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The boundary correlation functions for a quantum field theory (QFT) in a fixed anti–de Sitter (AdS)
background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail
for four-point functions. With minimal assumptions we rigorously show that the resulting S-matrix element
obeys a dispersion relation, the nonlinear unitarity conditions, and the Froissart-Martin bound. QFT in AdS
thus provides an alternative route to fundamental QFT results that normally rely on the LSZ axioms.
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Introduction.—Consider a gapped quantum field theory
(QFT) in AdSdþ1 with curvature radius R. As discussed in
detail in [1], such a setup defines a set of conformally
invariant boundary correlation functions which for any R
obey all the usual CFT axioms except for the existence of a
stress tensor. Furthermore, as we take the flat-space limit
R → ∞ these boundary correlation functions should trans-
mogrify in some sense into theSmatrix of theQFT. This idea
dates back to [2] and themassive case has subsequently been
explored in [1,3–9]. The various prescriptions which have
emerged have been checked in numerous examples, includ-
ing some nonperturbative matches between S-matrix and
conformal bootstrap results [1,10,11].
The QFT in anti–de Sitter (AdS) approach is remarkable

because it offers a new axiomatic way to obtain S-matrix
elements as limits of mathematically well-defined con-
formal correlation functions. It is in particular entirely
orthogonal to the textbook LSZ prescriptions. As reviewed
for example in [12], the corresponding LSZ axioms lie at the
basis of all the foundational results in S-matrix theory,
including the known domains of analyticity of scattering
amplitudes as well as physical constraints like the Froissart-
Martin bound. It is worthwhile to investigate whether the
QFT in AdS approach can recover or even extend these
foundational results, not in the least to strengthen our belief
in the LSZ axioms and the mathematical consistency of
QFT in curved and flat space.
In this Letter we take a first step in this direction for four-

point functions of identical boundary scalar operators cor-
responding to a light particle. After making one technical

assumption, namely, that the flat-space limit is finite in a
subset of the Euclidean domain, we show that such a four-
point function always produces a consistent scattering
amplitude in the sense that it obeys all the known physical
constraints of unitarity, analyticity, and crossing symmetry.
Our results on analyticity have been made possible by the

remarkable progress in our understanding of CFT correlation
functions, starting with the Lorentzian inversion formula
[13]. We will find good use for the Polyakov-Regge blocks
[14–19], in particular the subtracted version presented in [20]
that can be obtained from the conformal dispersion relation
of [21]. We briefly discuss the flat-space limit of these
formulas at the end of this Letter, leaving a more detailed
presentation to an upcoming companion paper [22].
We will always assume d > 1. See [23] for a similar

approach to the d ¼ 1 case.
Conformal Mandelstam variables.—We consider a fam-

ily of conformally covariant four-point functions of boun-
dary scalar operators ϕ with dimension Δϕ, labeled by a
parameter R > 0. We consider a gapped bulk theory,
and therefore the flat-space limit R → ∞ always implies
that all scaling dimensions Δi → ∞. We will assume that
ϕ generates a single-particle state such that the ratio
limR→∞Δϕ=R ¼ m remains finite. (In the following we
will set m ¼ 1.) We will also assume that the particle is
light, in the sense that the next primary operator has a
scaling dimension

Δ0 >
ffiffiffi
2

p
Δϕ; ð1Þ

for sufficiently large R [24].
Our kinematical conventions are as follows. The four-

point function takes the form

hϕ1ϕ2ϕ3ϕ4i ¼ x
−2Δϕ

12 x
−2Δϕ

34 Gðs; t; uÞ: ð2Þ
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As indicated by the notation, we work with the conformal
Mandelstam invariants ðs; t; uÞ, defined as [7]

rðsÞ¼ 2−
ffiffiffi
s

p
2þ ffiffiffi

s
p ; ηðs;tÞ¼−1þ 2t

4−s
; u¼4− t−s; ð3Þ

where r ¼ ffiffiffiffiffi
ρρ̄

p
, η ¼ ðρþ ρ̄Þ=ð2 ffiffiffiffiffi

ρρ̄
p Þ and ρ, ρ̄ are the

radial coordinates of [25]. For more details see [26].
We also introduce an involution operation which we

denote with a tilde:

ðs̃; t̃; ũÞ ≔ ð16;−4u;−4tÞ=s; ð4Þ
such that rðs̃Þ ¼ −rðsÞ and ηðs̃; t̃Þ ¼ −ηðs; tÞ≕ η̃. This
operation is a bijection between the original Euclidean
region and the s-channel physical region.
The flat-space limit.—To extract a scattering ampli-

tude from the correlation function we introduce the pre-
amplitude Tðs; t; uÞ via the decomposition

