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Abstract: The splitting processes of bremsstrahlung and pair production in a medium

are coherent over large distances in the very high energy limit, which leads to a sup-

pression known as the Landau-Pomeranchuk-Migdal (LPM) effect. We continue study of

the case when the coherence lengths of two consecutive splitting processes overlap (which

is important for understanding corrections to standard treatments of the LPM effect in

QCD), avoiding soft-emission approximations. In this particular paper, we show (i) how

the “instantaneous” interactions of Light-Cone Perturbation Theory must be included in

the calculation to account for effects of longitudinally-polarized gauge bosons in interme-

diate states, and (ii) how to compute virtual corrections to LPM emission rates, which will

be necessary in order to make infrared-safe calculations of the characteristics of in-medium

QCD showering of high-energy partons. In order to develop these topics in as simple a

context as possible, we will focus in the current paper not on QCD but on large-Nf QED,

where Nf is the number of electron flavors.
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1 Introduction

1.1 Overview

When passing through matter, high energy particles lose energy by showering, via the

splitting processes of hard bremsstrahlung and pair production. At very high energy,

the quantum mechanical duration of each splitting process, known as the formation time,

exceeds the mean free time for collisions with the medium, leading to a significant reduction

in the splitting rate known as the Landau-Pomeranchuk-Migdal (LPM) effect [1–3].1 A

long-standing problem in field theory has been to understand how to implement this effect

in cases where the formation times of two consecutive splittings overlap.

Let x and y be the longitudinal momentum fractions of two consecutive bremsstrahlung

gauge bosons. In the limit y � x � 1, the problem of overlapping formation times has

been analyzed at leading logarithm order in refs. [4–6] in the context of energy loss of high-

momentum partons traversing a QCD medium (such as a quark-gluon plasma). Together

with Chang, we subsequently developed and implemented field theory formalism needed

for the more general case where x and y are arbitrary [7–10]. We used the formalism to

calculate the LPM interference effects on real double gluon bremsstrahlung g → ggg in

medium, given by the processes depicted in figure 1, in the high-energy limit. [For the

sake of simplicity, that specific calculation also made other simplifying approximations by

taking the multiple scattering (q̂) limit and the large-Nc limit.] But that calculation was

incomplete for two reasons.

First, the calculations of refs. [7–10] only included gluons that were transversely polar-

ized. But the polarization of the intermediate-state gluon in the first diagram of figure 1

1Refs. [1, 2] are also available in English in L. Landau, The Collected Papers of L.D. Landau, Pergamon

Press, New York (1965).
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Figure 1. Real double gluon bremsstrahlung processes g → ggg considered in the analysis of

overlapping formation time effects at high energy in refs. [7–10]. Only the high energy particles are

shown: their many interactions with the medium are not shown explicitly. x and y represent the

momentum fractions (relative to the initial particle) of two of the daughters of this splitting process.

does not have to be transverse: a full calculation should include the effects of the lon-

gitudinal polarization as well.2 It has long been known how to integrate out the effects

of longitudinal polarizations and find the effective theory of the transverse polarizations,

which is the program of Light Cone Perturbation Theory (LCPT) [11–13].3 In LCPT,

where light-cone gauge A+ = 0 is used, the longitudinal polarization gives rise to an inter-

action that is instantaneous in light-cone time x+ ≡ x0 + xz (similar to how in Coulomb

gauge the non-transverse polarization A0 of the gauge field responds to sources instanta-

neously in normal time x0, even though physical quantities ultimately do not). In LCPT,

the longitudinal polarization can be integrated out to yield a Hamiltonian that is supple-

mented by just an extra 4-point interaction among the fields. The result is to add one extra

diagram (and its permutations), figure 2, to the sum of diagrams depicting the amplitude

in figure 1. In figure 2, the bar across the intermediate gluon line indicates that it is an

(integrated-out) longitudinally polarized gluon. That gluon line is drawn vertically to em-

phasize that it represents an instantaneous interaction in the context of time(x+)-ordered

perturbation theory, with x+ running from left to right in the figure. One goal of this paper

is to include this type of process into our earlier calculations of the effect of overlapping

formation times on sequential bremsstrahlung.

A calculation of in-medium real double bremsstrahlung g → ggg is not enough, how-

ever, to study the effects on in-medium energy loss and the characteristics of in-medium

2Some historical explanation: longitudinal polarizations were left out of our earlier analysis of refs. [7–10]

because of an unstated and incorrect assumption. Consider the two consecutive vertices appearing in

the first diagram of figure 1. Our interest is in the case where the formation times associated with these

vertices overlap, in which case the characteristic scale of the time separation of those vertices (and so

also their spatial separation in the direction of motion z) is of order the formation time. That formation

time is parametrically large in the large-energy limit (tform ∼
√
E/q̂, ignoring dependence on daughter

momentum fractions). The effects of longitudinal polarizations do not extend over large distances, and

so ref. [7] implicitly ignored them. But that’s not a valid argument that the effects of nearly-coincident

gluon emissions can be ignored, as was made clear in our own calculations by the subsequent calculation

in ref. [10] of the 4-point vertex contributions represented by the last diagram of figure 1. It was not until

we started computing virtual corrections (discussed in a moment) that we clearly realized our mistake in

ignoring intermediate longitudinal polarizations.
3For readers not familiar with time-ordered LCPT who would like the simplest possible example of how

it reassuringly reproduces the results of ordinary Feynman diagram calculations, we recommend section

1.4.1 of Kovchegov and Levin’s monograph [14]. For some less-simple examples, see also ref. [15].

– 2 –
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Figure 2. The contribution to g → ggg due to longitudinal polarization of the intermediate gluon

line (represented by a bar across the line). This process must be added to the g → ggg amplitude

of figure 1 if the intermediate lines in figure 1 are summed only over transverse polarizations as in

refs. [7–10].

+ +

2

+ · · ·

Figure 3. Examples of one-loop virtual corrections to single bremsstrahlung g → gg.

shower development. Crudely analogous to what happens for vacuum bremsstrahlung in

QED, there are infrared divergences whose treatment at this order requires additionally

computing virtual corrections to single bremsstrahlung g → gg, such as depicted by the

diagrams in figure 3. The second goal of this paper is to show how to calculate such

loop corrections (without soft gluon approximations) in the context of finding the effects

of overlapping formation times on energy loss and shower development. A new techni-

cal feature, compared to our calculations of g → ggg, is that loop calculations require

UV regularization and renormalization. In particular, one of the effects of loops (besides

mitigating certain infrared divergences of the g→ggg calculation) will be to replace the

coupling αs in the leading-order single-bremsstrahlung process g → gg by the running cou-

pling αs(Q⊥) evaluated at a characteristic transverse momentum scale of the LPM-modified

bremsstrahlung process.

In this particular paper, we work out all of these issues for a warm-up theory: QED in

the large-Nf limit, where Nf is the number of electron flavors. The large-Nf limit is taken

just to reduce the complexity of the calculations and so streamline the presentation of

the important developments. The method itself should be straightforwardly generalizable

to the QCD analysis of the LPM effect in figures 1–3 (at least in the large-Nc limit of

refs. [7–10]), but we leave that QCD calculation for the future.

There are several aspects of this paper that are related to recent work by Beuf [22, 23]

and Hänninen, Lappi, and Paatelainen [24, 25] on next-to-leading-order deep inelastic

scattering (NLO DIS). Here, making use of LCPT, we will study the combination of 1→3

splitting e → eēe and UV-renormalized one-loop corrections to 1→2 splitting (e → γe or

γ → eē) in the presence of a thick medium (though the formalism we use can in principle

handle more general situations). In NLO DIS, Beuf and Hänninen et al. instead used

– 3 –
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(a) (b)

Figure 4. Schematic picture of in-medium QED showers of an initial high energy electron. The

ovals represent LPM formation lengths for each splitting. In (a), splittings are independent and do

not interfere with each other. In (b), two splittings have overlapping formation lengths and so may

not be treated as independent. Showering is extremely collinear in the high energy limit, but the

transverse directions in these schematic drawings have been drastically magnified for the purpose

of illustration.

LCPT to study the combination of 1→3 splitting γ∗ → qq̄g and UV-renormalized one-loop

corrections to 1→2 splitting (γ∗ → qq̄) in the presence of an extremely thin medium. We

briefly comment further on the similarities and dissimilarities in appendix B.

The goal of this paper is to develop calculational methods. We leave discussion of

application of the results to computing IR-safe characteristics of energy loss and shower

development to a later paper [16].

1.2 Overlapping formation times in large-Nf QED

Figure 4 depicts the showering of a high-energy particle in a medium. For simplicity of

discussion, let’s focus for the moment on roughly-democratic splitting processes, meaning

that neither daughter of any splitting is soft (i.e. neither has very small energy compared to

the parent). Let’s also first discuss the case of QED with only one electron flavor (Nf = 1).

If the coupling associated with the splitting vertices is small, then there is a hierarchy

of scale in figure 4 between (i) the formation length lform associated with each splitting

(denoted by the length of the ovals) and (ii) the mean free path lrad between consecutive

roughly-democratic splittings. Parametrically,

lrad ∼
lform

α
. (1.1)

A rough mnemonic for this result is that each formation length of media traversed offers

one opportunity for splitting, with probability of order α. On average it then takes ∼ 1/α

such opportunities to radiate.

Because of this scale hierarchy, the probability for two consecutive splittings to have

overlapping formation times, as depicted in figure 4b, is suppressed by a factor of α.

To leading order in α, one may treat the splittings in showers as non-overlapping, as

depicted in figure 4a, and so may treat the probabilities of each splitting in the shower as

independent. The goal of the current program is to understand how to calculate (beyond

– 4 –
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formation time

formation time
formation time

formation time

formation time

Figure 5. Parametric summary of relative size of typical formation lengths and distances between

splittings for large-Nf QED when α � Nfα � 1. In this picture, splittings are assumed to be

roughly democratic, i.e. we are not depicting the case of soft daughters. We have not bothered to

show the part of the shower representing the subsequent evolution of pair-produced electrons and

positrons, but they behave similarly to the evolution of the original electron.

soft-emission approximations) the α-suppressed effect of overlapping formation times, such

as the overlapping pair of splittings in figure 4b.

So far, the qualitative discussion has been the same as the discussion for QCD in the

introduction of ref. [7]. But now consider the large-Nf limit, which will reduce the number

of calculations needed in this paper. If the properties of the medium are held constant,

then Nf does not affect the rate for bremsstrahlung e→ γe. Formation times are also not

affected. But the rate for pair production γ → eē is proportional to Nf , and so the mean

free path for pair production is smaller than for bremsstrahlung by a factor of Nf . The

hierarchy of scales relevant to typical showering is then summarized by figure 5, assuming

that Nf is large but Nfα is still small:4

α� Nfα� 1. (1.2)

The probability that two of the closer splittings in the figure (e→ γe→ eēe) might overlap

will be of order Nfα. That’s overlap of (i) bremsstrahlung with (ii) the subsequent pair

production later initiated by the bremsstrahlung photon. The chance of any other type of

overlap, such as two consecutive bremsstrahlung processes e→ γe→ γγe, is only of order α

and so is parametrically less likely in the large-Nf limit. So, to get the dominant correction

due to overlapping formation lengths in this problem under the formal assumption (1.2),

the only type of overlap we need to compute is the type shown in figure 6 (plus related

virtual processes).

