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Dijet production in proton-nucleus (pA) collisions at the LHC provides invaluable information on the
underlying parton distributions in nuclei, especially the gluon distributions. Triple-differential dijet cross
sections enable a well-controlled kinematic scan (over momentum fraction x and probing scale Q2) of the
nuclear parton distribution functions (nPDFs), i.e., fAi ðx;Q2Þ. In this work, we study several types of triple-
differential cross sections for dijet production in proton-proton and proton-lead (pPb) collisions at the
LHC, to next-to-leading order within the framework of perturbative quantum chromodynamics (pQCD).
Four sets of nPDF parametrizations, EPPS16, nCTEQ15, TUJU19, and nIMParton16 are employed in the
calculations for pPb collisions. We show that the observable nuclear modification factor RpPb of such cross
sections can serve as a nice image of the nuclear modifications on parton distributions, quantified by the
ratio rAi ðx;Q2Þ ¼ fA;protoni ðx;Q2Þ=fprotoni ðx;Q2Þ. Considerable differences among the RpPb predicted by the
four nPDF sets can be observed and intuitively understood. Future measurements of such observables are
expected to not only constrain the nPDF parametrizations, but also help confirm various nuclear effects,
e.g., shadowing, antishadowing, EMC, and Fermi motion in different regions of x and their variations with
probing scale Q2.
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I. INTRODUCTION

Nuclear parton distribution functions (nPDFs) are indis-
pensable nonperturbative inputs in the study of various
hard-scattering processes in high-energy nuclear collisions
[1,2], including lepton-nucleus, hadron-nucleus, and
nucleus-nucleus collisions. Due to the additional dynamics
that bind nucleons together, the partonic structure of a large
nucleus can obviously deviate from that of the free
nucleons [3–9]. To exactly determine this deviation will
not only help understand the interactions among bound
nucleons, but also provide a baseline to precisely study
other physics, such as the final-state jet quenching phe-
nomena in hot and dense quark-gluon plasma in relativistic
nucleus-nucleus collisions [10,11].

The deviations of the nuclear parton distributions from
the free-proton ones are usually quantified with the ratios
rAi ðx;Q2Þ ¼ fA;protoni ðx;Q2Þ=fprotoni ðx;Q2Þ, which are gen-
erally functions of the nuclear mass number A, parton
flavor i, momentum fraction x, and the resolution scale Q2.
Currently, there exist many parametrized nPDF sets deter-
mined through the global analysis of world experimental
data [12–23], based on the factorization in perturbation
theory of quantum chromodynamics (QCD). However,
differences among the factors rAi ðx;Q2Þ given by these
nPDF sets can be observed, and their uncertainties are still
considerable [1].
Before the running of the Large Hadron Collider (LHC),

the main data sources of the global extraction are from
lepton deeply-inelastic scattering (DIS) off the nucleus and
the Drell-Yan (DY) process in hadron-nucleus collisions. In
both of them, a detailed scan of nPDFs over x and Q2 can
be achieved by controlling the final-state kinematic vari-
ables. For example, in DIS the conventional two variables
are Bjorken xB and photon virtuality, and in DY the
invariant mass and rapidity of dilepton are typically chosen
[24]. Nevertheless, both DIS and DYare largely sensitive to
the quark distributions, but provide less direct constraints
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on gluon distribution. Thus, the uncertainty of the nuclear
correction rAi ðx;Q2Þ on gluon distribution is usually greater
than that of the quark distribution [13]. Although some
early global analyses have taken into account the pion data
from the Relativistic Heavy Ion Collider (RHIC), which are
more sensitive to the nuclear gluon distribution, the
unavoidable fragmentation functions may introduce an
additional theoretical uncertainty in the determination of
nPDFs [25].
The wealthy data from the LHC have significantly

promoted the extraction of nPDFs. For example, the
production of weak boson through DY process provides
a new insight into nuclear quark distributions at a high
resolution scale [7,26–29]. In particular, powerful con-
straints on nuclear gluon distribution are given by the
productions of dijets [25,30] and heavy-quark mesons
(J=Ψ, D0, etc.) [21,31,32] in proton-nucleus (pA) colli-
sions, with which both shadowing and antishadowing
effects on gluons have been more consolidated [21,30–32].
Dijet production in pA collisions at the LHC has rich

yields and has been well studied within perturbative QCD
[33–39]. Moreover, the theoretical calculations do not rely
on fragmentation functions. Thus, it is an important probe
of both the quark and gluon distributions in nuclei [40,41].
However, since the dynamic channels for dijet production
are more complicated than those in DIS and DY, a detailed
scan of the nPDFs over x and Q2 may not be easily
achieved by controlling only two kinematic variables of
dijet. In contrast, a better correspondence to x and Q2 can
be established by simultaneously fixing three dijet varia-
bles, which has motivated the idea to study the triple-
differential dijet cross sections [35,39,42] instead of the
double-differential ones. So far, this idea has been applied
in proton-proton ðppÞ collisions to study the proton PDFs
[35,39,42]. As will be discussed in this paper, the triple-
differential dijet cross sections have more advantages in pA
collisions for unveiling the nuclear corrections of PDFs.
In this work, we will study several types of triple-

differential dijet cross sections in both pp and pA
collisions to next-to-leading order (NLO) within pQCD.
Four sets of nPDFs, EPPS16 [17], nCTEQ15 [15], TUJU19
[18], and nIMParton16 [16] are used in the calculations of
pA. We show that the nuclear modification factors RpA of
the triple-differential cross sections can well disclose the x
and Q2 dependence of the nPDF factors rAi ðx;Q2Þ of quark
and gluon distributions, and can even serve as a nice image
of the rAi ðx;Q2Þ from small to large values of x. This in turn
provides an intuitive way to understand the observed
differences among the RpA predicted by various nPDFs.
The rest of this paper is organized as follows. In Sec. II

we review the dijet production in both pp and pA
collisions and the theoretical framework used in this study.
In the discussion about pp (Sec. II A) we focus on the
dijet kinematics and the necessity to introduce the
triple-differential cross section. In the subsection about

pA (Sec. II B) we pay attention to the initial-state cold
nuclear matter effects related to the nPDFs. In Sec. III we
study three types of triple-differential cross sections and the
corresponding nuclear modification factors RpA. We estab-
lish links to compare the observable RpA with the nPDF
factors rAi ðx;Q2Þ. Possibilities to reveal the variation of
rAi ðx;Q2Þ with scale by using RpA in different pT regions
are also discussed. We give a summary and discussion
in Sec. IV.

