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Abstract We study three dimensional topologically mas-
sive gravity (TMG) in presence of a generic codimension one
null boundary. The existence of the boundary is accounted
for by enlarging the Hilbert space of the theory by degrees
of freedom which only reside at the boundary, the bound-
ary degrees of freedom. The solution phase space of this
theory in addition to bulk massive chiral gravitons of the
TMG, involves boundary modes which are labeled by surface
charges associated with large diffeomorphisms. We show
boundary degrees of freedom obey a local thermodynamic
description over the solution phase space, null surface ther-
modynamics, described by a local version of the first law, a
local Gibbs–Duhem equation, and local zeroth law. Due to
the expansion of the boundary and also the passage of the
bulk mode through the boundary, our null surface thermody-
namics describes an open boundary system that is generically
out of thermal equilibrium.
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1 Introduction

Formulating gravity theories in presence of boundaries brings
in new degrees of freedom (d.o.f) which only reside at the
boundary: boundary d.o.f. Therefore the existence of bound-
aries requires enlarging the solution space of the theory in
such a way it captures these new boundary d.o.f. The first
natural question in this regard is how can we describe these
boundary modes? To answer this question we revisit more
carefully gauge theories or diffeomorphism invariant theo-
ries of gravity in presence of boundaries.

Gauge theories enjoy local symmetries and we usually
treat them as redundancies in description of theory. But in
presence of boundaries a part of these transformations, large
gauge transformations/diffeomorphisms, can become phys-
ical. They are large in the sense that they act non-trivially
on the boundary (Cauchy) data. Different boundary data cor-
respond to different solutions, so these transformations by
definition act as nontrivial maps on the solution space of
the theory. In this sense large diffeomorphisms are symme-
tries and boundary data can be labelled by their associated
charges. We now have all the ingredients to answer the above
mentioned question: We use the surface charges associated
with large diffeomorphisms to label our desired boundary
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d.o.f. Dynamics of these boundary d.o.f is constrained by
the “refined equivalence principle” [1] which also takes into
account the features and properties of the boundary.

Motivated by these, we study gravitational theories on
spacetimes with a null boundary. This boundary can be an
arbitrary null surface in spacetime and is not necessarily hori-
zon of a black hole or asymptotic infinity of an asymptotic
flat space time. This has been the research program pursued
in some recent works [2–5] and in particular in [6–21]. In
reference [6], D-dimensional Einstein gravity in presence of
a null boundary was studied. In this case, the solution phase
space of the theory was constructed and its symmetries and
corresponding charges were analyzed. The solution phase
space of this theory is parameterized by D(D − 3) infalling
and outgoing bulk propagating gravitons and also D bound-
ary d.o.f. It was shown in [22] that these boundary d.o.f along
with the bulk modes describe an open thermodynamic sys-
tem with local laws. These local laws of thermodynamics
account for the dynamics of the part of spacetime behind the
boundary.

There is another way to view the null surface thermo-
dynamics: One can interpret the standard first law of black
hole thermodynamics as a relation between hard charges (i.e.
mass, angular momentum, and...). The content of the stan-
dard first law is actually the conservation of energy. It states
how the black hole’s hard charges should be changed through
a perturbation. The soft hair proposal [23,24] indicates that
black holes carry an infinite number of soft charges. So we
expect through a perturbation which carries the soft hair, the
black hole soft hair should be changed in such a way that the
total amount of the soft hair remains intact. Now the ques-
tion is whether we have a similar first law for soft charges.
Because of the conservation of soft charges, we expect to
exist such a soft version of the first law.

As pointed out in [22,25], the local laws of thermody-
namics which describe the dynamics of boundary d.o.f are
a direct consequence of diffeomorphism invariance of the
action. One can ask how crucial is the diffeomorphism invari-
ance to get the thermodynamic description for the boundary
d.o.f. In order to answer this question we go beyond the grav-
itational theories with covariant action and consider a theory
that is covariant only at the level of the equations of motion.
An important example of these kinds of theories is three-
dimensional Topologically Massive Gravity (TMG) [26,27].
The TMG action involves the gravitational Chern–Simon
term which is not diffeomorphism invariant but transforms
up to a total derivative term under a general coordinate trans-
formation. A distinctive feature of this theory is that it has a
massive propagating graviton. Therefore, another motivation
to consider TMG is to explore the role of massive gravitons
on boundary thermodynamics.

Null boundary analyses for topologically massive gravity
at a finite distance have been carried out in [5].1 In this case,
the solution space of the theory is described by four functions.
Three of them describe the boundary d.o.f and the fourth rep-
resents the massive chiral propagating mode of TMG. In this
paper, we show these boundary d.o.f in presence of this chiral
mode describe an open thermodynamic system. We present
a local version of the first law and Gibbs–Duhem equation.
The form of these equations is the same as [22], but the local
thermodynamic quantities also receive contributions from the
Chern–Simon term in the action of this theory. We also dis-
cuss the local zeroth law for boundary thermodynamics. As
we will see the local zeroth law yields the Heisenberg ⊕
Vir algebra among the thermodynamic quantities, where the
central charge of the Viraroso algebra is proportional to the
gravitational Chern–Simons coupling, as the one obtained
in [5]. To perform our analyses we first construct the solu-
tion phase space of the theory perturbatively around the null
boundary (which is located at a finite distance) and analyze
the symmetries over the solution space. We recognize two
class of solutions, the vanishing Cotton tensor (VCT) and
the non-vanishing Cotton tensor (NVCT) cases. The former
coincides with what we have in the absence of the Chern–
Simons term, analyzed in [5].

This paper is organized as follows. In Sect. 2, we review
the solution phase space and boundary symmetries for the
TMG [5]. Sections 3 and 4 contain our main results for the
local thermodynamics of TMG for expanding null hyper-
surfaces in the VCT and NVCT cases. They involve a local
version of the first law, a local Gibbs–Duhem equation, and
a statement for the local zeroth law. In Sect. 5, we consider
the thermodynamics of non-expanding null boundaries. In
Sect. 6, we discuss further our results and conclude with an
outlook.

2 Null surface solution phase space: a review

Topologically massive gravity (TMG), with negative cos-
mological constant � = −1/�2, is described by the action
[26,27],

I [g]= 1

16πG

∫
d3x L[g], L[g] :=√−g

(
R + 2

�2 + 1

μ
LCS

)

(2.1)

where R is Ricci scalar and LCS is the gravitational Chern–
Simons term,

LCS = 1

2
εμνρ

(
�α

μβ∂ν�
β
ρα + 2

3
�α

μβ�β
νγ �γ

ρα

)
(2.2)

1 Various aspects of topologically massive gravity has been extensively
studied in the recent literature, see e.g. [28–47].
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with εμνλ being the Levi–Civita tensor which in our conven-
tions

√−gεvrφ = 1, and �α
μν is the Christoffel symbol. This

action has three parameters of dimension length, G, � and
the Chern–Simons coupling 1/μ. Equations of motion are
a system of third order partial differential equations which
may also be written as [5]

Eμ
ν := Dμ

β T β
ν = 0, (2.3)

where

Tμν := Rμν + 2

�2 gμν, Dμ
ν = δμ

ν + 1

μ
εμα

ν∇α. (2.4)

We split the solution space of this theory in two different cat-
egories: Tμν = 0 and Tμν �= 0. They are respectively called
vanishing Cotton tensor (VCT) and non-vanishing Cotton
tensor (NVCT) sectors [5]. The first class only involves the
Einstein solutions but the second class contains solutions that
do not appear in the solution space of 3-dimensional Ein-
stein gravity. The latter one contains a massive propagating
mode which due to the appearance of the Levi–Civita tensor
we call, chiral massive news. We adopt Gaussian null-type
coordinate system

grr = 0, grφ = 0, ∂r grv = 0 (2.5)

in which v, r, φ are respectively advanced time, radial and
angular coordinates. By this kind of gauge fixing, the three
dimensional line-element is given by [4–6]

ds2 = −V dv2 + 2η dv dr + R2 (dφ +U dv)2 (2.6)

where V,R, and U are generic functions on spacetime and
η depends only on v, φ. In this coordinate system, we take
r = 0 to be a null surface, V (r = 0) = 0, and we denote
it by N . By assuming the Taylor expandability of the line
element around our desired null boundary (r = 0), we do the
following expansions

V (v, r, φ) = −η

(
� + Dvη

η

)
r + r2V2 + O(r3), (2.7a)

U (v, r, φ) = U − r
ηJ
�3 + O(r2), (2.7b)

R2(v, r, φ) = �2(1 − 2rη�n) + O(r2). (2.7c)

All functions which appear in these expansions are generic
functions of null boundary coordinates, v and φ. These func-
tions have nice geometrical meanings. For example, we could
think about �, U , J , �n, and � as the surface gravity, veloc-
ity aspect of the boundary, angular momentum aspect, expan-
sion, and the area density of the null boundary respectively
[5]. For latter convenience, we introduce the differential oper-
ators Dv and LU which their action on a codimension one
function Ow(v, φ) of weight w is defined through [6,48]

DvOw := ∂vOw − LUOw, (2.8a)

Table 1 Weight w for various quantities defined and used in this Section

w = −1 U , Y , Ŷ

w = 0 η , T , W , Tll , �l , �n , κ , � , N , E ,
V2 , Ell , T̂ , Ŵ , ∂v , Dv

w = 1 � , ω , Tlφ , �̄ , Elφ , �̄NE , ∂φ

w = 2 Tφφ , J , J̄ , J̄NVCT , J̄NE

LUOw := U∂φOw + wOw∂φU , (2.8b)

where U is a function of weight −1. Weights of different
functions can be found in Table 1.

