
 

Supersymmetric warped conformal field theory

Bin Chen,1,2,3 Peng-Xiang Hao,1 and Yan-jun Liu 1

1Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University,
5 Yiheyuan Rd, Beijing 100871, People’s Republic of China

2Collaborative Innovation Center of Quantum Matter, 5 Yiheyuan Rd,
Beijing 100871, People’s Republic of China

3Center for High Energy Physics, Peking University, 5 Yiheyuan Rd,
Beijing 100871, People’s Republic of China

(Received 10 June 2020; accepted 9 September 2020; published 23 September 2020)

In this work, we study the supersymmetric warped conformal field theory in two dimensions. We show
that the Hofman-Strominger theorem on symmetry enhancement could be generalized to the super-
symmetric case. More precisely, we find that within a chiral superspace ðxþ; θÞ, a two-dimensional field
theory with two translational invariance and a chiral scaling symmetry can have enhanced local symmetry,
under the assumption that the dilation spectrum is discrete and non-negative. Similar to the pure bosonic
case, there are two kinds of minimal models, one being N ¼ ð1; 0Þ supersymmetric conformal field
theories, while the other being N ¼ 1 supersymmetric warped conformal field theories (SWCFT). We
study the properties of SWCFT, including the representations of the algebra, the space of states, and the
correlation functions of the superprimaries.
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I. INTRODUCTION

Symmetry plays an essential role in quantum field
theories. The theories with more symmetries could be
better constrained, such that their dynamics might be
investigated even nonperturbatively. For example, the
supersymmetric field theories have better UV behaviors,
and the conformal invariant theories are expected to be
solvable in the framework of conformal bootstrap.
In two dimensions (2D), the global symmetries in a

quantum field theory with scaling symmetry could be
enhanced. As shown by J. Polchinski in the late 1980s
[1], a 2D Poincaré invariant QFT with a scale invariance
could become conformal invariant, provided that the theory
is unitary and the dilation spectrum is discrete and non-
negative. In 2011, D. Hofman and A. Strominger [2]
relaxed the requirement of Lorentz invariance and studied
the enhanced symmetries of the theory with chiral scaling.
They obtained two kinds of minimal theories, one being the
two-dimensional conformal field theory (CFT2) [3] and
the other being the so-called the warped conformal field
theory (WCFT2) [4]. In a warped CFT2, the global
symmetry group is SLð2; RÞ ×Uð1Þ, and it is enhanced

to an infinite-dimensional group generated by an Virasoro-
Kac-Moody algebra. Very recently, the symmetry enhance-
ment in 2D QFT was generalized to the cases with global
translations and anisotropic scaling symmetries [5]. In such
2D Galilean field theories with anisotropic scaling, the
enhanced local symmetries are generated by the infinite
dimensional spin-l Galilean algebra with possible central
extensions, under the assumption that the dilation operator
is diagonalizable and has a discrete and non-negative
spectrum.
WCFT2 has rich structures similar to CFT2. Though they

are not Lorentzian invariant, WCFT2 shares the modular
covariance like CFT2. For finite temperature WCFT2

defined on a torus, the modular property can be used to
evaluate the density of states at high temperature, which
gives a Cardy-like formula for the thermal entropy of
WCFT2 [4]. Due to the infinite symmetries, WCFT2 is
highly constrained. The form of the two- and three-point
functions are determined by the global warped conformal
symmetry, while the four-point functions can be deter-
mined up to an arbitrary function of the cross ratio [6].
Specific models of WCFT2 include chiral Liouville gravity
[7], free Weyl fermion [8,9], free scalars [10], and also the
Sachdev-Ye-Kitaev models with complex fermions [11,12].
For the study of other aspects of WCFT2, see [11,13–18].
On the other hand, WCFT2 plays an important role in the

study of holography beyond the usual AdS=CFT corre-
spondence. In [19], it has been shown that under the
Compère-Song-Strominger (CSS) boundary conditions, the
asymptotic symmetry group of the anti–de Sitter (AdS3)
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gravity is generated by an Virasoro-Kac-Moody algebra.
This leads to the conjecture that under the CSS boundary
conditions, the AdS3 gravity could be dual to a holographic
warped conformal field theory. This AdS3=WCFT corre-
spondence has been studied in [14,16,20–24]. Moreover,
WCFT2 could also appear in the WAdS3=WCFT2 corre-
spondence [25–28], in which the bulk gravity is a three-
dimensional topological massive gravity.
In this paper, we would like to generalize the study on

WCFT2 to the supersymmetric case. We first study the
supersymmetries on the warped flat geometry [9] in two
dimensions, which is essentially equivalent to a Newton-
Cartan geometry [29–34] with an additional scaling struc-
ture. The supersymmetrization could be done by including
Grassmannian coordinates into the bosonic directions to
make warped “superspace.” However, it turns out that the
minimal supersymmetry could be realized in a chiral N ¼
ð1; 0Þ superspace. We then study the enhanced local
symmetries, following the approach developed in [1,2].
Just as in bosonic case, we find two classes of minimal
enhanced algebra. One generates the local symmetries of
N ¼ ð1; 0Þ SCFT2, while the other one generates the
symmetries of the supersymmetric warped conformal field
theory (SWCFT2). Furthermore, we discuss the radial
quantization and the state-operator correspondence in
SWCFT2, analogous to the usual WCFT2 case. We study
the correlation functions of superprimaries in SWCFT2 as
well. We notice that the correlation functions share the
similar structure as the ones in the holomorphic sector of
N ¼ ð1; 0Þ SCFT2, with additional modifications from
Uð1Þ symmetry.
The remaining parts are organized as follows. In Sec. II,

we discuss the supersymmetries on the warped geometry
and set our notations. In Sec. III, we generalize the
Hofman-Strominger theorem to the supersymmetric case
and show that the global symmetries are enhanced to the
local ones. In Sec. IV, we consider the Hilbert space and the
representation of the NS sector of the SWCFT2. After
establishing the state-operator correspondence, we discuss
the transformations of the superprimaries. Then, we cal-
culate the two-point functions and three-point functions of
the superprimary operators in the NS sector of the SWCFT
and discuss the higher-point functions. We conclude and
give some discussions in Sec. V. In the Appendix, we
discuss the conserved currents in the superspace and show
that we can consistently work in theN ¼ ð1; 0Þ superspace.

II. SUPERSYMMETRIES ON WARPED
GEOMETRY

Let us start from a two-dimensional unitary local field
theory with translational invariance and a chiral scaling
symmetry. The transformation of coordinates under these
symmetries are

xa → xa þ δa; xa → λabxb; ð2:1Þ

where λab is a scaling matrix,

λab ¼
�
λ 0

0 1

�
: ð2:2Þ

As shown in [2], the theory would have enhanced local
symmetries. There are two kinds of minimal theories. One
kind is the two-dimensional conformal field theory (CFT2),
while the other kind is the two-dimensional warped
conformal field theory (WCFT2). For WCFT2, in addition
to the symmetries (2.1), there is a generalized boost
symmetry,

xa → Λa
bxb; ð2:3Þ

where Λa
b is the boost matrix,

λab ¼
�
1 0

v 1

�
: ð2:4Þ

The WCFT2 can be defined consistently in a warped
geometry, which is a variant of the Newton-Cartan geom-
etry with an additional scaling structure [4]. In the warped
geometry, there are one vector and one 1 form,

qa ¼
�
0

1

�
; qa ¼ ð1; 0Þ; ð2:5Þ

which are invariant under the boost. And there is an
antisymmetric tensor hab, which is also invariant under
the boost,

hab ¼
�

0 1

−1 0

�
; hab ¼ −hab¼

�
0 −1
1 0

�
: ð2:6Þ

hab can be used to lower the indices, but one should keep in
mind that hab is not the metric of the warped geometry.
In the warped geometry, one may define the fermionic

representations. The first step is to consider the gamma
matrix algebra. The gamma matrix algebra is given by the
warped Clifford algebra,

fΓa;Γbg ¼ 2qaqb; ð2:7Þ

where the gamma matrices are1 [8,9]