The interference diagrams needed to calculate the effect of overlapping formation times

in large-Nf QED are shown in figures 7–9. These diagrams are drawn using the conventions

4We will not attempt it here, but it may well be possible to sum all orders of Nfα for α� 1, similar in

spirit to the analysis of transport and pressure in refs. [17] and [18, 19].

– 5 –



J
H
E
P
1
2
(
2
0
1
8
)
1
2
0

xe
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xγ

Figure 6. The dominant type of overlap correction when α � Nfα � 1. (Also shown here is the

convention we will use later to label the longitudinal momentum fractions xe and ye of the two

final-state electrons relative to the initial electron. The corresponding fraction of the intermediate

photon is xγ = 1−xe.)

(a) (b) (c)

(d) (e) (f) (g)

Diagrams with only transverse intermediate photons:

Diagrams including longitudinal intermediate photons:

Figure 7. Time-ordered interference diagrams for e → eēe in large-Nf QED. As in refs. [7, 8],

blue represents a contribution to the amplitude and red represents a contribution to the conjugate

amplitude. As in the other figures of this paper, repeated interactions with the medium are present

but not explicitly shown. The complex conjugates of the above interference diagrams should also

be included by taking 2 Re[· · · ] of the above.

of refs. [7, 8] and represent contributions to the rate for the process. Each diagram shows

the product of a term in the amplitude for the process (colored blue in the diagram)

times a term in the conjugate amplitude (colored red). The diagrams are time-ordered

(more precisely in this paper, light-cone time ordered), with time running from left to

right. We will only consider rates which are integrated over the transverse momenta of the

final particles, which allows one to ignore the evolution of any final-state particle after it

has been emitted in both the amplitude and conjugate amplitude.5 So, for instance, the

diagrams of figure 7a and 7g represent the (p⊥-integrated) interferences of figure 10.

We will see later that the results for most of the virtual diagrams can be related to

results for e → eēe (figure 7), or to each other. There will only be one quintessential

virtual diagram that we will have to compute from scratch, which will turn out to be the

boxed diagram shown in figure 8k. That diagram, and the related diagram of figure 9r,

contain the only true UV divergence in these large-Nf calculations6 and will be the diagrams

responsible for the usual renormalization of the QED coupling α.

5See the discussion in section IV.A of ref. [7] and appendix F of ref. [8].
6One simplification of the large-Nf limit is that we do not have one-loop fermion self energies nor one-loop

vertex corrections, and so we need not also compute the divergent diagrams associated with those.

– 6 –
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(i) (j) (k)(h)

(l) (m) (n)

Figure 8. Time-ordered interference diagrams for the virtual correction to e → γe in large-Nf

QED. The boxed diagram is the only one whose result cannot be simply related to one of the

e→ eēe diagrams of figure 7. Again, complex conjugates should be included by taking 2 Re[· · · ].

(p)(o) (r)

(s) (t) (u)

(q)

Figure 9. Time-ordered interference diagrams for the virtual correction to γ → eē in large-Nf

QED. All of these diagrams can be related to one of the diagrams of figures 7 or 8.

(a)

×
*

×
*

(g)

Figure 10. The interferences represented by figures 7a and 7g. These interferences are still time-

ordered. For example, in (a), the vertex times in the conjugate amplitude are restricted to be larger

than those in the amplitude, as depicted.

In the approach of our earlier work [7–10], inspired by Zakharov’s treatment of the

LPM effect [20, 21], we interpret the interference diagram of figure 7a, for instance, as the

evolution of an initial eē pair, where the e represents the initial electron in the amplitude

and the ē represents the same particle in the conjugate amplitude. In this language, the time

evolution of figure 7a is interpreted, as shown in figure 11a, as a phase of 3-particle evolution

(γe in the amplitude and ē in the conjugate amplitude), followed by 4-particle evolution

(eēe in the amplitude and ē in the conjugate amplitude), followed by 3-particle evolution

– 7 –
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effectively effectively

effectively

3-particle 3-particle

4-particle

(a) (b)

Figure 11. (a) Interpretation of the interference diagram as simultaneous evolution in time of the

particles in the amplitude and conjugate amplitude (all interacting with the medium, and averaged

over the randomness of the medium). The labels denote how many high-energy particles need to

be evolved between splitting vertices. (b) Figure (a) relabeled according to the effective number of

particles needed after symmetries are used to reduce the problem [7].

(eē in the amplitude and γ in the conjugate amplitude). We then used symmetries of the

problem to replace each medium-averaged N -particle evolution problem by an effectively

(N−2)-particle evolution problem,7 as summarized in figure 11b. One of our tasks in the

current paper will be to translate the LCPT diagrammatic rules for longitudinal photon

interactions into corresponding rules within our framework.

Before going forward, we should mention that formally there are some additional vir-

tual diagrams in Light Cone Perturbation Theory, which will be shown and discussed later

(figure 23) but which are negligible in the high-energy limit provided we use dimensional

regularization.

1.3 Assumptions and approximations

As with the earlier work in refs. [7–10], the formalism we will present is quite general, but

for now we will implement it in simple cases that make the actual calculations much easier.

First, we will assume that the medium is large, static, and uniform. More precisely,

we approximate the medium as (statistically) uniform and unchanging over the scale of

formation lengths/times.

7For a full discussion of this reduction, see section III of ref. [7]. Let z be the direction of motion of the

initial particle. In the high-energy limit, the propagation of the N particles can be formulated as a two-

dimensional non-relativistic Schrödinger problem in the transverse (xy) plane, with longitudinal momenta

pzi playing the role of the “masses” in the Schrödinger equation. One of the symmetries is transverse

translation invariance (over the small transverse distance scales probed by the splitting), which means that

one can eliminate one degree of freedom by taking out the uninteresting “center of mass” motion, reducing

the problem to effectively N−1 (two-dimensional) degrees of freedom. The other symmetry is that of small

3-dimensional rotations which change the direction of the z axis by a very tiny amount (and so preserve

|p⊥| � pz for all the particles). For our particular problem, this symmetry allows one to remove one

additional degree of freedom. This is not obvious; refer to ref. [7] for details. The specific case of reducing

3 particles to 1 particle was implicit to the analysis of BDMPS [27–29] and Zakharov [20, 21], though

presented in different language.

– 8 –
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Second, we will make the “multiple scattering approximation” that interactions with

the medium can be characterized by the parameter q̂ that is often used in discussions of

quark-gluon plasmas, and which is the proportionality constant in the relationship 〈Q2
⊥〉 =

q̂∆z, where Q⊥ is the transverse momentum that a high-energy charged particle picks up

passing through length ∆z of the medium. For a variety of reasons, the effective value

of q̂ can have logarithmic dependence on energy at fixed order in the coupling α that

controls high-energy splittings. There are important qualitative differences between QCD

and QED, which we briefly review in appendix C, but it is off the main topic of this paper.

Here, we will make the approximation that q̂ is a constant and assume that one is using a

value of q̂ appropriate for the overall energy scale of the initial particle.

1.4 Some qualitative results

This paper further develops methods for next-to-leading order calculations of the LPM

effect and gives analytic results for the case of large-Nf QED. The details of the full analytic

results are complicated enough that we will not present them here in the introduction. And

we are mostly leaving numerical analysis and application of those results to a later paper.

But there are two features of our results which we will present here.

The first feature regards the appropriate choice of renormalization scale for the factor

of α that controls the cost of high-energy splitting and determines the overall importance of

overlapping formation times in showering — that is, the scale of the α associated with each

high-energy splitting vertex. In earlier work [7], we asserted based on qualitative physical

reasoning that this coupling should be taken to be α(Q⊥), where Q⊥ is the characteristic

transverse momentum scale of the LPM-modified splitting process. Our explicit next-to-

leading-order LPM results bear this out. For roughly-democratic splitting processes, we

find that the logarithmic terms in our NLO results for single splitting are8

[
dΓ

dx

]

e→γe
=

[
dΓ

dx

]LO

e→γe

[
1 + β0α ln

(
|EΩ|1/2

µ

)
+ · · ·

]
, (1.3)

where µ is the renormalization scale for α(µ), β0 is the first coefficient of the renormalization

group β-function for α, and |Ω| is a frequency that is of order the inverse formation time. To

avoid poor convergence of the perturbative expansion due to large logarithms, one should

therefore choose µ ∼ |EΩ|1/2 above. As we review in section 2, this is indeed equivalent

(for roughly-democratic splittings) to µ ∼ Q⊥.

The other feature regards our result for the effect of overlapping formation times on

the real double splitting process e→ γe→ eēe. Though our analytic result is complicated

for the general case, there is a simple leading-log formula in the limit that the interme-

diate photon is soft. That formula can be derived with a relatively simple analysis based

on (i) the leading-order LPM formula for pair production γ → eē combined with (ii)

8Specifically, see eq. (4.39) later in this paper, specializing here to the roughly-democratic case where

neither xe nor 1−xe are small. We have not drawn from our results any conclusions about the best

renormalization scale in limiting cases such as 1−xe � 1, because then the logarithmic corrections due to

choice of renormalization scale are overwhelmed by other, power-law corrections which dominate. Those

power-law corrections are the same parametric size as (2.21).
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Figure 12. A plot demonstrating the success of the leading-log approximation (1.4) as xγ→0.

The vertical axis is the ratio of full numerical results to the leading-log approximation, and

the horizontal axis is the inverse logarithm 1/ ln(x−1γ ). The data points come from numerical

calculations of our general e → eēe results, given in appendix A.2. The extrapolation to xγ→0 is

taken by a straight-line fit to the leftmost two data points of each set. Extrapolations are shown

for two different values of ye.

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of parton distributions to

get the probability of seeing the photon γ inside the initial electron e. We explain this

analysis in section 2, which yields the formula

[
∆

dΓ

dxγ dye

]

e→eēe
≈ Nfα

2[y2
e+(1−ye)2]

2π2[ye(1−ye)]1/2x3/2
γ

ln

(
1

xγ [ye(1−ye)]1/2
)√

q̂

E
(xγ� 1), (1.4)

where xγ is the longitudinal momentum fraction of the intermediate photon relative to

the initial electron in the bremsstrahlung e → γe, and ye is the longitudinal momentum

fraction of the final electron relative to the photon in the subsequent pair production

γ → eē. The ≈ sign in (1.4) is our notation for indicating that this formula is only valid

at leading-log order. The ∆ in front of dΓ/dxγ dye is our notation [8] to denote the effect

of overlapping formation times on rates for double splitting. That is, ∆[dΓ/dxγ dye] is

the difference between (i) dΓ/dxγ dye and (ii) what one would get by always treating the

two consecutive medium-induced splittings e → γe and γ → eē as quantum-mechanically

independent. Figure 12 verifies the leading-log approximation by showing that the ratio of

our full numerical results for e → eēe divided by the approximation (1.4) extrapolates to

1 as xγ→0. The convergence is slow because logarithms grow slowly.
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As we will discuss in section 2, there are two interesting qualitative differences between

QED e→ eēe and QCD g → ggg: (i) the xγ�1 behavior (1.4) will not give rise to any in-

frared (IR) divergences in energy-loss calculations, and so needs no IR cancellation between

real and virtual diagrams, and (ii) the in-medium collinear logarithmic enhancement factor

in (1.4) does not cancel between real double-splitting diagrams as it did for g → ggg [8]

via a Gunion-Bertsch cancellation.9 This reflects a difference between soft pair production

and soft bremsstrahlung.