Gðs; t; uÞ ¼ Ggffðs; t; uÞ þ Gcðs; t; uÞTðs; t; uÞ ð5Þ
with the disconnected correlator

Ggffðs; t; uÞ ¼ ð4 − sÞ2Δϕ ½ð4 − sÞ−2Δϕ þ ð4 − tÞ−2Δϕ

þ ð4 − uÞ−2Δϕ � ð6Þ

and the large R limit of a (rescaled) contact diagram

Gcðs; t; uÞ ¼
wc2

4−4Δϕð4 − sÞ2Δϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4 − sÞð4 − tÞð4 − uÞp ð7Þ

with a normalization wc ¼ 2−
1
2
ðdþ7Þπ½ð1−dÞ=2�Δ½ðd−5Þ=2�

ϕ R3−d.
The expectation is now more or less that

lim
R→∞

Tðs; t; uÞ ¼ T∞ðs; t; uÞ ð8Þ

produces a bona fide scattering amplitude. More precisely,
there are several heuristic derivations showing that the
above claim holds some truth [4,6,7]. When tested on
Witten diagrams it was, however, shown in [7] that AdS
Landau diagrams produce regions in the Mandelstam plane
where the large R limit diverges instead.
In the flat-space limit exponential differences arise from

all the ð·ÞΔϕ terms in the above expressions. Note, however,
also the scaling wc ∼ R½ð1−dÞ=2�, which for d > 1 implies
that the connected correlator must have a further power-law
suppression to produce a finite amplitude. This is an AdS
avatar of the flat-space fact that only in d ¼ 1 the connected
and disconnected part of a two-to-two S-matrix element are
equally singular distributions. Our main assumption will
now be that this power-law suppression of the connected
correlator holds at least in a subregion of the Euclidean
domain. More precisely, if

E0 ¼ fðs; t; uÞjs; t; u ≤ 2 and sþ tþ u ¼ 4g; ð9Þ

then we will assume that T∞ as defined in (8) exists
pointwise for all ðs; t; uÞ ∈ E0. We will show that with this
assumption in place we can construct a consistent unitary
scattering amplitude with a large domain of analyticity.
Conformal dispersion relation.—Following the logic

leading to the Lorentzian inversion formula, the authors
of [21] wrote down a conformal dispersion relation. In its
standard form it expresses the Euclidean correlator as an
integral transform of the double discontinuity of the
Lorentzian correlator. For physical correlation functions
this dispersion relation does not always converge, but
various subtraction procedures exist to compensate for this
issue. We will use the subtracted dispersion relation
described in [20], which was inspired by a Mellin space
[27,28] analysis.
The (subtracted) conformal dispersion relation reads

ðzz̄Þ−Δϕ ½Gðz; z̄Þ−Ggffðz; z̄Þ�

¼
ZZ

dwdw̄K2ðz; z̄;w;w̄ÞdDiscs½ðww̄Þ−ΔϕðGðw;w̄Þ− 1Þ�

þ ½ðz; z̄Þ↔ ð1− z;1− z̄Þ�; ð10Þ

where the exact expression for the kernel K2ðz; z̄;w; w̄Þ and
the integration region can be found in [20]. The dDiscs½·�
operator corresponds to taking the s-channel double dis-
continuity of a conformal correlation function, an operation
first formalized in [13] (and which should not be confused
with the Mandelstam double discontinuity of a scattering
amplitude). The subtraction implicit in the kernel ensures
that this integral is always finite in the Regge limit. A
potential divergence can however still arise from the so-
called lightcone limit on the second sheet; in the following
we assume this to be under control for all finite R [29].
Finally we note that the above representation is singular as
w → 0 if there are conformal blocks withΔ − l < 2Δϕ, but
this can be mitigated by a small deformation of the inte-
gration contour.
The contribution of a single conformal block GðlÞ

Δ ðu; vÞ
to the conformal dispersion relation is known as a
Polyakov-Regge block. If we introduce

ZZ
dwdw̄K2ðz; z̄;w; w̄ÞdDiscs½ðww̄Þ−ΔϕGðlÞ

Δ ðw; w̄Þ�

¼ ðzz̄Þ−ΔϕGcðz; z̄ÞTðlÞ
Δ ðz; z̄Þ ð11Þ

then we can use the swappability property of the kernel for
fixed ðz; z̄Þ (in the sense of [34]) to write, now using the
conformal Mandelstam variables:

Tðs; t; uÞ ¼
X
O≠1

a2OT
ðlOÞ
ΔO

ðs; t; uÞ þ ðs ↔ tÞ; ð12Þ

where the sum is over all nonidentity operators and a2O is
the coefficient of the corresponding conformal block. Like
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the original conformal block decomposition, this sub-
tracted Polyakov-Regge block decomposition is ex-
pected to be absolutely convergent (at finite R) in a large
domain that includes the entire Euclidean Mandelstam
triangle.
We are interested in the large Δ limit of the Polyakov-

Regge blocks. As is discussed, for example, in [36], the
large Δ limit of an s-channel conformal block reads [35]

GðlÞ
Δ ðs; t; uÞ ∼Δ→∞

ffiffiffi
s

p ðs1=4 þ s̃1=4Þdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4 − tÞð4 − uÞp ð4rðsÞÞΔPðdÞ
l ðηÞ: ð13Þ

The integrals for the Polyakov-Regge block can then
be computed with a saddle-point computation, which
yields

TðlÞ
Δ ðs; uÞ

ð4 − sÞðsþ uÞ ∼Δ→∞ ðΔϕ=RÞ−2
ðμ2 − 4Þ ×

1

ΞðlÞ
Δ;Δϕ

×
PðdÞ
l ð−1þ 2u

4−μ2Þ
ðs − μ2Þðμ2 þ uÞ

þ EðlÞ
Δ ðs; uÞ

ð4 − sÞðsþ uÞ ; ð14Þ

with μ ≔ Δ=Δϕ. Let us postpone discussing the “error”

term EðlÞ
Δ ðs; uÞ. The nontrivial scaling of the first term in

the flat-space limit is then entirely absorbed in the factor

ΞðlÞ
Δ;Δϕ

, which is just the coefficient of the single-trace

conformal block in an s-channel exchange Witten diagram
with unit bulk coupling [37]. The last factor of the first
term is then just the flat-space s-channel exchange

diagram with the given subtractions. We can therefore
write [39]

Tsubðs; t; uÞ
ð4 − sÞðsþ uÞ

¼
X
l

Z
dμ

ρlðμÞð2μ2 þ u − 4ÞPðdÞ
l ð−1þ 2u

4−μ2Þ
ðμ2 − 4Þðμ2 þ uÞðs − μ2Þðμ2 þ sþ u − 4Þ

þ subleading; ð15Þ

where the “sub” superscript implies that we subtracted
the error term, and with a positive spectral density ρlðμÞ
given by

ρlðμÞ ¼
X

Owith spinl
O≠1

a2O
m2ΞðlÞ

Δ;Δϕ

δðμ − ΔO=ΔϕÞ; ð16Þ

which features in particular the conformal block coeffi-
cients a2O. If we consider 4 − u − μ2 < s < μ2 inside E0,
then the integrand is not sign definite: contributions for
μ2 > 4 are always negative, whereas for μ2 < 4 the
contributions are positive until the Gegenbauer polyno-
mials start oscillating for μ2 < 4 − u. [The apparent
singularity at μ2 ¼ 4 is offset by a double zero at ρlðμÞ
that arises from the 1=ΞðlÞ

Δ;Δϕ
factor].

It is not immediately clear that the above sum-plus-
integral remains convergent in the flat-space limit.
However, if we choose ðs1; uÞ and ðs2; uÞ inside E0 then
for the expression

Tsubðs1; uÞ − Tsubðs2; uÞ
ðs1 − s2Þðs1 þ s2 þ u − 4Þ ¼

X
l

Z
dμ

ρlðμÞð2μ2 þ u − 4ÞPðdÞ
l ð−1þ 2u

4−μ2Þ
ðs1 − μ2Þðs2 − μ2Þð4 − u − s1 − μ2Þð4 − u − s2 − μ2Þ ð17Þ

the integrand comes out to be non-negative as long as
4 − μ2 ≤ u ≤ 4 for all μ for which the integral has support;
by our assumption (1) this in particular includes the
maximal value u ¼ 2 that is still inside E0. Since the
left-hand side remains finite in the flat-space limit by
assumption, the right-hand side cannot diverge, either [40].
But this nondivergence implies that the limit function
Tsub
∞ ðs1; uÞ is actually analytic everywhere in the complex

s plane with the exception of the s- and t-channel cuts
starting at μ20 and 4 − u − μ20 [41]. An identical result now
follows for all u ∈ ½0; 2� since the Gegenbauer polynomials
PðdÞ
l ðzÞ ≤ PðdÞ

l ð1Þ for all −1 ≤ z ≤ 1. Thus Tsub
∞ ðs; uÞ is our

candidate analytic scattering amplitude.
Let us now discuss the error term EðlÞ

Δ ðs; t; uÞ. It arises in
exactly the same way as the AdS Landau diagram con-
tributions to the Witten exchange diagram discussed in [7],

and its flat-space limit is either zero or infinite. In fact,
when it diverges it does so in precisely the same manner as
a conformal block itself, so,