To describe the geometry of the null boundary, we define
the following two null vector fields

l := lμ dxμ = −1

2
V dv + η dr,

n := nμ dxμ = − dv, (2.9)

they satisfy l2 = n2 = 0 and l.n = −1. The vector field
lμ∂μ = ∂v −U∂φ +O(r) is the generator of the null surface

l · ∇lμ := κ lμ on N , κ = −�

2
+ Dvη

2η
, (2.10)

here κ is the non-affinity of null boundary generators. In the
rest of the work, the on-shell divergence-free and traceless
tensor Tμν (2.4) will be of great relevance. The components
Tll = lμlνTμν , Tlφ = lμTμφ, and Tφφ = Tφφ computed at
r = 0 are given by

Tll = −Dv�l + κ�l − �2
l , (2.11a)

Tlφ = Dvω + �lω − ∂φκ, (2.11b)

Tφφ = 2�2 [Dv�n + �n(κ + �l)

− 1

�
∂φ

( ω

�

)
− ω2

�2 + 1

�2

]
. (2.11c)

Equations of motion (2.3) lead to

E := Eμ
μ = −2V2

η2 + 3J 2

2�4 + 2

�2 − J ∂φη

�3η

− (∂φη)2

2η2�2 + 2Tφφ

�2 = 0, (2.12a)

Ell := lμlνEμν = Tll − 1

μ�

[
DvTlφ + ωTll

+ (�l − κ)Tlφ − ∂φTll − U�2

2
DvE

]
= 0, (2.12b)

Elφ := lμEμφ = Tlφ − 1

μ�

[
DvTφφ − ωTlφ

− 1

2
�lTφφ + �2�nTll − �∂φ

(Tlφ
�

)
− 1

2
�2�lE

]
= 0,

(2.12c)
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Table 2 List of frequently occurring symbols

Symbol Description

VCT Vanishing cotton tensor

NVCT Non-vanishing cotton tensor

NE Non-expanding

μ Coupling constant of Chern–Simon term

N Null boundary

U Angular velocity of null boundary

κ Non-affinity of null boundary generators

�l Expansion of null vector l

�n Expansion of null vector n

ω Twist field

T Generator of supertranslations

W Generator of superscaling in the radial direction

Y Generator of superrotations

TN Local temperature

� Area density of null boundary

�̄ Entropy aspect in VCT case

�̄NE Entropy aspect for non-expanding null
boundaries

J̄ Angular momentum aspect in VCT

J̄NVCT Angular momentum aspect in NVCT

J̄NE Angular momentum aspect for non-expanding
null boundaries

N Chiral massive news

Dv Comoving derivative along the null boundary

≈ On-shell equality

where

�l := Dv�

�
, ω := 1

2

(J
�

+ ∂φη

η

)
(2.13)

are respectively expansion and twist fields. For later conve-
nience, we also introduce2

P := ln

(
η

�2�2
l

)
(2.14)

here we have assumed �l �= 0. For the non-expanding case,
we will define another related quantity. We have summarized
the definition of different symbols in Table 2.

Solution phase space. The solution phase space is parame-
terized by four functions, {�, η,J ; Tll}. The first three func-
tions label the boundary d.o.f while the last one captures the
information about the chiral massive news. In the VCT case,

2 It is important to emphasize that P does not have a well-defined
weight. We define its derivative as

DvP := ∂vP − LUP, LUP := U∂φP − 2∂φU .

we lose the bulk propagating mode, and hence, in this case,
the dynamic of the theory only arises from the boundary [5].

Null boundary symmetry (NBS). The vector field [4–6]

ξ =T ∂v + r (DvT − W ) ∂r +
(
Y − r

η

�2 ∂φT
)

∂φ + O(r2),

(2.15)

preserves the form of metric (2.6) and hence rotates us in the
solution space. Here symmetry generators, T , Y, and W are
generic functions of null boundary coordinates. They respec-
tively generate the supertranslations in v-direction, super-
rotations in φ-direction, and superscaling in r -direction. It
is worth to emphasis these three generators are in one to
one correspondence with three labels of the boundary d.o.f
{�, η,J }.
Null boundary symmetry algebra. The vector fields (2.15)
make an algebra. Due to the field dependency of (2.15), we
should use the adjusted Lie bracket to read the algebra [49,50]

[ξ(T1,W1,Y1), ξ(T2,W2,Y2)]adj. bracket =ξ(T12,W12, Y12)

(2.16)

where

T12 = (
T1∂v + Y1∂φ

)
T2 − (1 ↔ 2), (2.17a)

W12 = (
T1∂v + Y1∂φ

)
W2 − (1 ↔ 2), (2.17b)

Y12 = (
T1∂v + Y1∂φ

)
Y2 − (1 ↔ 2). (2.17c)

This is a Diff(N ) � Weyl(N ) algebra [4,5]. The Diff part of
this algebra is parameterized by supertranslations and super-
rotations and the Weyl part is also described by the generator
of superscaling in the r direction.

Field variations of chemical potentials. Under the action
of ξ , we get

δξ� = Dv(W + �T ) + Ŷ ∂φ�, (2.18a)

δξU = DvŶ , (2.18b)

δξP = (TDv + LŶ )P − W , (2.18c)

δξ� = (TDv + LŶ )�, (2.18d)

where Ŷ = Y +UT . We will interpret {�,U;P,�} as chem-
ical potentials in thermodynamic equations. The distinctive
common feature of these quantities is that they do not depend
on the underlying theory and are only geometrically deter-
mined. As the last point, it is worth to emphasis that these
field variations are totally off-shell.

123



Eur. Phys. J. C (2023) 83 :182 Page 5 of 17 182

3 Null surface thermodynamic, VCT case

In this section, we consider the vanishing Cotton tensor
(VCT) sector of the solution phase space of the theory. In
all of this section, the on-shell equality ≈ means we apply
the VCT equations of motion

Tll = Tlφ = Tφφ = 0. (3.1)

The first two equations Tll = 0 and Tlφ = 0 are the standard
Raychaudhuri and Damour [51] equations respectively. We
introduce two further quantities which will play important
roles in our null surface thermodynamic

�̄ = � + 1

μ

[ J
2�

+ ∂φP
2

+ ∂φ�

�

]
,

J̄ = J + 1

μ

[( J
2�

)2

+
(

�

�

)2

+ 2�2�l�n −
(

∂φP
2

)2

−∂φ�∂φP
�

+ 2

(
∂φ�

�

)2

− 2∂2
φ�

�

]
(3.2)

From now on, the barred notion will be used for the quan-
tities which take corrections from the Chern–Simon term in
TMG action (2.1). In other words, these barred quantities are
defined in such a way that they reduce to the corresponding
unbarred quantities (Einstein counterparts) for μ → ∞.

Symplectic potential. We start by calculating the Lee–Wald
symplectic potential [52] for the VCT case. Up to total deriva-
tive terms w.r.t φ we get

16πG �r
LW = −J̄ δU + �̄δ� + Dv�̄ δP

− 1

μ
∂vA + 1

μ
δB (3.3)

where the last two terms are a total derivative term w.r.t v

coordinate and a total variation on solution phase space which
their explicit form is given by

A = δω + �2�n δU + δ�∂φ�

2�2 + δη∂φη

4η2 + δ�

�
∂φP

+ 1

4
δP∂φP,

B = ∂vω + 1

2
�2�nDvU − J

4�
(�+2�l)

− ∂φ�

�
(� + �l) + ∂φP

4
(−� + 2�l + ∂φU)

− ∂φU
2

(
U�2�n + J

2�
+ ∂φ�l

�l
− 3∂φ�

�

)
.

(3.4)

To remove these terms, we use the freedoms/ambiguities in
the covariant phase space method [53]. To do so, we introduce
the following W and Y terms

Wμ =
√−gB
μ�

nμ,

Yμν[δg; g] = −
√−g

16πGμ
εμνλBλ[δg; g] (3.5)

with Bλ depending on the (variations) of metric and Christof-
fel symbols and the quantity P

Bλ[δg; g] = 1

4
�α

λβδgβ
α −nαl

βδ�α
λβ+δ�

�
∂λP + 1

4
δP∂λP,

(3.6)

It should be noted these freedoms are proportional to 1/μ

and vanish in Einstein limit μ → ∞. By adding these Y and
W terms to the Lee-Wald symplectic potential, we find

16πG �r = −J̄ δU + �̄δ� + Dv�̄ δP. (3.7)

From now on, we add these freedoms (3.5) to any Lee-Wald
quantities in the VCT case and drop their LW index. It is
worth emphasizing that these kinds of Y -terms (3.5) were
used to obtain integrable surface charges for TMG in VCT
case [5].

Symplectic form. One can compute the Lee-Wald pre-
symplectic form [52] over the set of geometries (2.6). After
the addition of Y -term (3.5), it yields

� = 1

16πG

∫
N

dv dφ
[
δU ∧ δJ̄ − δ� ∧ δ�̄ − δP ∧ δ(Dv�̄)

]
.

(3.8)

This pre-symplectic form has a nice property: similar to the
Einstein gravity in 3 dimensions, it involves three conjugate
pairs. In each pair, one accepts corrections from the Chern–
Simon term and the other one does not. In this regard, we
interpret unchanged quantities, {�,U;P}, as chemical poten-
tials, which do not depend on the underlying theory, they are
only geometrical quantities.3 We consider {�̄, J̄ ;Dv�̄} as
their corresponding thermodynamic conjugate charges which
carry information about the underlying theory (3.2). In this
sense, they are actually dynamic variables. It is important to
emphasize the pre-symplectic form (3.8) involves off-shell
quantities. These thermodynamic quantities are subject to the
VCT equations of motion (3.9).

Equations of motion in terms of charges. VCT equations
of motion (3.1) in terms of thermodynamics variables yield

Dv�̄ ≈ �l(2� − �̄), DvP ≈ �, DvJ̄ ≈

−�̄∂φ� − Dv�̄∂φP − 2∂φ

(
Dv�̄ + ∂2

φU
μ

)
.

(3.9)

The second and third equations are the Raychaudhuri and
Damour equations which now have been written in terms of

3 For an exception see [54].
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thermodynamics variables. They capture the time evolution
of expansion and angular momentum.