Even though QED is qualitatively different from QCD in these respects, it nonetheless

provides a good training ground for working out calculational methods for overlap effects

in QCD. And overlap effects in QED are interesting in their own right, even if so far only

treated here in the large-Nf limit.

1.5 Outline

We have tried to organize this paper so that the main text gives an introduction and

overview of the techniques we use while the fine details of the calculation are left to an

extensive set of appendices. In section 2, we summarize qualitative differences between

QCD and (large-Nf) QED regarding the LPM effect in both single-splitting and overlap-

ping double-splitting processes. A quantitative review of single-splitting formulas is left to

appendix A.1, and appendix C contains a translation of modern notation using q̂ to the

QED results originally presented by Migdal [3]. Section 3 introduces the elements needed

for organizing calculations of overlapping formation-time effects in terms of light-cone per-

turbation theory (LCPT), with the full list of details left to appendix D. The use of those

rules to calculate overlap effects in the real double-splitting process e→eēe of figure 7 is

left to appendix E, where much of the calculation is adapted from our previous work on

g→ggg in QCD. In section 4, we turn to the virtual corrections of figures 8 and 9. We

first discuss the techniques needed, which we call back- and front-end transformations, to

easily relate almost all virtual diagrams to non-virtual diagrams. We then turn to the one

remaining virtual diagram (the boxed diagram of figure 8k) and outline its computation

and renormalization but leave details for appendices F and G.10 Finally, we end with a

brief conclusion in section 5. A complete summary of the next-to-leading order LPM rate

formulas derived in this paper is given in appendix A.

1.6 Reference acronyms

When discussing detailed formulas in appendices and sometime footnotes, we will often

need to refer to particular sections or equations of our earlier work [7–10]. To streamline

such references, we will often refer to our earlier work in such cases by the author acronyms

and numbers AI1 [7], ACI2 [8], ACI3 [9], and ACI4 [10]. So, for instance, “ACI3 (3.4)” will

be shorthand for eq. (3.4) of ref. [9], and “AI1 section II.A” will be shorthand for section

II.A of ref. [7].

9Specifically, see appendix B of ref. [8].
10If, like us, you think it’s really fun to figure out how to do a new type of dimensionally-regularized

integral, then appendix G is the appendix for you.
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Figure 13. Schematic (time-ordered) interference diagram for a leading-order single-splitting pro-

cess E → x2E and x3E, where here the lines can be any particle type.

2 Qualitative differences between QCD and QED

2.1 Single splitting

The crucial difference to keep in mind between the LPM effect in QCD and QED is that

the photon is neutral but the gluon has color charge. In terms of parametric behavior, this

makes a huge difference in how LPM suppression behaves when a bremsstrahlung photon

or gluon is soft. The LPM effect relies on the near-collinearity of high-energy splitting

processes, and the formation time lform (and so the amount of LPM rate suppression) is

smaller when the splitting is less collinear. Since it is easier to deflect a low-momentum

particle than a high-momentum particle, the collinearity of QCD gluon bremsstrahlung is

controlled by how soft the bremsstrahlung gluon is: high-energy gluon bremsstrahlung is

less LPM-suppressed the softer the bremsstrahlung gluon is. A soft photon, however, does

not scatter in first approximation, and so the collinearity of QED photon bremsstrahlung

is insensitive to this. But a softer photon means a longer-wavelength photon, which means

a photon with less resolving power, which is why the QED case has the opposite behavior:

high-energy photon bremsstrahlung is more LPM-suppressed the softer the photon is.

2.1.1 Formation times

A little more concretely, let’s review, in a general way, some standard parametric estimates

of formation times. Consider a single splitting process of a high-energy particle with energy

E into daughters of energy E2=x2E and E3=x3E and ask for the formation time. That’s

the time scale |t − t̄| over which it’s possible for splitting in the amplitude at time t to

interfere with splitting in the conjugate amplitude at time t̄, as depicted by the interference

diagram in figure 13. That time scale tform is determined by the difference δE of the energies

of (i) the two-particle state |2, 3〉 after splitting in the amplitude and (ii) the one-particle

state before splitting in the conjugate amplitude:

δE = (Ep2 + Ep3)− Ep1 ' −
p2

1 +m2
1

2E
+
p2

2 +m2
2

2E2
+
p2

3 +m2
2

2E2
, (2.1)

where pi are the transverse momenta, which we take to be small compared the energies Ei.

In this paper, we will assume throughout that energies are high enough that we can ignore
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the effective masses mi of the high-energy particles in the medium. One can then make a

rough parametric estimate t ∼ 1/|δE| of the formation time by using the definition of q̂ to

take p2
i ∼ q̂it above, where q̂i is the q̂ appropriate for particles of type i. Then, from (2.1),

t ∼ 1

|δE| ∼
[
− q̂1t

2E
+

q̂2t

2x2E
+

q̂3t

2x3E

]−1

(2.2)

and so

tform ∼
√

E

−q̂1 + (q̂2/x2) + (q̂3/x3)
. (2.3)

For photon bremsstrahlung e→ γe, we have q̂γ=0, and (2.3) gives

te→γeform ∼
√

E

−q̂ + (q̂/xe)
=

√
xeE

(1−xe)q̂
=

√
(1−xγ)E

xγ q̂
, (2.4)

where q̂ ≡ q̂e. Above, xe and xγ (which in this case is xγ = 1−xe) are respectively the

longitudinal momentum fractions of the electron and photon daughters of the splitting. In

contrast, for gluon bremsstrahlung q → qg or g → gg, we have q̂q ∼ q̂g and

tX→gXform ∼
√

E

−q̂X + (q̂g/xg) + (q̂X/(1−xg)))
∼
√
xg(1−xg)E

q̂QCD
. (2.5)

The parametric estimates (2.4) and (2.5) show that the photon formation time becomes

long (more LPM suppression) as xγ → 0 whereas the gluon formation time becomes short

(less LPM suppression) as xg → 0.

We’ve used the very general formula (2.3) to derive standard parametric estimates of

LPM formation times because it is then easy in the same breath to obtain the standard

parametric result for QED pair production γ → eē, which is qualitatively different from

photon bremsstrahlung. (2.3) gives

tγ→eēform ∼
√

E(
q̂/(1− xe)

)
+
(
q̂/xe

) =

√
xe(1−xe)E

q̂
. (2.6)

The QCD pair production formation time (g → qq̄) is parametrically similar to this, as

well as to the QCD bremsstrahlung formation time (2.5).

2.1.2 Splitting rates

Below, we will need the differential rates dΓ/dx for single splitting. For nearly-democratic

splittings, the relation given by (1.1) is that Γ ∼ α/tform. But we will also be interested

in non-democratic splittings (one daughter soft) and will want to discuss the differential

rate dΓ/dx, where x is one of the daughter momentum fractions. The differential rate is

sensitive to the DGLAP splitting function for the process:

dΓ1→23

dx
∼ αP1→23(x)

t1→23
form

, (2.7)
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which gives [
dΓ

dx

]

brem

∼ α

xγ,gtform
(2.8)

for bremsstrahlung (e → γe or X → gX, with xg being the softest gluon in the case

g → gg) and [
dΓ

dx

]

pair

∼ Nfα

tform
(2.9)

for pair production (γ → eē or g → qq̄).

For a review of precise, quantitative formulas for single splitting rates (in the high

energy limit where the q̂ approximation can be used), see appendix A.1. Appendix C

discusses exactly how, in the QED case, these formulas match up to the original results

presented by Migdal [3] in the case where the medium is an atomic gas.

2.1.3 An aside on nearly-democratic splitting

We mention in passing that QED and QCD are parametrically similar in the case of nearly-

democratic splitting (neither daughter soft compared to the parent). All the formation

times discussed above then have the same order of magnitude:

tform ∼
√
E

q̂
(nearly-democratic splitting). (2.10)

(The splitting rates are then also all parametrically the same except for factors of Nf .) The

amount of transverse momentum Q⊥ transferred from the medium in one formation time

is of order Q2
⊥ ∼ q̂tform, which can be written in a number of equivalent ways:

Q⊥ ∼ (q̂tform)1/2 ∼ (q̂E)1/4 ∼
( E

tform

)1/2
(nearly-democratic splitting). (2.11)

We used the last form to identify µ ∼ |EΩ|1/2 with Q⊥ in the discussion of renormalization

scale in section 1.4.

One could of course also write down case-by-case parametric estimates of Q⊥ for non-

democratic splittings, but we do not have need of them.

2.2 Overlapping double splitting

In ref. [8] (ACI2),11 we discussed how to parametrically estimate the size (though not the

sign) of QCD overlapping formation-time effects for real double splitting g → ggg by using

formation times to estimate rates. Here we will first review that QCD estimate and then

see what changes when we switch to (large-Nf) QED.

2.2.1 Review of QCD estimate for g → ggg

Let yE and xE be the energies of the softest and next-softest of the three final-state gluons,

so that y . x . 1−x−y. Since this is QCD, the formation time tform,y for radiating the

11Specifically ACI2 section I.D.
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y gluon will be shorter than the formation time tform,x for radiating the x gluon. The

probability that a y emission happens to take place during the x emission is then just

tform,x times the rate of y emission. Overall, that means that the joint differential rate for

overlapping x and y emissions is

[
dΓ

dx dy

]

overlap

∼ dΓx
dx
× dΓy

dy
tform,x. (2.12)

Using (2.8), that’s [
dΓ

dx dy

]

overlap

∼ α2
s

xytform,y
(2.13)

and thence, from (2.5), [
dΓ

dx dy

]

overlap

∼ α2
s

xy3/2

√
q̂

E
. (2.14)

The fact that two emissions overlap does not a priori mean they will influence each other,

and so the qualitative argument for (2.14) only provides an estimate for how large overlap

effects might be. However, detailed calculations [8] of overlap effects for g → ggg confirm it.

Note that if one multiples (2.14) by the energy (x+y)E lost by the leading parton and

integrates over x and y, one would find a power-law divergent contribution from overlap ef-

fects to energy loss. No such power-law divergence appears in the soft-gluon bremsstrahlung

calculations of refs. [4–6], but those calculations inextricably combine the effects of soft vir-

tual emission with those of soft real emission, for which there are cancellations in QCD.

Here we have only estimated the size of soft real emission alone.

