
n=0

qnN ÎD3
n (u; q) , (4.1)

ÎD3
n (u; q) =

n∑
p=0

q2(n−p)p u(n−2p)N ID3
n−p(u; q) ID3

p (u−1; q) . (4.2)

The exact result in the unflavored limit u → 1 was derived in [46] and already given in (1.8).
Comparing it with (4.1) gives the prediction

lim
u→1

ÎD3
n (u; q) = (−1)n (2n + N)(N + n − 1)!

n!N ! qn2
, (4.3)

i.e. the following polynomials in N times qn2

ÎD3
1 (1; q) = −(N + 2) q, ÎD3

2 (1; q) = 1
2(1 + N)(4 + N) q4,

ÎD3
3 (1; q) = −1

6(1 + N)(2 + N)(6 + N) q9,

ÎD3
4 (1; q) = 1

24(1 + N)(2 + N)(3 + N)(8 + N) q16, · · · .

(4.4)

As discussed in [29, 30], the N dependence of the giant graviton corrections is a familiar fact
working in unrefined limits and comes from the zero modes of fluctuations of fields in the
theory on the brane world-volume. In particular, the N term in the leading single wrapping
contribution is associated with a total of two zero modes from both scalar fields and fermion
fields fluctuations in a N = 4 Maxwell multiplet [30].

4.1 Differential constraints

It is non-trivial to match the brane index prediction (4.3) starting from its structure (3.17).
To see this in full details, let us begin with the case n = 1, i.e. at leading wrapping order.
From (4.2) we get

ÎD3
1 (u; q) = −[N(A1(1) + A′

1(1)) + 2A1(1)] q + O(u − 1) . (4.5)

This is in agreement with (4.4) if

A1(1) = 1, A′
1(1) = 0 . (4.6)

These conditions are trivially true since A1(u) = 1, cf. (3.18). The next case is n = 2.
Using (4.6), we get now

ÎD3
2 (u; q) = −q4

4 (1− A2(1))
[ 1
(u − 1)2 + 1

u − 1

]
− q4

16

[
− 1− 95A2(1) + 32qB1(1, q)− 32qB2(1, q)− 30A′

2(1) + 4A′′
1(1)− 2A′′

2(1)

− 8
(
7A2(1) + A′

2(1)
)
N − 8A2(1)N2

]
+ O(u − 1) . (4.7)

8Notice that in the l.h.s. we have I and not Ĩ.
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Cancellation of the poles at u = 1 requires A2(1) = 1 that holds, as we mentioned. We can
use the known values of polynomials Ak(u) and their derivatives at u = 1. In fact, as we
have seen, the list of polynomials in (3.18) can be computed by (3.39) in a finite number of
steps when focusing on a definite wrapping order. This simplifies (4.7) to

ÎD3
2 (u; q) = 1

2q4
[
(1 + N)(4 + N)− 4q

(
B1(1, q)− B2(1, q)

)]
+ O(u − 1) . (4.8)

Comparing with (4.4) and denoting Bk(q) ≡ Bk(1; q), we need the non-trivial condition

B1(q) = B2(q) . (4.9)

Similarly, considering higher wrapping contributions, we find additional differential conditions
involving the Bk(q) functions. Again, these constraints come from requiring cancellation
of poles at u = 1 and matching powers of N in the finite part. At wrapping 3, we get two
conditions (we omit the q argument)

B1 + 2B2 − 6B3 = 0,

4B1 − 4B2 + 2B3 − B
(1)
1 + 2B

(1)
2 − 2B

(1)
3 = 0 ,

(4.10)

where a notation has been introduced for the partial derivatives with respect to u evaluated
at the point u = 19

B
(p)
k (q) = ∂p

uBk(u; q)
∣∣
u=1 , (4.11)

not to be confused with derivatives of Bk(q) with respect to q. At wrapping 4, we get
the four conditions

−B1 + 3B2 − 6B3 + 6B4 = 0,

−B1 − 6B3 + 24B4 = 0,

−8B1 + 18B3 − 24B4 + B
(1)
1 − 6B

(1)
3 + 12B

(1)
4 = 0,

−215B1 + 279B2 + 144qB2
2 − 306B3 − 288qB1B3 + 126B4 + 90B

(1)
1 − 162B

(1)
2

+180B
(1)
3 − 108B

(1)
4 − 6B

(2)
1 + 18B

(2)
2 − 36B

(2)
3 + 36B

(2)
4 = 0 .

(4.12)

Finally, at wrapping 5, there are six new constraints
3B1−4B2−12B3+72B4−120B5=0,

27B1−4B2−12B3+648B4−3000B5=0,

13B1−36B2+72B3−96B4+72B5−B
(1)
1 +4B

(1)
2 −12B

(1)
3 +24B

(1)
4 −24B

(1)
5 =0,

117B1−36B2+72B3−864B4+1800B5−9B
(1)
1 +4B

(1)
2 −12B

(1)
3 +216B

(1)
4 −600B

(1)
5 =0,

669B1−420B2−628B3−384qB2B3+2184B4+1152qB1B4−1960B5−150B
(1)
1 +136B

(1)
2

+264B
(1)
3 −1008B

(1)
4 +1200B

(1)
5 +6B

(2)
1 −8B

(2)
2 −24B

(2)
3 +144B

(2)
4 −240B

(2)
5 =0,

485B1+324B2−216B3+1152qB2B3−2592B4−3456qB1B4+936B5−593B
(1)
1

−1152qB4B
(1)
1 +1052B

(1)
2 +1152qB3B

(1)
2 −1476B

(1)
3 −1152qB2B

(1)
3 +1656B

(1)
4

+1152qB1B
(1)
4 −792B

(1)
5 +72B

(2)
1 −192B

(2)
2 +360B

(2)
3 −432B

(2)
4 +288B

(2)
5

−2B1
(3)+8B2

(3)−24B3
(3)+48B4

(3)−48B5
(3)=0.