II. DIJET PRODUCTION IN pp AND pA
COLLISIONS

A. Dijet in pp collisions and kinematics

At partonic level the production of dijet in pp collisions
is related to the processes of N-parton (quarks or gluons,
N ≥ 2) production initiated by partons a and b from the
two colliding protons. In perturbative QCD, the cross
section for the production of N partons in pp collisions
can be generally expressed as the convolution of the parton
distribution functions fiðx;Q2Þ and the hard 2 → N scat-

tering cross section dσ̂½2→N�
ab [38]

dσ
dΦN

¼
X
a;b

Z
1

0

dxa

Z
1

0

dxbfaðxa; μ2fÞfbðxb; μ2fÞ

×
dσ̂½2→N�

ab ðxa; xb; μr; μfÞ
dΦN

; ð1Þ

where ΦN ≡ΦNðp1;…; pNÞ represents the phase space of
the final-state N partons, xa (xb) is the momentum fraction
carried by the incoming parton from the forward- (back-
ward-)going proton, and μf (μr) is the factorization
(renormalization) scale. The right-hand side of Eq. (1) is
summed over the flavors of partons a and b, essentially
including quark-quark, quark-gluon, and gluon-gluon ini-
tial states.
At NLO in perturbative calculation, where only 2 → 2

and 2 → 3 partonic processes are involved, a dijet observ-
able, such as an m-fold differential cross section
dσ=

Q
m
j¼1 dvj defined with the dijet kinematic variables

VðmÞ ¼ fv1;…; vmg, can be calculated with [38]

dσQ
m
j¼1 dvj

¼
Z

dΦ2ðp1; p2Þ
dσ
dΦ2

S2ðp1; p2Þ

þ
Z

dΦ3ðp1; p2; p3Þ
dσ
dΦ3

S2ðp1; p2; p3Þ: ð2Þ

Here all the constraints imposed on final state, including jet
algorithm, are embodied in functions SNðp1;…; pNÞ,
which should be properly defined to satisfy the infrared
safe conditions [38].
Equations (1) and (2) link the measurable dijet cross

section to the not directly measurable parton distribution
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functions fiðx;Q2Þ, within the framework of factorization.
Conventionally, to nicely disclose the x andQ2 dependence
of the PDFs at an observable level, one can establish a one-
to-one correspondence between the values of VðmÞ and
those of x andQ2 in the leading-order (LO) approximation,
by properly choosing the dijet variables VðmÞ.
For instance, one applicable variable set to define a

double-differential cross section may be Vð2Þ ¼
fMJJ; ydijetg [41], with the squared invariant mass M2

JJ ≡
ðp1 þ p2Þ2 and rapidity ydijet of the jet pair. Note that a
similar choice is usually used in DY measurements. With
this choice, one can connect VðmÞ with xaðbÞ through the LO
relation

xaðbÞ ¼
MJJffiffiffi

s
p e�ydijet ; ð3Þ

which enables a kinematic scan of xaðbÞ. Besides, one
physical scale MJJ is also well controlled. Unlike the DY
process, where the typical hard scale is the invariant mass
of the lepton pair, there is an additional physical scale in
dijet production, i.e., the jet transverse momentum
(pT1 ¼ pT2 at LO), which is not yet fully controlled with
the above choice of VðmÞ.
As a matter of fact, the number of independent kinematic

variables of the dijet final state is 3 at LO [35]. Therefore,
by defining a triple-differential cross section with
Vð3Þ ¼ fv1; v2; v3g, one may simultaneously resolve
xaðbÞ and the scales at which the parton distributions are
probed. One straightforward example is to set
Vð3Þ ¼ fMJJ; ydijet; pT;avgg, with pT;avg ¼ ðpT1 þ pT2Þ=2.
On the other hand, the high statistics at the LHC are
sufficient for a precise measurement of the more differential
observable [42].
In general, the established LO correspondence can be

more or less broken once the higher-order corrections are
considered. As a result, for a realistic observable, it is
inevitable that the subprocesses associated with various
values of x, Q2 and i (flavor) jointly contribute to the
measurement at a single set of VðmÞ. A demonstration in a
kinematic perspective is presented as follows.
For a process of N-parton production, one can infer the

initial-state momentum fraction xa (xb) by summing the
forward (backward) components of the light-cone momenta
over all the N final-state partons as [35]

xaðbÞ ¼
XN
n¼1

p�
nffiffiffi
s

p ¼
XN
n¼1

ETnffiffiffi
s

p e�yn ; ð4Þ

with the light cone component p�
n ≡ p0

n � p3
n ¼ ETne�yn ,

transverse energy ETn ¼ ðm2 þ p2
TnÞ1=2, and rapidity yn of

parton n. However, in an inclusive measurement of dijet,
one can not fully deduce the values of xa and xb, since the

final-state particles that lie outside the dijet cones are not
restricted, which could happen at NLO and beyond. These
issues also underlie the fact that the global QCD analysis
for the PDFs is necessary and complicated.
Nonetheless, since the LO processes may give a dom-

inant contribution, one can still expect that the triple-
differential dijet cross sections have a nice resolution power
for the x andQ2 dependence of PDFs, which is beneficial to
the global analysis [42].
In this work, we will calculate the double- and triple-

differential dijet cross sections to NLO in perturbative QCD
by using the code NLOJet++ [36,37]. To test the numerical
calculations, we first show in Fig. 1 the results for dijet
pseudorapidity [ηdijet ¼ ðη1 þ η2Þ=2] distribution in pp
collisions, which has been measured by the CMS
Collaboration [25]. We find that the CMS data can be
decently described to some extent by the NLO calculation
(see a χ2 analysis in Ref. [30]), in which the CT14 proton
PDFs [43] are used and the factorization and renormaliza-
tion scales are taken to be μ0 ¼ μf ¼ μr ¼ pT;avg.
Since this ηdijet distribution is measured with the aver-

aged transverse momentum of dijet pT;avg being restricted,
the normalized distribution N−1dN=dηdijet shown in Fig. 1
actually corresponds to the double-differential cross section
σ−1d2σ=dηdijetdpT;avg with Vð2Þ ¼ fηdijet; pT;avgg. Note
that, even at LO, neither the dijet invariant mass MJJ