2.2.2 QED estimate for e→ eēe

For large-Nf QED we’ve already identified that the dominant overlap correction comes from

the e → eēe process of figure 6. Let xeE and yeE be the energies of the two final-state

electrons. As shown in the figure, our convention throughout this paper will be that xe
is the daughter whose electron line is connected to the initial-state electron, and ye is the

electron in the eē pair produced by the intermediate photon. This is a distinction made

possible by the large-Nf limit, in which the chance that the electron in the γ → eē pair

has the same flavor as the initial electron (which would allow interference terms involving

exchange of the two electrons) is 1/Nf suppressed. In this section, we will focus on the case

xe ∼ 1, which includes the case xγ → 0 but not xe → 0. (Our later explicit calculations of

diagrams make no such assumption.)

The formation time for the initial bremsstrahlung e→ γe can be taken from (2.4):

tform,x ∼
√

E

xγ q̂
(xe ∼ 1). (2.15)

To get the formation time for the subsequent pair production process γ → eē, we have to

be careful applying the single splitting estimate (2.6) because we are considering the case

where the photon is already soft. The E in (2.6) is the photon energy, which we are now
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calling xγE. The xe in (2.6) is the longitudinal momentum fraction of the pair’s electron

relative to the photon, which in the application here (see figure 6) is

ye ≡
yeE

xγE
=

ye
1− xe

. (2.16)

With these substitutions, (2.6) gives

tform,y ∼
√

ye(1−ye)xγE
q̂

(2.17)

in the present context. As in the QCD estimate, this is . tform,x, and so we can estimate

the probability of overlap the same way, using (2.12), which can also be written

[
dΓ

dx dye

]

overlap

∼ dΓx
dx
× dΓy
dye

tform,x. (2.18)

Here we need to make sure to use the pair -production formula (2.9) to get dΓ/dye ∼
Nfα/tform,y. So, using (2.17) above,

[
dΓ

dxe dye

]

overlap

∼ Nfα
2

xγtform,y
∼ Nfα

2

x
3/2
γ [min(ye, 1−ye)]1/2

√
q̂

E
(xe ∼ 1). (2.19)

Equivalently, using (2.16),

[
dΓ

dxe dye

]

overlap

∼ Nfα
2

x
3/2
γ [min(ye, xγ−ye)]1/2

√
q̂

E
. (2.20)

Unlike the QCD case, the integral over ye does not diverge:

[
dΓ

dxe

]e→eēe

overlap

∼ Nfα
2

x
3/2
γ

∫ 1

0

dye

[min(ye, 1−ye)]1/2
∼ Nfα

2

x
3/2
γ

(xe ∼ 1). (2.21)

Furthermore, were we to use this formula to calculate the overlap effects on energy loss, we

would get finite results, even without accounting (as one still should) for virtual corrections.

QED has much better infrared behavior than QCD for these calculation because the LPM

suppression of photon radiation increases as the photon becomes softer.

2.2.3 Leading-log formula for e→ eēe

Before moving on to the details of our complete calculation of overlap effects in the general

case, we first briefly discuss a relatively simple argument for the leading-log formula (1.4)

for xγ � 1. As mentioned earlier, the existence of such a logarithm is another difference

between e→ eēe and g → ggg.

Consider the e → eēe process of figure 6 and re-interpret it as the Feynman diagram

shown in figure 14. In the latter figure, we have not explicitly drawn the (still overlapping)

ovals corresponding to formation times. Instead, the box here denotes the leading-order

pair-production process γ → eē via interaction with the medium, and we will consider that
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Figure 14. The double splitting process e → γe → eēe viewed in an approximation (relevant to

overlap effects in the limit xγ � 1) treating it as fundamentally pair production γ → eē with the

γ interpreted as a parton inside the original electron, described by DGLAP evolution.

photon γ as a parton contained inside the initial electron. In a related context, ref. [8]

(ACI2) argues that the corresponding parton-model-like (i.e. DGLAP) approximation to

such a process has the generic form12

dΓ

dx dy
≈ α

2π
P (1−x) ln

(
Q2

Q2
0

)
dΓ

dy
≈ α

2π
P (1−x) ln

(
tform,x

tform,y

)
dΓ

dy
, (2.22)

where dΓ/dy is the differential rate for the fundamental parton-level process (represented

here by the box in figure 14) and here the rest of (2.22) represents the probability of finding

the photon inside the initial electron. The analysis of that probability is different from what

it would be in vacuum because scattering from the medium cuts off collinear logarithms.

[See ref. [8] for the argument that the DGLAP logarithm ln(Q2/Q2
0) of the virtuality ratio

translates to the logarithm ln(tform,x/tform,y) of the formation-time ratio.] The translation

of (2.22) to figure 14 is then

dΓ

dxe dye
≈ α

2π
Pe→e(xe) ln

(
tform,x

tform,y

) [
dΓ

dye

]LO

γ→eē
(2.23)

or equivalently

dΓ

dxγ dye
≈ α

2π
Pe→γ(xγ) ln

(
tform,x

tform,y

) [
dΓ

dye

]LO

γ→eē
. (2.24)

The parametric estimate of dΓ/dye was given earlier as ∼Nfα/tform,y∼Nfα
√
q̂/ye(1−ye)E,

but here we want the exact leading-order result. That’s reviewed in appendix A.1 and

(using the same translations as in our parametric analysis) is
[
dΓ

dye

]LO

γ→eē
=
Nfα

π
Pγ→e(ye) Re

(
iΩγ→eē

0

)
(2.25)

here, with

Ωγ→eē
0 =

√
−iq̂

2ye(1−ye)Eγ
=

√
−iq̂

2ye(1−ye)xγE
. (2.26)

Combining (2.24)–(2.26) with the formation times (2.15) and (2.17), using the explicit

formulas for the DGLAP splitting functions [see (A.6) and (A.10)], and taking the limit

xγ � 1 (and hence xe → 1) yields the leading-log approximation (1.4) quoted earlier and

verified from our full calculation of overlap effects.

12See specifically ACI2 eqs. (B5–B6) in ACI2 appendix B.1 [8].
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(a) (b)

Figure 15. (a) Depiction of the interactions that arise in QED after integrating out longitudinal-

polarized photons in light-cone gauge. (b) Similar interaction arising in LCPT from integrating out

unphysical fermion states.

Figure 16. Various light-cone time ordered versions of figure 15a, appropriate for Hamiltonian

formalism. Light-cone time runs from left to right.

3 Light cone perturbation theory for overlapping LPM

3.1 Diagrammatic rules and their translation

Our earlier work did not include the effects of longitudinally-polarized gauge bosons in in-

termediate states. One may retain a description solely in terms of transverse polarizations

by first integrating out the longitudinal polarizations in light-cone gauge, as in Light Cone

Perturbation Theory. This gives rise to 4-fermion interactions such as shown in figure 15a,

which are instantaneous in light-cone time x+, local in transverse position x⊥, and non-

local in x−. In Hamiltonian formalism (as in LCPT), the legs can be incoming or outgoing,

such as shown in figure 16 for figure 15a. In LCPT, a similar 4-particle interaction arises

from fermion exchange, corresponding to figure 15b. Loosely speaking, this interaction

term accounts for the difference between using (i) the actual off-shell exchanged fermion

and (ii) treating that fermion as though it had on-shell polarization up or vp. An important

feature of LCPT is that figure 15 for QED (and similar 4-field diagrams for QCD) is all that

is needed to account for the effects of longitudinal gauge bosons or off-shell fermion polar-

izations: there are no n-field interaction terms in the light-cone Hamiltonian with n > 4.

Figures 17 and 18 show two examples of standard LCPT rules for vertices (shown inside

the boxes) and examples of their translation to corresponding vertices of interference dia-

grams in the reduced-particle description used in our earlier work [7, 10], such as depicted

by figure 11b. Other basic vertices are covered in appendix D. In the language of figure 11a,

the interference diagram elements, shown outside the boxes in figures 17 and 18, represent

vertices for 2→3 and 2→ 4 particle transitions respectively. In the reduced-particle de-

scription of figure 11b, these become effectively 0→1 and 0→2 transitions, with the states

described by one transverse momentum or position variable (P or B) per effective particle.

The first expression for 〈P |−iδH|〉 in figure 17 shows the general rule for converting

ordinary matrix elements (the boxed formula) into the conventions of AI1 [7] for effectively

0→1 particle transitions. The only change here to the δH matrix element is that the

normalization conventions of AI1 [7] include a factor of |2En|−1/2 for each individual particle

state. Our convention is that En = xnE, where E is the energy of the original high-energy
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i 2

3
〈2, 3|δH|i〉rel = −gū3/ε

∗
2ui

3

2

1

or 3

2

1

1

1

〈P |−i δH|〉 = −i above√
|2E1||2E2||2E3|

= ig
2E3/2 Pe→γe · P31

〈B|−i δH|〉 = g
2E3/2 Pe→γe ·∇δ(2)(B31)

Figure 17. The box shows the Hamiltonian matrix element for e → γe, as in LCPT, normalized

with relativistic normalization as in [14]. The next line shows the corresponding formula, in the

normalization and conventions of AI1 [7], for an initial splitting e→ γe in the amplitude (as opposed

to conjugate amplitude), like the left-most (earliest time) vertex in figure 11b or in figures 7(a–c)

and 8(h-k). As written, the latter formulas only apply to 2→3 particle transitions in the language of

figure 11a, which is equivalent to effectively 0→1 particle transitions in the language of figure 11b.

Note that these formulas show the matrix element of −i δH rather than δH, according to the

convention of AI1 [7]. [The origin of the −i factor is the −i in the evolution operator e−iHt for

amplitudes.]

i

3

2

4

〈2, 3, 4|δH|i〉rel = g2(ū2γ+ui)(ū4γ+v3)

(p+
3 +p+

4 )2

2

1

4

33

1

1

or2

1

4

33
〈P34,P12|−i δH|〉 = −i above√

|2E1||2E2||2E3||2E4|
|x3+x4|−1

= −ig2

|x3+x4|3E2

〈B34,B12|−i δH|〉 = −ig2

|x3+x4|3E2 δ
(2)(B34) δ(2)(B12)

Figure 18. Like figure 17 but for an example of an “instantaneous” LCPT interaction, shown in

the box. Here, in the language of figure 11, the formulas outside of the box give an example of a 2→4

(effectively 0→2) transition. Chirality is conserved following each fermion line through the vertex.

parent at the very start of the processes depicted in figures 7–9, and where xn is the

longitudinal momentum fraction of particle n with the convention that xn is negative for

particles in the conjugate amplitude, so that
∑

n xn is always zero.

The final expression for 〈P |−iδH|〉 in figure 17 shows what you get if you express

ū3/ε
∗
2ui in the same notation used in our previous work [7]. Here

Pij ≡ xjpi − xipj , (3.1)

where the p’s represent transverse momenta. For 3-particle (effectively 1-particle) states,

the Pij are related by momentum conservation:13

P12 = P23 = P31. (3.2)

13For a discussion of (3.1), (3.2) and (3.4) in the context of our application and notation here, see

specifically AI1 sections II.E and III [7].
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The P are related to the square roots of helicity-dependent DGLAP splitting functions.