(4.13)

9We remark that B(1)(q) ̸= B′(q).
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The same pattern continues at higher wrapping larger than 5. We will stop at this order
for the sake of presentation.

4.2 Quasimodular expansions and solution of the constraints

To prove that the differential constraints (4.9), (4.10), (4.12), (4.13) are satisfied at all orders
in q we need explicit closed expressions for the functions B

(p)
n (q). Let us begin with n = 1.

The brane index was given in (3.3) and we can expose its singularity at u → 1 by writing

ID3
1 (u; q) = qu3 ( q

u)
2
∞

( q
u3 ; q

u)∞(u2; q
u)∞

= qu3
∞∏

k=0

[1− ( q
u)

k+1]2

(1− qk+1

uk+3 )(1− qk

uk−2 )

= u3

1− u2 q
∞∏

k=0

[1− ( q
u)

k+1]2

(1− qk+1

uk+3 )(1− qk+1

uk−1 )
. (4.14)

We now expand the logarithm of the second factor around u = 1 obtaining

log
∞∏

k=1

(1− qk

uk )2

(1− qk

uk+2 )(1− qk

uk−2 )
= S2(q) (u − 1)2 + S3(q) (u − 1)3 + S4(q) (u − 1)4 + · · · , (4.15)

with the following infinite sums

S2(q) =
∞∑

k=1

4qk

(1− qk)2 , (4.16)

S3(q) = −
∞∑

k=1

4(1 + k + (k − 1)qk)qk

(1− qk)3 , (4.17)

S4(q) =
∞∑

k=1

[5 + 6k + 2k2 − 2(1− 4k2)qk + (5− 6k + 2k2)q2k]qk

(1− qk)4 . (4.18)

These sums can be expressed in terms of the Eisenstein series, cf. (A.12), as illustrated in
details in appendix B.1. One obtains (E2n ≡ E2n(q))

S2(q) =
1
6(1− E2), (4.19)

S3(q) = −1
6(1− E2) +

1
72(E

2
2 − E4), (4.20)

S4(q) =
53
360 − 11

72E2 −
1
48E

2
2 +

19
720E4 −

1
864E

3
2 +

1
288E2E4 −

1
432E6 , (4.21)

and so on. At each order we need to include a generic combination of Eisenstein series
with increased total degree. In other words, the sums Sn(q) are quasimodular forms, i.e.
polynomials in the Eisenstein series E2,E4,E6. Exponentiating (4.15) and replacing into (4.14)
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gives the functions B
(p)
1 (q) that have the explicit quasimodular expressions

q B1(q) =
1
24(1− E2),

q B
(1)
1 (q) = 1

24(1− E2) +
1

288(E
2
2 − E4),

q B
(2)
1 (q) = − 17

720 + 1
72E2 +

1
96E

2
2 −

1
1440E4 −

1
1728E

3
2 +

1
576E2E4 −

1
864E6,

q B
(3)
1 (q) = −175

512 + 3229
8064E2 −

251
2304E

2
2 +

55
1152E4 +

23
3456E

3
2 −

11
960E2E4 +

1
135E6

− 1
4608E

4
2 +

1
2016E2E6 −

5
16128E

2
4 .

(4.22)

We remark that the expansion of B
(p)
1 for any p can be obtained systematically from a

differential equation discussed in appendix B.2. This proves that the same structure is found
at each p. Still, for practical evaluation, it is more efficient to assume a quasimodular Ansatz
and fix coefficients from the first terms of its q-series.

For the functions B
(p)
2 (q), B

(p)
3 (q), B

(p)
4 (q), and B

(p)
5 (q), we find similar expansions with

different coefficients collected in appendix B.3. In particular, we see that all functions Bk

are proportional to B1 according to

B2 = B1, B3 =
1
2!B1, B4 =

1
3!B1, B5 =

1
4!B1, . . . . (4.23)

Using the expressions in appendix B.3, the differential constraints (4.9)–(4.13) are readily
checked to be satisfied. This proves that the unflavored index is reproduced in the limit
u → 1 at all orders in q, up to wrapping 5.

5 Finite N corrections in near-unflavored regime

We can go easily beyond the unflavored limit and give the exact q dependence of the giant
graviton expansion coefficients in the near unflavored regime, i.e. at first non-trivial order
in u − 1. From the expressions in appendix B.3, the expansion of ÎD3

n (u; q) around u = 1
gives the following corrections to the unflavored brane indices in (4.4)

ÎD3
1 (u; q) = q

[
− (2 + N) + ∆(2)

1 (q;N) (u − 1)2 + O((u − 1)3)
]
,

ÎD3
2 (u; q) = q4

[1
2(1 + N)(4 + N) + ∆(2)

2 (q;N) (u − 1)2 + O((u − 1)3)
]
,

ÎD3
3 (u; q) = q9

[
− 1

6(1 + N)(2 + N)(6 + N) + ∆(2)
3 (q;N)(u − 1)2 + O((u − 1)3)

]
,

(5.1)

where ∆(2)
n (q) admit the exact quasimodular representations

∆(2)
1 (q;N)= 1

72 [−12(2+N)((2+N)2−E2)−E2
2+E4], (5.2)

∆(2)
2 (q;N)= 1

72 [12(−2+N)(4+N)((4+N)2−E2)+N (E2
2−E4)], (5.3)