Γ0 ¼
�
0 0

1 0

�
; Γ1 ¼

�
1 0

0 −1

�
: ð2:8Þ

1Actually, there exists a trivial representation in which there is
only one supercharge. However, the algebra of the enhanced
symmetry in the trivial representation can only satisfy the graded
Jacobi identity when the Kac level vanishes. We shall not be
considering this case in the present work.
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The lower-index gamma matrices are defined by

Γa ¼ habΓb: ð2:9Þ

This definition proves quite useful as it allows us to define
the boost generator as

B̄ ¼ 1

8
hab½Γa;Γb�: ð2:10Þ

One can check that it acts on the gamma matrices as they
are in a vector representation,

½B̄;Γc� ¼ qaΓaqc; or ½B̄;Γc� ¼ −qaΓaqc: ð2:11Þ

The operators generating the translations will be donated by
Ha ¼ ðH0; H1Þ ¼ ðH; P̄Þ, and they are of course in a
vector representation of the boost generator,

½B̄; Hc� ¼ qaHaqc; or ½B̄; Hc� ¼ −qaHaqc: ð2:12Þ

The two-dimensional spinor space is spanned by Ψ0, Ψ1 as
follows:

ΨA ¼
�Ψ0

Ψ1

�
: ð2:13Þ

From this, it is easy to see that

B̄Ψ0 ¼ 0; B̄Ψ1 ¼
1

2
Ψ0: ð2:14Þ

The definition for the dual representation is

Ψ̄A ¼ ϵABΨB ¼ ðΨ0;Ψ1Þ ¼ ðΨ1;−Ψ0Þ; ð2:15Þ

where the ϵAB is given by

ϵAB ¼ −ϵAB ¼
�

0 1

−1 0

�
: ð2:16Þ

One can easily show that the quantity Ψ̄Ψ is a scalar under
the boost.
Now, let us introduce the supercharge operator

Q ¼ ðQ0; Q1ÞT . The commutators of supercharges are

ifQA; Q̄Bg ¼ 2ðΓaHaÞAB: ð2:17Þ

They can be written in terms of the component operators,

ifQ1; Q1g ¼ 2H; ifQ0; Q1g ¼ 2P̄; ifQ0; Q0g ¼ 0:

ð2:18Þ

From these commutators, one can easily find thatH andQ1

are superpartners under the action of Q1, so are P̄ and Q0.

For simplicity, we will donate Q1 by Qþ and Q0 by Q−
in the following discussion. Moreover, we will donate xa ¼
ðx0; x1Þ by xa ¼ ðxþ; x−Þ and the Grassmannian coordi-
nates by

θA ¼ ðθþ; θ−Þ: ð2:19Þ

A general superfield is defined on the superspace and can
be expanded as a power series in θþ and θ−,

ΦðzÞ≡Φðxþ; x−; θþ; θ−Þ ¼ A1ðxþ; x−Þ þ θþA2ðxþ; x−Þ
þ θ−A3ðxþ; x−Þ þ θþθ−A4ðxþ; x−Þ: ð2:20Þ

The transformation of any field Φ under the generator G is
given by

δϵΦ ¼ i½ϵG;Φ�: ð2:21Þ

In the Appendix, we discuss the conserved charges of the
theory in the superspace and their corresponding super-
currents. We find that there exists a minimal superspace in
which the right-moving supersymmetry can be turned off
consistently. As we show in the next section, even only with
the supersymmetry in the left-moving sector, the right-
moving global symmetry gets enhanced and supersymme-
trized as well.

III. ENHANCED SYMMETRIES

In this section, we study the enhanced symmetry of
two-dimensional quantum field theory, whose global sym-
metry is generated by the left-moving translation H, the
dilation D, the right-moving translation P̄, and the super-
symmetries Qþ. We will work in the chiral superspace
ðxþ; x−; θþÞ. For simplicity, we denote θþ ¼ θ. Now for
the global charges, their related supercurrents depend only
on one Grassmannian coordinate θ; we will discuss the
enhanced symmetry in this N ¼ 1 chiral superspace. As in
[2], we assume that the eigenvalue spectrum ofD is discrete
and non-negative, and there exists a complete basis of
N ¼ 1 local superfields Φi.
A general superfield can be expanded as

Φðxþ; x−; θÞ ¼ φðxþ; x−Þ þ θψðxþ; x−Þ: ð3:1Þ

It satisfies

i½H;Φi� ¼ ∂þΦi; i½P̄;Φi� ¼ ∂−Φi; ð3:2Þ

i½D;Φi� ¼
�
xþ∂þ þ θ

2
∂θ þ λi

�
Φi; ð3:3Þ

i½ϵQþ;Φi� ¼ ϵð∂θ − θ∂þÞΦi; ð3:4Þ

i½ϵQ−;Φi� ¼ ϵð−2θ∂−ÞΦi; ð3:5Þ
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where λi is the superweight of Φi and
R
C dΦi ¼ 0 for any

closed contour C. The translational plus the dilational
invariance and the supersymmetry restrict the form of
the vacuum two-point functions,

hΦiðxþ; x−; θÞΦjðxþ0; x−0; θ0Þi ¼ fijðx− − x−0Þ
ðxþ − xþ0 − θθ0Þλiþλj

;

ð3:6Þ

where fij are some unknown functions.

A. From left global symmetries to local symmetries

The global charges H, D, P̄ are associated to the
supercurrents H, D, and P̄, respectively. All of these
supercurrents have shift freedom [2], which can be used
to “gauge” the currents to satisfy the canonical commuta-
tion relations,

i½H;H�� ¼ ∂þH�; i½H; P̄�� ¼ ∂þP̄�;

i½H;D�� ¼ ∂þD� − H�: ð3:7Þ

i½P̄;H�� ¼ ∂−H�; i½P̄; P̄�� ¼ ∂−P̄�;

i½P̄;D�� ¼ ∂−D�: ð3:8Þ

This implies that H�, P̄� are local operators, but D� must
have an explicit dependence on the xþ coordinate. The
weights of the global charges (A2)–(A3) imply

i½D;Hþ� ¼ xþ∂þHþ þ θ

2
∂θHþ þ 3

2
Hþ;

i½D;H−� ¼ xþ∂þH− þ θ

2
∂θH− þ 1

2
H−;

i½D; P̄þ� ¼ xþ∂þP̄þ þ θ

2
∂θP̄þ þ 1

2
P̄þ;

i½D; P̄−� ¼ xþ∂þP̄− þ θ

2
∂θP̄− −

1

2
P̄−;

i½D;Dþ� ¼ xþ∂þDþ þ θ

2
∂θDþ þ 1

2
Dþ;

i½D;D−� ¼ xþ∂þD− þ θ

2
∂θD− −

1

2
D−: ð3:9Þ

The D�’s have explicit coordinate dependence. Let us
write the current in terms of local operators as in [2].
Defining S� by

D� ¼ xþH� þ θS�; ð3:10Þ

one can easily find that

i½H;S�� ¼ ∂þS�; i½P̄;S�� ¼ ∂−S�; ð3:11Þ

and

i½D;Sþ� ¼ xþ∂þSþ þ Sþ; i½D;S−� ¼ xþ∂þS−:

ð3:12Þ

So we conclude ðSþ;S−Þ are local operators of a
weight (1,0).
The conservations of the dilation current and left-trans-

lation current yield

∂þD− þ ∂−Dþ ¼ xþð∂þH− þ ∂−HþÞ þ θð∂þS−

þ ∂−SþÞ þ H−

¼ 0; ð3:13Þ

which leads to

H− ¼ −θð∂−Sþ þ ∂þS−Þ: ð3:14Þ

Then we use the shift freedom in the currents to shift
away Sþ,

H� → H� � θ∂�Sþ; D� → D� � θ∂�ðxþSþÞ:
ð3:15Þ

One can check that the commutators and the conservations
of the currents remain consistent. Now, the Eq. (3.10)
becomes

Dþ ¼ xþHþ; D− ¼ xþH− þ θS−; ð3:16Þ

and

H− ¼ −θ∂þS−: ð3:17Þ

Because S− is a local operator of a weight zero, then from
the general form of the two-point function, we have

hS−S−i ¼ fS−
ðx−Þ; ð3:18Þ

which implies

H− ¼ 0: ð3:19Þ

Assuming

Hþðxþ; x−; θÞ ¼ h0ðxþ; x−Þ þ 2θh1ðxþ; x−Þ; ð3:20Þ

the conservation law and the Eq. (3.19) yield

Hþðxþ; x−; θÞ ¼ h0ðxþÞ þ 2θh1ðxþÞ: ð3:21Þ

This fact immediately leads to the existence of two sets of
conserved charges. Defining
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Tξ ¼ −
1

2π

Z
dxþdθξðxþ; θÞHþ; ð3:22Þ

where ξ ¼ 1
2
αðxþÞ þ θaðxþÞ with α and a being the

function of xþ, we have

T0a ¼ −
1

2π

Z
dxþaðxþÞh0; ð3:23Þ

T1α ¼ −
1

2π

Z
dxþαðxþÞh1: ð3:24Þ

There is another set of conserved charges,

J̄χ ¼
1

2π

Z
dx−χðx−ÞS−; ð3:25Þ

which may lead to other symmetries [2,9]. As we are going
to discuss the minimal algebra, we choose S− ¼ 0.
The algebra spanned by the conserved bosonic charges

T1α has been done in [2],

i½T1α; T1β� ¼ T1ðα0β−αβ0Þ þ
c0
48π

Z
dxþðα00β0 − α0β00Þ;

ð3:26Þ

where the prime denotes the derivative with respect to xþ,
α0 ≡ ∂þα. This is the same as the algebra of the left-moving
conformal generators on the Minkowski plane with the
central charge c0.
Let us now work out the algebra spanned by adding the

fermionic charges T0a. The global charges are

H ¼ −
1

4π

Z
dxþdθ1 · Hþ ¼ −

1

2π

Z
dxþh1; ð3:27Þ

D ¼ −
1

4π

Z
dxþdθθxþ · Hþ ¼ −

1

2π

Z
dxþxþh1; ð3:28Þ

Qþ ¼ −
1

2π

Z
dxþdθθHþ ¼ −

1

2π

Z
dxþh0: ð3:29Þ

The actions of H and D on Hþ imply

i½H; T0a� ¼ −T0a0 ; ð3:30Þ

i½D; T0a� ¼ −T0ða
2
−a0xþÞ: ð3:31Þ

This in turn implies that the action of T0a on h1 is

i½h1; T0a� ¼ −
3

2
a0h0 −

1

2
a∂þh0 þ ∂2þOa: ð3:32Þ

Furthermore, we have

i½T1α; T0a� ¼ T
0ðα0a

2
−αa0Þ −

1

2π

Z
dxþα∂2þOa: ð3:33Þ

The scaling symmetry plus the locality imply that Oa must
be of the form Oa ¼ c1a with c1 being a local operator of
weight 1

2
. But the Jacobi identity with the third operator T1β

implies that c1 ¼ 0. So we arrive at

i½T1α; T0a� ¼ T
0ðα0a

2
−αa0Þ: ð3:34Þ

Next, the action of Qþ ¼ T01 on h0 is ifT01; h0g ¼ 2h1.
This implies ifT01; T0ag ¼ 2T1a and hence,

ifT0a; h0g ¼ 2ah1 þ ∂þga; ð3:35Þ

where ga is to be determined. Integrating both sides with
− 1

2π dx
þbðxþÞ gives

ifT0a; T0bg ¼ 2T1ab −
1

2π

Z
dxþb∂þga: ð3:36Þ

The scaling symmetry and the exchange symmetry under
a ↔ b imply ga ¼ c2a0, where c2 is a constant number. The
Jacobi identity with the third operator T1α implies that
c2 ¼ c0

3
. Then,

ifT0a; T0bg ¼ 2T1ab þ
c0
6π

Z
dxþa0b0: ð3:37Þ

We recognize the equations (3.26), (3.34), (3.37) as the
superconformal algebra on the Minkowski plane with the
central charge c0.

B. From right global symmetries to local symmetries

In general, P̄� can be written in form of

P̄þ ¼ p0ðxþ; x−Þ þ 2θp1ðxþ; x−Þ; ð3:38Þ

P̄− ¼ p3ðxþ; x−Þ þ 2θp2ðxþ; x−Þ: ð3:39Þ

The fact that P̄− is a local superfield of weight − 1
2
implies

that p2 is a weight-zero local field. From the two-point
function of p2, we get ∂þp2 ¼ 0. The current conservation
then implies ∂−p1 ¼ 0. It follows that

p1 ¼ p1ðxþÞ; p2 ¼ p2ðx−Þ: ð3:40Þ

The supersymmetry requires p0 ¼ p0ðxþÞ and p3 ¼ 0;
hence, p− is a singlet under the supersymmetry. Now,
we have

P̄þ ¼ p0ðxþÞ þ 2θp1ðxþÞ; ð3:41Þ

P̄− ¼ p2ðx−Þ: ð3:42Þ
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In the case P̄þ ¼ 0, we have infinitely many charges
given by

T̄1α ¼
1

2π

Z
dx−αðx−Þp2: ð3:43Þ

The algebra spanned by T̄1α gives the right-moving
Virasoro algebra on Minkowski plane [2]. In this case,
the enhanced local symmetry is generated by the left-
moving super-Virasoro algebra and the right-moving
Virasoro algebra. It gives the local symmetry of N ¼
ð1; 0Þ SCFT2.
In the case P̄− ¼ 0, we have infinitely many left-moving

charges,

Jη ¼ −
1

2π

Z
dxþdθηðxþ; θÞP̄þ; ð3:44Þ

where η ¼ 1
2
ηðxþÞ þ θcðxþÞ. Then,

J0c ¼ −
1

2π

Z
dxþdθθcP̄þ ¼ −

Z
dxþcp0; ð3:45Þ

J1η ¼ −
1

2π

Z
dxþdθ · ηP̄þ ¼ −

Z
dxþηp1: ð3:46Þ

The bosonic sector of the algebra are simply [2]

i½J1η; J1χ � ¼ −
k
8π

Z
dxþðχ0η − χη0Þ; ð3:47Þ

i½T1α; J1η� ¼ −J1αη0 : ð3:48Þ

The Eq. (3.47) is a Uð1Þ Kac-Moody current algebra, and
the constant k parametrizes the central element.
To find the fermionic sector of the enhanced symmetry,

we need to consider other commutators. Firstly, we study
the commutator ½T0a; J1η�. Note that the action Qþ ¼ T01

on P̄þ implies

i½T01; J1η� ¼
1

2
J0η0 : ð3:49Þ

This in turn implies that the action of J1η on h0 is

½h0; J1η� ¼
1

2
η0p0 þ ∂þO0η: ð3:50Þ

The scaling symmetry plus the locality imply thatO0η must
be of the form O0η ¼ c3η, where c3 is a local operator of
weight 1

2
. Consider the zero mode of J1ηðη ¼ 1Þ≡ J11,

which act as ∂−, we have i½J11; h0� ¼ 0 ¼ ∂þc3. This leads
to the fact that c3 must be independent of xþ. On the other
hand, c3 is an operator of weight 1