Here,

P i→2,3(xi→x2, x3) =
(ex±iey)
|xix2x3|

√
Pi→23(xi→x2, x3) =

(ex±iey)
|xix2x3|

√
|xi|Pi→23(1→z2, z3),

(3.3)

where zn ≡ xn/xi are the momentum fractions of the daughters relative to their immediate

parent, Pi→23(1→z2, z3) is the helicity-dependent DGLAP splitting function appropriate to

the particle types and helicities of the initial and final particles in the splitting process, and

the ± in the circular basis vector ex±iey is chosen accordingly based on those helicities.14

The Fourier conjugate of Pij is, in our notation,

Bij ≡
bi − bj
xi + xj

. (3.4)

The 〈B|−i δH|〉 formula in figure 17 is simply the Fourier transform of the 〈P |−i δH|〉
formula.

Now turn to figure 18. The first expression for 〈P34,P12|−i δH|〉 there shows the

general rule for converting ordinary matrix elements (the boxed formula) into the conven-

tions of refs. [7, 10] (AI1,ACI3) for instantaneous, effectively 0→2 particle transitions. In

addition to the |2En|−1/2 factors, there is an additional factor of |x3 + x4|−1 that is asso-

ciated with the normalization of the state |P34,P12〉 that one obtains when reducing from

a 4-particle description, of the state just after the interaction, to an effective 2-particle

description.15 There is nothing special here about the pairing of the indices 1234 in this

normalization factor; one could just as well have written

〈P23,P41|−i δH|〉 = −i above√
|2E1||2E2||2E3||2E4|

|x1 + x4|−1 (3.5)

in figure 18. (Note that |x3+x4|−1 = |x1+x2|−1 and |x1+x4|−1 = |x2+x3|−1 since
∑

n xn =

0.) The only advantage to choosing 〈P34,P12| in figure 18 is that then the |x3+x4|−1

from the normalization factor there neatly combines with the (x3+x4)−2 coming from the

denominator (p+
3 +p+

4 )−2 in the boxed LCPT rule. Finally, the 〈B34,B12|−i δH|〉 formula

in figure 18 is just the Fourier transform of the 〈P34,P12|−i δH|〉 formula.

We need not state whether our convention for light-cone components is v± = v0 ± v3

or v± = (v0 ± v3)/
√

2 because it does not matter. The formulas for matrix elements, such

as in figure 18, give the same result either way.

From formulas such as figures 17 and 18 for basic interactions, many variations follow

from substitutions and complex conjugation. As an example, the interference-diagram rule

in figure 17 also gives the additional interference-diagram rules shown in figure 19. This

procedure has the advantage of definiteness, but one may also formulate a more generic

rule that covers all the different variations — see appendix D.

14See AI1 section IV.E and AI1 appendix C [7] for more details of our conventions.
15See specifically AI1 section IV.D and AI1 appendix B [7]. It is the same factor as in the bottom diagram

of AI1 figure 16.
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1

11

3

2

1

3

2 〈|−i δH|P 〉 = −〈P |−i δH|〉∗ = ig
2E3/2 P∗e→γe · P31

〈|−i δH|B〉 = −〈B|−i δH|〉∗
= − g

2E3/2 P∗e→γe ·∇δ(2)(B31)

or3

1

2

3

1

2

1

1

〈P |+i δH|〉 = 〈P |−i δH|〉∗(x,p)→(−x,−p)

= − ig
2E3/2 P∗e→γe · P31

〈B|+i δH|〉 = 〈B|−i δH|〉∗(x,b)→(−x,b)

= − g
2E3/2 P∗e→γe ·∇δ(2)(B31)

3

2

1

or
2

21

3

2
〈|+i δH|P 〉 = 〈P |−i δH|〉∗

= − ig
2E3/2 P∗e→γe · P31

〈|+i δH|B〉 = 〈B|−i δH|〉∗
= g

2E3/2 P∗e→γe ·∇δ(2)(B31)

2+41

3

4

2 2

4 〈P ′|+i δH|P31,P42〉
= previous× |x1 + x3|−1(2π)2δ(2)(P ′42−P42)

〈B′|+i δH|B13,B24〉
= previous× |x1 + x3|−1δ(2)(B′42−B42)

Figure 19. Variations on figure 17 that are related by complex conjugation and sometimes, depend-

ing on the directions drawn for momentum flow, by reversal (xn,pn)→ (−xn,−pn) of momentum

variables (see appendix D for more detail). The overall factor of |x1+x3|−1 = |x2+x4|−1 in the last

diagram arises from the same effectively-2-particle state normalization factor for |P31,P42〉 that

was discussed earlier in the text for the 〈P34,P12| of figure 18. The two spectator lines in this case

are colored black here to indicate that their color (red or blue) does not matter. [Note: the above

vertex diagrams are best viewed in color.]

To illustrate the possible relations, we’ve shown more variations in figure 19 than we

will actually need. The first line of vertex diagrams is not relevant for large Nf , but at

sub-leading order in 1/Nf would appear in the virtual-correction diagram of figure 20a.

The second line of vertex diagrams would appear in the diagram for the complex conjugate

of figure 7a, shown in figure 20b. But this diagram need not be evaluated separately since

we will be taking 2 Re[· · · ] of the diagrams in figure 7. The third and fourth lines of vertex

diagrams in figure 19 appear in figures 8(i,k,m) and figures 8(h,l), respectively. Note that

these vertices correspond to (e → γe)∗ in the conjugate amplitude and not to eē → γ.

They are drawn as they are just because the diagrams for the amplitude and conjugate

amplitude have been sewn together. Depending on your taste, it might have been clearer

to draw the third line of figure 19 as figure 20c, but we have chosen to keep with the same

style of drawings as in ref. [7] (AI1).

Using these rules, and the additional vertex rules of appendix D, the calculation of the

real double splitting diagrams of figure 7 proceeds almost the same as our gluon-splitting

calculations in our earlier work [7–10]. In particular, the calculation of the second line of

diagrams in figure 7, which involve the instantaneous 4-fermion vertex of LCPT, is very

similar to the calculation of QCD diagrams involving the 4-gluon vertex [10]. Because

– 21 –



J
H
E
P
1
2
(
2
0
1
8
)
1
2
0

(a) (b) (c)

3

2

1

Figure 20. (a) A virtual correction not considered in this paper because it is sub-leading in 1/Nf .

(b) The complex conjugate of figure 7a. (c) An alternative way that we could have drawn the

vertex in the third line of diagrams in figure 19, which would have made it clearer that the vertex

correspond to e→ γe in the conjugate amplitude.

these calculations are so close to previous work, we leave the details and analytic results

to appendix E.

We’ll mention just one qualitative detail here: during effectively 2-particle evolution

(e.g. the middle shaded region of figure 11b), the system evolves in medium like a coupled

pair of 2-dimensional non-Hermitian harmonic oscillators, with two complex eigenfrequen-

cies.16 In (large-Nc) QCD double bremsstrahlung, both eigenfrequencies are non-zero. In

QED, however, one vanishes. See appendix E for details, but this difference does not have

any particular impact on the method of calculation.

3.2 An implicit approximation

There was an implicit approximation made in the above treatment of instantaneous LCPT

interactions. Remember that the high-energy particles shown in our diagrams, such as

figure 7, are implicitly interacting many times with the medium. We should take a minute

to think about what these diagrams would look like if we explicitly drew all the interactions

with the soft particles in the medium. In particular, let’s think about what happens to

the longitudinal intermediate photon lines in the second row of diagrams in figure 7. In

principle, these could be dressed by soft interactions as in figure 21a. (Note that we’ve

been careful not to add any new high-energy particles to the final state, because otherwise

the figures we have drawn previously would not have been complete drawings of all the

high-energy particles.) In the language of thermal field theory Feynman diagrams, the

contribution from figure 21a would be captured by dressing the photon propagator with

thermal loops as in figure 21b. These soft interactions have not been included in the vertex

rule we have given in figure 18: the formulas there were based on the vacuum LCPT rule

given inside the box.

Fortunately, medium corrections to the vertex rule of figure 18 will be suppressed

by some power of the high energy scale E. The typical transverse separation b of the

high-energy particles during an LPM formation time are of order

b ∼ 1

Q⊥
∼
√
tform

E
∼ 1

(q̂E)1/4
(3.6)

(suppressing dependence on longitudinal momentum fractions, and working in the thick-

media limit being considered in this paper). In the limit of large E, this is parametrically

16See AI1 section V.B [7]. Two complex frequencies Ω also appear in the earlier work of refs. [4–6]

on double, small-x gluon bremsstrahlung, where each Ω is determined by one of the two bremsstrahlung

gluon energies.
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(a) (b)

Figure 21. (a) Possible soft medium corrections to the instantaneous longitudinal photon interac-

tion of LCPT. Dashed lines represent soft electrons or positrons; intermediate solid lines represent

intermediate high-energy particles. (b) How such corrections might alternatively be drawn in the

language of thermal or finite-density loops. [(b) is expressed here as a Feynman diagram rather

than a time-ordered diagram.]

Figure 22. Additional 2-point LCPT interactions arising from normal ordering the instantaneous

interactions of figure 15.

small compared to any distance scale that characterizes the medium, such as the typical dis-

tance between medium particles. So, the chance that there is a medium interaction during

the instant of the instantaneous interaction is parametrically small and can be ignored.17

On a similar note, there are some other types of interactions in time-ordered LCPT

calculations that we have also ignored. The LCPT rules that we have quoted assume that

the LCPT Hamiltonian has been normal ordered. When normal ordering the instantaneous

interactions, such as figure 15, there are contractions that produce additional 2-point inter-

actions in the normal-ordered Hamiltonian, which are often depicted diagrammatically [13]

as in figure 22. In our large-Nf QED calculation, these can contribute to the virtual cor-

rection to e→ γe as in figure 23, which should be added to the diagrams we listed earlier

in figure 9. Fortunately, we can ignore these additional diagrams for reasons somewhat

similar to those for the LCPT analysis of NLO deep inelastic scattering in refs. [22, 24].

Because we are in the high-energy limit, we have ignored the masses of our high-energy

particles. We will be using dimensional regularization, and normal-ordering contractions

such as figure 22 vanish in dimensional regularization for massless particles in vacuum,

which is ultimately a consequence of dimensional analysis. Unlike refs. [22, 24], however,

our loops are not in vacuum, and the medium introduces a scale that in principle invali-

dates the argument that these loops will vanish. But because these particular loops involve

an instantaneous interaction, and because transverse separations are suppressed by powers

17In contrast, the effect of the medium on the evolution between vertex times in our diagrams (e.g.

the shaded regions of figure 11) cannot be ignored because the times between these vertices are of order

formation times, which are parametrically large in the high energy limit.
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Figure 23. Additional virtual diagrams for an (in-medium) LCPT calculation of e → γe, which

should in principle be added to figure 8 but which are ignorable in our calculation.

of the energy E, the effect of the medium on the loops of figure 22 are negligible in the

high-energy limit. So we may ignore the diagrams of figure 23.

4 Virtual corrections to single splitting

Consider the diagrams of figure 8, which represent next-to-leading order corrections to

single-splitting. Each of these diagrams contain a virtual eē loop. We shall now see that

almost all of these diagrams are related in a relatively simple way to the double-splitting

diagrams of figure 7. As mentioned earlier, there is one exception: the boxed diagram of

figure 8k, which will require a new (and quite non-trivial) calculation. But let’s start with

the simpler cases.