∆(2)
3 (q;N)= 1

144 [−12(6−3N +N2)(6+N)((6+N)2−E2)−(2+N +N2)(E2
2−E4)] . (5.4)
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Just to give an example, we consider the U(2) index and denote δu = u − 1. We have

IU(2)(u; q)
IKK(u; q) = 1− 4q3 + 9q8 − 16q15 + · · ·+

(
− 10q3 − 12q4 − 24q5 − 16q6 + 24q8 (5.5)

+ 88q9 + 48q10 + 144q11 + 36q12 + 192q13 − 240q14 + 280q15 − 504q16 + · · ·
)

δu2 + · · · ,

and, setting N = 2 in (5.1) and (5.2),

q2 ÎD3
1 (u; q) = −4q3 +

(
− 10q3 − 12q4 − 24q5 − 16q6 + 24q8 + 96q9 + 96q10

+ 240q11 + 260q12 + 432q13 + 336q14 + 896q15 + 504q16 + · · ·
)
δu2 + · · · ,

q2×2 ÎD3
2 (u; q) = 9q8 +

(
− 8q9 − 48q10 − 96q11 − 224q12 − 240q13 − 576q14 (5.6)

− 448q15 − 960q16 + · · ·
)
δu2 + · · · ,

q3×2 ÎD3
2 (u; q) = −16q15 +

(
− 168q15 − 48q16 + · · ·

)
δu2 + · · · .

One can check that the three terms 1 + q2 ÎD3
1 + q4 ÎD3

2 + q6 ÎD3
3 are enough to reproduce

all terms in the r.h.s. of (5.5).
Similar expressions may be computed at higher order in u − 1. This requires some

additional computational effort, but no conceptual difficulty. For instance, for the leading
wrapping correction n = 1 we can write

ÎD3
1 (u; q) = q

[
− (2 + N) +

∞∑
p=2

∆(p)
1 (q;N) (u − 1)p] , (5.7)

where the p = 2 term was in the first line of (5.2) and the next ones are

∆(3)
1 (q;N)=−∆(2)

1 (q), (5.8)

∆(4)
1 (q;N)=− 1

725760

[
−63(14527+28800N +18240N2+5600N3+960N4+96N5)

−210(1+144N +24N2)E2
2+140(−11+6N)E3

2+105E4
2

+84(19+192N +60N2)E4+150E2
4+E2

(
60(3155+5880N +2016N2+336N3)

−504(−1+5N)E4−240E6

)
+112(−2+15N)E6

]
, (5.9)

∆(5)
1 (q;N)= 1

362880

[
63(6847+17280N +12480N2+4640N3+960N4+96N5)

+210(−23+144N +24N2)E2
2−140(−11+6N)E3

2−105E4
2

−84(−41+192N +60N2)E4−150E2
4+E2

(
−60(1139+4872N +2016N2+336N3)

+504(−1+5N)E4+240E6

)
−112(−2+15N)E6

]
. (5.10)

6 Giant graviton expansion of N = 2 Γ̂(SU(N)) theories

As a further application of our analysis, we consider in this section the 4d N = 2 superconformal
theories proposed in [55, 56]. These models are generically non-Lagrangian and have equal
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Γ̂(G) D̂4(SU(2n + 1)) Ê6(SU(3n ± 1)) Ê7(SU(4n ± 1)) Ê8(SU(6n ± 1))

a = c 2n(n + 1) 2n(3n ± 2) 6n(2n ± 1) 10n(3n ± 1)

Table 1. Γ̂(SU(N)) four-dimensional N = 2 superconformal theories with Γ = D4, E6, E7, E8 and
a = c. The index n is a positive integer. Notice that three cases admits the description in [69] as
Argyres-Douglas theories engineered from M5 brane, Ê6(SU(2)) = (A2, D4), Ê7(SU(3)) = (A3, E6),
Ê8(SU(5)) = (A5, E8).

conformal anomaly coefficients a = c. They are denoted Γ̂(G), where Γ and G are ADE
simply laced Lie groups, and are built by gauging part of the flavor symmetry of a product
of the Dp(G) superconformal theories studied in [57, 58]. Here, we focus on the cases
Γ = D4, E6, E7, E8 and G = SU(N), listed in table 1. In all of these theories, the unflavored
Schur index is same as the following specialization of the flavored Schur index of N = 4
SU(N) SYM theory [55, 56]

IΓ̂(SU(N))(q) = ĪSU(N)(q−1; qmΓ),
mD4 = 2, mE6 = 3, mE7 = 4, mE8 = 6 ,

(6.1)

where mΓ is the largest comark of the affine Dynkin diagram Γ̂. We now show how the
remarkable relation (6.1) may be combined with the closed formulas presented for the flavored
Schur index of N = 4 U(N) SYM in order to derive the giant graviton expansion of the
unflavored Schur index of the Γ̂(SU(N)) theories.

6.1 Γ = D4

Let us begin with the simplest case Γ = D4. We have from (6.1), cf. (2.5),

ID̂4(SU(N))(q) = ĪSU(N)(q−1; q2) = ĨSU(N)(q2) , (6.2)

where the index in the r.h.s. is the unflavored one, i.e. at u = 1. Also, we recall that

ĪSU(N)(ξ; q) = ĪU(N)(ξ; q)
ĪU(1)(ξ; q)

. (6.3)

Taking this relation in unflavored limit and using (2.12) we get

ID̂4(SU(N))(q) = (q; q2)2∞
(q2)2∞

ĨU(N)(q2) = (q; q2)2∞
(q2)2∞

IU(N)(q) , (6.4)

as argued in [56]. This case is trivial in the sense that its giant graviton expansion follows
directly from the unflavored index expansion (1.8). The presence of factors of N in the
giant graviton expansion of the Γ = D4 index comes thus from the fact that relation (6.1)
involves the unrefined index in the right hand side.
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6.2 Γ = E6