-3 -2 -1 0 1 2 3 4
ηdijet=(η1+η2)/2

0

0.1

0.2

0.3

0.4

N
-1

dN
 / 

η d
ije

t

LO
NLO

NLOJet++

pT
1 > 30 GeV

75 < pT,avg < 95 GeV

s1/2=5.02 TeV

pp

CT14

pT
2 > 20 GeVCMS

FIG. 1. Normalized dijet pseudorapidity distribution in pp
collisions at

ffiffiffi
s

p ¼ 5.02 TeV. Here ηdijet is defined in laboratory
frame in pPb collisions, thus is related to that in center of mass
frame as ηdijet ¼ ηcmdijet þ 0.465 [25]. Theoretical results are
calculated at LO (dashed) and NLO (solid), with CT14 LO
and NLO proton PDFs, respectively. Circle represents CMS data
(vertical uncertainty bar is small) [25]. Jets are found by anti-kT
algorithm with cone size R ¼ 0.3 and with rapidity cut jylabj < 3.
Averaged transverse momentum of dijet is restricted with
75 < pT;avg < 95 GeV. Relative azimuthal angle of jet pair is
restricted with jΔϕ12j > 2π=3. Cuts imposed on transverse
momenta of leading and subleading jets are pT1 > 30 GeV
and pT2 > 20 GeV, respectively [25].
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nor xaðbÞ are uniquely determined with a certain set of
fηdijet; pT;avgg, while the ratio xa=xb ¼ e2ηdijet is fixed.
Overall, the averaged value of xaðbÞ will increase (decrease)
with an increasing ηdijet [25]. We leave a further discussion
to Sec. III.

B. Dijet in pA collisions and cold nuclear matter effects

In pA collisions, the differences between nuclear PDFs
and free-nucleon PDFs may result in nuclear modifications
on dijet cross section relative to that in pp collisions,
which are also referred to as the initial-state cold
nuclear matter (CNM) effects [44]. The nuclear correction
on parton distribution is usually quantified with the ratio
of the PDF in the bound nuclear proton to that in free
proton as

rAi ðx;Q2Þ ¼ fA;pi ðx;Q2Þ
fpi ðx;Q2Þ : ð5Þ

Generally, the nuclear correction factors rAi ðx;Q2Þ are
determined by the additional nonperturbative dynamics
with the presence of nuclear environment, and they depend
on the nuclear mass number A, parton flavor i, momentum
fraction x and the resolution scaleQ2. Phenomenologically,
the nuclear effects, i.e., rAi ðx;Q2Þ ≠ 1, are conventionally
classified, from small to large values of x, as the shadowing,
antishadowing, EMC, and Fermi motion [3,5].
In this work, to include the initial-state CNM effects in

pA collisions, we use four parametrization sets of nuclear
PDFs, i.e., EPPS16 [17], nCTEQ15 [15], TUJU19 [18],
and nIMParton16 [16] in the calculations. In Fig. 2 we plot
the factors rAi ðx;Q2Þ for gluon and (total) quark distribu-
tions in lead (208Pb) nucleus from the four nPDF sets, at the
scaleQ ¼ 100 GeV. Considerable differences among these
nPDF sets can be observed, especially for gluon distribu-
tion. For some specific values of the variable x, some
nPDFs give enhancements and others can give suppres-
sions, which means the ranges of each kind of nuclear
effect are not yet clear. These issues also motivate our study
for a more delicate kinematic scan of the nPDFs in pA
collisions. In this work, we will focus on how these
differences are reflected in dijet observables. We hope
our study is helpful for the future measurements to clarify
the ranges of these nuclear effects.
In our calculations for dijet production, to unify the

baseline pp results, we have used the factors rAi ðx;Q2Þ
from the four nPDF sets on top of the CT14 proton PDFs
for pA collisions. We note that nCTEQ15, TUJU19, and
nIMP16 nPDFs are extracted with their own proton PDFs
other than CT14 (e.g., nCTEQ15 uses a variant of the
CTEQ6M PDFs [15]), and we have neglected this differ-
ence since we only focus on the nuclear modifications in
this work. In addition, because nIMP16 is obtained in a LO
QCD analysis [16], we only do the LO calculation when

using nIMP. The other three nPDF sets are used in NLO
calculations. In this study, we have only considered the
nuclear corrections on the leading-twist PDFs and not
focused on the possible higher-twist nuclear effects [45,46].
Besides, since there has been no clear experimental
evidence of the possible final-state jet quenching effects
in pA collisions [47,48], we have only considered the
initial-state CNM effects.
As an example, we calculate the normalized ηdijet

distribution in proton-lead (pPb) collisions, corresponding
to that in pp collisions shown in Fig. 1, and plot the ratio of
the results in pPb and pp collisions in Fig. 3, where the
CMS data [25] are also shown for comparison. Differences
among the predictions with four nPDF sets can be seen, and
since the CMS measurement is very precise, the exper-
imental uncertainties can be even smaller than the
differences among various predictions in a wide range of
ηdijet. The results with EPPS16 show a nice overall agree-
ment with the data, except for that in forward region related
to the shadowing at small x. This is consistent with the
results in Ref. [25]. We also note that the EPPS reweighted
with the CMS dijet data indeed suggests a stronger

0.001 0.01 0.1 1
x

0.6

0.8

1

1.2

r qP
b 
(x

, Q
2 )

0.6

0.8

1
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1.4

r gP
b 
(x

, Q
2 )

EPPS16
nCTEQ15
TUJU19
nIMParton16

Q=100 GeV

gluon

quark

FIG. 2. Nuclear correction factors rPbi ðx;Q2Þ for gluon (top
panel) and quark (bottom panel) distributions in lead nucleus
from four nPDF sets, EPPS16, nCTEQ15, TUJU19, and nIM-
Parton16 at Q ¼ 100 GeV. Unless otherwise specified, the
quark distribution mentioned in this paper means the total (or
singlet) distribution for the active quark flavors defined as
fquarkðx;Q2Þ≡P

i ½qiðx;Q2Þ þ q̄iðx;Q2Þ�, and according to

Eq. (5) the factor rPbqðuarkÞ ¼ fPb;pquark=f
p
quark.
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shadowing suppression in gluon distribution [30]. The
results with nCTEQ15 can also well describe the data.
However, the predictions with both TUJU19 and nIMP16
show deviations from the data to some extents. For
example, in the region around ηdijet ∼ −1, TUJU19 predicts
a strong enhancement, which is not observed in the data.
This enhancement is related to the strong gluon antisha-
dowing effect as seen in Fig. 2 (x ∼ 0.2). We note that
TUJU19 also provides NNLO nPDFs, in which a weaker
antishadowing effect is suggested [18].
It should be mentioned that the aim of this study is not to

rule out any parameterized nPDFs, but to provide a more
intuitive way for studying the differences among various
nPDF sets and to facilitate more effective measurements in
future. Thus, in the calculations, we only use the central
values of the nPDFs without considering their uncertain-
ties. In Fig. 3 (and also in following figures), the bands for
the theoretical results correspond to the variations with
factorization/renormalization scales (μ0=2; μ0; 2μ0) in the
perturbative calculations.
Due to the high accuracy, the CMS data have already

provided a powerful constraint on the nPDFs, especially on
nuclear gluon distribution [30]. However, the initial-state
parton momentum fraction x is not fully controlled at LO
(as discussed in Sec. II A) which results in the mixing of
different nuclear effects in the observable. Next, we discuss
the possibility to make further improvement on the observ-
able level, i.e., to reduce the extent of the mixing by using
triple-differential dijet cross section.