2
under the chiral scaling,

we conclude that c3 must be zero. Now integrating both
sides of the Eq. (3.50) with − 1

2π dx
þa gives

i½T0a; J1η� ¼
1

2
J0ðaη0Þ: ð3:51Þ

Let us now work out the algebra spanned by J0c. Due to
the fact that the zero mode J11 acts as ∂−, we have
i½J11; p0� ¼ 0. This implies i½J11; J0c� ¼ 0 and hence,

i½J0c; p1� ¼ ∂þXc: ð3:52Þ

Again, the scaling symmetry plus the locality imply
Xc ¼ 0, then

i½J0c; J1η� ¼ 0: ð3:53Þ

We also need the commutator ½T1α; J0c�. The action of H
on p0 implies i½H; J01� ¼ 0, which in turn implies
i½h1; J01� ¼ ∂þðp0 þ YÞ with Y a local operator of weight
1
2
. Integrating both sides with − 1

2π dx
þα gives i½T1α; J01� ¼

1
2π

R
dxþα0ðp0 þ YÞ. This gives

i½T1α; p0� ¼ −α0ðp0 þ YÞ þ ∂þZα: ð3:54Þ

The scaling symmetry plus the locality implies Zα must be
of the form Zα ¼ c4α with c4 being a local operator of
weight 1

2
. The action of D1 on p0 implies that Y ¼ − p0

2
and

c4 ¼ p0, hence,

i½T1α; p0� ¼ αp0
0 þ

α0p0

2
: ð3:55Þ

Then, we have

i½T1α; J0c� ¼ −J
0ðαc0þα0c

2
Þ: ð3:56Þ

Next we turn to the anticommutator fT0a; J0cg. The fact
ifQþ; p0g ¼ 2p1 implies ifQþ; J0cg ¼ 2J1c. This in turn
implies

ifh0; J0cg ¼ 2cp1 þ ∂þOc: ð3:57Þ

The scaling symmetry plus the locality implyOc must be of
form Oc ¼ c5c with c5 being a local operator of weight
zero. After integrating both sides with − 1

2π dx
þaðxþÞ,

we get

ifT0a; J0cg ¼ 2J1ðacÞ −
c5
2π

Z
dxþac0: ð3:58Þ

The Jacobi identity with the third operator T1α implies
c5 ¼ 0. Finally, we have

ifT0a; J0cg ¼ 2J1ðacÞ: ð3:59Þ

Finally, we consider the anticommutator fJ0c; J0dg. The
scaling symmetry implies that fJ01; p0g ¼ c6, where c6
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must be a weight-zero constant number. This implies
fJ01; J0cg ¼ −c6

R
dxþc, which in turn gives

ifp0; J0cg ¼ c6cþ ∂þWc: ð3:60Þ

Again, the scaling symmetry plus the locality imply that
Wc ¼ 0. At last, we get

ifJ0c; J0dg ¼ −c6
Z

dxþcd: ð3:61Þ

The appropriate normalizations of J0c; J1η can always help
us to set c6 ¼ − k

4π, then we recognize (3.47), (3.53), (3.61)
as the Uð1Þ super-Kac-Moody algebra (SKMA) on the
Minkowski plane with the central charge k.

C. Mode expansion

The supersymmetric Virasoro-Kac-Moody algebra con-
sists of a super-Virasoro algebra,

i½T1α; T1β� ¼ T1ðα0β−αβ0Þ þ
c0
48π

Z
dxþðα00β0 − α0β00Þ;

ð3:62Þ

i½T1α; T0a� ¼ T
0ðα0a

2
−αa0Þ; ð3:63Þ

ifT0a; T0bg ¼ 2T1ab þ
c0
6π

Z
dxþa0b0; ð3:64Þ

a super-Kac-Moody algebra,

i½J1η; J1χ � ¼ −
k
8π

Z
dxþðχ0η − χη0Þ; ð3:65Þ

i½J0c; J1η� ¼ 0; ð3:66Þ

ifJ0c; J0dg ¼ k
4π

Z
dxþcd; ð3:67Þ

and the semidirect product of the super-Virasoro and super-
Kac-Moody algebras,

i½T1α; J1η� ¼ −J1αη0 ; ð3:68Þ

i½T0a; J1η� ¼
1

2
J0ðaη0Þ; ð3:69Þ

i½T1α; J0c� ¼ −J
0ðαc0þα0c

2
Þ; ð3:70Þ

ifT0a; J0cg ¼ 2J1ðacÞ: ð3:71Þ

Let us put the theory on a cylinder and find the mode
expansion of the above algebra. The coordinate trans-
formation is

xþ ¼ eiϕ: ð3:72Þ

Using the new coordinate ϕ, we choose test functions
αn ¼ ðxþÞnþ1 ¼ eiðnþ1Þϕ, ar ¼ eiðrþ1

2
Þϕ, ηn ¼ einϕ, and

cr ¼ eiðr−1
2
Þϕ, where n ∈ Z and r ∈ Zþ 1

2
for the Neveu-

Schwarz (NS) sector or r ∈ Z for the Ramond (R) sector.
Letting Ln ¼ iT1αn , Gr ¼ iT0ar , Pn ¼ J1ηn , and Sr ¼ J0cr ,
then the commutation relations in terms of the charges
fLn; Pm;Gr; Ssg are as follows.2 The super-Virasoro alge-
bra is generated by

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðm2 − 1Þδmþn; ð3:73Þ

½Lm;Gr� ¼
�
m
2
− r

�
Gmþr; ð3:74Þ

fGr;Gsg ¼ 2Lrþs þ
c
3

�
r2 −

1

4

�
δrþs: ð3:75Þ

The super-Kac-Moody algebra is generated by

½Pm; Pn� ¼
k
2
mδmþn; ½Pm; Sr� ¼ 0; fSr; Ssg ¼ k

2
δrþs:

ð3:76Þ

The semidirect product part of the super-Virasoro and
super-Kac-Moody algebras is generated by3

½Lm; Pn� ¼ −nPmþn; ½Gr; Pm� ¼ −
m
2
Smþr; ð3:77Þ

½Lm;Sr� ¼−
�
m
2
þ r

�
Smþr; fGr;Ssg¼ 2Prþs: ð3:78Þ

These algebras are the same as those appearing in the
supersymmetric Wess-Zumino-Witten (SWZW) model
[35–38]. We would like to stress that the super-Kac-
Moody algebra in the SWZW model is generated by
internal symmetries, while here it is generated by the
symmetric transformations in the superspace in
SWCFT2. The algebra of the SWZW model consists of
two copies (the left moving and the right moving) of
algebras, while there is only one copy (left moving) of the
algebra in SWCFT2.
Another remarkable point is on the supersymmetry in the

right-moving sector. Our construction starts from the left-
moving superspace, but the right-moving sector gets super-
symmetrized as well. This could be understood from the
diffeomorphism ofWCFT2. Recall that the diffeomorphism
of WCFT2 is generated by

2We have set c0 ¼ c and δmþn ¼ δmþn;0.
3We have substituted −P for P.
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xþ → fðxþÞ; x− → x−; ð3:79Þ

and

xþ → xþ; x− → x− þ gðxþÞ: ð3:80Þ

The diffeomorphism could be generalize to chiral super-
space, such that the supersymmetry in the left-moving
sector is transferred to the right-moving sector. Actually,
the superconformal transformation in the left-moving
sector is [39]

xþ0 ¼ fðxþÞ þ θFðxþÞ; ð3:81Þ

θ0 ¼ ϕðxþÞ þ θpðxþÞ: ð3:82Þ

Here, fðxþÞ, pðxþÞ are holomorphic functions and FðxþÞ,
ϕðxþÞ are anticommuting holomorphic functions, satisfy-
ing the following relations:

FðxþÞ ¼ ϕðxþÞpðxþÞ;
pðxþÞ2 ¼ ∂þfðxþÞ þ ϕðxþÞ∂þϕðxþÞ: ð3:83Þ

The transformation in the right-moving sector is

x−0 ¼ x− þ gðxþÞ þ θGðxþÞ; ð3:84Þ

where GðxþÞ is an anticommuting holomorphic function.
Considering the infinitesimal version of the above trans-
formations, we find that the generators of the super-
Virasoro-Kac-Moody algebra could be realized by

Ln ¼ ðxþÞnþ1∂þ þ 1

2
ðnþ 1ÞðxþÞnθ∂θ;

Pn ¼ ðxþÞn∂−;

Gr ¼ ðxþÞrþ1=2ð∂θ − θ∂þÞ;
Ss ¼ −2ðxþÞs−1=2θ∂−: ð3:85Þ

They satisfy the above commutation relations without
central extensions. Then from the Jacobi identity, the
central extensions could be recovered. This fact shows
that the chiral superspace ðxþ; θÞ is enough for our study.