A more interesting case is Γ = E6. Relation (6.1) gives now

IÊ6(SU(N))(q) = ĪSU(N)(q−1; q3) = ĨSU(N)(q
1
2 ; q3) = (q; q3)∞(q2; q3)∞

(q3)2∞
ĨU(N)(q

1
2 , q3) . (6.5)

From (1.5), we have10

ĨU(∞)(u; q) ≡ ĨKK(u; q) = (q)∞
(uq

1
2 )∞(u−1q

1
2 )∞

, (6.6)

and in particular

ĨU(∞)(q
1
2 ; q3) = (q3)∞

(q)∞(q2)∞
. (6.7)

Thus, we can write

IÊ6(SU(N))(q) = (q; q3)∞(q2; q3)∞
(q)∞(q2)∞(q3)∞

ĨU(N)(q
1
2 ; q3)

ĨU(∞)(q
1
2 ; q3)

. (6.8)

The ratio can be evaluated by specializing (4.1) at u = q
1
2

ĨU(N)(q
1
2 ; q3)

ĨU(∞)(q
1
2 ; q3)

= IU(N)(q
1
2 ; q

3
2 )

IU(∞)(q
1
2 ; q

3
2 )

=
∞∑

n=0

n∑
p=0

q(n+p)N+3(n−p)pID3
n−p(q

1
2 ; q

3
2 )ID3

p (q−
1
2 ; q

3
2 ) . (6.9)

The next-to-leading giant graviton expansion is thus

IÊ6(SU(N))(q) = (q; q3)∞(q2; q3)∞
(q)∞(q2)∞(q3)∞

[
1 + qN W1(q) + q2N W2(q) + O(q3N )

]
, (6.10)

with the explicit functions

W1(q) = ID3
1 (q−

1
2 , q

3
2 ), W2(q) = ID3

1 (q
1
2 ; q

3
2 ) + ID3

2 (q−
1
2 ; q

3
2 ) . (6.11)

From (3.3), the leading term W1(q) is provided by the exact expression

W1(q) = −q−
3
2

(q2)3∞
ϑ(q3; q2) = (q2)2∞

(q−1; q2)∞(q3; q2)∞
= −q

(q2)2∞
(q; q2)2∞

, (6.12)

and is remarkably N independent. Notice that in terms of Jacobi elliptic theta functions,
cf. (A.1), we can also write W1 as

W1(q) = −1
4 q

3
4 ϑ2(

√
q)2 . (6.13)

The next-to-leading term W2(q) is the sum of two contributions that are separately
singular, suggesting some extra factor of N appearing at double wrapping order. Again, this
is not surprising since the key relation (6.1) involves the flavored Schur index evaluated with a

10By analogy with the N = 4 SYM case, we use the label KK for the N = ∞ limit of the index, although
we don’t have here a clear Kaluza-Klein interpretation of this contribution.
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special algebraic relation between fugacities, as it happened in the Γ = D4 case. Singularities
cancel in the sum and to get the finite correction we have to regularize the flavor fugacity by
scaling q

1
2 → ηq

1
2 in the u argument in (6.9) and taking η → 1 in the end. This gives

W2(q) = lim
η→1

W2(η; q), W2(η; q) = ηN ID3
1 (η q

1
2 ; q

3
2 ) + η−2N ID3

2 (η−1q−
1
2 ; q

3
2 ) (6.14)

The derivation of the limit W2(q) is a little involved and is discussed in appendix B.4.
The result is

W2(q) =
(

N + 23
8

)
q3 − q

4R2(q−1; q2) + 1
6R3(q−1; q2) , (6.15)

where we remind that the functions Rk are related to derivatives of log θ according to (A.10).
A more explicit expression is, cf. definitions in (A.1),

W2(q) = q3
[
N + 3 + 1

8
∂2

z ϑ4(0; q)
ϑ4(q)

]
. (6.16)

The expansion of W2(q) in powers of q reads

W2(q) = (N + 3)q3 + q4 + 2q5 + 4q6 + 4q7 + 6q8 + 8q9 + · · · , (6.17)

with a peculiar N dependence in the q3 term only. In summary, the explicit giant graviton
expansion of the Ê6(SU(N)) Schur index is

IÊ6(SU(N))(q)= (q;q3)∞(q2;q3)∞
(q)∞(q2)∞(q3)∞

[
1+qN (−q−2q2−q3−2q4−2q5−3q7−2q8+O(q10) · · ·)

+q2N

(
(N +3)q3+q4+2q5+4q6+4q7+6q8+8q9+O(q10)

)
+O(q3N+7)

]
. (6.18)

Notice that the first omitted terms are not just ∼ q3N since one finds an leading term −5q7

in the expression for W3, which is the first contribution omitted in (6.10).

Comparison with available data. As a check, the final expansion (6.18) may be compared
with the explicit results computed in [56]. They read11

IÊ6(SU(2)) = 1 + q2 + q3 + 2q6 + q8 + q11 + 2q12 + q15 + 2q18 + · · · ,

IÊ6(SU(4)) = 1 + q2 + 2q3 + 2q4 + q5 + 6q6 + 2q7 + 4q8 + 7q9 + 7q10 + 4q11 + · · · ,

IÊ6(SU(5)) = 1 + q2 + 2q3 + 2q4 + 2q5 + 7q6 + 2q7 + 8q8 + 10q9 + 8q10 + · · · .