III. TRIPLE-DIFFERENTIAL DIJET CROSS
SECTION AND NUCLEAR MODIFICATIONS IN

PROTON-LEAD COLLISIONS

As is discussed in Sec. II A, a triple-differential dijet
cross section provides a more direct resolution of the x and
Q2 dependence of the PDFs fiðx;Q2Þ. This idea has
been applied to pp collisions to study the proton PDFs
[35,39,42]. However, in pp collisions, even a triple-differ-
ential cross section can still involve two different momen-
tum fractions, xa and xb, carried by the two initial partons
[39]. Besides, to make a more adequate comparison with a
measured cross section, the NNLO corrections may be
needed in a theoretical prediction [39]. In contrast, in the
study of nuclear modifications in pA collisions, these
problems can be avoided to a large extent, and the
triple-differential cross section has more advantages. On
one hand, the parton incoming from the single nucleus
target only involves one momentum fraction variable,
whereas the parton from proton can be viewed as a probe.
On the other hand, if we focus on the nuclear correction
factors rAi ðx;Q2Þ instead of the nPDFs themselves, both the
theoretical and experimental uncertainties can be reduced
effectively.
Concretely, one can study the conventional nuclear

modification factor for such cross sections defined as the
ratio of the cross sections in pA and pp collisions
normalized by the nuclear mass number A [49]

RpAðv1; v2; v3Þ ¼
1

A
dσpA=dv1dv2dv3
dσpp=dv1dv2dv3

: ð6Þ

This RpA can be schematically expressed in LO approxi-
mation as [35]

RpAðv1; v2; v3Þ≈
P

a;bf
p
aðxa;μ2ÞfAbðxb;μ2ÞHabðv1; v2; v3ÞP

a;bf
p
aðxa;μ2Þfpbðxb;μ2ÞHabðv1; v2; v3Þ

;

ð7Þ

where fAb is the averaged per nucleon PDF in the nucleus,
and Hab represents the perturbatively calculable hard
function. Apparently, this RpA provides an intuitive insight
into the nuclear correction factor rAi ðx;Q2Þ defined in
Eq. (5). Please note that, for a given set of fv1; v2; v3g,
the values of variables xaðbÞ, MJJ, and pT;avg are uniquely
determined at LO.
Since the RpA is defined as a ratio in Eq. (6), the total

uncertainties in both theoretical and experimental sides can
be reduced significantly. In theoretical calculations, the
uncertainties (e.g., from proton PDFs and high-order
corrections) of the numerator and denominator may cancel
each other to some extents. Similarly, systematical uncer-
tainties may be reduced effectively in experimental mea-
surements. Next, we will study the RpPb for several types of

-2 -1 0 1 2 3
ηdijet

nIMP16 (LO)

nCTEQ15

-3 -2 -1 0 1 2 3
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p
EPPS16CMS

FIG. 3. Ratio of normalized dijet ηdijet distribution in pPb and
pp collisions, corresponding to Fig. 1. Circle with vertical bar
represents CMS data with uncertainty [25]. Colored lines
represent theoretical predictions with four nPDFs sets, i.e.,
EPPS16, nCTEQ15, TUJU19, and nIMParton16, with bands
corresponding to variations with factorization/renormalization
scales (μ0=2; μ0; 2μ0) in perturbative calculations. Results with
nIMP16 are calculated at LO, while results with other three nPDF
sets are calculated at NLO.
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triple-differential dijet cross sections in pPb collisions at
the LHC.

A. Nuclear modifications on d3σ=dpT;avgdybdy�

We first study the nuclear modification on a triple-
differential dijet cross section with fv1; v2; v3g ¼
fpT;avg; yb; y�g that has been measured in pp collisions
by CMS Collaboration [42]. Here yb and y� are defined
with the rapidity of the two jets as yb ¼ jy1 þ y2j=2 and
y� ¼ jy1 − y2j=2. For convenience, we write the LO kin-
ematic relations as [39]

xa ¼
MJJffiffiffi

s
p e�yb ; xb ¼

MJJffiffiffi
s

p e∓yb ;

with MJJ ¼ 2pT;avg coshðy�Þ; ð8Þ

where the symbol �ð∓Þ is owing to the definition of yb as
an absolute value. In Fig. 4, we plot the results for
d3σ=dpT;avgdybdy� against pT;avg in pp collisions atffiffiffi
s

p ¼ 8 TeV, with yb ∈ ½0; 1� and y� ∈ ½0; 1�. The CMS
data can be well described by the perturbative calculations,
in which both the factorization and renormalization scales
are taken to be μ0 ¼ pT1e0.3y

�
[42], which is a compromise

between pT and MJJ=2 as first investigated in Ref. [33].
The NNLO corrections have been found to give ∼10% or
more enhancements in Ref. [39]. Next, we apply this cross
section in pPb collisions in the same kinematic regions.

To visualize the capability of this d3σ=dpT;avgdybdy� to
resolve the momentum fraction xPb of the initial parton
from lead nucleus, we illustrate in Fig. 5 the correlations
between each pT;avg bin and xPb, calculated at LO and
represented with the rainbow colors. It is noted that, for a
certain pT;avg bin, the xPb can spread over an order of
magnitude due to the nonvanishing bin sizes of ΔpT;avg,
Δyb, and Δy� in the measurement. Nevertheless, an overall
linear relation is observed as expected from Eq. (8).
The nuclear modification factors RpPb for pPb collisions

are calculated with three nPDFs sets (EPPS16, nCTEQ15
and TUJU19) at NLO and with nIMP16 at LO, and are
shown in the top panel of Fig. 6. Differences among the
four predictions as well as the pT;avg dependence of the
results can be seen. Since the underlying xPb is around
0.1 as seen in Fig. 5—which is near the antishadowing
region—we can see the enhancements predicted by several
nPDF sets. Suppressions at large pT;avg which correspond
to the EMC region can also be observed. Currently, there
has been no measurement of the triple-differential cross
section in pPb collisions. To roughly estimate the con-
straining power of the future measurement, we show the
relative statistical uncertainties in the CMS pp data [42] in
the bottom panel of Fig. 6 for comparison. We find in a
wide range of pT;avg, the relative uncertainties are much
smaller than the differences among the nuclear modifica-
tions by various nPDFs, indicating a strong constraint on
nPDFs. We also see that the uncertainties in high-pT;avg