Charge variations. Under the action of large diffeomor-
phisms (2.15), the thermodynamic charges transform as

δξ �̄ ≈ (TDv + LŶ )�̄, (3.10a)

δξ (Dv�̄) ≈ Dv(TDv�̄) + LŶ (Dv�̄) , (3.10b)

δξ J̄ ≈ (TDv + LŶ )J̄ + �̄(∂φW + �∂φT )

− 2Dv�̄∂φT + 2

μ

(
T ∂3

φU − ∂3
φ Ŷ

)
. (3.10c)

3.1 Surface charge variation

One can compute the charge variation associated with large
diffeomorphisms for topologically massive gravity by using
an extension of the covariant phase space method [5,55,56].4

Explicit calculations lead to the following expression for the
charge variation

/δQ(ξ) ≈ 1

16πG

∫ 2π

0
dφ

{
Wδ�̄ + Y δJ̄ + T

(
UδJ̄

−�δ�̄ + Dv�̄ δP
)}

. (3.11)

To get this result, we have used the VCT equations of motion
(3.1) and we have also added Y -term (3.5) into the Lee-Wald
surface charge formula. Obviously, in this slicing of the solu-
tion phase space (δT = δY = δW = 0), the charge variation
is not integrable. So, to obtain well-defined labels for the
boundary d.o.f, we need to split it into the integrable and
non-integrable (flux) parts

QI(ξ) = 1

16πG

∫ 2π

0
dφ

[
W �̄ + Y J̄ + T (UJ̄ − ��̄)

]
,

(3.12)

and

F(ξ) = 1

16πG

∫ 2π

0
dφ T

(−J̄ δU + �̄δ� + Dv�̄ δP
)
.

(3.13)

By using the modified bracket [49] for this splitting of the
charge variation,

δξ2 Q
I
ξ1

:=
{
QI

ξ1
, QI

ξ2

}
BT

−Fξ2(δξ1g) (3.14a)
{
QI

ξ1
, QI

ξ2

}
BT

= QI[ξ1,ξ2]adj. bracket
+ Kξ1,ξ2 (3.14b)

4 As we mentioned the Chern–Simon term in the TMG Lagrangian (2.1)
makes this action to be non-covariant (it has the covariance only at the
level of the equations of motion). So, we need to revisit the standard
Noether-Wald method [52,53,57,57,58] for computing surface charges.

we obtain an algebra the same as the NBS algebra (2.17) with
the following central extension term

Kξ1,ξ2 = 1

16πG μ

∫ 2π

0
dφ(Ŷ2∂

3
φ Ŷ1 − Ŷ1∂

3
φ Ŷ2). (3.15)

This result is consistent with the representation theorem in the
covariant phase space method [52,57]. Due to the existence
of U in the definition of Ŷ , this central extension term is
actually field dependent. This central charge is related to the
gravitational anomaly of the presumed dual 2d CFT [59–61].
This matches with the usual statement that central charges are
“anomalies” for conserved charges.

One can read the zero mode charges from the full non-
integrable form of the charge variation (3.32)

Q(−r∂r ) := S̄
4π

= 1

16πG

∫ 2π

0
dφ �̄,

Q(∂φ) := J̄ = 1

16πG

∫ 2π

0
dφ J̄ ,

/δQ(∂v) := /δ H̄ = 1

16πG

∫ 2π

0
dφ

(
UδJ̄ − �δ�̄ + Dv�̄ δP

)
.

(3.16)

They have obtained by putting ξ = −r∂r , ξ = ∂φ and ξ =
∂v in (3.32) respectively. One can do the same job with the
integrable part of the charge variation (3.12),

QI(−r∂r ) := S̄
4π

= 1

16πG

∫ 2π

0
dφ �̄,

QI(∂φ) := J̄ = 1

16πG

∫ 2π

0
dφ J̄ ,

QI(∂v) := Ē = 1

16πG

∫ 2π

0
dφ

(
UJ̄ − ��̄

)
.

(3.17)

The first zero mode, S̄, is equal to the Wald entropy [57,62]
and two other ones correspond to the angular momentum and
energy respectively.

Balance equation. Now, we consider the conservation of
our surface charges. Due to the non-integrability and explicit
v-dependence of the charge variation, we do not expect our
charges to be conserved. In this case, we should consider the
balance or generalized charge conservation equation [2,49]

d

dv
QI

ξ ≈ −F∂v (δξ g; g) + Kξ,∂v . (3.18)

This equation relates the time evolution of the integrable part
of the surface charges to the non-integrable (flux) and anoma-
lies of the charges. In other words, it states there exist two
sources for the non-conservation of the surface charges: flux
and anomalies of charges.
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3.2 Null boundary thermodynamical phase space, VCT
case

As we discussed one can use the boundary charges to label
our boundary d.o.f. In this regard, the VCT part of the solu-
tion phase space is parameterized by three boundary d.o.f,
{�̄, J̄ ;P}. These boundary d.o.f are led to the following
thermodynamic picture [22].

I. The null boundary solution space for the VCT case
consists of the following two parts:

(I.1) thermodynamic sector: parametrized by (�,U) and
conjugate charges (�̄, J̄ ). They are subject to the
equations of motion (3.9).

(I.2) P , which only appears in the flux (3.13) and not in
the integrable charge (3.12). As we mentioned, this
quantity is not affected by the Chern–Simon term.
The thermodynamic conjugate associated with P is
equal to the time derivative of the entropy aspect.

II. The VCT part of the solution phase space does not
involve any bulk modes. So, our boundary thermody-
namics is only affected by boundary effects. In this
regard,P is a boundary effect which takes our boundary
system out of thermal equilibrium (OTE).

III. The time derivatives of entropy aspect Dv�̄ and area
density Dv� measure the OTE from the bulk and
boundary viewpoints respectively. In the Einstein grav-
ity because we have �̄ = �, so Dv� (or expansion
�l ) is a measure of OTE from both bulk and boundary
viewpoints.

In the rest, we clarify this picture by going through the
equations.

3.3 Local first law at null boundary

One can read the standard first law of black hole thermody-
namics for stationary black holes (e.g. BTZ black holes in
TMG) from (3.32) by putting W = Y = 0 and T = 1,

δH̄0 = T0δS̄0 + U0δJ̄ 0 (3.19)

where H̄0 on the left hand side is the energy of the black hole
and on the right hand, the first pair (heat term) involves the
temperature, T0, and the entropy, S̄0, and the second term
(work term) involves U0 and J̄ 0 which are angular velocity
and angular momentum respectively. We refer to (3.19) as
the global first law.

In this work we generalize this global equation in three
different ways: (1) We present a local version of the first law
which holds in each point of the null boundary. (2) We gen-
eralize this equation such that it captures the OTE effects. As

we will see, in the VCT case the expansion of the null bound-
ary makes our boundary system to be OTE. In the NVCT case
in addition to this effect, the passage of bulk news through
the boundary is another source of OTE in the boundary sys-
tem. (3) This local equation holds on any null surface and
in this description, black holes do not play any key roles.
It should be emphasized that all of these analyses are direct
consequences of diffeomorphism invariance (at the level of
equations of motion).

Now, we present a local version of the first law which char-
acterizes the dynamics of boundary d.o.f. To obtain the local
first law we start from the full form of the charge variation
(3.32) and calculate it for W = Y = 0 and T = δ(φ − φ′).
Then, it yields the following local equation

/δH̄ = TN δS̄ + UδJ̄ + DvS̄ δP (3.20)

where

S̄ = �̄

4G
, P = P

4π
, TN := − �

4π
≈ −DvP, J̄ = J̄

16πG
.

(3.21)

This equation is a local equation in boundary coordinates, v

and φ. Let us look at the right hand side of this equation: the
first term is the heat term, TN is the local temperature which
is proportional to the surface gravity and its thermodynamic
conjugate is the entropy aspect, S̄. The second term is a work
term, U is the angular velocity aspect of the boundary and
its conjugate denotes the angular momentum aspect, J̄ . We
interpret the last term in (3.20) as an entropy production term.
Because of the expansion of the null surface, the left hand
side unlike the global first law of thermodynamics (3.19) is
not a total variation on the thermodynamic phase space. The
integrated version of the local first law (3.20) for stationary
spacetimes reduces to the usual global first law (3.19).

3.4 Local Gibbs–Duhem equation at null boundary

In this subsection, we study the global and local Gibbs–
Duhem equations. From the integrable part of the charge
variation (3.12), we find the standard Gibbs–Duhem equa-
tion by substituting W = Y = 0 and T = 1,

Ē0 = T0S̄0 + U0J̄ 0 (3.22)

Similar to the previous section we call this equation theglobal
Gibbs–Duhem equation and we generalize it in the three men-
tioned ways. To do so, we put W = Y = 0 and T = δ(φ−φ′)
in the integrable part of the charge variation (3.12), then we
reach a local equation

Ē = TN S̄ + UJ̄ (3.23)

which we interpret it as the local Gibbs–Duhem equation.
Similar to the local first law, this equation is also a local equa-
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tion and its integrated version reduces to the usual Gibbs–
Duhem relation for stationary cases (3.22). It is important
to note the thermodynamic variables which appear in this
equation are subject to the equations of motion (3.1).

3.5 Local zeroth law

The goal of this subsection is to present a local expression for
the zeroth law. Basically, we can think about the zeroth law
as a statement of thermal equilibrium. In the usual thermody-
namics, the flux of charges is proportional to the gradient of
the chemical potentials, so we can take the absence of these
kinds of flux as a statement of the zeroth law. So, these kinds
of interpretations motivate us to put the flux part of the charge
variation equal to zero. But we are going to take a weaker
condition than what was mentioned. To do so, we start from
the on-shell variation of the action

δ I | on-shell = 1

16πG

∫
N

dv dφ
[−J̄ δU + �̄δ� + Dv�̄ δP

]
.