(6.19)

Dividing by the Kaluza-Klein factor in (6.10), we find

IÊ6(SU(2))/IKK = 1− q3 − 2q4 − q5 − 2q6 + 3q7 + q8 − q9 + 2q10 + · · · ,

IÊ6(SU(4))/IKK = 1− q5 − 2q6 − q7 − 2q8 − 2q9 + 4q11 + · · · ,

IÊ6(SU(5))/IKK = 1− q6 − 2q7 − q8 − 2q9 − 2q10 + · · · .

(6.20)

11The Ê6(SU(2)) case is known in closed form as IÊ6(SU(2))(q) =
∑∞

n=1
qn−1

1+qn+q2n [48].
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To reproduce these series, it is enough to use the two terms we computed, i.e.

1 + qN W1 + q2N W2 + · · · . (6.21)

For instance for N = 2 one has, up to terms of order q10 included

1+q2(−q−2q2−q3−2q4−2q5−3q7−2q8+ · · ·)+q4(5q3+1q4+2q5+4q6+ · · ·
)
+O(q11)

= 1−q3−2q4−q5−2q6+(−2+5)q7+(0+1)q8+(−3+2)q9+(−2+4)q10+O(q11) , (6.22)

in agreement with the first line in (6.20). The other cases can be checked similarly.

6.3 Γ = E7, E8

For a generic mΓ, we can repeat the same steps. Let us discuss in particular the leading
wrapping correction. Relation (6.1) gives

IΓ̂(SU(N))(q) = ĪSU(N)(q−1; qmΓ) = ĨSU(N)(q
mΓ−2

2 ; qmΓ)

= (q; qmΓ)∞(qmΓ−1; qmΓ)∞
(qmΓ)2∞

ĨU(N)(q
mΓ−2

2 , qmΓ) . (6.23)

From (6.6) we have the Kaluza-Klein factor

ĨU(∞)(q
mΓ−2

2 ; qmΓ) = (qmΓ)∞
(qmΓ−1)∞(q)∞

, (6.24)

and thus

IΓ̂(SU(N))(q) = (q; qmΓ)∞(qmΓ−1; qmΓ)∞
(q)∞(qmΓ−1)∞(qmΓ)∞

ĨU(N)(q
mΓ−2

2 ; qmΓ)

ĨU(∞)(q
mΓ−2

2 ; qmΓ)
. (6.25)

The ratio can be evaluated by specializing (4.1) at u = q
mΓ−2

2

ĨU(N)(q
mΓ−2

2 ; qmΓ)

ĨU(∞)(q
mΓ−2

2 ; qmΓ)
= IU(N)(q

mΓ−2
2 ; q

mΓ
2 )

IU(∞)(q
mΓ−2

2 ; q
mΓ
2 )

=
[
1 + qN WΓ

1 (q) + O(q2N )
]

, (6.26)

where the leading order wrapping correction reads

WΓ
1 (q) = ID3

1 (q−
mΓ−2

2 , q
mΓ
2 ) = −q

(qmΓ−1)2∞
(q; qmΓ−1)∞(qmΓ−2, qmΓ−1)∞

. (6.27)

For mΓ = 3 it reproduces (6.12). In the E7, E8 cases, i.e. for mΓ = 4, 6, its series ex-
pansion reads

W E7
1 (q) = −q − q2 − 2q3 − 2q5 − q6 − 2q7 − q9 + O(q10),

W E8
1 (q) = −q − q2 − q3 − q4 − 2q5 − q7 − q8 − 2q9 + O(q10) .

(6.28)
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A Special functions

We collect in this appendix the definition of special functions appearing in the text and
some useful identities.

Jacobi elliptic theta functions.

ϑ1(z; q) = 2 q
1
4

∞∑
n=0

(−1)n sin[(2n + 1) z] qn (n+1) ,

ϑ2(z; q) = 2 q
1
4

∞∑
n=0

cos[(2n + 1) z] qn (n+1) ,

ϑ3(z; q) = 1 + 2 q
1
4

∞∑
n=1

cos(2n z) qn2
,

ϑ4(z; q) = 1 + 2
∞∑

n=1
(−1)n cos(2n z) qn2

.

(A.1)

Also, ϑn(q) ≡ ϑn(0; q), n = 2, 3, 4.

Dedekind η function.

η(τ) = q
1
12

∞∏
k=1

(1− q2k), q = eiπτ . (A.2)

q-Pochhammer symbol.

(a; q)∞ =
∞∏

k=0
(1− a qk) , (a±; q)∞ = (a; q)∞(a−1; q)∞ , (A.3)

(q)∞ ≡ (q; q)∞ =
∞∏

k=1
(1− qk) . (A.4)

Notice that we can write the Dedekind function in (A.2) as

η(τ) = q
1
12 (q2)∞ . (A.5)

An elementary but useful relation is

(aq; q)∞ = 1
1− a

(a; q)∞ . (A.6)

q-theta function. The q-theta function is defined as

ϑ(x, q) = −x− 1
2 (q)∞(x; q)∞(qx−1; q)∞ , (A.7)

with

ϑ(x; q) = −ϑ(x−1; q), ϑ′(x; q) = 1
x2ϑ′(x−1; q), ϑ′′(x; q) = − 2

x3ϑ′(x−1; q)− 1
x4ϑ′′(x−1; q) .