region are too large to distinguish the EMC effects, related
to the rapidly decreasing dijet yields with increasing pT;avg.
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FIG. 4. Triple-differential cross section d3σ=dpT;avgdybdy� in
pp collisions at
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p ¼ 8 TeV with yb ∈ ½0; 1� and y� ∈ ½0; 1�.
Theoretical results at LO (dashed) and NLO (solid) are compared
to CMS data represented with circles (vertical uncertainty bars are
small) [42]. Jets are found by anti-kT algorithm with cone size
R ¼ 0.7 and with rapidity cut jyj < 5. Additional cuts imposed
on transverse momentum and rapidity of leading jet are pT1 >
50 GeV and jy1j < 3, respectively [42]. Ratios between shown
results and LO ones are plotted at bottom as a reference.
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FIG. 5. Correlations between each pT;avg bin and momentum
fraction xPb carried by initial nuclear parton for triple-differential
dijet cross section d3σ=dpT;avgdybdy�. For each pT;avg bin, total
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xPb ∈ ½5 × 10−4; 0.78� are normalized to be unity (100%). Values
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bins in pp collisions (without nuclear effects) at LO.
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Since we focus on the advantage of the triple-differential
cross section on disclosing the underlying nuclear correction
factor rAi ðx;Q2Þ [as demonstrated with Eq. (7)], here we
make a comparison between the observable RpPb and the
nPDF factor rPbi in Fig. 7. Please note that the factors rPbi for
gluon and quark distributions are plotted against pT;avg

instead of xPb. To make this variable substitution, we have
used the LO relation in Eq. (8) as xPb ¼ 2pT;avg=

ffiffiffi
s

p
with yb

and y� taken to be 0. Meanwhile, the scaleQ in rPbi ðx;Q2Þ is
taken to be Q ¼ pT;avge0.3y

�
when it is plotted. We find that

theRpPb predicted by various nPDF sets are comparable with
their own rPbi , even though three sets of them (EPPS16,
nCTEQ15, and TUJU19) are calculated at NLO where the
linear relation may be somewhat broken. The comparison in
Fig. 7 provides an intuitive way to understand the different
RpPb given by different nPDF sets. For example, we can see
that the strong antishadowing in gluon distribution of
TUJU19 significantly enhances the predicted RpPb.
The correspondence between pT;avg and xPb plays an

important role in this comparison. However, in a single
pT;avg bin as in the CMS measurement, the mixing of the
contributions from various values of xPb is too strong to
allow a more delicate kinematic scan, as shown in Fig. 5.
This mixing could be lessened by narrowing the bin sizes in
the measurement of dσ=dpT;avgdybdy�, at the cost of
statistical accuracy. On the other hand, there are different
ways to define the triple-differential cross sections, which
will be discussed in the following subsections.

B. Nuclear modifications on d3σ=dXBdXAdy�

Another choice of dijet variables to define a triple-
differential cross section is fv1; v2; v3g ¼ fXA; XB; y�g,
proposed by Ellis and Soper for the study of parton
distributions in ppðp̄Þ collisions [35], with two new
variables defined as

XA ¼
X
n∈dijet

ETnffiffiffi
s

p eþyn ; XB ¼
X
n∈dijet

ETnffiffiffi
s

p e−yn ; ð9Þ

which are similar as the expression of xaðbÞ in Eq. (4). Here
the summation is performed over all the particles inside the
dijet cones. Apparently, the LO relation XAðBÞ ¼ xaðbÞ
provides a direct connection to the initial momentum
fractions. At NLO, it still holds for the case that all the
partons fall into the dijet cones, and becomes XAðBÞ ≤ xaðbÞ
only when there is one parton lying outside. In Ref. [35], it
is shown that the NLO corrections on the cross section
d3σ=dXBdXAdy� can be small.
We first calculate the cross sections in pp collisions atffiffiffi
s

p ¼ 8.16 TeV and show the results as functions of XB in
Fig. 8, where the left and right panels correspond to the
regions XA ∼ 0.1 and XA ∼ 0.01, respectively. By restrict-
ing XA, one actually controls the xa carried by the forward-
going initial parton (the “probe” of nPDFs in pA). We find
that, for XA ∼ 0.1, dijet production covers a wide range of
XB (from 10−3 to 0.8), where the LO and NLO results are
close to each other. We also check the dijet yields in each
ΔXBΔXAΔy� bin (integrated cross section), and find the
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FIG. 6. Top panel: nuclear modification factor RpPb corre-
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is calculated at LO, and those by other three nPDF sets are
calculated at NLO. Gray bands (very thin) on RpPb results
correspond to variations with factorization/renormalization scales
(μ0=2; μ0; 2μ0). Note that vertical axes in both two panels are set
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yields here are similar as the those in Fig. 4, and can be
even larger for high-x region. By lowering XA to be around
0.01, as shown in the right panel in Fig. 8, we find the dijet
yields in large-XB regoin can increase approximately by
two orders of magnitude, indicating a higher statistical
accuracy for probing the large-x parton distributions.1 Since
we have limited the jet transverse momenta as pT1 >
30 GeV and pT2 > 20 GeV [25], the XB is unlikely to be
very small for a lower XA.
In our calculations, the factorization/renormalization

scale is taken to be μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAXBs

p
=½4 coshð0.7y�Þ� [35].

Besides, the relative azimuthal angle of the two jets is
restricted as jΔϕ12j > 2π=3 [25], through which the jet pair
is selected to be nearly back to back. This constraint is
imposed to reduce the contributions of the case that partons
lie outside the dijet cones (but become useless for the
partons colinearly emitted by initial partons).
Next, let us discuss for the pPb collisions. The corre-

lations between XB and xPb at LO are plotted in Fig. 9, and
a perfect linear correspondence can be observed as
expected; importantly, it does not depend on the bin sizes
of ΔXA and Δy�. This high resolution may allow a more
detailed kinematic scan of the nuclear PDF factors

rPbi ðxPb; Q2Þ (see Appendix A for more discussions on
the resolution power at NLO).
The nuclear modification factors RpPb on the triple-