4.1 Back-end transformation

Most of the diagrams of figure 8 (namely h,i,j,l,n) are related to various double emission

diagrams of figure 7 (a,b,c,e,g respectively) by a simple diagrammatic procedure: take the

latest-time vertex in the diagram, and slide it around the right end of the diagram from

being a vertex in the amplitude to being a vertex in the conjugate amplitude, or vice versa.

For concreteness, a specific example is shown in figure 24. We will call this a “back-end”

transformation. Provided that the vertex being moved is the latest-time vertex in both

diagrams, there is an extremely simple relationship between the values of the diagrams:

before integrating over any longitudinal momentum fractions, the two diagrams differ only

by an overall minus sign. Heuristically, this minus sign can be roughly understood from the

relation of virtual loops, through the optical theorem, to the probability of something not

happening. So, for example, figures 7(b,c) are, roughly speaking, related to the probability

P2 of one splitting e → γe later being followed by another, γ → eē. Figures 8(i,j), on the

other hand, are roughly related to the probability P1 of one splitting e → γe not being

later followed by another.18 Any increase in P2 should be accompanied by a decrease in

P1 by conservation of probability, and so one may expect these diagrams to be the same

18This characterization makes sense for (1) a formal calculation of probabilities in the limit where the

medium has some finite (but very large) size L, formally expanding to second-order in perturbation theory

in hard splittings. That is, the limit α→ 0 for fixed L and fixed particle energies (with L large compared to

formation times and α here referring to the α at the scale characterizing the high-energy splitting). More

precisely, this is the limit where the mean free time between splittings is large compared to L. But one

may be interested in the opposite order of limits (2) L→∞ with fixed α� 1 and fixed particle energies —

that is, the case where the mean free time between splittings is small compared to L. As discussed in detail

in ACI2 [8], the formal calculation (1) can be used to figure out a correction to splitting probabilities that

allows for the calculation (2), and so it is in the formal context of (1) that we always discuss our diagrams,

even for those cases where our ultimate interest may be (2).
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diagram (a)

Move this vertex
to amplitude

diagram (h)

xe ye xe virtual ye

Figure 24. Example of two diagrams related by a back-end transformation, in which the final

vertex in one diagram is slid around the right-hand side (back end) of the diagram to become the

final vertex of the other diagram. We’ve shaded the evolution between vertices as in figure 11, just

to emphasize that the general pattern of these evolutions does not change.

size but with opposite signs. (In principle, the total probability that’s actually conserved

at this order is P0 +P1 +P2, where P0 is the probability that neither emission occurs. But

the cases of the diagrams that we are relating by back-end transformations are cases where

changes to P0 do not come into play.)

By writing expressions for diagrams that are related by a back-end transformation,

using the vertex rules of section 3.1 and appendix D, and then tying them together with

n-particle evolution in the medium as in figure 11 and refs. [7, 8] (AI1,ACI2), one may

verify that back-end transformations really are that simple: there is just an overall sign

difference. Note in particular that the longitudinal momentum fractions of the particles are

the same in the two diagrams of figure 24, for each of the three shaded regions of in-medium

evolution. So those evolution factors match up identically between the two diagrams.

Virtual loops should be integrated over the longitudinal momenta of the particles in

the loop. So the final relationship between the pairs of back-end related diagrams discussed

above can be written as

[
dΓ

dxe

]

(h,i,j,l,n)

= −
∫ 1−xe

0
dye

[
dΓ

dxe dye

]

(a,b,c,e,g)

, (4.1)

where Γ is the rate, xe is the momentum of the daughter whose electron line is connected to

the original electron, and ye is the other electron in the final state of real double splitting

processes e → eēe, as in figure 24. The integration limits come from the facts that (i)

the longitudinal momentum fractions in the produced eē pair are ye and 1−xe−ye in these

diagrams (relative to the initial electron), and (ii) longitudinal momentum fractions are

always positive in LCPT.

Thinking about the UV divergences of loop diagrams vs. tree diagrams, one might be

uneasy with the idea that diagrams (a) and (h) in figure 24 could possibly be related so sim-

ply. In particular, diagram (h) involves a photon self-energy, and photon self-energies are

UV divergent.19 In contrast, diagram (a) represents an interference term that contributes

19The back-end transformation says that diagrams (a) and (h) differ by an overall sign before integrating

(h) over ye. In LCPT, the range of integration in (4.1) for ye is finite (ye is not integrated to infinity)

because both virtual particles in the loop are forced to have positive longitudinal momentum p+. So any

UV divergence will already be present even before integrating over ye.
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to the calculation of the magnitude-square of a tree-level amplitude, and tree-level rates are

not UV divergent. Nonetheless, diagram (a) by itself is UV divergent, even though those

divergences cancel in the sum 2 Re(a+b+c) of such interference terms, drawn in figure 7.20

This is a general issue with individual time-ordered (as opposed to Feynman) diagrams.

For the same reason, the UV divergence of an individual virtual-correction diagram like

diagram (h) is different from merely the UV divergence one associates with a photon self-

energy, because diagram (h) has a time-order constraint that the emission in the conjugate

amplitude occur during the electron pair fluctuation of the photon. Because the sum of

virtual diagrams 2 Re(h+i+j) of figure 8 is related by back-end transformation to the sum

of diagrams 2 Re(a+b+c), and because UV divergences cancel in the sum 2 Re(a+b+c), as

they must, this means that all the UV divergences of the sum 2 Re(h+i+j) must cancel as

well, including UV divergences associated with the photon self-energy. That leaves diagram

(k) as the only uncanceled UV divergence among the first line of figure 8 (and it turns out to

be the only uncanceled UV divergence among all the diagrams). Reassuringly, we will find

that the time ordering represented by diagram (k), by itself, indeed gives exactly the right

amount of divergence to produce, in our calculation, the known renormalization of αEM.

4.2 Front-end transformations

There is a somewhat related relation between pairs of diagrams where we instead take

the earliest-time vertex in a diagram and slide it around the left end of the diagram

to move it from the amplitude to the conjugate amplitude or vice versa. We will refer

to this as a front-end transformation, an example of which is shown in figure 25. We’ll

discuss how to implement a front-end transformation in a moment, but first note its utility.

Using a front-end transformation, along with complex conjugation as necessary, the γ →
eē virtual correction diagrams of figures 9(o,p,q,s,u) can be related to the real double

bremsstrahlung diagrams of figures 7(a,b,c,f,g), respectively. Using both a front-end and

a back-end transformation on a single diagram, figures 8(m) and 9(t) can be related to

figures 7(e,f), respectively, and figure 9(r) can be related to figure 8(k). In consequence,

the only virtual diagram calculation that we will need to do from scratch is the boxed

diagram of figure 8(k): an (in-medium) photon self-energy loop in the “middle” of a single

splitting e→ γe.

Front-end transformations are more complicated to implement than back-end ones. If

we were to simply slide the vertex around as in figure 25 while keeping the labeling of

all longitudinal momenta the same, we would get the transformation shown by the first

two diagrams of figure 26. There are two problems with the middle diagram in figure 26,

which is supposed to represent a virtual correction to γ → eē. The first problem is that

20On the technical side, see the discussion of “∆t→0” UV divergences and their cancellation for QCD

diagrams similar to our (a+b+c) here in sections II.A.4 and II.B.2 of ref. [8], or the earlier discussion for a

different set of QCD diagrams in ref. [7]. Also, our language is somewhat loose above. When we refer to

the sum 2 Re(a+b+c) we actually mean the difference between (i) that sum and (ii) what one would have

gotten by instead treating the process as two successive, independent single splittings each calculated using

leading-order formulas for single spitting rates. In our notation here and elsewhere, we call this difference

“∆ dΓ/dx dy.” Physically, ∆ dΓ/dx dy corresponds to the correction to double emission due to overlap

effects. See sections I.A and II.A of ref. [8].
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diagram (a)

xe ye

diagram (a)

xe ye

*

(
diagram (o)

)∗

Figure 25. Like figure 24 but for a “front-end” transformation.

xeE
yeE vs.

E

(1−xe)E (1−xe−ye)E

−(1−xe)E

E

−xeE

−E

yeE

(1−ye)E

−(1−xe)E

(1−xe)E

xeE

−(1−xe)E

yeE

(1−xe−ye)E

−E

Figure 26. The first diagram shows the same contribution e → eēe as in figure 25, but here we

have labeled all longitudinal momenta. The second diagram shows what would happen if we slid the

initial vertex around as in the front-end transformation of figure 25 without changing the labeling of

longitudinal momenta. For comparison, the last diagram shows the actual labeling of longitudinal

momenta for this γ → eē process with an initial photon of energy E. In all of these diagrams,

momenta are taken to flow in the direction of fermion-line arrows unless indicated otherwise by a

small black arrow. This generally corresponds to labeling the momenta as flowing from left to right

in the interference diagram.

our convention is always to let E refer to the energy of the original high-energy particle

in any process, which in this case would be the photon. The second is that xe is positive

in the diagram of figure 26, which is then inconsistent with the fact that the longitudinal

momentum xeE shown in the second diagram should be negative, given our convention

that longitudinal momenta of conjugate-amplitude particles are negative in our interference

diagrams. This second problem can also be visualized by comparing the earlier figures 24

and 25 for back-end and front-end transformations. In the back-end case of figure 24, both

the original diagram and the transformed diagram had exactly the same particles evolving

in each of the three shaded regions. In the front-end case given by the first two diagrams

of figure 25, the last shaded region is the same, but an “amplitude” particle (blue line) has

been switched to a “conjugate amplitude” particle (red line) in each of the first two shaded

areas. That means that the evolution in those shaded areas is not exactly the same for those

two diagrams, and so their relation is not as simple as it was for a back-end transformation.

There is a simple way to overcome both obstacles, which is to make the change of

variables

(xe, ye, E)→
( −xe

1− xe
,

ye
1− xe

, (1−xe)E
)

(4.2)

when making a front-end transformation like figure 25. This converts the momenta of the

middle diagram of figure 26 into those of the last diagram. It also negates the value of xe.

As long as one writes formulas for evolution in diagrams in a way that is general enough to
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diagram (f) diagram (s)

front-end back-end

−xe

−ye −ye

xe

xe

−ye

(
diagram (t)

)∗

∗

xe→1−ye
−xe

xe

−ye

ye

ye→xe

Figure 27. The transformation of diagram (f) to diagram (t) by front- and back-end transforma-

tions, relabeling momentum fractions, and conjugation.

correctly handle the cases of both positive or negative longitudinal momentum fractions,

similar to ref. [7] (AI1), then all will be well. The transformation (4.2) is its own inverse,

and so works just as well transforming γ → eē back again to e → eēe. In terms of the

diagram labels in figures 7 and 9,

2 Re

[
dΓ

dye

]

(o,p,q,s,u)

= −2Nf Re

∫ 1

0
dxe

{[
dΓ

dxe dye

]

(a,b,c,f,g)

with substitutions (4.2)

}

(4.3)

is the front-end analog of (4.1).21 Here we have taken 2 Re[· · · ] of all the diagrams, which we

must do anyway at the end of the calculation, and which here obviates the need to specify

exactly which diagrams need to be complex conjugated after the front-end transformation.