IV. PROPERTIES OF SWCFT2

Now we have found two kinds of minimal theories in
N ¼ ð1; 0Þ superspace, starting from a 2D QFTwith chiral
scaling and translation symmetry. One is the N ¼ ð1; 0Þ
supersymmetric conformal field theory, whose local
symmetries consist of a left-moving super-Virasoro algebra
(SVA) and a right-moving Virasoro algebra. The other
is the supersymmetric warped conformal field theory,
whose local symmetries are generated by supersymmetric
Virasoro-Kac-Moody algebra (SVCMA). In this section,

we discuss the representations of this algebra, the state-
operator correspondence and then the correlation functions
in SWCFT2.

A. Primary states and descendants

In all our subsequent discussions, we consider the NS
sector of SWCFT2 and hence, r; s ∈ Zþ 1

2
. We want to

define the states in this theory at t ¼ 0 by doing radial
quantization. For this purpose, we consider the following
complex coordinates:

xþ ¼ e−iðt−ϕÞ ¼ eiϕþtE ; x− ¼ tþ 2γðϕ − tÞ; ð4:1Þ

where t is interpreted as the Lorentzian time, and tE ¼ −it
as the Euclidean time. Having an initial state at very early
Euclidean time corresponds to insert an operator at xþ ¼ 0.
Using translational symmetry, we can further put the
operator at x− ¼ 0. A primary operator Φ of weight Δ
and charge Q at xþ ¼ 0 corresponds to a state,

Φð0; 0; 0Þ ∼ jΔ; Qi: ð4:2Þ

In particular, because of the global subalgebra of SVKMA
is ospð1j2Þ × uð1Þ, the identity operator corresponds to the
OSPð1j2Þ ×Uð1Þ invariant vacuum. The vacuum state j0i
is defined as

Lnj0i ¼ 0; n ≥ −1;

Pmj0i ¼ 0; m ≥ 0;

Grj0i ¼ 0; r ≥ −
1

2
;

Ssj0i ¼ 0; s ≥
1

2
: ð4:3Þ

We now construct the representations by considering
the states having definite scaling dimensions and Uð1Þ
charges. The state jΔ; Qi is of a scaling dimension Δ and a
charge Q,

L0jΔ; Qi ¼ ΔjΔ; Qi;
P0jΔ; Qi ¼ QjΔ; Qi: ð4:4Þ

Using the algebra obtained previously, we have

L0LnjΔ; Qi ¼ ðΔ − nÞLnjΔ; Qi;
L0PmjΔ; Qi ¼ ðΔ −mÞPmjΔ; Qi;
L0GrjΔ; Qi ¼ ðΔ − rÞGrjΔ; Qi;
L0SsjΔ; Qi ¼ ðΔ − sÞSsjΔ; Qi: ð4:5Þ

We can see that the positive modes Ln, Pm,Gr, Ss lower the
value of the scaling dimension, while the negative modes
L−n, P−m,G−r, S−s raise the value of the scaling dimension.
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The superprimary states in the theory are defined to have
the following properties:

LnjΔ; Qi ¼ 0;

PnjΔ; Qi ¼ 0; n > 0;

GrjΔ; Qi ¼ 0; r > 0;

SsjΔ; Qi ¼ 0; s > 0: ð4:6Þ

The modules (analogue to the Verma modules in CFT2)
in SWCFT2 are then defined by acting the raising operators
L−n, P−m, G−r, S−s, n;m; r; s > 0 on the primary states.
The descendant states at level N are

jΔ; Q; fNgi ¼ L−n1 � � �L−nkP−m1
� � �P−ml

G−r1

� � �G−riS−s1 � � � S−sj jΔ; Qi; ð4:7Þ

where fNg denotes four sets of fng, fmg, frg, and fsg and
the total level N is the sum of all elements in the sets. A
primary module consists of a primary state and all its
descendant states.
In our chiral superspace, the superfield has two component

fields, which are related to each other by supersymmetric
transformation. The states corresponding to the component
fields can be obtained from the highest weight state,

jφi ¼ jΔ; Qi;
jψi ¼ G−1

2
jΔ; Qi: ð4:8Þ

They share the same P0 charge,

P0jφi ¼ Qjφi;
P0jψi ¼ Qjψi: ð4:9Þ

The matrix of inner products of the states including the
descendants defines the SWCFT analogue of the Kac
matrix in CFT. We will denote it by MN, and its matrix
elements are

MfNg;fN0g ¼ hΔ; Q; fNgjΔ; Q; fN0gi: ð4:10Þ

At level 1
2
, we have

M1
2
¼
� hΔ;Q; jG1

2

hΔ;Q; jS1
2

�
½G−1

2
jΔ;Qi; S−1

2
jΔ;Qi� ¼

�
2Δ 2Q

2Q k
2

�
:

ð4:11Þ

At level 1, we have

M1 ¼

2
64

hΔ; Q; jL1

hΔ; Q; jS1
2
G1

2

hΔ; Q; jP1

3
75

× ½L−1jΔ; Qi; G−1
2
S−1

2
jΔ; Qi; P−1jΔ; Qi�

¼

2
64
2Δ 2Q Q

2Q ð2Δþ1Þk−8Q2

2
k
4

Q k
4

k
2

3
75: ð4:12Þ

At level 3
2
, we have

M3
2
¼

2
66666666664

2Δð2Δþ 1Þ 4Q ð2Δþ 1Þ2Q 2ΔQ 2Q 2Q2

4Q 2Δþ 2
3
c 4Q Q 2Q k

4

ð2Δþ 1Þ2Q 4Q ð2Δþ1Þk
2

2Q2 k
2

kQ
2

2ΔQ Q 2Q2 kΔ 0 kΔ
2Q 2Q k

2
0 k

2
0

2Q2 k
4

kQ
2

kΔ 0 k2
4

3
77777777775
; ð4:13Þ

which is in the base,

fL−1G−1
2
jΔ; Qi; G−3

2
jΔ; Qi; L−1S−1

2
jΔ; Qi; P−1G−1

2
jΔ; Qi; S−3

2
jΔ; Qi; P−1S−1

2
jΔ; Qig:

We can derive some simple unitarity bounds on the plane
charges by requiring the norm of the states to be non-
negative. First, we have

kLnjΔ; Q > k ≥ 0 ⇒ Δ ≥ 0; c ≥ 0; ð4:14Þ

kPnjΔ; Q > k ≥ 0 ⇒ Q ∈ R; k ≥ 0: ð4:15Þ

Furthermore, the matrix M1
2
gives

kΔ − 4Q2 ≥ 0 ⇒ k ≥
4Q2

Δ
: ð4:16Þ

Recently, it was found that in order to have a bulk
dual, the holographic warped CFT must have a negative
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Kac-Moody level. This seems to indicate a nonunitarity.
The interesting point is that such nonunitarity is control-
lable [16,18] in the sense that the modular bootstrap of the
theory on a torus can lead to the consistent holographic
picture. The underlying assumptions in the analysis are that
the primary states must have positive norms, while the Kac-
Moody level and the norms of the descendant states are
allowed to be negative. It would certainly be interesting to
study such “mild nonunitarity” in the supersymmetric case.
One may expect the existence of “mild nonunitarity” by

allowing a negative Kac-Moody level and only requiring
that the superprimary states must have positive norm. The
complete analysis on this issue needs to consider the
supersymmetric version of CSS boundary conditions.