differential cross sections d3σ=dXBdXAdy� are calculated
with four nPDF sets (EPPS16, nCTEQ15, and TUJU19 at
NLO and nIMP16 at LO), and shown in top panels (A0)
and (B0) of Fig. 10 for XA ∼ 0.1 and XA ∼ 0.01, respec-
tively. A clear XB dependence is observed, and the results
here are similar as the rPbi ðxPb; Q2Þ shown in Fig. 2. With
the LO approximation XB ¼ xPb in mind, we can roughly
identify the shadowing, antishadowing, EMC, and Fermi
motion effects in the observable RpPb.
The results in panels (A0) and (B0) with four nPDF sets

are then separately shown in panels (A1-4) and (B1-4), and
are compared to their corresponding nPDF factors
rPbi ðxPb; Q2Þ for gluon and quark distributions. We see a
very nice agreement between the RpPb and rPbi . In particu-
lar, the RpPb approaches to rPbgluon for gluon distribution at

small XB (≲0.01), and is close to rPbquark for quark distri-
bution at large XB (≳0.3). This is reasonable, since the dijet
production at small XB is dominated by the nuclear gluon
initiated processes, whereas at large XB the nuclear
(valence) quarks play a dominant role. We also see that,
in the intermediate XB region, RpPb results from the
interplay of rPbgluon and rPbquark. In this sense, the RpPbðXBÞ
on the observable level can serve as an image of the nuclear
modifications on parton distributions, i.e., the rPbi factors,
owing to the high resolution power for xPb of the cross
section d3σ=dXBdXAdy�.
On the other hand, we note that the physical scales will

vary with the XB in this cross section, which means the
nuclear modifications at different values of XB are probed
at different scales. For example, at LO one has
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FIG. 8. Triple-differential cross section d3σ=dXBdXAdy� ver-
sus XB in pp collisions at
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p ¼ 8.16 TeV. Left and right panels
correspond to two regions of XA, XA ∈ ½0.08; 0.12� and
XA ∈ ½0.005; 0.015�, respectively. The third variable y� is re-
stricted with y� ∈ ½0; 0.5�. Theoretical results are calculated at LO
(dashed) and NLO (solid). Jets are found by anti-kT algorithm
with cone size R ¼ 0.7 and with rapidity cut jyj < 2.5. Relative
azimuthal angle of jet pair is restricted with jΔϕ12j > 2π=3. Cuts
imposed on transverse momenta of leading and subleading jets
are pT1 > 30 GeV and pT2 > 20 GeV, respectively [25].
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FIG. 9. Similar as Fig. 5, but for correlations between XB and
xPb in triple-differential cross section d3σ=dXBdXAdy�, corre-
sponding to left panel of Fig. 8. Bin sizes for XB and xPb are set to
be same.

1It is also noteworthy that, in pA collisions, the measurements
of such cross sections could be extended to the region XB > 1 to
offer a relatively direct probe of the nPDFs for x > 1, and to gain
insight into this currently poorly understood kinematic region,
where the nPDFs are possibly nonzero due to the (Fermi) motion
of nucleons inside the nuclei (see Refs. [50,51] for recent
experimental and theoretical developments). The authors appre-
ciate the Referee for bringing to their attention this point.
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MJJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAXBs

p
; pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAXBs

p
=½2 coshðy�Þ�: ð10Þ

For given values of XA and y�, both MJJ and pT increase
with increasing XB. (Note the choice of the factorization

scale μ0 in our calculation is a compromise betweenMJJ=4
and pT=2 [33]). As a matter of fact, if the values of both
MJJ and pT are fixed, the only remaining degree of
freedom of dijet kinematics at LO is the rapidity of dijet.
Next, we study the dijet rapidity related triple-differential
cross section, in which the physical scales do not vary.

C. Nuclear modifications on d3σ=dydijetdE
JJ
T dpT;avg and

d3σ=dXBdE
JJ
T dpT;avg

A triple-differential cross section can also be defined
with the rapidity of dijet. Actually we have shown the dijet
pseudo-rapidity distribution as measured by CMS in
Sec. II A–II B (see Figs. 1 and 3). As has been discussed,
the measured distribution is related to the double-
differential cross section d2σ=dηdijetdpT;avg, in which
neither xaðbÞ nor MJJ are fully controlled at a given
set of fηdijet; pT;avgg. It can be improved by measuring a
triple-differential one with Vð3Þ ¼ fηdijet;MJJ; pT;avgg.
Nevertheless, here we note the kinematic relation

XB ¼ 1ffiffiffi
s

p EJJ
T expð−ydijetÞ; ð11Þ

where XB is defined in Eq. (9), EJJ
T and ydijet are transverse

energy and rapidity of dijet defined as

EJJ
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

JJ þ ðp⃗T1 þ p⃗T2Þ2
q

;

ydijet ¼
1

2
ln
Edijet þ pdijet

z

Edijet − pdijet
z

: ð12Þ

Since Eq. (11) holds for all orders in perturbative calcu-
lations, we defined an alternative dijet rapidity related cross
section binned with Vð3Þ ¼ fydijet; EJJ

T ; pT;avgg, which has a
more close connection to the variable XB. At LO, this
choice is equivalent to the Vð3Þ ¼ fηdijet;MJJ; pT;avgg, by
noting that EJJ

T ¼ MJJ and ydijet ¼ ηdijet. Differences
between the two choices only come from the high-order
contributions.
To show the abilities of the observables to resolve xPb in

pPb collisions, in Fig. 11, we compare the correlations
between ηdijet and xPb in the double-differential cross
section with Vð2Þ ¼ fηdijet; pT;avgg, to those between ydijet
and xPb in the newly defined triple-differential one with
Vð3Þ ¼ fydijet; EJJ

T ; pT;avgg. For the double-differential one,
we observe a roughly linear correspondence between ηdijet
and log xPb resulting from ηdijet ¼ 1

2
ðln xa − ln xPbÞ at LO.