EðlÞ
Δ ðs; t; uÞ ¼

�
GðlÞ

Δ ðs; t; uÞ=Gcðs; t; uÞ s ∈ Dμ

0 s ∉ Dμ

; ð18Þ

where the problematic region Dμ is a compact ellipsoidal
region contained in the disk js − 4j ≤ 4 − μ2; see, for
example, Fig. 17 in [7] for an illustration. In particular,
Dμ is empty for μ > 2 so only conformal blocks below the
two-particle threshold produce an error term.
The original T∞ðs; uÞ includes these error terms, and

therefore diverges in the union of all the Dμ regions as well
as its images under crossing. By simply throwing away
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these error terms we obtained the function Tsub
∞ ðs; uÞ which

we have shown remains finite and analytic. Note that we
only subtracted s- and t-channel error terms, but the
u-channel error terms do not matter for u ∈ E0 due to
our spectrum assumption (1).
Let us finally note that the positivity of the spectral

density ρlðμÞ is a property known as extended unitarity
which to the best of our knowledge had never been
axiomatically proven, but was essential for S-matrix boot-
strap studies like that of [11].
Hyperbolic partial waves.—The aim of this section is to

show that the analytic amplitude that we found also obeys
the nonlinear unitarity condition for s > 4.
We first define the hyperbolic partial waves (for the s

channel) as

clðsÞ ≔
N d

2

Z
1

−1
dηð1 − η2Þd−32 PðdÞ

l ðηÞGðs; ηÞ − 1

Gcðs; ηÞ
; ð19Þ

with N d ¼ ð16πÞ−h=2ΓðhÞ with h ¼ ðd − 1Þ=2. For any
physical correlator Gðs; ηÞ the hyperbolic partial waves are
analytic functions in the complex s plane minus the cuts
starting at s > 4 and s < 0, which, respectively, correspond
to r < 0 and jrj ¼ 1. When we evaluate clðsÞ for s > 4 it
will be understood that we are slightly above the cut, which
corresponds to physical kinematics.
For the disconnected parts of the correlator we use

lim
R→∞

N d

2

Z
1

−1
dηð1 − η2Þd−32 PðdÞ

l ðηÞ
Gcðs; ηÞ

�
1 − s=4
1 − t=4

�
2Δϕ

¼ −ið−1Þl 1
2

ffiffiffi
s

p ðs − 4Þ1−d=2; ð20Þ

since the integral localizes near t ¼ 0, so η ¼ −1. By
symmetry, if we exchange t and u then we will find the
same expression without the ð−1Þl. Altogether we can then
write, for even l,

lim
R→∞

clðsÞ ¼ −i
ffiffiffi
s

p ðs − 4Þ1−d=2 þ flðsÞ; ð21Þ

where flðsÞ are by definition the hyperbolic partial waves
for the connected correlation function

flðsÞ ≔
N d

2

Z
1

−1
dηð1 − η2Þd−32 PðdÞ

l ðηÞT½s; uðs; ηÞ�: ð22Þ

Below we will compare the hyperbolic partial waves
against the reflected hyperbolic conformal partial waves

c̃lðsÞ ≔
N d

2

Z
1

−1
dηð1 − η2Þd−32 PðdÞ

l ðηÞGðs̃; η̃Þ − 1

Gcðs; ηÞ
: ð23Þ

We will always evaluate these for physical s > 4 and
−1 ≤ η ≤ 1. In that case s̃ lies in the Euclidean region

and the numerator is real and free of branch cut
ambiguities.
The relevance of the reflected hyperbolic conformal

partial waves is as follows. We claim that, in the flat-space
limit

jc̃lðsÞj ≥ jclðsÞj: ð24Þ

This simply follows from the s-channel conformal block
decomposition of both clðsÞ and c̃lðsÞ and the large-Δ
limit of the conformal block (13) and the contact diagram
(7). The integrals simply project onto the right spin,
resulting in the following contributions of a conformal
block to each of the hyperbolic partial waves:

c̃lðsÞ⊃prefðsÞ½−4rðsÞ�Δ; clðsÞ⊃prefðsÞ½4rðsÞ�Δ; ð25Þ

where prefðsÞ is an unimportant positive prefactor [42].
The region s > 4 corresponds to −1 < r < 0 and so the s-
channel conformal block decomposition converges, leading
immediately to Eq. (24).
The trimmed amplitude.—To discuss the emergence of

unitarity (in the scattering amplitude sense) we introduce
yet another function. Let us write