B. Transformation laws of superprimary fields

We now consider the transformation laws of the primary
superfields. The local operator at position ðxþ; x−; θÞ is
related to the one at the origin by the transformation,

ΦðzÞ≡Φðxþ; x−; θÞ ¼ UΦð0ÞU−1; with U ¼ e
xþL−1þθG−1

2
þx−P0 : ð4:17Þ

Next, we would like to find the explicit form of the commutator ½Ln;ΦðzÞ�ðn ≥ 0Þ for a primary field ΦðzÞ. First, we have

½Ln;ΦðzÞ� ¼ U½U−1LnU;Φð0Þ�U−1: ð4:18Þ

Using the Baker-Campbell-Hausdorff (BCH) formula, we get

U−1LnU ¼
Xnþ1

k¼0

ðnþ 1Þ!
k!ðnþ 1 − kÞ!

�
ðxþÞkLn−k þ

k
2
ðxþÞk−1θGnþ1

2
−k

�
;

U−1PmU ¼
Xm
k¼0

m!

k!ðm − kÞ! ½ðx
þÞkPm−k þ ðxþÞk−1θSmþ1

2
−k�;

U−1GrU ¼
Xrþ1

2

k¼0

ðrþ 1
2
Þ!

k!ðrþ 1
2
− kÞ! ðx

þÞkGn−k −
Xrþ3

2

k¼0

ðrþ 1
2
Þ!

k!ðrþ 3
2
− kÞ! ½2kðx

þÞk−1θLrþ1
2
−k�;

U−1SsU ¼
Xs−1

2

k¼0

ðs − 1
2
Þ!

k!ðs − 1
2
− kÞ! ðx

þÞkSs−k − 2
Xsþ1

2

k¼0

ðs − 1
2
Þ!

k!ðsþ 1
2
− kÞ! θðx

þÞk−1Psþ1
2
−k: ð4:19Þ

Then, we obtain

½Ln;ΦðzÞ� ¼ U½ðxþÞnþ1L−1 þ
nþ 1

2
ðxþÞnθG−1

2
þ ðnþ 1ÞðxþÞnL0;Φð0Þ�U−1; n ≥ −1;

½Pm;ΦðzÞ� ¼ U½ðxþÞmP0;Φð0Þ�U−1; m ≥ 0;

½Gr;ΦðzÞ� ¼ U

�
ðxþÞrþ1

2

�
G−1

2
− 2θL−1

�
− 2

�
rþ 1

2

�
ðxþÞr−1

2θL0;Φð0Þ
�
U−1; r ≥ −

1

2
;

½Ss;ΦðzÞ� ¼ ðxþÞs−1
2U½−2θP0;Φð0Þ�U−1; s > 0: ð4:20Þ

In particular, we have

UL−1U−1 ¼ L−1; UP0U−1 ¼ P0;

UG−1
2
U−1 ¼ G−1

2
þ 2θL−1; US1

2
U−1 ¼ S1

2
þ 2θP0: ð4:21Þ

Using the above relations, we finally obtain

½Ln;ΦðzÞ� ¼
�
ðxþÞnþ1∂þ þ nþ 1

2
ðxþÞnθ∂θ þ ðnþ 1ÞðxþÞnΔ

�
ΦðzÞ; n ≥ −1; ð4:22Þ

½Pm;ΦðzÞ� ¼ðxþÞm∂−ΦðzÞ; m ≥ 0; ð4:23Þ
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½Gr;ΦðzÞ� ¼
�
ðxþÞrþ1

2ð∂θ − θ∂þÞ − 2

�
rþ 1

2

�
ðxþÞr−1

2θΔ
�
ΦðzÞ; r ≥ −

1

2
; ð4:24Þ

½Ss;ΦðzÞ� ¼ −2ðxþÞs−1
2θ∂−ΦðzÞ; s > 0: ð4:25Þ

C. Ward identities and correlation functions

The vacuum of the NS sector in SWCFT2 is invariant
under the global group OSPð1j2Þ ×Uð1Þ, which is gen-
erated by fL0; L�1; P0; G�1

2
g. Thus, the correlation func-

tions obey the Ward identities coming from the generators
of OSPð1j2Þ ×Uð1Þ. One can solve the differential equa-
tions from the Ward identities to find the correlation
functions directly using (4.22)–(4.25).
Consider an n-point function of superprimary fields,

GðnÞðfzigÞ≡GðnÞðfxþi ; x−i ; θigÞ
¼ h0jT½Φ1ðxþ1 ; x−1 ; θ1ÞΦ2ðxþ2 ; x−2 ; θ2Þ
� � �Φnðxþn ; x−n ; θnÞ�j0i; ð4:26Þ

where T stands for time ordering, and zi ≡ fxþi ; x−i ; θig.
Throughout this paper, we will always assume xþi > xþj for
i < j. Since the vacuum state j0i is OSPð1j2Þ ×Uð1Þ
invariant, the n-point function is invariant under the
action of L0; L�1; P0; G�1

2
. This leads to the following

differential equations corresponding to the generators
L−1; P0; L0; Lþ1; G−1=2; G1=2, respectively,

0 ¼
�Xn

i¼1

∂þi

�
GðnÞ;

0 ¼ ð∂−i −QiÞGðnÞ; with
Xn
i¼1

Qi ¼ 0;

0 ¼
�Xn

i¼1

�
xþi ∂þi þ

1

2
θi∂θi þ Δi

��
GðnÞ;

0 ¼
�Xn

i¼1

ððxþi Þ2∂þi þ xþi θi∂θi þ 2xþi ΔiÞ
�
GðnÞ;

0 ¼
�Xn

i¼1

∂θi − θi∂þi

�
GðnÞ;

0 ¼
�Xn

i¼1

xþi ð∂θi − θi∂þiÞ − 2θiΔi

�
GðnÞ: ð4:27Þ

The first equation implies that GðnÞ should be a function of
xþij ≡ xþi − xþj . While the fifth equation implies that GðnÞ

should be a function of

sij ≡ xþi − xþj − θiθj; ð4:28Þ

and

θij ≡ θi − θj: ð4:29Þ

For the x− part, the second equation implies GðnÞ should be
a function of

rij ≡ x−i Qi þ x−j Qj: ð4:30Þ

Consequently, the correlation function is of the form,

GðnÞðsij; rij; θijÞ: ð4:31Þ

We stress that because of the OSPð1j2Þ ×Uð1Þ symmetry
of the vacuum, the correlation functions must have the
OSPð1j2Þ ×Uð1Þ structure.
Let us first consider the two-point function Gð2Þ, which

must be of the form,

Gð2Þðz1; z2Þ ¼
f1ðr12Þ
ðs12Þκ1

þ f2ðr12Þθ12
ðs12Þκ2

; ð4:32Þ

where ffig are the functions to be determined. The
equation from the invariance under P0 gives

∂fi
∂r12 ¼ fi; Q1 þQ2 ¼ 0; ð4:33Þ

which has the solution,

fi ¼ Cier12 ; i ¼ 1; 2; ð4:34Þ

where fCig are constants.
Next consider the differential equation arising from

dilations L0, we find the conditions,

− κ1 þ Δ1 þ Δ2 ¼ 0;