However, it is smeared due to the remaining degree of
freedom, e.g., xa is not fixed. In contrast, we see a clear
linear correlation in the triple-differential one, indicating a
better resolution of xPb. Here the correlations between ydijet
and xPb are not exactly 100%, because the bin sizes of them
are not fully matched, e.g., the log xPb bins are equidistant
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FIG. 10. Top panels (A0) and (B0): nuclear modification
factors RpPb for XA ∼ 0.1 and XA ∼ 0.01 corresponding to Fig. 8,
predicted by four nPDF sets and plotted with symbols plus dotted
curves. Results of RpPb in panels (A0) and (B0) are separately
shown in (A1-4) and (B1-4) with symbols, and compared with
corresponding nPDF factors rPbi ðxPb; Q2Þ for gluon (solid) and
total quark (dashed) distributions. One can note LO approxima-
tion XB ¼ xPb in this comparison. When plotting rPbi ðxPb; Q2Þ,
we have set Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XAXBs
p

=½4 coshð0.7y�Þ� with XA ¼ 0.1ð0.01Þ
and y� ¼ 0. Gray bands on RpPb results correspond to variations
with factorization/renormalization scales (μ0=2; μ0; 2μ0).
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whereas the ydijet are set to be the same as the ηdijet in CMS
measurement, and also because the bin sizes of ΔEJJ

T and
ΔpT;avg are finite.
In the left-hand side panel of Fig. 12, we show the cross

sections d3σ=dydijetdEJJ
T dpT;avg versus ydijet in pp colli-

sions at
ffiffiffi
s

p ¼ 5.02 TeV, calculated at LO and NLO for
three kinematic regions distinguished with the
fpT;avg; EJJ

T g values. Please note that, for two jets with
equal rapidity, one has EJJ

T ¼ 2pT;avg at LO. Thus the top
and middle plots correspond to the case that y1 ≈ y2,
on which a cut jy1;2j < 2.5 is imposed. The bottom
one corresponds to the case that two jets have a large
rapidity difference (jy1 − y2j ∼ 4.5 estimated with
EJJ
T =2pT;avg ¼ cosh y�), thus a wider jet rapidity range

jy1;2j < 4.5 is considered. Besides, since the middle and
bottom plots share a same EJJ

T bin, they actually probe in

the same xPb range, but with different pT;avg. In Fig. 12, we
can also see that the NLO calculations give somewhat
smaller cross sections than the LO ones. The factorzation/
renormalization scale in the calculations is taken to be μ0 ¼
EJJ
T =½4 coshð0.7y�Þ� [33], which is a compromise between

MJJ=4 and pT=2 in LO kinematics.
Utilizing the correspondence between ydijet and XB in

Eq. (11), one can easily transform the dijet variable Vð3Þ

from fydijet; EJJ
T ; pT;avgg to fXB; EJJ

T ; pT;avgg. The trans-
formed cross sections as functions of XB, are plotted in the
right-hand-side panel of Fig. 12. Since the top plot is
calculated for a lower EJJ

T , we can see that the dijets are
produced in a smaller XB region, compared to the middle
and bottom ones. It is noteworthy that the LO correlations
between XB and xPb in pPb collisions should be the same as
shown in Fig. 9, i.e., a one to one linear correspondence
(independent of the bin sizes of ΔEJJ

T and ΔpT;avg).
The nuclear modification factors RpPb of the cross

sections d3σ=dXBdEJJ
T dpT;avg, corresponding to the results

in Fig. 12, are calculated at NLO with several nPDF sets
(except for nIMP16 at LO), and shown in panels (A0),
(B0), and (C0) of Fig. 13. The results are very similar as
those in Fig. 10. These RpPb predicted by four nPDF sets
are then separately shown in panels (A1-4), (B1-4), and
(C1-4), and are compared to their corresponding nPDF
factors rPbi ðxPb; Q2Þ for gluon and quark distributions. By
noting the LO approximation XB ¼ xPb, we see again that
the RpPbðXBÞ results provide overall nice images of the
rPbi ðxPbÞ. With the increasing XB, we can observe the
transition from gluon-dominated to quark-dominated
regions. In particular, considering that the physical scales
are well controlled, we have plotted the rPbi ðxPb; Q2Þ in
Fig. 13 at fixed values of Q2, not like the Q2 increasing
with XB in Fig. 10.
In panels (A1-3) of Fig. 13, we can see that the RpPb at

small values of XB (shadowing region) are slightly higher
than the rPbgluon for gluon. This deviation may be partly
attributed to the NLO process that a parton is co-linearly
emitted by the initial nuclear parton. In this case, XB < xPb,
which means the nuclear correction from a larger value of
xPb, e.g., in antishadowing region, may enter the RpPb. As is
expected, this effect is not observed in the nIMP16 results
at LO shown in panel (A4). In panels (B1-4) and (C1-4),
this effect is seen to be weaker. Please note that the values
of the physical scales, EJJ

T ðMJJÞ and pT;avg, in these panels
are larger than those in (A1-4). At a higher probing scale,
the nuclear partons tend to carry smaller momentum
fraction x and the contributions from the initial-state co-
linear emission could be suppressed.
Since the RpPbðXBÞ reflects the rPbi ðxPb; Q2Þ well at a

certain value of Q2, it raises an interesting question as to
whether the RpPbðXBÞ measured at different pT;avg values
can shed light on the variation of rPbi ðxPb; Q2Þ with Q2.
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FIG. 11. Top panel: correlations between each ηdijet bin and xPb
in double-differential cross section d2σ=dηdijetdpT;avg corre-
sponding to CMS measurement in Figs. 1 and 3. Bottom panel:
correlations between each ydijet bin and xPb in triple-differential
cross section d3σ=dydijetdEJJ

T dpT;avg corresponding to first panel
in Fig. 12. Bin sizes for ηdijet and ydijet are set to be same. See also
caption of Fig. 5 for more details of calculations.
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A straightforward test can be made by utilizing the
results in panels (B0) and (C0) of Fig. 13, which are in the
same XB range but correspond to two different pT;avg

regions, respectively. The ratios of the RpPb in the higher
pT;avg region (∼150 GeV) to those at the lower pT;avg

(∼30 GeV) are calculated and shown in panel (A) of
Fig. 14. We find the RpPb given by four nPDF sets exhibit
different variations with pT;avg. To further understand these
distinctions, we plot in panels (B) and (C) the ratios of
rPbi ðxPb; Q2Þ at Q ¼ 75 GeV to those at Q ¼ 15 GeV
(simply taken to be pT;avg=2, neglecting the impact from
EJJ
T ) for gluon and quark distributions, respectively. We

observe that, for quark distribution, the variations of the
rPbquark from the four nPDF sets have small distinctions. In
contrast, for gluon distribution, significant differences
among the results can be observed, which are similar as
the differences seen in the variations of RpPb with pT;avg.