Ggffðs; t; uÞ þ Gcðs; t; uÞT trimðs; t; uÞ
¼ 1þ

X
ΔO≥2Δϕ;lO

a2OG
ðlOÞ
ΔO

ðs; t; uÞ: ð26Þ

Trimming all the nontrivial conformal blocks below thresh-
old in the s-channel is a rather dramatic operation that
destroys, for example, crossing symmetry, Regge bounded-
ness, and the validity of the Polyakov-Regge block decom-
position. But it does preserve positivity so (24) still holds.
Moreover, the flat-space limit T trim

∞ actually agrees with
Tsub
∞ as long as we restrict ourselves to physical configu-

rations s > 4 and t, u < 0. Indeed, for the part of this
s-channel physical region that lies inside one of the Dμ we

subtract exactly the right block to cancel the EðlÞ
Δ diver-

gences, whereas in its complement the contribution of these
blocks vanishes in the flat-space limit. This also implies
that, for physical s, the hyperbolic partial waves defined by
both amplitudes agree; in the language of (21) we may
write

ftriml ðsÞ ¼ fsubl ðsÞ ð27Þ

on their common domain of definition.
Unitarity.—Now we make the following claim for the

behavior of T trim inside the Mandelstam triangle:

s̃; t̃; ũ ≥ 0∶ lim
R→∞

Gcðs̃; η̃Þ
jGcðs; ηÞj

T trimðs̃; η̃Þ ¼ 0: ð28Þ
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In the given domain there are divergences in T trim because
(i) the cutaway s-channel conformal blocks also diverge for
real s < 4 outsideDμ, and (ii) in T trim the divergences in the
images of Dμ under crossing have not been cancelled.
These divergences are however easily verified to be offset
by the ratio Gcðs̃; η̃Þ=jGcðs; ηÞj, which can be simplified to
the exponentially small term ðs̃=4Þ2Δϕ−3=2.
Substituting Eq. (28) into the definition of the reflected

hyperbolic partial waves we see that only the disconnected
part survives, which produces

lim
R→∞

c̃triml ðsÞ ¼ i
ffiffiffi
s

p ðs − 4Þ1−d=2; ð29Þ

and the inequality (24) can then be written as

1 ≥ j1þ is−1=2ðs − 4Þd=2−1flðsÞj; ð30Þ

which is exactly the unitarity condition for flat-space partial
waves flðsÞ.
Asymptotic behavior.—The (hyperbolic) partial waves

are not only bounded by the unitarity equation, but also by
the existence of a dispersion relation at positive u. Indeed,
we have shown that the amplitude Tsubðs; uÞ is polyno-
mially bounded; let us say it is less than CsN [43]. But
Eq. (17) then provides a bound for the OPE density at each
spin l:

ρlðsÞ < CsN=PðdÞ
l ½−1þ 2u=ð4 − sÞ�; ð31Þ

for any 0 ≤ u ≤ 2. This is exactly the kind of falloff that
immediately leads to the Froissart-Martin bound, as
reviewed, for example, in [44]. (And, much as in the
standard literature on the S matrix, the exact statement of
this bound are meant to be understood in an averaged sense
rather than pointwise. We will discuss this in more detail in
[22].) Note that with more generous assumptions the same
bound likely follows from a Mellin space analysis [45].
Conclusions.—In the flat-space limit mild assumptions

suffice to show that conformal four-point functions must
reduce to scattering amplitudes that are consistent with
unitarity and possess a large domain of analyticity. In
upcoming work [22] we will discuss how the OPE density
cðΔ; JÞ almost reduces to the partial waves flðsÞ, how the
Lorentzian inversion formula can reduce to the Froissart-
Gribov formula [46], and the fate of the dispersive func-
tionals of [20]. In the future it would be interesting, among
many other things, to investigate the fate of correlators of
unequal operators, with more than four points, or with a
spectrum such that anomalous thresholds can occur. We
would also like to gather evidence for the universality of
our main assumption by numerically bounding the corre-
lator in E0 (extending the results of [48]).
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