− κ2 þ
1

2
þ Δ1 þ Δ2 ¼ 0: ð4:35Þ

Moreover, the special transformation Lþ1 leads to the
condition,

0 ¼ C1ðs12Þ12½Δ12x
þ
12�

þ C2

��
Δ12 þ

1

2

�
xþ12θ1 −

�
Δ12 −

1

2

�
xþ12θ2

�
; ð4:36Þ
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which gives

Δ12 ¼ 0; C2 ¼ 0: ð4:37Þ

As a result, we have the two-point function,

Gð2Þðz1; z2Þ ¼ δΔ1;Δ2
δQ1;−Q2

1

s2Δ1

12

ex
−
12
Q1 ; ð4:38Þ

where we have set the normalization to unit. In the
component fields, the nonvanishing two-point functions are

hφ1φ2i ¼ δΔ1;Δ2
δQ1;−Q2

1

ðxþ12Þ2Δ1
ex

−
12
Q1 ;

hψ1ψ2i ¼ δΔ1;Δ2
δQ1;−Q2

2Δ1

ðxþ12Þ2Δ1þ1
ex

−
12
Q1 ; ð4:39Þ

where φi and ψ i are the component fields of the super-
field Φi.
It is clear that the two-point functions respect the

OSPð1j2Þ ×Uð1Þ symmetry. The OSPð1j2Þ part is deter-
mined by the modes fL0; L�1; G�1

2
g, just as the usual N ¼

ð1; 0Þ SCFT2, while the Uð1Þ part is totally determined by
the zero mode P0. Moreover, we note that the two-point
functions of the superprimaries in SWCFT2 could be
obtained straightforwardly from the bosonic one [6] by
replacing the difference of the two bosonic coordinates xþ12
with its supersymmetric generalization s12.
From the structures of two-point function, we know that

the higher-point correlation functions of SWCFT2 must
also include two parts: one being determined by the modes
fL0; L�1; G�1

2
g, the other being determined by the zero

mode P0. We can use the well-known results of N ¼ 1
superconformal theory to determine the OSPð1j2Þ struc-
tures of the correlation functions of SWCFT2. For example,
the holomorphic three-point function in the NS sector of the
N ¼ 1 superconformal theory is given in [40], and theUð1Þ
part is given by [6]; thus, the three-point function in the NS
sector of the SWCFT primaries is

Gð3Þðz1; z2; z3Þ

¼ δQ1þQ2þQ3;0
C123 þ C̃123Ξ123

sΔ1þΔ2−Δ3

12 sΔ3þΔ1−Δ2

31 sΔ2þΔ3−Δ1

23

× e
1
3
Q12x−12e

1
3
Q31x−31e

1
3
Q23x−23 ; ð4:40Þ

where we have defined x−ij ≡ x−i − x−j , Qij ≡Qi −Qj and

Δijk ≡ Δi þ Δj − Δk. The C123 and C̃123 are two structure
constants of the three-point function. The quantity Ξijk is
given by

Ξijk ≡ sijθk þ sjkθi þ skiθjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffisijsjkski
p : ð4:41Þ

For the n-point function ðn > 3Þm, there are 3n coor-
dinates fxþi ; x−i ; θig, five constraints fromOSPð1j2Þ invari-
ance, and one constraint from Uð1Þ invariance. The x−i
dependence can be totally determined by the Uð1Þ invari-
ance; thus, the n-point function is essentially a function of
(2n − 5) OSPð1j2Þ invariants, which are given by [37]

Ξijk; Θijkl ≡ sijskl
slisjk

: ð4:42Þ

The general form of n-point function can be written as

GðnÞðfzigÞ ¼ δPn
i¼1

Qi;0

� Yn
i<j¼1

e
rij
4

�� Yn
i<j¼1

s
−Δij

ij

�

× FðΞijk;ΘijklÞ: ð4:43Þ

Here, FðΞijk;ΘijklÞ is an undetermined function, and Δij

are real constants, which satisfy

X
i≠j

Δij ¼ 2Δj; Δij ¼ Δji: ð4:44Þ

V. CONCLUSION AND DISCUSSION

In the present work, we studied the supersymmetric
extension of the warped conformal field theory. Under the
assumption that the dilation operator is diagonalizable and
has a discrete, non-negative spectrum, we generalized the
Hofman-Strominger theorem to the supersymmetric case.
Specifically, we showed that a two-dimensional quantum
field theory with two translational symmetries, a chiral
scaling symmetry, and a chiral supersymmetry may have
enhanced local symmetry. The global symmetry could be
enhanced to two kinds of minimal algebra. One consists of
one copy of the Virasoro algebra and one copy of the super-
Virasoro algebra, which leads to the N ¼ ð1; 0Þ SCFT2.
The other consists of one copy of the super-Virasoro
algebra plus a Uð1Þ super-Kac-Moody algebra, which
leads to the N ¼ 1 supersymmetric warped conformal field
theory.
We discussed some properties of the SWCFT2, including

the representations of the algebra, the space of the states,
and the transformations of the superfields. We furthermore
calculated the two-point and three-point correlation func-
tions of the SWCFT2 with the help of chiral superspace.
The form of the correlation functions can be fixed without
involving a specific model. Particularly, the vacuum of NS
sector in SWCFT2 is OSPð1j2Þ ×Uð1Þ invariant such that
the correlation functions must have the OSPð1j2Þ ×Uð1Þ
structure, in which the Uð1Þ symmetry determined the
dependence on x− completely.
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For simplicity, our study in Sec. IV focused on the NS
sector of the SWCFT2. The discussion can be extended to
the Ramond sector; in which case, the mode expansions of
the superpartners Gr, Sr are interger valued. Now the
vacuum is doubly degenerated. One may define the super-
primary states in the Ramond sector as in usual SCFT.
However, we failed to find a spectral flow connecting the
NS sector and the Ramond sector. This suggests that there
could be some subtlety in the Ramond sector of SWCFT2.
We wish to come back to this issue in the future.
One possible future direction is to generalize the minimal

supersymmetry to the extended one. Our construction is
based on the chiral superspace ðxþ; θÞ. It is worthy of
generalizing the study to the full superspace, including the
Grassmannian partner of the x− coordinate. In the minimal
CFT2 case, this may lead to the N ¼ ð1; 1Þ SCFT2. But it is
not clear what is the consequence in the WCFT2 case. The
study can be pushed to the case of N ≥ 2 extended
supersymmetry as well. Besides, it is interesting to study
the supersymmetrization of the other 2D models with
scaling symmetry. The supersymmetric GCA has been
studied in [41], but for more general anisotropic Galilean
field theory [5], its supersymmetric version has not been
worked out.
It would be interesting to study the other properties of

SWCFT2: the modular properties of the torus partition
function, the warped conformal bootstrap [6,16], the
entanglement entropy, etc. It is also interesting to construct
explicitly simple examples realizing the SWCFT2. This
may help us to understand the theory better.
It could be expected that for the holographic SWCFT2, it

is dual to a supersymmetric AdS3 gravity under appropriate
asymptotic boundary conditions. It would be nice to find
the explicit boundary conditions and see how they break
half of the supersymmetries.
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APPENDIX: CONSERVED CHARGES IN
THE SUPERSPACE

We start from the global symmetries of the theory. It is
generatedbythe left-movingtranslationH, thedilationD, the
right-moving translation P̄, and the supersymmetriesQþ and
Q−. By assumption, these charges annihilate the vacuum.
Their nonvanishing (anti)commutation relations are

ifQþ; Qþg ¼ 2H; ifQþ; Q−g ¼ 2P̄; ifQ−; Q−g ¼ 0;