Note that we have written the γ→eē rate as dΓ/dye to conform with our convention that

the electron produced by pair production is labeled ye, as in the last diagram of figure 26.

The relative factor Nf in (4.3) just reflects the fact that one of the electron flavors in

e → eēe is fixed to be that of the initial electron but there is no similar flavor constraint

for NLO γ → eē.

Performing both a front-end and back-end transformation relates

2 Re

[
dΓ

dye

]

(t)

= +2Nf Re

∫ 1

0
dxe

{[
dΓ

dxe dye

]

(f)

with substitutions (4.2)

followed by (xe, ye)→ (1−ye, xe)

}
.

(4.4)

As shown in figure 27, the additional step of (xe, ye) → (1−ye, xe) is needed to make the

labeling of the momentum fractions in diagram (t) match up with our conventions.

A different variant of the front-end transformation is needed for interference dia-

grams whose earliest vertex is an instantaneous 4-fermion interaction, such as figure 7(e).

Figure 28 shows diagrammatically the difference between (i) “simply sliding the vertex

21The change of E to (1−xe)E in (4.2) might have also led to some power of 1−xe appearing as an overall

normalization factor in (4.3). However, for the front-end transformation of dΓ/dxe dye here, there turns

out to be no such factor in four spacetime dimensions. (See appendix H.2 for a more general discussion.)
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vs.E

xeE

yeE

(1−xe−ye)E

−(1−xe)E

(1−xe−ye)E

−E

xeE

yeE

−(1−xe)E −(1−xe−ye)E

E

−yeE

−xeE

−(1−xe)E

Figure 28. A front-end transformation somewhat like figure 26 but for a diagram whose earliest-

time vertex is instead an instantaneous 4-fermion interaction. The last diagram above is related by

back-end transformation to the complex conjugate of figure 8(m).

around” while keeping the labeling the same vs. (ii) the actual result we want to achieve

with a front-end transformation. We can implement the necessary relabeling of momenta

by making the change of variables

(xe, ye, E)→
( −ye

1−xe−ye
,
−xe

1−xe−ye
, (1−xe−ye)E

)
, (4.5)

somewhat similar to (4.2). Performing both a front-end and back-end transformation then

relates diagrams (m) and (e) as

2 Re

[
dΓ

dxe

]

(m)

= +2 Re

∫ 1−xe

0
dye

{[
dΓ

dxe dye

]

(e)

with substitutions (4.5)

}
. (4.6)

4.3 The fundamental virtual diagram

4.3.1 Overview

As previously discussed, the one virtual correction diagram which cannot be related to

the e→eēe diagrams is figure 29, which is a more detailed version of figure 8k. Following

notation similar to that of ref. [7] (AI1), we will refer to this as the xyyx̄ diagram since

it involves, in order, (i) emission of an xe electron in the amplitude, (ii) emission of a ye
electron in the amplitude, (iii) re-absorption of the ye electron in the amplitude, followed

finally by (iv) emission of the xe electron in the conjugate amplitude. This virtual correction

diagram contributes [
dI

dxe

]

xyyx̄

=

∫ 1−xe

0
dye

[
dI

dxe dye

]

xyyx̄

(4.7)

to the differential emission probability for e→ γe, where, adapting the notation of refs. [7, 8]

(AI1,ACI2),

[
dI

dxe dye

]

xyyx̄

=

(
E

2π

)2 ∫

tx<ty<ty′<tx̄

∑

pol.

〈|i δH|Bx̄〉 〈Bx̄, tx̄|By′ , ty′〉

× 〈By′ |−i δH|Cy′

41,C
y′

23〉 〈Cy′

41,C
y′

23, ty′ |Cy
41,C

y
23, ty〉

× 〈Cy
41,C

y
23|−i δH|By〉 〈By, ty|Bx, tx〉 〈Bx|−i δH|〉. (4.8)
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x̂4

x̂2

x̂3

x̂1

−(x̂1+x̂4) −(x̂1+x4)

xe

ye

1−xe−ye

1−xe 1−xe

−1

tx ty ty′ tx̄

Figure 29. The basic virtual diagram xyyx̄ of figure 8k, here with longitudinal momentum fractions

labeled in terms of xe and ye [left] or the labels x̂i (4.9) [right]. Our notation for vertex times is

also shown.

In broad outline, this formula simply convolves the relevant vertex matrix elements at

different vertex times with medium-averaged propagators between those times.22 The

notation Cij refers to the Bij ≡ (bi−bj)/(xi+xj) variables defined in (3.4); we use the

letter C just to help distinguish Bij variables used in the context of 4-particle (effectively

2-particle) evolution. The indices on Cij refer to the particles involved in the 4-particle

evolution according to the convention of the right-hand drawing in figure 29, for which we

introduce the labeling [7]

(x̂1, x̂2, x̂3, x̂4) ≡ (−1, ye, 1−xe−ye, xe) (4.9)

of longitudinal momentum fractions.

Initially, the evaluation of (4.8) proceeds very similarly to that of other diagrams, fol-

lowing refs. [7, 8] (AI1,ACI2). One puts in explicit formulas for the δH matrix elements

and for the time-evolution factors. It is then possible to analytically perform all the in-

tegrations implicit in (4.8) over the intermediate transverse positions specified by the B’s

and C’s, as well as all but one of the time integrations. Due to time translation invariance,

one combination of those time integrations just gives a factor of total time T. After all

these integrations, the differential rate dΓ ≡ dI/T corresponding to (4.8) may be reduced

to a single remaining integral over the time difference ∆t between the two intermediate

vertex times in the process under consideration. Schematically,
[

dI

dxe dye

]

xyyx̄

=

∫ ∞

0
d(∆t) F (∆t). (4.10)

For the xyyx̄ process of figure 29, ∆t ≡ ty′−ty is the duration of the photon self-energy

loop. The integrand F (∆t) has a somewhat complicated formula (schematically similar to

other diagrams), which we leave to appendix F. Here, in the main text, our goal is to give

a broad overview of what is involved in dealing with the UV divergence of the ∆t integral

22In particular, compare and contrast to AI1 (4.10) [7].
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in (4.10). To be concrete: for small ∆t, the integrand turns out (see appendix F.2) to have

non-integrable divergences

F (∆t) ∝ ln(2iΩi ∆t)

(∆t)2
− iΩi

∆t
(for ∆t� |Ωi|−1), (4.11)

where the magnitude of

Ωi =

√
− i(1−xe)q̂

2xeE
(4.12)

can be interpreted physically as the scale of the QED inverse formation time (2.4) for

leading-order e→ γe.

UV divergences from ∆t→0 in the calculation of time-ordered interference diagrams

are not restricted just to loop diagrams like figure 29. Individually, the real double splitting

diagrams of figure 7(a–c) for e→ eēe also have ∆t→0 divergences when written in the form∫
d(∆t) F (∆t), analogous to the detailed discussion of the QCD case in refs. [7–9] (AI1–

ACI3). Those divergences cancel between the three diagrams of figure 7(a–c), also similar

to refs. [7–9]. Consistently evaluating the remaining finite part is a little tricky and was

accomplished [9] by computing the individual diagrams using dimensional regularization.

Because the virtual diagrams of figure 8(h–j) are related to figure 7(a–c) by a simple

back-end transformation (4.1), the divergences of (h–j) will also cancel. Additionally, we

find that diagrams involving instantaneous longitudinal photon interactions are all indi-

vidually finite. That means that the only uncanceled UV divergence in our calculations of

e → eēe and e → γe is the one for the xyyx̄ diagram shown in both figures 7(k) and 29.

[The divergence of the γ → eē diagram of figure 9(r) is similarly uncanceled, but, as already

noted, that diagram is related to the other by front- and back-end transformations.]

Unfortunately, our previous method [9] for calculating diagrams in dimensional reg-

ularization breaks down for the xyyx̄ diagram, for reasons that will be explained later.

We will leave the (we think interesting) details to appendices. Here we convey the gist of

the method.

4.3.2 Dimensional regularization: strategy

In this paper, the symbol d ≡ d⊥ will represent the number

d = 2− ε (4.13)

of transverse dimensions, not the total number 4−ε of space-time dimensions. It might

reduce the opportunity for confusion if we always wrote our d as d⊥, but we drop the

subscript to save space in what will be some complicated equations.

We do not know how to do the entire integral (4.10) for arbitrary d. Fortunately, we

do not have to. The only divergence comes from ∆t→ 0, and so we only need to regulate

the small-∆t portion of the integral. Let a be an arbitrarily small but finite time scale,

and split (4.10) up into

∫ ∞

0
d(∆t) F (∆t) =

∫ a

0
d(∆t) F (∆t) +

∫ ∞

a
d(∆t) F (∆t). (4.14)
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We only need dimensional regularization for the first term on the right-hand side.

Specifically,

∫ ∞

0
d(∆t) Fd(∆t) =

∫ a

0
d(∆t) Fd(∆t) +

∫ ∞

a
d(∆t) F2(∆t) +O(ε), (4.15)

where Fd(∆t) is the integrand for d transverse dimensions. Roughly speaking, our goal

is to use small-∆t approximations to do the ∆t < a integral analytically, and then use

numerical integration to do the ∆t > a integral. But there is a problem: as we take a→ 0

(in order to make our calculation of the first integral arbitrarily accurate), the second

integral
∫∞
a F2(∆t) will blow up, which is undesirable for numerical integration. We can

isolate this problem by rewriting the right-hand side of (4.15) as

∫ a

0
d(∆t) Fd(∆t) +

∫ ∞

a
d(∆t)D2(∆t) +

∫ ∞

a
d(∆t)

[
F2(∆t)−D2(∆t)

]
+O(ε), (4.16)

where D2(∆t) is any convenient function that

• matches the divergence of F2(∆t) as ∆t→ 0 [which is proportional to (4.11)];

• falls off fast enough as ∆t→∞ so that
∫∞
a d(∆t)D2(∆t) will converge for non-zero

a;

• is simple enough that
∫∞
a d(∆t)D2(∆t) can be performed analytically.

The last integral in (4.16) is then convergent by itself in the a → 0 limit, and so we may

replace (4.16) by

lim
“a→0”

[∫ a

0
d(∆t)Fd(∆t)+

∫ ∞

a
d(∆t)D2(∆t)

]
+

∫ ∞

0
d(∆t)

[
F2(∆t)−D2(∆t)

]
+O(ε).

(4.17)

Our strategy will be to evaluate the first two integrals in (4.17) analytically in the

limit of small a (and verify cancellation of the a dependence) and to evaluate the (conver-

gent) third integral numerically. The choice of D2(∆t) is not unique, but the final answer

for (4.17) will be independent of the details of that choice. The particular choice we will

find convenient is

D2(∆t) ∝ ln(2iΩi ∆t)

(∆t)2
− iΩ3

i ∆t csc2(Ωi ∆t) , (4.18)

which reduces to (4.11) for small ∆t but also falls off quickly enough as ∆t→∞ [because

csc(Ω ∆t) falls exponentially for the Ω ∝
√
−i of (4.12)]. But there is no difficulty if the

reader thinks some alternative choice would have been simpler or more natural.