(A.8)
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It obeys the very useful relation

ϑ(qmx; q) = (−1)mq−
m2
2 x−mϑ(x; q) . (A.9)

Introducing the ratios

Rk(x; q) =
ϑ(k)(x; q)
ϑ(x; q) , ϑ(k)(x; q) = ∂k

xϑ(x; q) , (A.10)

we obtain from (A.9) the relations

Rk(qmx; q) =
k∑

p=0
(−1)p

(
k

p

)
(m)p

xp
Rk−p(x; q) . (A.11)

Eisenstein series. The classical Eisenstein series are defined as

E2m(q) = 1− 4m

B2m

∑
n=1

n2m−1qn

1− qn
, (A.12)

where B2m are Bernoulli numbers. We will need the differential equations

q
d

dq
E2(q) =

1
12(E

2
2 − E4), (A.13)

q
d

dq
E4(q) =

1
3(E2E4 − E6), (A.14)

q
d

dq
E6(q) =

1
2(E2E6 − E2

4) . (A.15)

Twisted Weierstrass functions.

P1

[
x

1

]
(ν, τ) = (q)3∞ϑ(x−1w; q)

ϑ(x−1; q)ϑ(w; q) , w = e2πiν ,

Pk

[
x

q

]
(ν, τ) = (−1)k−1

(k − 1)!
(q)3∞

ϑ(x−1; q)

(
w

∂

∂w

)k−1 ϑ(x−1w; q)
ϑ(w; q) .

(A.16)

B Technical details

B.1 Generalized Lambert series and the sums S3, S4

Let us consider the generalized Lambert series

La,b(q) =
∞∑

k=1

kbqk

(1− qk)a
. (B.1)

The cases L1,b with odd b are directly related to Eisenstein series (A.12), but other cases are
not. For instance the sum L1,0 is the generating function of the number of positive divisors and
can be written in terms of the q-polygamma function, but this is actually the definition of that
function. We will adopt the following abbreviated notation for the sums L1,b with even index b

L2m(q) ≡ L1,2m(q) =
∞∑

k=1

k2mqk

1− qk
, m = 0, 1, 2, . . . . (B.2)
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We now show how to write La,b in terms of Eisenstein series, sums of type L2m, and their
derivatives. To this aim, we start by remarking that a large set of identities among La,b with
different indices comes after summing over ℓ in the trivial identity

∞∑
k,ℓ=1

(k − ℓ)× (symmetric polynomial in k, ℓ) qkℓ = 0. (B.3)

For example,
∞∑

k,ℓ=1
(k − ℓ)qkℓ = 0 →

∞∑
k=1

[
k

1− qk
− 1

(1− qk)2
]

qk = 0 , (B.4)

gives the relation

L1,1 = L2,0 . (B.5)

Another useful set of relations is obtained by differentiating with respect to q, for instance

q
d

dq
E2 = −24q

d

dq

∞∑
k=1

kqk

1− qk
= −24

∞∑
k=1

k2qk

(1− qk)2 = −24L2,2 . (B.6)

Considering all instances of (B.3) with a generic symmetric polynomial of degree 4 and
adding to (B.6) the analogous relation for q2E′′

2, one gets the following relations for La,b.
With first index equal to 2:

L2,0 =
1
24(1− E2), L2,3 = qL′

2,

L2,1 = q L′
0, L2,4 =

1
240qE′

4 (B.7)

L2,2 = − 1
24qE′

2 .

With first index 3:

L3,0 =
1
48(1− E2) +

1
2L2, L3,2 = − 1

48qE′
2 +

1
2qL′

0 +
1
2q2L′′

0,

L3,1 = − 1
48qE′

2 +
1
2qL′

0, L3,3 = − 1
48qE′

2 −
1
48q2E′′

2 +
1
2qL′

2 . (B.8)

With first index 4, 5, 6

L4,0 =
19
1440 − 1

72E2 +
1

1440E4 +
1
2L2,

L4,1 = − 1
48qE′

2 +
1
3qL′

0 +
1
6qL′

2,

L4,2 = − 1
48E

′
2 −

1
144q2E′′

2 +
1
2qL′

0 +
1
2q2L′′

0, (B.9)

L5,0 =
3
320 − 1

96E2 +
1

960E4 +
11
24L2 +

1
24L4,

L5,1 = − 11
576qE′

2 +
1

5760qE′
4 +

1
4qL′

0 +
1
4qL′

2,

L6,0 =
863

120960 − 1
120E2 +

7
5760E4 −

1
60480E6 +

5
12L2 +

1
12L4 .
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The sum S3(q). Let us now consider the sum in (4.17). Factoring qk and splitting
qk = 1 − (1 − qk) in the rest, we get

S3(q) =
∞∑

k=1

4(1 + k + (k − 1)qk)qk

(1− qk)3 = 4L2,0 − 4L2,1 + 8L3,1. (B.10)

Using the previous relations, we obtain

S3(q) =
1
6(1− E2 − qE′

2) , (B.11)

which is same as (4.20) using the differential equation (A.13).

The sum S4(q). The procedure for this sum is similar. First, we write

S4(q) =
∞∑

k=1

[5 + 6k + 2k2 − 2(1− 4k2)qk + (5− 6k + 2k2)q2k]qk

(1− qk)4

= 5L2,0 − 6L2,1 + 2L2,2 − 8L3,0 + 12L3,1 − 12L3,2 + 8L4,0 + 12L4,2 . (B.12)

Then, using the previous relations, we get

S4(q) =
53
360 − 11

72E2 +
1
180E4 −

1
3qE′

2 −
1
12q2E′′

2 . (B.13)

This is same as (4.21) after using (A.13) and (A.14) that give

q2E′′
2 =

(
q

d

dq

)2
E2 − q

d

dq
E2 =

1
72E

3
2 −

1
24E2E4 +

1
36E6 −

1
12E

2
2 +

1
12E4. (B.14)

B.2 Differential equation for B1(u; q)

Let us start from the single wrapping brane index

ID3
1 (u; q) = −qu2 ( q

u)
3
∞

ϑ(u2; q
u)

, (B.15)

and define

f(x; q) = ID3
1 (

√
x;