ðA1Þ

i½D;H� ¼ H; i½D; P̄� ¼ 0; ðA2Þ

i½D;Qþ� ¼
1

2
Qþ; i½D;Q−� ¼ −

1

2
Q−: ðA3Þ

The superspace is a coset space G=I, where G is the
whole symmetry group and I is the dilation symmetry. A
group element in G may be written in the form,

g0 ¼ eiðδHþϵþQþþδ̄ P̄þϵ−Q−ÞeiλD; ðA4Þ

where δ, δ̄, ϵþ, ϵ−, and λ are some infinitesimal constants.
The coset element can be written as

g1 ¼ eiðxþHþθþQþþx−P̄þθ−Q−Þ: ðA5Þ

The transformations on the superspace are the natural
action of the group G on the coset space,

g0g1 ¼ eiðxþ0Hþθþ0Qþþx− 0P̄þθ− 0Q−Þeiλ0D; ðA6Þ

from which we read the induced transformations in the
superspace,

xþ0 ¼ xþ þ δþ λxþ − ϵþθþ; ðA7Þ

θþ0 ¼ θþ þ ϵþ þ λ

2
θþ; ðA8Þ

θ−0 ¼ θ− þ ϵ− −
λ

2
θ−; ðA9Þ

x−0 ¼ x− þ δ̄ − ϵ−θþ − ϵþθ−: ðA10Þ

Then we can obtain the differential representations of the
global charges,

H ¼ −i∂þ; P̄ ¼ −i∂−;

Qþ ¼ −ið∂θþ − θþ∂þ − θ−∂−Þ;
Q− ¼ −ið∂θ− − θþ∂−Þ;

D ¼ −i
�
xþ∂þ þ θþ

2
∂θþ −

θ−

2
∂θ−

�
: ðA11Þ

For each of the charges H, D, P̄, Qþ, and Q−, there is a
conserved Noether current. In particular, with the super-
symmetries, there exist corresponding supercurrents. In
general, the supercurrents may have the form,

Oþðxþ; x−; θþ; θ−Þ ¼ a1oþ1 þ a2θþoþ2 þ a3θ−oþ3

þ a4θþθ−oþ4;

O−ðxþ; x−; θþ; θ−Þ ¼ a1o−1 þ a2θþo−2 þ a3θ−o−3

þ a4θþθ−o−4; ðA12Þ

where ai (i ¼ 1, 2, 3, 4) are constant numbers. The charges
associated to the components of supercurrents can be
read by
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Oi ¼ −
1

2π

Z
dxþoþi þ

1

2π

Z
dx−o−i: ðA13Þ

The supersymmetric transformations of the supercurrents
are

i½ϵ1Qþ;Oþðxþ; x−; θþ; θ−Þ�
¼ ϵ1ð∂θþ − θþ∂þ − θ−∂−Þ
× ða1oþ1 þ a2θþoþ2 þ a3θ−oþ3 þ a4θþθ−oþ4Þ;

¼ ϵ1ða2oþ2 − θþa1∂þoþ1 þ θ−ða4oþ4 − a1∂þoþ1Þ
þ θþθ−ða2∂−oþ2 − a3∂þoþ3ÞÞ; ðA14Þ

i½ϵ2Q−;Oþðxþ; x−; θþ; θ−Þ�
¼ ϵ2ð∂θ− − θþ∂−Þ
× ða1oþ1 þ a2θþoþ2 þ a3θ−oþ3 þ a4θþθ−oþ4Þ;

¼ ϵ2ða3oþ3 − θþða4oþ4 þ a1∂−oþ1Þ − a3θþθ−∂þoþ3Þ;
ðA15Þ

where ϵi (i ¼ 1, 2) are the Grassmannian constants. Then,
we have

i½ϵ1Qþ; a1oþ1� ¼ ϵ1a2oþ2;

i½ϵ1Qþ; a2oþ2� ¼ −ϵ1a1∂þoþ1;

i½ϵ1Qþ; a3oþ3� ¼ ϵ1ða4oþ4 − a1∂þoþ1Þ;
i½ϵ1Qþ; a4oþ4� ¼ ϵ1ða2∂−oþ2 − a3∂þoþ3Þ; ðA16Þ

and

i½ϵ2Q−; a1oþ1� ¼ ϵ2a3oþ3;

i½ϵ2Q−; a2oþ2� ¼ −ϵ2ða4oþ4 þ a1∂−oþ1Þ;
i½ϵ2Q−; a3oþ3� ¼ 0;

i½ϵ2Q−; a4oþ4� ¼ −ϵ2a3∂þoþ3; ðA17Þ

and similarly, for O−ðxþ; x−; θþ; θ−Þ. After the integration,
we get the transformations of the charges associated to the
components of supercurrents,

i½ϵ1Qþ; a1O1� ¼ ϵ1a2O2; i½ϵ1Qþ; a2O2� ¼ 0;

i½ϵ1Qþ; a3O3� ¼ ϵ1a4O4; i½ϵ1Qþ; a4O4� ¼ 0; ðA18Þ

i½ϵ2Q−; a1O1� ¼ ϵ2a3O3; i½ϵ2Q−; a2O2� ¼ −ϵ2a4O4;

i½ϵ2Q−; a3O3� ¼ 0; i½ϵ2Q−; a4O4� ¼ 0: ðA19Þ

In the following, we will donate the currents associated
to the charges H, P̄,Qþ, and Q− by h�, p�, qþ�, and q−�,

respectively. As it is not clear at this moment how these
currents are related to each other by the supersymmetries,
we first assume each of them belongs to a supercurrent
donated by H�, P̄�, Qþ�, and Q−�, then we will find out
the relationship between the currents by their transforma-
tions under the supersymmetries. For Qþ�, in order to be
consistent with (A18) and (A19), it must satisfy

i½ϵ1Qþ; a1Qþ1� ¼ ϵ1a2Qþ2; i½ϵ1Qþ; a2Qþ2� ¼ 0;

i½ϵ1Qþ; a3Qþ3� ¼ ϵ1a4Qþ4; i½ϵ1Qþ; a4Qþ4� ¼ 0;

ðA20Þ

and

i½ϵ2Q−;a1Qþ1� ¼ ϵ2a3Qþ3; i½ϵ2Q−;a2Qþ2� ¼−a4ϵ2Qþ4;

i½ϵ2Q−;a3Qþ3� ¼ 0; i½ϵ2Q−;a4Qþ4� ¼ 0: ðA21Þ

We have similar relations for H�, P̄�, andQ−�. From these
relations, we find that the form of Qþ can only be

Qþ� ¼ a1qþ� þ a2θþh� þ a3θ−p�; ðA22Þ

and the form of Q− must be

Q−� ¼ a1q−� þ a2θþp�; ðA23Þ

with all nonzero coefficients ai, for i ¼ 1, 2, 3. We see that
the P̄ belongs to two different supermultiplets. On the other
hand, the fact that the operatorQ− is nilpotent indicates that
we may consider a smaller superspace. In fact, we can
regard Q− as the superpartner of P̄ and consider only one
global supercharge Qþ in the theory. It turns out that the
smaller superspace fxþ; x−; θþg is enough to describe our
theories consistently.
The superspace fxþ; x−; θþg is the coset space G=Ĩ,

where G is the whole symmetry group and Ĩ consists of the
dilation symmetry and Q−. In this smaller superspace, we
have

a3 ¼ a4 ¼ 0; a2 ¼ 2a1; ðA24Þ

and

H� ¼ Qþ�; P̄� ¼ Q−�: ðA25Þ

We may choose a1 ¼ 1 and find that

H� ¼ Qþ� ¼ h0�ðxþ; x−Þ þ 2θþh1�ðxþ; x−Þ; ðA26Þ

P̄� ¼ Q−� ¼ p0�ðxþ; x−Þ þ 2θþp1�ðxþ; x−Þ: ðA27Þ
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