(3.24)

Here we have added W -term (3.5) into the action. As a state-
ment of local zeroth law, we require

δ I | on-shell = 1

16πG

∫
N

dv dφ δG, (3.25)

here we can interpret G as a boundary Lagrangian. This
requirement (3.25) results

δG = −J̄ δU − S̄δTN + DvS̄ δP . (3.26)

where G = G/16πG. From the combination of the local first
law (3.20) and the local zeroth law (3.25), we reach

δH̄ = UδJ̄ + TN δS̄ + DvS̄ δP,

H̄ = Ḡ + TN S̄ + UJ̄ . (3.27)

The integrability condition of this equation, δ(δH̄) = 0,
leads to

TN = δH̄
δS̄

≈ −DvP, DvS̄ = δH̄
δP , U = δH̄

δJ̄
. (3.28)

The first two equations are the Hamilton equations. It simply
shows H̄ plays the role of the Hamiltonian in the boundary
system and {S̄,P} are Heisenberg conjugate and satisfy a
Heisenberg algebra. It should be stressed that this boundary
Hamiltonian (3.27) does not determine from our analysis,
because it involves an arbitrary function G.5 A careful anal-

5 Determination of G is equivalent to the choice of boundary conditions
(thermodynamic ensemble).

ysis of Raychaudhuri and Damour equations and also the
above integrability conditions lead to the following algebra

{S̄(v, φ),P(v, φ′)} = δ(φ − φ′), {S̄(v, φ), S̄(v, φ′)}
= {P(v, φ),P(v, φ′)} = 0,

{S̄(v, φ), J̄ (v, φ′)} = S̄(v, φ′)∂φδ(φ − φ′),
{P(v, φ), J̄ (v, φ′)} = (P(v, φ′)∂φ + P(v, φ)∂φ′

+ 1

2π
∂φ′

)
δ(φ − φ′),

{J̄ (v, φ), J̄ (v, φ′)}
=

(
J̄ (v, φ′)∂φ − J̄ (v, φ)∂φ′ + 1

8πG μ
∂3
φ′

)
δ(φ − φ′).

(3.29)

This is a Heisenberg � Witt algebra. It has been shown [5]
that there is a direct sum slicing in which the charge algebra
becomes Heisenberg ⊕ Virasoro. In summary, we can take
the existence of an algebra among the surface charges as a
statement of the local zeroth law.

Integrable slicing. In this part, we write the charge variation
in another slicing which yields an integrable expression for
the charge variation: integrable slicing [2,4–6,48,63]. Let
us look at the following field dependent combination of the
symmetry generators

Ŵ = W − �T Ŷ = Y + UT, T̂ = Dv�̄T . (3.30)

In terms of these generators, we get

δQ(ξ) ≈ 1

16πG

∫ 2π

0
dφ(Ŵδ�̄ + Ŷ δJ̄ + T̂ δP). (3.31)

Now, if we assume our new generators are field indepen-
dent, δT̂ = δŶ = δŴ = 0, then we will find the following
integrable expression

Q(ξ) ≈ 1

16πG

∫ 2π

0
dφ(Ŵ �̄ + Ŷ J̄ + T̂P). (3.32)

In this slicing, the symmetry algebra yields

T̂12 = ∂φ(Ŷ1T̂2) − (1 ↔ 2), (3.33a)

Ŵ12 = Ŷ1∂φŴ2 − (1 ↔ 2), (3.33b)

Ŷ12 = Ŷ1∂φ Ŷ2 − (1 ↔ 2). (3.33c)

An interesting property of this integrable slicing is that its
structure constants are v-independent. The charge algebra is
the same as the symmetry algebra with the following central
terms

Kξ1,ξ2 = 1

16πG

∫ 2π

0
dφ

[
T̂2Ŵ1 + 2Ŷ2∂φ T̂1 + 1

μ
Ŷ2∂3

φ Ŷ1 − (1 ↔ 2)

]
.

(3.34)

Surprisingly, this algebra is the same as (3.29). So, we learn
the zeroth law brings us to integrable slicings [22].
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4 Null surface thermodynamic, NVCT case

In this section we consider the null boundary thermodynamic
for the full NVCT solution phase space. In comparison with
the previous section, we turn on the chiral massive news in
the solution phase space of the theory. As we will see, this
bulk mode through interactions with boundary d.o.f takes
our boundary thermodynamics out of thermal equilibrium. In
this section, we present a local first law, local Gibbs–Duhem
equation, and local zeroth law in presence of this hard mode.
In the whole of this section, the on-shell equality ≈ means
we apply the NVCT equations of motion

Ell = Elφ = E = 0. (4.1)

The following quantities will play key roles in our null bound-
ary thermodynamic description for the NVCT case

J̄NVCT := J̄ − 2

μ

[
Tφφ + �∂φ

( Tlφ
��l

)]
,

N := 2Tll
��l

[
2� − �̄ + Tlφ

μ�l

]
. (4.2)

From now on the index NVCT for different quantities indi-
cates they take corrections w.r.t the VCT case. In other words,
these quantities reduce to the corresponding quantities in the
VCT case for Tll = Tlφ = Tφφ = 0. The news function, N ,
is a crucial part of our thermodynamic picture in NVCT case.
It is proportional to Tll and captures the information about
the massive bulk propagating mode of TMG.

Equations of motion in terms of charges. NVCT equations
of motion (4.1) in terms of thermodynamic variables yield

Dv�̄ = �l(2� − �̄) + 1

μ

[
Tlφ + ∂φ

(Tll
�l

)]
, (4.3a)

DvP = � + 2Tll
�l

, (4.3b)

DvJ̄NVCT ≈ −�̄∂φ� − Dv�̄∂φP + N∂φ�

− ∂φ

[
�N + 2Dv�̄ + 2∂2

φU
μ

]
, (4.3c)

Symplectic potential. A straightforward calculation yields
the following expression for the Lee-Wald symplectic poten-
tial

�r
LW = −J̄NVCT δU + �̄δ� + Dv�̄ δP − Nδ�

−∂φ

(TllδP
μ�l

)
+ δ

(
TllTlφ
μ�2

l

)

− 1

μ
∂vANVCT + 1

μ
δBNVCT. (4.4)

where we have dropped out the total derivative terms w.r.t φ

coordinate and the second line only involves a total deriva-

tive term w.r.t v coordinate and a total variation term. Their
explicit form is given by

ANVCT = A + 2δ�
Tlφ
��l

,

BNVCT = B + Tll
�l

[
2� − 1

μ

(J
�

+ ∂φP
2

+ 2∂φ�

�
− Tlφ

�l

)]
.

(4.5)

One can absorb ANVCT and BNVCT terms into the following
appropriate Y and W terms

Yμν
NVCT[δg; g] = −

√−g

16πGμ
εμνλBNVCT

λ [δg; g],

BNVCT
λ = Bλ + 2δ�

lαTαλ

��l
,

Wμ
NVCT[g] =

√−gBNVCT

μ�
nμ.

(4.6)

Again similar to the VCT case, we add these freedoms (4.6)
to any symplectic quantities and drop out their LW index.
In [5], these kinds of freedoms were used to obtain genuine
slicings in the NVCT case.

Symplectic form. The Lee-Wald symplectic form for the
NVCT case after the addition of Y -term (4.6) leads to

� = 1

16πG

∫
N

dv dφ
[
δU ∧ δJ̄NVCT − δ� ∧ δ�̄

−δP ∧ δ(Dv�̄) + δ� ∧ δN
]
. (4.7)

Compared to the VCT case, we have an extra conjugate pair,
� and N , associated with chiral massive news. We treat N as
a charge and � as its chemical potential. It is consistent with
our previous criterion to distinguish chemical potentials and
charges. Here N carries information about the propagating
mode and hence it depends on the theory. A comparison with
the Einstein gravity in higher dimensions is also helpful. In
[6] it has been shown that the conjugate of news tensor is
the metric on a co-dimension two cross section of the null
boundary (transverse surface). In our three dimensional case,
this transverse surface is a circle and � plays the role of its
metric. In summary in the NVCT case, we have four chemical
potentials, {U , �;P,�}, and their four associated charges,
{J̄NVCT, �̄;Dv�̄, N }.
Charge variations. The transformation laws for the labels
of the boundary d.o.f are

δξ �̄ = (TDv + LŶ )�̄ + Tll∂φT

μ�l
, (4.8a)

δξP = (TDv + LŶ )P − W , (4.8b)

δξ (Dv�̄) = Dv(TDv�̄) + LŶ (Dv�̄)

+ Dv

(Tll∂φT

μ�l

)
, (4.8c)
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δξ J̄NVCT ≈ (TDv + LŶ )J̄NVCT + �̄∂φW

−
(

2Dv�̄ + �̄� + �N + Tll∂φP
μ�l

)
∂φT

+ 2

μ

[
T ∂3

φU − ∂3
φ Ŷ − ∂φ

(Tll∂φT

�l

)]
, (4.8d)

and the bulk d.o.f transforms under the large diffeomor-
phisms as

δξ N = Dv(T N ) + LŶ N . (4.9)

The variation of N has a nice property: it is homogeneous in
N [6,64]. This means by large gauge transformations we can
not create the bulk gravitons (hard propagating mode). This
is the property that we expect to be true for any hard modes.

4.1 Surface charge variation

The covariant phase space method [55–57] gives the follow-
ing expression for the charge variation

/δQNVCT(ξ) ≈ 1

16πG

∫ 2π

0
dφ

(
Wδ�̄ + Y δJ̄NVCT + T /δH̄NVCT

)
,

(4.10)

where

/δH̄NVCT := −�δ�̄ + UδJ̄NVCT + Dv�̄δP − Nδ�

−∂φ

(TllδP
μ�l

)
. (4.11)

Here we have used Y term (4.6) and on-shell conditions (4.1)
for the NVCT case. One can split the charge variation into
the integrable and flux parts as

QI
NVCT(ξ) = 1

16πG

∫ 2π

0
dφ

[
W �̄ + Y J̄NVCT

+T

(
UJ̄NVCT − ��̄ − TllTlφ

μ�2
l

)]
, (4.12)

and

FNVCT(ξ) = 1

16πG

∫ 2π

0
dφ T

{
− J̄NVCT δU + �̄ δ�

+Dv�̄ δP − Nδ� − ∂φ

(TllδP
μ�l

)
+ δ

(
TllTlφ
μ �2

l

)}
.

(4.13)

This splitting yields the same central charge as we had in the
VCT case (3.15). The zero mode charges for surface charge
variation (4.10) result

QNVCT(−r∂r ) := S̄
4π

= 1

16πG

∫ 2π

0
dφ �̄,

QNVCT(∂φ) := J̄NVCT = 1

16πG

∫ 2π

0
dφ J̄NVCT,

/δQNVCT(∂v) := /δ H̄NVCT

= 1

16πG

∫ 2π

0
dφ

(−�δ�̄+UδJ̄NVCT+Dv�̄δP−Nδ�
)
.