√
x q) = −qx3/2 (q)3∞

ϑ(x; q) . (B.16)

From the differential equation for the ϑ function

q
∂

∂q
ϑ(x; q)− 1

2

(
x

∂

∂x

)2
ϑ(x; q) + 1

8ϑ(x; q) = 0 , (B.17)

and the well known derivative

q
d

dq
log(q)∞ = 1

24(E2 − 1), (B.18)

we obtain the non-linear differential equation for f(x; q)

9
8 + 1

8(E2 − 1)−
(

q∂q −
1
2x∂x − 1

2x2∂2
x

)
log f − 1

2x2
( 3
2x

− ∂x log f

)2
= 0 . (B.19)
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From (3.17), f(x; q) has the structure

f(x, q) = x2

1− x
q + x(1− x)q2B1(

√
x; q

√
x) , (B.20)

and therefore, expanding around x = 1, we get

log f(x, q) = log q

1− x
+ 2(x − 1) + [−1 + q B1(q)] (x − 1)2

+ 1
6(4− 6q B1(q) + 3q2 B′

1(q) + 3qB
(1)
1 (q)] (x − 1)3 + O((x − 1)4) , (B.21)

where notation is as in (4.11). Plugging this expansion in (B.19) gives

0 = 1
8(−1 + 24q B1(q) + E2) + 3q[qB′

1(q) + B
(1)
1 (q)] (x − 1) + O((x − 1)2 . (B.22)

The leading order gives

B1(q) ≡ B1(1; q) =
1
24
(
1− E2(q)

)
. (B.23)

At next orders in x − 1, using recursively results like (B.23) and its derivatives with respect
to q, we get the following expressions for ∂p

uB1(1; q) in terms of E2(q) and its derivatives

q∂uB1(1; q) =
1
24(1− E2) +

1
24E

′
2,

q∂2
uB1(1; q) = − 17

720 + 1
72E2 +

7
720E

2
2 −

1
30qE′

2 −
1
24q2E′′

2,

q∂3
uB1(1; q) =

7
120qE′

2 −
7
120qE2E′

2 +
9
40q2E′′

2 +
1
24q3E(3)

2 , (B.24)

q∂4
uB1(1; q) =

377
5040 − E2

30 − 7E2
2

240 − 31E3
2

2520 − 22
105qE′

2 +
71
210qE2E′

2 +
7
60q2E′2

2 − 181
140q2E′′

2

+ 7
60q2E2E′′

2 −
8
15q3E(3)

2 − 1
24q4E(4)

2 ,

and so on. These results are in agreement with (4.22), using the differential equations (A.13)
and (A.14). This way, it is straightforward to compute any function B

(p)
1 (q) at arbitrar-

ily large p.

B.3 Quasimodular expressions for the functions B(p)
n (q)

The functions B
(p)
n (q) for n = 3, 4, 5 and p = 1, 2, 3 have a quasimodular structure completely

similar to that in (4.22). The explicit expressions are

Functions B
(p)
2 .

q B2(q) =
1
24(1− E2),

q B
(1)
2 (q) = 1

12(1− E2) +
1
288(E

2
2 − E4),

q B
(2)
2 (q) = −43

30 + 17
12E2 +

1
96E

2
2 +

1
160E4 −

1
1728E

3
2 +

1
576E2E4 −

1
864E6,

q B
(3)
2 (q) = −443

20 + 45
2 E2 −

125
144E

2
2 +

373
720E4 −

1
576E

3
2 −

11
960E2E4 +

19
1440E6 +

1
6912E

4
2

+ 1
864E2E6 −

1
2304E

2
4 −

1
1152E

2
2E4 .

(B.25)
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Functions B
(p)
3 .

q B3(q) =
1
48(1− E2),

q B
(1)
3 (q) = 1

12(1− E2) +
1

576(E
2
2 − E4),

q B
(2)
3 (q) = −1597

1440 + 79
72E2 +

5
576E

2
2 +

1
320E4 −

1
3456E

3
2 +

1
1152E2E4 −

1
1728E6,

q B
(3)
3 (q) = −303

160 + 9
4E2 −

73
96E

2
2 +

97
240E4 −

1
1152E

3
2 −

53
5760E2E4 +

29
2880E6

+ 1
13824E

4
2 +

1
1728E2E6 −

1
4608E

2
4 −

1
2304E

2
2E4 .

(B.26)

Functions B
(p)
4 .

q B4(q) =
1

144(1− E2),

q B
(1)
4 (q) = 7

144(1− E2) +
1

1728(E
2
2 − E4),

q B
(2)
4 (q) = − 343

1080 + 5
16E2 +

1
192E

2
2 −

1
8640E4 −

1
10368E

3
2 +

1
3456E2E4 −

1
5184E6,

q B
(3)
4 (q) = 1951

240 − 191
24 E2 −

275
864E

2
2 +

637
4320E4 −

1
1728E

3
2 −

29
8640E2E4

+ 17
4320E6 +

1
41472E

4
2 +

1
5184E2E6 −

1
13824E

2
4 −

1
6912E

2
2E4 ,

(B.27)

Functions B
(p)
5 .

q B5(q) =
1
576(1− E2),

q B
(1)
5 (q) = 11

576(1− E2) +
1

6912(E
2
2 − E4),

q B
(2)
5 (q) = 163

17280 − 19
1728E2 +

5
2304E

2
2 −

7
11520E4 −

1
41472E

3
2 +

1
13824E2E4 −

1
20736E6,

q B
(3)
5 (q) = 17447

2880 − 865
144E2 −

23
288E

2
2 +

83
2880E4 −

1
3456E

3
2 −

1
1440E2E4 +

17
17280E6 (B.28)

+ 1
165888E

4
2 +

1
20736E2E6 −

1
55296E

2
4 −

1
27648E

2
2E4 .