These results are somehow in accordance with the
theoretical expectation from the collinear factorization of
perturbative QCD [52]. Here, the dependence of
rPbi ðxPb; Q2Þ on Q2 results from the separate QCD
evolutions of the nuclear PDFs (i.e., EPPS16, nCTEQ15,
TUJU19, and nIMP16) and free-nucleon PDFs governed
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations. It reflects the fact that at different resolution scales
the nuclear modifications on partonic structures can be
different in general (see Fig. 16 in Appendix B). The results
in Fig. 14 indicate that the variations of the measured
RpPbðXBÞ, at different kinematic energy scales of the hard
scattering (related to pT;avg), is correlated to the underlying
energy-scale dependence of nuclear modifications to some
extent. In the context of QCD factorization [52], this is
related to the feature that the renormalization group equation
of the hard scattering cross section Hab, which involves the
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FIG. 12. Left panel: triple-differential dijet cross sections d3σ=dydijetdEJJ
T dpT;avg in pp collisions at
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kinematic energy scale, shares the same evolution kernels as
in the DGLAP equation for PDFs.
Relevant to this feature, we have also tested other choices

of factorization/renormalization scale μ in the calculations of
RpPbðXBÞ, and found that at NLO their variations with pT;avg

are rather insensitive to the choice of μ. This is expected,
since in finite-order approximation the μ-dependence of the
factorized cross section is on the magnitude of the (uncalcu-
lated) higher-order contributions. For the RpPb defined as a
ratio, the μ-dependence is further suppressed. In addition,
when comparing RpPb to rPbi ðxPb; Q2Þ in this and previous
subsections, we have approximated the values of Q2 in rPbi
on the order of the kinematic energy scales of the hard
process for a reasonable comparison. In calculations for
cross sections, μ is taken on the same order of energy scale to
ensure the efficacy of the perturbation theory.
All in all, the results in this subsection demonstrate the

advantage of the triple-differential measurement binned

with fXB; EJJ
T ; pT;avgg for a detailed kinematic scan of the

underlying nuclear modification rPbi ðxPb; Q2Þ, including
both the xPb and Q2 dependence.

IV. SUMMARY AND DISCUSSION

The deviations of the nuclear parton distributions from
those of a free nucleon, arising from the additional non-
perturbative dynamics that bind the nucleons together,
can be generally quantified as the correction factors
rAi ðx;Q2Þ ¼ fA;pi ðx;Q2Þ=fpi ðx;Q2Þ as functions of the
nuclear mass number A, parton flavor i, momentum fraction
x and resolution scale Q2. An irreplaceable approach to
accessing the corrections is to extract rAi ðx;Q2Þ from the
experimental measurements, relying on the factorization in
perturbative QCD. In a realistic observable (e.g., a differ-
ential cross section), nuclear effects from different x
regions, at different probing scales, and for various parton
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flavors usually mix together. However, a properly defined
observable that can faithfully resolve both x and Q2 at LO
level, may provide a more effective and detailed kinematic
scan of the x and Q2 dependence of rAi ðx;Q2Þ.
In this work, we focus on the dijet production in pPb

collisions at the LHC as a probe of the nuclear quark and
gluon distributions. In order to well resolve the momentum
fractions of initial-state partons as well as the probing scale,

we study several types of triple-differential cross sections
in pp and pPb collisions, including those binned with
dijet variables Vð3Þ ¼ fpT;avg; yb; y�g, fXB; XA; y�g, and
fXB; EJJ

T ; pT;avgg. These cross sections are calculated to
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taken as Q ∼ pT;avg=2), for gluon (B) and total quark (C) dis-
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NLO in perturbative QCD. Four sets of nPDFs, EPPS16,
nCTEQ15, TUJU19, and nIMParton16 are employed in the
calculations for pPb. The observable nuclear modification
factors RpPb of the triple-differential cross sections, espe-
cially those as functions of XB, are found to provide a nice
image of the nPDF correction factors rAi ðx;Q2Þ from small
to large values of x. Based on this, the differences among
the RpPb predicted by various nPDFs can be well inter-
preted. In particular, with Vð3Þ ¼ fXB; EJJ

T ; pT;avgg, the
variation of RpPb with pT;avg can even reflect the subtle
scale variation of rAi ðx;Q2Þ.
In future, the measurements of these RpPb of triple-

differential dijet cross sections at the LHC with a high
precision are expected to provide significant and multi-
dimensional constraints on various parametrization sets of
nPDFs. More importantly, the measurements will provide
an effective way to help confirm various nuclear effects,
e.g., shadowing, antishadowing, EMC, and Fermi motion
in different regions of x and their variations with probing
scale Q2. It is also noteworthy that, the studied triple-
differential cross sections can be straightforward general-
ized and applied to the study of other processes, such
as vector-boson-tagged jet production [53–55] and
heavy-quark dijet production [56]. We also hope the more
accurate description of the initial-state cold nuclear matter
effects provides a baseline to better understand the final-
state jet quenching phenomena in relativistic heavy-ion
collisions.
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APPENDIX A: CORRESPONDENCE BETWEEN
XB AND xPb AT NLO

In Fig. 9, we have shown the correlations between the
dijet variable XB and the momentum fraction xPb carried by
the initial-state nuclear parton in pPb collisions calculated at
LO. As has been discussed, this linear correspondence will
be smeared to some extent once the higher-order contribu-
tions are considered. However, the intuitive demonstration
in Fig. 9 (and similar ones in Figs. 5 and 11) can not be
straightforward extended beyond LO within the fixed-order
calculations, since the restriction imposed on the value of xPb
can result in the uncanceled singularities in the calculation of
dijet cross section in a certain two-dimensional bin defined
with XB and xPb. The high-order smearing may be effec-
tively shown with an event generator including the parton
showers, which we may leave to a future work.
As an alternative, the kinematic correspondence between

XB and xPb at NLO can be reflected by counting the
occurrence frequency of the dijet events sampled in the
calculation within the current framework. In Fig. 15, we
illustrate the kinematic coverages of the sampled dijet
events in both LO and NLO calculations for the cross
section d3σ=dXBdXAdy�, binned with XB and xPb. Due to
the simple linear correspondence, the kinematic coverage at
LO is consistent with the form in Fig. 9. At NLO, the
coverage along the diagonal XB ¼ xPb is still pronounced,
while the dijet events can spread into the region XB ≤ xPb
as is expected.
It should be mentioned that, although the kinematic

correspondence shown in Fig. 15 does not fully reflect the
NLO contributions, the NLO results shown in Figs. 10 and
13 demonstrate to some extent that the LO relation XB ¼
xPb is a good approximation when one is comparing the
RpPbðXBÞ to the nPDF factors rPbi ðxPbÞ.

APPENDIX B: VARIATION OF rPbi ðx;Q2Þ WITH Q2

Since both the free-nucleon and nuclear PDFs evolve
with the resolution scale Q2, the nuclear correction factor
rAi ðx;Q2Þ, i.e., the ratio of them, generally depends on Q2.
To visualize the variations of rAi ðx;Q2Þ with Q2, we
supplement in Fig. 16 the rPbi ðx;Q2Þ for gluon and quark
distributions at Q ¼ 15 GeV and 75 GeV, from four nPDF
sets used in this work.
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