(4.14)

We can also read zero mode charges for the integrable part
of the charge variation (4.12)

QI
NVCT(−r∂r ) := S̄

4π
= 1

16πG

∫ 2π

0
dφ �̄,

QI
NVCT(∂φ) := J̄NVCT = 1

16πG

∫ 2π

0
dφ J̄NVCT,

QI
NVCT(∂v) := ĒNVCT = 1

16πG

∫ 2π

0

dφ

(
UJ̄NVCT − ��̄ − TllTlφ

μ�2
l

)
.

(4.15)

We observe the angular momentum and energy take correc-
tions in comparison with the VCT case but the entropy aspect
charge does not.

Balance equation.Similar to the VCT case we obtain the fol-
lowing balance equation among different parts of the charge
variation (4.10)

d

dv
QI

ξ ≈ −F∂v (δξ g; g) + Kξ,∂v . (4.16)

One can interpret this equation in several ways. The first way
is to consider this equation as a manifestation of boundary
equations of motion which have been written in terms of the
surface charges. The second interpretation of this equation is
that it states how our boundary d.o.f adjust themselves due to
the passage of bulk chiral mode. In other words, this equation
describes interactions between bulk and boundary d.o.f.

4.2 Null boundary thermodynamical phase space, NVCT
case

Here we present our general boundary thermodynamic pic-
ture for the full solution phase space of TMG.

I. Null boundary solution space for the NVCT case con-
sists of the following three parts:
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(I.1) thermodynamic sector: parametrized by (�,U) and
conjugate charges (�̄, J̄NVCT). They are subject to
equations of motion (4.3).

(I.2) P , which only appears in the flux (4.13) and not in
the integrable charge (4.12). We observe again even
in the presence of bulk mode, this quantity does not
accept any corrections. We conjecture that it is a
universal property of any expanding null surface in
any general covariant theories of gravity. Similar
to the VCT case, its conjugate is equal to the time
derivative of the entropy aspect.

(I.3) The bulk mode is parameterized by � and its ‘con-
jugate charge’ N which appear in the flux (4.13).

II. We have two sources that make our boundary system
out of thermal equilibrium: bulk effect, N , through
interactions with boundary d.o.f, and boundary effect
which is parametrized by P .

III. The time derivatives of entropy aspect Dv�̄ and area
density Dv� measure the OTE from the bulk and
boundary viewpoints respectively.

4.3 Local first law at null boundary

By doing the same procedure as we have done in the VCT
case, we reach the following equation for the local first law

/δH̄NVCT =TN δS̄+UδJ̄ NVCT+DvS̄ δP − N δS − ∂φ

(T llδP
μ�l

)

(4.17)

where

S= �

4π
, N = N

4G
, TN :=− �

4π
, J̄ NVCT = J̄NVCT

16πG
, T ll = Tll

4G
.

(4.18)

Once again, this is a local equation in boundary coordinates.
In comparison with the VCT case, we have two further terms.
One of them which is parametrized by N arises due to the
existence of chiral massive news in the bulk. This is a bulk
effect which through interactions with boundary d.o.f takes
the boundary thermodynamic out of thermal equilibrium. The
last term in (4.18) is proportional to 1/μ and hence is a prop-
erty of TMG. This term appears as a total derivative term w.r.t
φ coordinate and is reminiscent of the fact that our equation
is local. It is a combination of bulk and boundary effects
(involves both P and Tll ).

4.4 Local Gibbs–Duhem equation at null boundary

The local Gibbs–Duhem equation for the NVCT case is

ĒNVCT = TN S̄ + UJ̄ NVCT − 1

μ

T llT lφ

�2
l

. (4.19)

where T lφ = Tlφ
4π

. In comparison with the VCT case, it has
an extra term, which is proportional to Tll and parameterizes
the bulk effect of massive chiral news. This extra term does
not have any counterpart in D-dimensional Einstein gravity
[22] so it is a property of the underlying theory.

4.5 Local zeroth law

In this section, we discuss the zeroth law for the NVCT case.
We start with the on-shell variation of the action

δ I | on-shell = 1

16πG

∫
N

dv dφ

{
− J̄NVCT δU + �̄δ�

+Dv�̄ δP − Nδ� − ∂φ

(TllδP
μ�l

)

+δ

(
TllTlφ
μ�2

l

)}
.

(4.20)

Similar to the VCT case, we take the following requirement
as a statement of the local zeroth law

δ I | on-shell = 1

16πG

∫
N

dv dφ δGNVCT, (4.21)

hence, we get

δGNVCT = −J̄ NVCTδU − S̄δTN + DvS̄ δP − N δS

−∂φ

(T llδP
μ�l

)
+ δ

(
T llT lφ

μ�2
l

)
. (4.22)

The integrability condition, δ(δGNVCT) = 0, leads to an
equation such as

∑
α,β CαβδQα ∧ δQβ ≈ 0, where Qα

denote generic charges and Cαβ is a skew-symmetric matrix.
To get this result, we have used the equations of motion (4.3).
In other words, we need to substitute chemical potentials in
terms of the charges. Because our charges are independent
so the unique solution of this equation isCαβ = 0. An imme-
diate consequence of this equation is Tll = 0. The vanishing
of Tll leads to the vanishing of the news function, N = 0.
Therefore we observe the zeroth law enforces us to turn off
the bulk mode [22]. Putting these conditions Tll = 0 and
N = 0, into the zeroth law (4.22) and combining it with the
local first law (4.18) result

/δH̄NVCT = UδJ̄ NVCT + TN δS̄ + DvS̄ δP,

H̄NVCT := Ḡ + TN S̄ + UJ̄ NVCT. (4.23)

The remaining integrability conditions to have nontrivial
solutions for (4.23), yield

TN = −δH̄NVCT

δS̄
, DvS̄ = δH̄NVCT

δP , U = δH̄NVCT

δJ̄ NVCT
.

(4.24)

Again these equations enforce an algebra among the charges.
This algebra is the same as the VCT case (3.29).
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5 Thermodynamics of non-expanding null surfaces

In all previous calculations, we assumed �l �= 0. In this
section, we consider a special sector of the solution phase
space, the non-expanding case (�l = 0). From the definition
of Tll (2.11) for the non-expanding case, we find Tll = 0.
Because the news tensor is proportional with Tll (4.2) so
in this case, we do not have any bulk propagating mode,
N = 0. In this section, we will show there is also a local
thermodynamic description for non-expanding null surfaces.
Similar to the expanding null surfaces, we will present local
thermodynamic equations for this case. It is important to
point out that this case is not corresponding to the VCT case,
because even though Tll = 0, we still have Tlφ �= 0 and
Tφφ �= 0.

Symplectic potential. In this case the Lee-Wald symplectic
potential up to total derivative terms w.r.t φ, yields

16πG �r
NE,LW = −J̄NEδU + �̄NEδ� + 1

μ
TlφδPNE

− 1

μ
∂vANE + 1

μ
δBNE (5.1)

where the thermodynamic quantities for non-expanding case
are

�̄NE = � + 1

μ

[ J
2�

+ 2∂φ�

�
+ 1

2
∂φPNE

]
, PNE = ln

(
η

�2T 2
lφ

)
,

J̄NE = J + 1

μ

[( J
2�

)2
+

(
�

l

)2
− 2Tφφ −

(
∂φPNE

2

)2

− 2∂φ�∂φPNE

�
− 8∂φ

(
∂φ�

�

)]
.

(5.2)

The total derivative term and total variation term are

ANE = δ�∂φ�

2�2 + δη∂φη

4η2 + �2�n δU + δω + 2δ�

�
∂φPNE

+ 1

4
δPNE∂φPNE,

BNE = 1

2
�2�nDvU + ∂vω

− ∂φU
(

1

2
U�2�n + J

4�
− 8∂φ�

�
+ ∂φη

4η
− ∂φPNE

)

−
( J

4�
+ ∂φPNE

4
+ 2∂φ�

�

)
�.

(5.3)

We introduce the following W and Y terms to remove these
terms

Wμ
NE[g] =

√−gBNE

μ �
nμ, Yμν

NE [δg; g] = −
√−g

16πGμ
εμνλBNE

λ [δg; g],
(5.4)

with

BNE
λ [δg; g] = 1

4
�α

λβδgβ
α − nαl

βδ�α
λβ+2δ�

�
∂λPNE

+1

4
δPNE∂λPNE. (5.5)

By using these Y and W terms, we reach

16πG �r
NE = −J̄NEδU + �̄NEδ� + 1

μ
TlφδPNE. (5.6)

We add these freedoms (5.4) to any Lee-Wald quantities in
the non-expanding case and drop their LW index. Again these
kinds of Y -terms lead to the integrable expression for the
surface charges in the non-expanding case [5].

Equations of motion in terms of charges. In this case, the
Einstein equations lead to the following simple equations

DvJ̄NE = −Dv�̄NE∂φPNE − �̄NE∂φ� − 4

μ
∂φ

(
Tlφ + 2∂2

φU
)

,

Dv�̄NE = Tlφ
μ

, DvPNE = �. (5.7)

Symplectic form. The symplectic form for the non-
expanding case is given by

� ≈ 1

16πG

∫
N

dv dφ
[
δU ∧ δJ̄NE − δ� ∧ δ�̄NE

− δPNE ∧ δ(Dv�̄NE)
] (5.8)

here we have used (5.7). We recognize three thermody-
namic conjugate pairs: there are three chemical potentials
{�,U ,PNE} and their corresponding thermodynamic charges
{�̄NE, J̄NE,Dv�̄NE}. The off-shell chemical potential asso-
ciated with PNE is equal to Tlφ/μ. From the definition of
Tlφ (2.11) for the non-expanding case, one can interpret this
quantity geometrically as a time derivative of the twist field.
So, it seems for the non-expanding case, the twist field plays
the role of the expansion. On the other hand, the on-shell
chemical potential of PNE is given by the time derivative of
the Wald entropy aspect. It is worth emphasizing that the last
chemical potential, PNE, does not have any Einstein coun-
terpart.