As an alternative basis, all functions B
(1)
k can be expressed in terms of B1 and B

(1)
1 according to

B
(1)
2 = B

(1)
1 + B1, B

(1)
3 = 1

2B
(1)
1 + 3

2B1,

B
(1)
4 = 1

6B
(1)
1 + B1, B

(1)
5 = 1

24B
(1)
1 + 5

12B1 .
(B.29)
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Similarly, B
(2)
k can be given in terms of B1, B

(1)
1 , B

(2)
1 with the addition of a term propor-

tional to qB2
1

B
(2)
2 = B

(2)
1 − 2B

(1)
1 − 32B1 + 4qB2

1 ,

B
(2)
3 = 1

2B
(2)
1 − B

(1)
1 − 51

2 B1 + 4qB2
1 ,

B
(2)
4 = 1

6B
(2)
1 − 137

18 B1 + 2qB2
1 ,

B
(2)
5 = 1

24B
(2)
1 + 1

6B
(1)
1 + 1

18B1 +
2
3qB2

1 .

(B.30)

Third derivatives require a further contribution proportional to qB1B
(1)
1 and are given by

B
(3)
2 = B

(3)
1 − 9B

(2)
1 − 732

5 B
(1)
1 − 384B1 −

876
5 qB2

1 + 24qB1B
(1)
1 ,

B
(3)
3 = 1

2B
(3)
1 − 15

2 B
(2)
1 − 1149

10 B
(1)
1 + 72B1 −

936
5 qB2

1 + 24qB1B
(1)
1 ,

B
(3)
4 = 1

6B
(3)
1 − 3B

(2)
1 − 1261

30 B
(1)
1 + 1433

6 B1 −
468
5 qB2

1 + 12qB1B
(1)
1 ,

B
(3)
5 = 1

24B
(3)
1 − 3

4B
(2)
1 − 247

30 B
(1)
1 + 617

4 B1 −
146
5 qB2

1 + 4qB1B
(1)
1 .

(B.31)

B.4 Evaluation of W2(q)

In this appendix, we compute the function W2(q) from the limit (6.14), i.e.

W2(q) = lim
η→1

[
ηN ID3

1 (η q
1
2 ; q

3
2 ) + η−2N ID3

2 (η−1q−
1
2 ; q

3
2 )
]

. (B.32)

The first term in (B.32) can be written using (A.6) in the form

ID3
1 (η q

1
2 ; q

3
2 ) = − q3η6

(1− ηq2)(1− η2q)(1− η3)
( q

η )
2
∞

(q3; q
η )∞( q

η4 ; q
η )∞

. (B.33)

We now observe that

log
( q

η )
2
∞

(q3; q
η )∞( q

η4 ; q
η )∞

=
∞∑

n=0

[
log 1−qn+1

1−qn+3 +
((n−2)qn+1

1−qn+1 − nqn+3

1−qn+3

)
(η−1)+O((η−1)2)

]

= log[(1−q)(1−q2)]−
( 2q

1−q
+ q2

1−q2

)
(η−1)+O((η−1)2)

]
, (B.34)

and therefore

( q
η )

2
∞

(q3; q
η )∞( q

η4 ; q
η )∞

= (1− q)(1− q2)− q(1− q)(2 + 3q)(η − 1) + O((η − 1)2) . (B.35)

Remarkably, the term linear in η − 1 is a simple polynomial in q, a property thet does not
hold for the next corrections quadratic in η − 1. Still, this is enough to give the following
expansion of the first term in (B.32) around η = 1

ηN ID3
1 (η q

1
2 ; q

3
2 ) = q3

3(η − 1) +
5 + N

3 q3 + O(η − 1) . (B.36)
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The second piece in (B.32) is treated similarly. First, we expose the singularity for η → 1
by writing

ID3
2 (η−1q−

1
2 ; q

3
2 ) = − q3

2η3(1− η3)(1− η4q2)
(ηq2)2∞

( q2

η2 ; ηq2)∞(η5q4; ηq2)∞

[
−3+ 2

η2q
R1

( 1
η2q

; ηq2
)]

.

(B.37)
The combination of q-Pochhammer functions can be expanded around η = 1 using

log (ηq2)2∞
( q2

η2 ; ηq2)∞(η5q4; ηq2)∞

=
∞∑

n=0

[
log 1− q2+2n

1− q4+2n
+
(
− (n + 4)q2+2n

1− q2+2n
+ (n + 5)q4+2n

1− q4+2n

)
(η − 1) + O((η − 1)2)

]

= log(1− q2)− 4q2

1− q2
(η − 1) + O((η − 1)2). (B.38)

and therefore

(ηq2)2∞
( q2

η2 ; ηq2)∞(η5q4; ηq2)∞
= 1− q2 − 4q2(η − 1) + O((η − 1)2). (B.39)

Hence,

η−2N ID3
2 (η−1q−

1
2 ;q

3
2 )=− q3

3(η−1) (B.40)

+ 1
3q

[
(2+3N)q2+q3R

(0,1)
1 (q−1;q2)−2R

(1,0)
1 (q−1;q2)

]
+O(η−1) ,

where we used R1(q−1; q2) = q/2 and R
(p,q)
1 are partial derivatives. This gives the finite

expression

W2(q) =
(8
3 + N

)
q3 + q4

3 R
(0,1)
1 (q−1; q2)− 2q

3 R
(1,0)
1 (q−1; q2). (B.41)

Using the differential equation (B.17) to work out R
(0,1)
1 , we get the expression (6.15).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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