Charge variations. The variation of the surface charges is
given by6

δξ �̄NE = (TDv + LŶ )�̄NE,

δξPNE = (TDv + LŶ )PNE − W,

δξ (Dv�̄NE) = Dv(TDv�̄NE) + LŶ (Dv�̄NE),

δξ J̄NE = (TDv + LŶ )J̄NE + �̄NE(∂φW − �∂φT )

+ 8

μ

(
−Tlφ

2
∂φT + T ∂3

φU − ∂3
φ Ŷ

)
. (5.10)

6 It should be emphasized thatPNE does not have a well-defined weight.
We define its derivative as

DvPNE := ∂vPNE − LUPNE, LUPNE := U∂φPNE − 4∂φU . (5.9)
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5.1 Surface charge variation

In this case for the surface charge variation, we get

/δQNE(ξ) ≈ 1

16πG

∫ 2π

0
dφ

{
Wδ�̄NE + Y δJ̄NE

+ T

(
UδJ̄NE − �δ�̄NE + 1

μ
TlφδPNE

)}
.

(5.11)

Similar to the previous cases, one can separate the charge
variation into the integrable and non-integrable parts

QI
NE(ξ) = 1

16πG

∫ 2π

0
dφ

[
W �̄NE + Y J̄NE + T (UJ̄NE − ��̄NE)

]
,

FNE(ξ) = 1

16πG

∫ 2π

0
dφ T

(
−J̄NEδU + �̄NEδ� + 1

μ
TlφδPNE

)
.

(5.12)

This leads to the following central term

KNE
ξ1,ξ2

= 1

4πG μ

∫ 2π

0
dφ(Ŷ2∂

3
φ Ŷ1 − Ŷ1∂

3
φ Ŷ2). (5.13)

This central term up to a numerical factor 4 is matched with
(3.15). In the non-expanding case, one can also read the zero
mode charges from the full form of charge variation (5.27)

QNE(−r∂r ) := S̄NE

4π
= 1

16πG

∫ 2π

0
dφ �̄NE,

QNE(∂φ) := J̄NE = 1

16πG

∫ 2π

0
dφ J̄NE,

/δQNE(∂v) := /δ H̄NE

= 1

16πG

∫ 2π

0
dφ

(−�δ�̄NE + UδJ̄NE + Dv�̄NEδPNE
)
.

(5.14)

The zero mode charges for integrable non-expanding charges
(5.12) are

QI
NE(−r∂r ) := S̄NE

4π
= 1

16πG

∫ 2π

0
dφ �̄NE,

QI
NE(∂φ) := J̄NE = 1

16πG

∫ 2π

0
dφ J̄NE,

QI
NE(∂v) := ĒNE = 1

16πG

∫ 2π

0
dφ

(
UJ̄NE − ��̄NE

)
.

(5.15)

As it is clear from the above expressions all zero mode
charges are different from the expanding cases.

Balance equation. As the last point of this subsection, we
mention that the balance equation in the non-expanding case
is also established as follows

d

dv
QI

NE(ξ) ≈ −FNE
∂v

(δξ g; g) + KNE
ξ,∂v

. (5.16)

5.2 Null boundary thermodynamical phase space,
non-expanding case

Similar to the expanding cases, here we present our general
boundary thermodynamic picture for the non-expanding null
surfaces.

I. Null boundary solution space for the non-expanding case
similar to the VCT case consists of the following two
parts:

(I.1) thermodynamic sector: parametrized by (�,U) and
conjugate charges (�̄NE, J̄NE). They are subject to
equations of motion (5.7).

(I.2) PNE, which only appears in the flux and not in the
integrable charge (5.12). Similar to the expanding
cases, its thermodynamic conjugate is equal to the
time derivative of the entropy aspect.

II. PNE due to the entropy production takes our boundary
system OTE.

III. The time derivative of entropy aspect Dv�̄NE measures
the OTE from the boundary viewpoint.

5.3 Local first law at null boundary

Now, we are going to present a local first law for describ-
ing the thermodynamics of non-expanding null boundaries.
Similar to the previous cases, we read the local first law from
(5.11) as follows

/δH̄NE = TN δS̄NE + UδJ̄ NE + 1

μ
T lφδPNE (5.17)

where

S̄NE = �̄NE

4G
, J̄NE = J̄NE

16πG
, PNE = PNE

4π
. (5.18)

By using the equations of motion (5.7), we find

/δH̄NE = TN δS̄NE + UδJ̄ NE + DvS̄NEδPNE. (5.19)

So, the local first law for the non-expanding case takes the
same form as what we obtained in the VCT case (3.20) but
now with different expressions for thermodynamic quanti-
ties.

5.4 Local Gibbs–Duhem equation at null boundary

For the local Gibbs–Duhem equation, one gets

ĒNE = TN S̄NE + UJ̄ NE. (5.20)

Again, the form of this local equation is similar to (3.23) but
the explicit form of thermodynamic variables is different.
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5.5 Local zeroth law

For the non-expanding case, the on-shell variation of the
action leads to

δ I | on-shell

= 1

16πG

∫
N

dv dφ

(
−J̄NEδU + �̄NEδ� + 1

μ
TlφδPNE

)
.

(5.21)

On an equal footing with the previous expanding cases, to
get a local thermal equilibrium, we require δ I | on-shell =

1
16πG

∫
N δḠNE and hence we reach

δH̄NE = UδJ̄ NE + TN δS̄NE + 1

μ
T lφδPNE,

H̄NE = ḠNE + TN S̄NE + UJ̄ NE. (5.22)

To have non-trivial solutions for this equation, we need to
impose the following integrability conditions

TN ≈ −DvPNE = δH̄NE

δS̄NE
,

T lφ

μ
≈ DvS̄NE = δH̄NE

δPNE
,

U = δH̄NE

δJ̄ NE
. (5.23)

Again these equations enforce an algebra among the surface
charges

{S̄NE(v, φ),PNE(v, φ′)} = δ(φ − φ′), {S̄NE(v, φ),

S̄NE(v, φ′)} = {PNE(v, φ),PNE(v, φ′)} = 0,

{S̄NE(v, φ), J̄ NE(v, φ′)}
= S̄NE(v, φ′)∂φδ(φ − φ′),

{PNE(v, φ), J̄ NE(v, φ′)}
=

(
PNE(v, φ′)∂φ + PNE(v, φ)∂φ′ + 1

π
∂φ′

)
δ(φ − φ′),

{J̄ NE(v, φ), J̄ NE(v, φ′)}
=

(
J̄ NE(v, φ′)∂φ − J̄ NE(v, φ)∂φ′ + 1

2πG μ
∂3
φ′

)
δ(φ − φ′).

(5.24)

This is the same as the charge algebra in the VCT case (3.29),
but with different coefficients for the central terms.

Integrable slicing. Let us look at the following field depen-
dent combinations of the symmetry generators

Ŵ = W − �T Ŷ = Y + UT, T̂ = Dv�̄NET . (5.25)

Then, the charge variation

δQNE(ξ) ≈ 1

16πG

∫ 2π

0
dφ ( Ŵδ�̄NE + Ŷ δJ̄NE

+ T̂ δPNE)

(5.26)

will take an integrable form if we assume δT̂ = δŶ = δŴ =
0,

QNE(ξ) ≈ 1

16πG

∫ 2π

0
dφ (Ŵ �̄NE + Ŷ J̄NE + T̂PNE).

(5.27)

In this slicing, we get the same symmetry algebra as (3.33)
and the charge algebra also yields the following central term

KNE
ξ1,ξ2

= 1

16πG

∫ 2π

0
dφ

[
T̂2Ŵ1 + 4Ŷ2∂φ T̂1 + 4

μ
Ŷ2∂3

φ Ŷ1 − (1 ↔ 2)

]
.

(5.28)

It is similar to (3.34), but with different coefficients. This
algebra with these coefficients matches with (5.24).

6 Outlook

The main result in [22] is that diffeomorphism invariance at
the level of the action yields a local thermodynamic descrip-
tion for the boundary d.o.f. In this paper, we addressed the
question of how essential is the diffeomorphism invariance
to obtaining boundary thermodynamics. In this regard, we
focused on theories with generally covariant equations of
motion which are derived from actions which are gener-
ally invariant only up to some diffeomorphism non-invariant
boundary terms. In particular we considered three dimen-
sional topologically massive gravity theory. A careful analy-
sis yields the fact that diffeomorphism invariance at the level
of equations of motion is sufficient to guarantee a local ther-
modynamic description.

Specifically, we repeated an analysis similar to [22] for
the topologically massive gravity. We showed the boundary
d.o.f which are labeled by the surface charges associated
with large diffeomorphisms describe local boundary ther-
modynamics. We presented a local version of the first law,
Gibbs–Duhem equation, and zeroth law which appear as a
result of diffeomorphism invariance of equations of motion
and account for the dynamics of part of spacetime behind
the boundary. Our analyses extend the standard black hole
thermodynamics in three different ways: (1) Our thermody-
namic laws for the boundary system are local equations at
the codimension 1 boundary. (2) Due to the passage of the
bulk massive gravitons through the boundary and also the
expansion of the boundary, our boundary system is out of
thermal equilibrium. (3) Our analysis is true for any generic
null boundary which need not be horizon of a black hole.

The VCT sector of solution phase space is parameterized
by three surface charges. These surface charges describe local
thermodynamics with local first law (3.20), local Gibbs–
Duhem (3.23), and local zeroth law (3.25). As we discussed
the latter induces an algebra among the surface charges
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(3.29). The form of these laws is exactly the same as what was
obtained in [22] for D = 3 while the explicit form of ther-
modynamic variables receives contributions from the gravita-
tional Chern–Simon term of TMG theory. We repeated these
computations also for the full solution phase space NVCT,
and obtained a set of local thermodynamic equations (4.18),
(4.19), and (4.22).

In the NVCT case, in addition to the boundary d.o.f, we
also have a massive bulk mode which through the interac-
tions with the boundary d.o.f takes our boundary system out
of thermal equilibrium. In this case because of the presence
of news a comparison with the Einstein gravity in higher
dimensions would be helpful. The form of the symplectic
form (4.7) is comparable with what we have in the Einstein
gravity in higher dimensions [22]. The form of the local first
law (4.18) and local Gibbs–Duhem equation (4.19), except
for two additional terms, are precisely in line with [22]. These
further terms carry the information about the underlying the-
ory and hence we interpret them as the properties of TMG.
Both of these terms are proportional to the news mode (gravi-
ton through the boundary) and do not contribute to the ther-
modynamics of stationary spacetimes. We postpone more
detailed examination of them to future work. Here we would
like to discuss future projects and new directions.

Local second law. In order to complete our null surface ther-
modynamics, we need to present a local version of the second
law. Since null hypersurfaces are one-way membranes, we
expect the exchanged energy and entropy from the boundary
due to the passage of the flux of gravitons to have a defi-
nite sign. This property of null boundaries motivates us to
present a local second law for our thermodynamic picture.
In this regard, a careful analysis of the focusing theorem and
the idea of light-sheets [65,66] would be helpful.

Relation to themembrane paradigm.The common feature
of what we presented here and the membrane paradigm [67,
68] is the equivalence principle (diffeomorphism invariance
of the theory). The general picture in the membrane paradigm
is as follows: any observer which only has access to only the
outside of the horizon should give a complete local account
of physics without ever knowing what is inside the boundary.
In other words, for this class of observers, one may excise
the geometry at the horizon provided that we replace the
excised region with a “membrane” at the boundary of the
excised region, the horizon. This picture is closely related to
our thermodynamic picture. In the membrane paradigm, we
project equations of motion on the horizon and try to interpret
them in the hydrodynamics language. We believe our local
thermodynamic equations are manifestations of this kind of
boundary hydrodynamics. The main difference is that the
membrane paradigm is based on the equations of motion
but our local thermodynamics is based on the surface charge

analysis. The balance equation is the main link between these
two pictures.

Partially diffeomorphism invariant gravitational theo-
ries. In this work, we considered TMG as a theory that does
not have a diffeomorphism invariant action but the covariance
appears at the level of the equations of motion. We have seen
local thermodynamics describes the dynamics of the bound-
ary d.o.f. One can go further and consider the actions with
fewer diffeomorphisms. For example, in the Hořava-Lifshitz
gravity [69] the time and space are not treated on an equal
footing and hence we have only spatial diffeomorphism. An
interesting question in this regard is whether one can asso-
ciate a local thermodynamic description for the boundary
d.o.f in these kinds of theories with a part of diffeomorphisms.

Higher curvature theories. As we mentioned the local
description of the boundary d.o.f is a result of the diffeo-
morphism invariance of the bulk theory. It is worth doing
the same analysis for higher curvature theories and driving
similar local equations for the first law, Gibbs–Duhem equa-
tion, and the zeroth law. We conjecture for expanding null
surfaces, the surface charge associated with supertranslation,
in the integrable slicing, does not admit any corrections from
the higher curvature terms. Furthermore, the chemical poten-
tial associated with this charge is always equal to the covari-
ant derivative of the null surface entropy. Examination of
this conjecture would be interesting and it may shed light
on dynamic processes such as the black hole formation and
evaporation.

Acknowledgements The author is greatly indebted to Shahin Sheikh-
Jabbari and Mohammad Hassan Vahidinia for illuminating discussions.
He also would like to especially thank Hamed Adami, Hossein Yavar-
tanoo, Daniel Grumiller, Celine Zwikel and Pujian Mao for long term
collaborations and many fruitful discussions which were crucial in
developing the ideas and analysis discussed here. This work has been
partially supported by IPM funds and also the Grant of National Elites
Foundation of Iran.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


182 Page 16 of 17 Eur. Phys. J. C (2023) 83 :182

References

1. M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic
soft hairs: The need to refine strict statement of equivalence princi-
ple. Int. J. Mod. Phys. D 25(12), 1644019 (2016). arxiv:1603.07862

2. H. Adami, D. Grumiller, S. Sadeghian, M. Sheikh-Jabbari,
C. Zwikel, T-Witts from the horizon. JHEP 04, 128 (2020).
arxiv:2002.08346

3. D. Grumiller, M.M. Sheikh-Jabbari, C. Zwikel, Horizons 2020. Int.
J. Mod. Phys. D 29(14), 2043006 (2020). arxiv:2005.06936

4. H. Adami, M.M. Sheikh-Jabbari, V. Taghiloo, H. Yavartanoo, C.
Zwikel, Symmetries at null boundaries: two and three dimensional
gravity cases. JHEP 10, 107 (2020). arxiv:2007.12759

5. H. Adami, M. M. Sheikh-Jabbari, V. Taghiloo, H. Yavartanoo,
C. Zwikel, Chiral Massive News: Null Boundary Symmetries in
Topologically Massive Gravity. arxiv:2104.03992

6. H. Adami, D. Grumiller, M.M. Sheikh-Jabbari, V. Taghiloo, H.
Yavartanoo, C. Zwikel, Null boundary phase space: slicings, news
& memory. JHEP 11, 155 (2021). arxiv:2110.04218

7. D. Grumiller, A. Pérez, M. Sheikh-Jabbari, R. Troncoso, C. Zwikel,
Spacetime structure near generic horizons and soft hair. Phys. Rev.
Lett. 124(4), 041601 (2020). arxiv:1908.09833

8. L. Donnay, G. Giribet, H.A. González, M. Pino, Supertranslations
and Superrotations at the Black Hole Horizon. Phys. Rev. Lett.
116(9), 091101 (2016). arxiv:1511.08687

9. L. Donnay, G. Giribet, H.A. González, M. Pino, Extended Sym-
metries at the Black Hole Horizon. JHEP 09, 100 (2016).
arxiv:1607.05703

10. H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez,
D. Tempo, R. Troncoso, Soft Heisenberg hair on black holes
in three dimensions. Phys. Rev. D 93(10), 101503 (2016).
arxiv:1603.04824

11. H. Afshar, D. Grumiller, M.M. Sheikh-Jabbari, Near horizon soft
hair as microstates of three dimensional black holes. Phys. Rev. D
96(8), 084032 (2017). arxiv:1607.00009

12. H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo, R. Tron-
coso, Soft hairy horizons in three spacetime dimensions. Phys. Rev.
D 95(10), 106005 (2017). arxiv:1611.09783

13. F. Hopfmüller, L. Freidel, Gravity Degrees of Freedom on a Null
Surface. Phys. Rev. D 95(10), 104006 (2017). arxiv:1611.03096

14. F. Hopfmüller, L. Freidel, Null Conservation Laws for Gravity.
Phys. Rev. D 97(12), 124029 (2018). arxiv:1802.06135

15. L. Donnay, G. Giribet, H.A. González, A. Puhm, Black hole mem-
ory effect. Phys. Rev. D 98(12), 124016 (2018). arxiv:1809.07266

16. V. Chandrasekaran, É.É. Flanagan, K. Prabhu, Symmetries and
charges of general relativity at null boundaries. JHEP 11, 125
(2018). arxiv:1807.11499

17. V. Chandrasekaran, K. Prabhu, Symmetries, charges and conserva-
tion laws at causal diamonds in general relativity. arxiv:1908.00017

18. V. Chandrasekaran, A.J. Speranza, Anomalies in gravitational
charge algebras of null boundaries and black hole entropy. JHEP
01, 137 (2021). arxiv:2009.10739

19. L. Ciambelli, R. G. Leigh, “Isolated Surfaces and Symmetries of
Gravity,” arxiv:2104.07643

20. L. Freidel, R. Oliveri, D. Pranzetti, S. Speziale, The Weyl
BMS group and Einstein’s equations. JHEP 07, 170 (2021).
arxiv:2104.05793

21. L. Freidel, R. Oliveri, D. Pranzetti, S. Speziale, “Extended
corner symmetry, charge bracket and Einstein’s equations,”
arxiv:2104.12881

22. H. Adami, M. M. Sheikh-Jabbari, V. Taghiloo, H. Yavartanoo, Null
Surface Thermodynamics. arxiv:2110.04224

23. S. Haco, S.W. Hawking, M.J. Perry, A. Strominger, Black Hole
Entropy and Soft Hair. JHEP 12, 098 (2018). arxiv:1810.01847

24. S.W. Hawking, M.J. Perry, A. Strominger, Soft Hair on Black
Holes. Phys. Rev. Lett. 116(23), 231301 (2016). arxiv:1601.00921

25. S. Sheikh-Jabbari, H. Adami, V. Taghiloo, H. Yavartanoo, Null
Surface Thermodynamics. PoS Regio 2021, 034 (2022)

26. S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive
gauge theories. Phys. Rev. Lett. 48(15), 975 (1982)

27. S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge
theories. Ann. Phys. 281(1–2), 409–449 (2000)

28. A. Macias, A. Camacho, Kerr-Schild metric in topological massive
(2+1) gravity. Gen. Rel. Grav. 37, 759–768 (2005)

29. D.D.K. Chow, C.N. Pope, E. Sezgin, Classification of solutions
in topologically massive gravity. Class. Quant. Grav. 27, 105001
(2010). arxiv:0906.3559

30. D.D.K. Chow, C.N. Pope, E. Sezgin, Kundt spacetimes as solutions
of topologically massive gravity. Class. Quant. Grav. 27, 105002
(2010). arxiv:0912.3438

31. D. D. Chow, Characterization of three-dimensional Lorentzian
metrics that admit four Killing vectors. arxiv:1903.10496

32. M. Gurses, Killing vector fields in three dimensions: a method to
solve massive gravity field equations. arxiv:1001.1039

33. M. Gurses, T.C. Sisman, B. Tekin, Some exact solutions of all
f (Rμν) theories in three dimensions. Phys. Rev. D 86, 024001
(2012). arxiv:1112.6346

34. S. Ertl, D. Grumiller, N. Johansson, All stationary axi-symmetric
local solutions of topologically massive gravity. Class. Quant. Grav.
27, 225021 (2010). arxiv:1006.3309

35. S. Deser, J. Franklin, Circular Symmetry in Topologically Massive
Gravity. Class. Quant. Grav 27, 1007002 (2010). Arxiv:0912.0708

36. A. Garbarz, G. Giribet, Y. Vasquez, Asymptotically AdS3 Solutions
to Topologically Massive Gravity at Special Values of the Coupling
Constants. Phys. Rev. D 79, 044036 (2009). Arxiv:0811.4464

37. S. Carlip, S. Deser, A. Waldron, D.K. Wise, Topologically Massive
AdS Gravity. Phys. Lett. B 666, 272–276 (2008). Arxiv:0807.0486

38. A. Aliev, Y. Nutku, Spinor formulation of topologically mas-
sive gravity. Class. Quant. Grav. 12, 2913–2025 (1995).
arxiv:gr-qc/9812090

39. Y. Nutku, Exact solutions of topologically massive gravity with a
cosmological constant. Class. Quant. Grav. 10, 2657–2661 (1993)

40. D. Anninos, W. Li, M. Padi, W. Song, A. Strominger, Warped AdS3
Black Holes. JHEP 03, 130 (2009). Arxiv:0807.3040

41. I. Sachs, Formation of black holes in topologically massive gravity.
Phys. Rev. D 87(2), 024019 (2013). Arxiv:1108.3579

42. L. Bonora, M. Cvitan, P. Dominis Prester, S. Pallua, I. Smolic,
Gravitational Chern-Simons Lagrangians and black hole entropy.
JHEP 07, 085 (2011). Arxiv:1104.2523

43. S. Detournay, Inner Mechanics of 3d Black Holes. Phys. Rev. Lett.
109, 031101 (2012). Arxiv:1204.6088

44. G. Compere, S. Detournay, Boundary conditions for spacelike and
timelike warped AdS3 spaces in topologically massive gravity.
JHEP 08, 092 (2009). Arxiv:0906.1243

45. A. Bouchareb, G. Clement, Black hole mass and angular momen-
tum in topologically massive gravity. Class. Quant. Grav. 24, 5581–
5594 (2007). Arxiv:0706.0263

46. K.A. Moussa, G. Clement, C. Leygnac, The black holes of topolog-
ically massive gravity. Class. Quant. Grav. 20, L277–L283 (2003).
Arxiv:gr-qc/0303042

47. S. Detournay, C. Zwikel, Phase transitions in warped AdS3 gravity.
JHEP 05, 074 (2015). Arxiv:1504.00827

48. H. Adami, P. Mao, M. M. Sheikh-Jabbari, V. Taghiloo, H. Yavar-
tanoo. Symmetries at Causal Boundaries in 2D and 3D Gravity.
Arxiv:2202.12129

49. G. Barnich, C. Troessaert, BMS charge algebra. JHEP 1112, 105
(2011). Arxiv:1106.0213

50. G. Compère, P.-J. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic
and Killing symmetries of AdS3 gravity: holographic vs boundary
gravitons. JHEP 01, 080 (2016). Arxiv:1511.06079

123

http://arxiv.org/abs/1603.07862
http://arxiv.org/abs/2002.08346
http://arxiv.org/abs/2005.06936
http://arxiv.org/abs/2007.12759
http://arxiv.org/abs/2104.03992
http://arxiv.org/abs/2110.04218
http://arxiv.org/abs/1908.09833
http://arxiv.org/abs/1511.08687
http://arxiv.org/abs/1607.05703
http://arxiv.org/abs/1603.04824
http://arxiv.org/abs/1607.00009
http://arxiv.org/abs/1611.09783
http://arxiv.org/abs/1611.03096
http://arxiv.org/abs/1802.06135
http://arxiv.org/abs/1809.07266
http://arxiv.org/abs/1807.11499
http://arxiv.org/abs/1908.00017
http://arxiv.org/abs/2009.10739
http://arxiv.org/abs/2104.07643
http://arxiv.org/abs/2104.05793
http://arxiv.org/abs/2104.12881
http://arxiv.org/abs/2110.04224
http://arxiv.org/abs/1810.01847
http://arxiv.org/abs/1601.00921
http://arxiv.org/abs/0906.3559
http://arxiv.org/abs/0912.3438
http://arxiv.org/abs/1903.10496
http://arxiv.org/abs/1001.1039
http://arxiv.org/abs/1112.6346
http://arxiv.org/abs/1006.3309
http://arxiv.org/abs/0912.0708
http://arxiv.org/abs/0811.4464
http://arxiv.org/abs/0807.0486
http://arxiv.org/abs/gr-qc/9812090
http://arxiv.org/abs/0807.3040
http://arxiv.org/abs/1108.3579
http://arxiv.org/abs/1104.2523
http://arxiv.org/abs/1204.6088
http://arxiv.org/abs/0906.1243
http://arxiv.org/abs/0706.0263
http://arxiv.org/abs/gr-qc/0303042
http://arxiv.org/abs/1504.00827
http://arxiv.org/abs/2202.12129
http://arxiv.org/abs/1106.0213
http://arxiv.org/abs/1511.06079


Eur. Phys. J. C (2023) 83 :182 Page 17 of 17 182

51. T. Damour, Black-hole eddy currents. Phys. Rev. D 18, 3598–3604
(1978)

52. J. Lee, R.M. Wald, Local symmetries and constraints. J. Math.
Phys. 31, 725–743 (1990)

53. R.M. Wald, A. Zoupas, A General definition of conserved quanti-
ties in general relativity and other theories of gravity. Phys. Rev. D
61, 084027 (2000). Arxiv:gr-qc/9911095

54. K. Hajian, S. Liberati, M.M. Sheikh-Jabbari, M.H. Vahidinia, On
Black Hole Temperature in Horndeski Gravity. Phys. Lett. B 812,
136002 (2021). Arxiv:2005.12985

55. Y. Tachikawa, Black hole entropy in the presence of Chern-
Simons terms. Class. Quant. Grav. 24, 737–744 (2007).
Arxiv:hep-th/0611141

56. W. Kim, S. Kulkarni, S.-H. Yi, Quasilocal conserved charges in
the presence of a gravitational Chern-Simons term. Phys. Rev. D
88(12), 124004 (2013). Arxiv:1310.1739

57. V. Iyer, R.M. Wald, Some properties of Nöther charge and a pro-
posal for dynamical black hole entropy. Phys. Rev. D 50, 846–864
(1994). Arxiv:gr-qc/9403028

58. G. Odak, A. Rignon-Bret, S. Speziale, Wald-Zoupas prescription
with (soft) anomalies. Arxiv:2212.07947

59. P. Kraus, F. Larsen, Microscopic black hole entropy in theories with
higher derivatives. JHEP 09, 034 (2005). arxiv:hep-th/0506176

60. P. Kraus, F. Larsen, Holographic gravitational anomalies. JHEP 01,
022 (2006). arxiv:hep-th/0508218

61. S.N. Solodukhin, Holography with gravitational Chern–Simons
term. Phys. Rev. D 74, 024015 (2006). arxiv:hep-th/0509148

62. R.M. Wald, Black hole entropy is the Nöther charge. Phys. Rev. D
48, 3427–3431 (1993). arxiv:gr-qc/9307038

63. V. Taghiloo, H. Adami, M.M. Sheikh-Jabbari, H. Yavartanoo, C.
Zwikel, Symmetries at Null Boundaries: 3-dimensional Einstein
gravity. PoS Regio 2021, 008 (2022)

64. G. Compère, A. Fiorucci, R. Ruzziconi, Superboost transitions,
refraction memory and super-Lorentz charge algebra. JHEP 11,
200 (2018). arxiv:1810.00377 [Erratum: JHEP 04, 172 (2020)]

65. R. Bousso, A Covariant entropy conjecture. JHEP 07, 004 (1999).
arxiv:hep-th/9905177

66. R. Bousso, The Holographic principle. Rev. Mod. Phys. 74, 825–
874 (2002). arxiv:hep-th/0203101

67. R.H. Price, K.S. Thorne, Membrane viewpoint on black holes:
Properties and evolution of the stretched horizon. Phys. Rev. D
33, 915–941 (1986)

68. K. S. Thorne, R. H. Price, D. A. MacDonald, Black holes: The
membrane paradigm. (1986)

69. P. Horava, Quantum Gravity at a Lifshitz Point. Phys. Rev. D 79,
084008 (2009). arxiv:0901.3775

123

http://arxiv.org/abs/gr-qc/9911095
http://arxiv.org/abs/2005.12985
http://arxiv.org/abs/hep-th/0611141
http://arxiv.org/abs/1310.1739
http://arxiv.org/abs/gr-qc/9403028
http://arxiv.org/abs/2212.07947
http://arxiv.org/abs/hep-th/0506176
http://arxiv.org/abs/hep-th/0508218
http://arxiv.org/abs/hep-th/0509148
http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/1810.00377
http://arxiv.org/abs/hep-th/9905177
http://arxiv.org/abs/hep-th/0203101
http://arxiv.org/abs/0901.3775

	Null surface thermodynamics in topologically massive gravity
	Abstract 
	1 Introduction
	2 Null surface solution phase space: a review
	3 Null surface thermodynamic, VCT case
	3.1 Surface charge variation
	3.2 Null boundary thermodynamical phase space, VCT case
	3.3 Local first law at null boundary
	3.4 Local Gibbs–Duhem equation at null boundary
	3.5 Local zeroth law

	4 Null surface thermodynamic, NVCT case
	4.1 Surface charge variation
	4.2 Null boundary thermodynamical phase space, NVCT case
	4.3 Local first law at null boundary
	4.4 Local Gibbs–Duhem equation at null boundary
	4.5 Local zeroth law

	5 Thermodynamics of non-expanding null surfaces
	5.1 Surface charge variation
	5.2 Null boundary thermodynamical phase space, non-expanding case
	5.3 Local first law at null boundary
	5.4 Local Gibbs–Duhem equation at null boundary
	5.5 Local zeroth law

	6 Outlook
	Acknowledgements
	References