We placed scare quotes around the “a→0” limit in (4.17) because we should clarify how

it coordinates with the ε → 0 limit of dimensional regularization. The earlier split (4.15)

of the ∆t integration is invalid unless we can set d=2 for ∆t ≥ a, up to corrections that

disappear as ε → 0. One feature of dimensional regularization is that it converts integer

power-law divergences into non-integer power-law divergences. For example,
∫
d(∆t)/∆t

might become proportional to
∫
d(∆t)/(∆t)1−ε or

∫
d(∆t)/(∆t)1−2ε. (We will see details
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later.) When integrated over
∫∞
a d(∆t), the results will correspondingly have non-integer

power-law dependence on the lower cut-off a, and we will encounter factors like (aΩ)ε,

where Ω is the relevant frequency scale of the problem. We need to be able to expand such

a factor in small ε as 1 + ε ln(aΩ) + · · · in order to recover the d=2 result for the ∆t ≥ a

integral, which means that ε ln(aΩ) will need to be small. The “a→0” limit in (4.17) is

therefore notational short-hand for expanding expressions assuming that the small a has

been chosen relative to the (eventually) arbitrarily small ε such that

ε� 1

| ln(aΩ)| → 0. (4.19)

Before moving on to discuss the application of these techniques to the xyyx̄ diagram

of figure 29, we should clarify how we plan to handle photon and fermion helicities in di-

mensional regularization. We will implement the Conventional Dimensional Regularization

(CDR) scheme with MS renormalization. These are, for instance, the conventions used by

the Particle Data Group [26] and the community at large to quote, compare, and take

world-averages of determinations of αs(MZ). For a nicely brief summary of different flavors

of “dimensional regularization” used by some authors, see, for example, section II.A of

ref. [25].23

4.3.3 Dimensional regularization: application to xyyx̄

The δH matrix element in (4.8), which are the vertex factors of figures 17 and 19 and

appendix D, are all proportional to the transverse momentum P characterizing the split-

ting, which is equal to the Pij of any pair of the particles directly involved in the splitting

(or merging). Below, take this to be the Pij of the two daughters. The proportionality of

δH matrix elements to P holds in any dimension d. The proportionality constant, which

involves DGLAP splitting amplitudes and consideration of particle helicities, depends on d,

but for the moment we won’t keep track of those details. In transverse-position space, the

factors of P become factors of ±i∇δ(d)(B). Plugging this into the starting formula (4.8)

for the xyyx̄ diagram, and using the δ functions to perform the implicit integrations over

the B variables, gives

[
dΓ

dxe dye

]

xyyx̄

∝
∫

times
∇Bx̄〈Bx̄, tx̄|By′, ty′〉

∣∣∣
Bx̄=0

×∇Cy
23
′∇Cy

23
〈Cy′

41,C
y′

23, ty′ |Cy
41,C

y
23, ty〉

∣∣∣
Cy′

23=0=Cy
23; Cy′

41=By′ ; Cy
41=By

×∇Bx〈By, ty|Bx, tx〉
∣∣∣
Bx=0

, (4.20)

23For the quantities computed in this paper, there will be no difference between using what ref. [25]

identifies as CDR and HV dimensional regularization, once we write final formulas for differential rates in

terms of MS-bar renormalized α and set ε = 0. In particular, for the quantities we calculate, we will not

have any IR/collinear divergences that need to be canceled between real and virtual emission diagrams,

and so it does not matter if we treat real and virtual particles on exactly the same footing in d=2 − ε

dimensions. In part this is thanks to the fact that medium effects cut off infrared and collinear singularities

for splittings contained within the medium.
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where the various gradients∇ are contracted in ways that depend on the helicity-dependent

DGLAP splitting functions not explicitly shown here. The integral over the relative vertex

times in the xyyx̄ time-ordered diagram of figure 29 can be written as

∫

times
· · · =

∫ ∞

0
d(∆t)

∫ ∞

0
d(ty−tx)

∫ ∞

0
d(tx̄−ty′) · · · . (4.21)

In the multiple scattering (q̂) approximation, the 3-particle (effectively 1-particle) propa-

gators 〈B′, t′|B, t〉 are equivalent to those of a single d-dimensional harmonic oscillator in

non-relativistic quantum mechanics, whose mass M and (complex) frequency Ω are related

to the longitudinal momentum fractions of the three particles. In the particular case of

the xyyx̄ diagram, the momentum fractions are the same for both regions of 3-particle

evolution and give the Ωi of (4.12) and

Mi = xe(1− xe)E. (4.22)

The formula for a harmonic oscillator propagator,

(
MΩ csc(Ω ∆t)

2πi

)d/2
exp

(
i

2
MΩ

[
(B2 +B′2) cot(Ω∆t)− 2B ·B′ csc(Ω∆t)

])
, (4.23)

is simple enough that the integrals over the initial and final times in (4.20) can be carried

out explicitly [9], giving24

[
dΓ

dxe dye

]

xyyx̄

∝
∫ ∞

0
d(∆t)

∫

By′,By

By′By

[(By′)2(By)2]d/4
(4.24)

×Kd/4

(
1

2
|Mi|Ωi(B

y′)2

)
Kd/4

(
1

2
|Mi|Ωi(B

y)2

)

×∇Cy
23
′∇Cy

23
〈Cy

41
′
,Cy

23
′
, t′y|Cy

41,C
y
23, ty〉

∣∣∣
Cy

23
′
=0=Cy

23; Cy
41
′
=By′; Cy

41=By
,

where now it is the two Bs and two ∇s that are contracted in ways that depend on

the helicity-dependent DGLAP splitting functions. The 4-particle (effectively 2-particle)

propagator 〈C ′41,C
′
23, t

′|C41,C23, t〉 is also a harmonic oscillator propagator, but this time

for a coupled set of two harmonic oscillators. A number of terms are generated when one

takes derivatives ∇C′23
∇C23 of this propagator as in (4.24), but only one of them leads to

divergences of the ∆t integral when ε = 0, and that is then the only term we need to treat

with dimensional regularization. Details are given in appendix F. The small-∆t behavior

24The absolute value signs on |Mi| in (4.24) may at first look redundant, since Mi given by (4.22) is

positive for physical values (0 < xe < 1) of xe. However, we would like to be able to make front-end

transformations (4.2) of our results, and that transformation replaces the original xe by negative values (for

physical values of the new xe) and so replaces the Mi of (4.22) by something negative. AI1 section V.A [7]

discusses how allowing for negative values of Mi requires introducing absolute value signs in certain places,

and the generalization to d dimensions is discussed in ACI3 section IV.A [9].
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of that term, which is all we need to regulate to implement (4.17), is specifically

[
dΓ

dxe dye

](∆t<a)

xyyx̄

∝P (d)
e→e(xe)P

(d)
γ→e

(
ye

1−xe

)∫ a

0

d(∆t)

(∆t)d+1

×
∫

By′,By

By′ ·By

[(By′)2(By)2]d/4
Kd/4

(
1

2
|Mi|Ωi(B

y)2

)
Kd/4

(
1

2
|Mi|Ωi(B

y′)2

)

×exp

[
−1

2
Xy(By)2− 1

2
Xy′(B

y′)2+Xyy′B
y ·By′

]
, (4.25)

where the exponential factor is analogous to the exponential factor in the single harmonic

oscillator propagator (4.23) and corresponds to the exponential of the double harmonic

oscillator problem after setting C ′23 = 0 = C23. The small-∆t expansions of the coefficients

X in the exponent turn out to be

Xy = Xy′ = − iMi

∆t
+
iMiΩ

2
i ∆t

3
+O

(
MΩ4(∆t)3

)
, (4.26a)

Xyy′ = − iMi

∆t
− iMiΩ

2
i ∆t

6
+O

(
MΩ4(∆t)3

)
. (4.26b)

[The fact that the expansions to this order can be written in terms of Ωi (4.12), without

reference to the actual eigenfrequencies Ω± of the double harmonic oscillator problem, is

non-trivial. See appendix F.2.2.]

In (4.25), we also now show explicitly the particular combination of DGLAP splitting

functions that appear, which for this divergent term happen to combine into a simple

product of the (d=2−ε dimensional) spin-averaged splitting functions P
(d)
e→e and P

(d)
γ→e for

e→ γe and γ → eē.

The technical problem we face to carry out dimensional regularization is how to do the

integrals in (4.25) with (4.26) in the small-a limit (4.19). For similar integrals in ref. [9]

(ACI3), we were able to argue that the exponential factor in the integrand limited the range

of the Bs enough in the small-∆t limit that one could make small-argument expansions

of the Bessel functions Kd/4(1
2 |Mi|ΩiB

2). Unfortunately, that is not the case here. If the

exponent in (4.25) were evaluated with (4.26) at leading order in small ∆t, the exponential

would be

exp
[ iMi

2 ∆t
(By′ −By)2

]
. (4.27)

This oscillating exponential will suppress contributions to the integral unless |By′−By| .
∆t/Mi, and so

|By′ −By| . a

Mi
(4.28)

since ∆t ≤ a in (4.25). But (4.27) places no constraint on how large By′ ' By can be.

That is cut off instead by the exponential fall-off of the Bessel functions in (4.25) for large

arguments. [The sub-leading terms of (4.26) are not large enough to cut off the integrand

sooner.] The Bessel functions suppress contributions unless

B . |MiΩi|−1/2. (4.29)
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The integrand remains unsuppressed when the arguments of the Bessel function are of order

1, and so small-argument expansions of the Bessel functions are not applicable. Having to

deal with the Bessel functions as they are makes the integral harder to do.

In appendix G, we show how to evaluate the integral

I≡ iM(|M |Ω)d/2

π

∫ a

0

d(∆t)

(∆t)d+1

∫

B,B′

B ·B′
(B2)d/4(B′2)d/4

Kd/4

(
1

2
|M |ΩB2

)
Kd/4

(
1

2
|M |ΩB′2

)

×exp

[
−1

2
XyB

2− 1

2
Xy′B

′2+Xyy′B ·B′
]
, (4.30)

which is proportional to the one shown in (4.25), to obtain

I= 2π2(iΩ̄)d−1

[
−
(

2

ε
−γE+ln(4π)

)
− ln(2iΩ̄a)+1

iΩ̄a
−ln(iΩ̄a)+3ln(2π)

]
+O(a)+O(ε),

(4.31)

where γE is Euler’s constant and25

Ω̄ ≡ Ω sgn(M). (4.32)

The a dependence will be canceled, as it must, when one adds together all the terms of (4.17)

for the calculation of xyyx̄. When we later combine the xyyx̄ diagram with leading-order

e → γe, the 1/ε pole will be absorbed, as it must, by the known renormalization of αEM

in QED.

The rest of the calculation of xyyx̄ is mostly just a matter of combining the above

with calculations and formulas that are closely analogous to those for diagrams analyzed

in our previous work [7–9]. We will write our decomposition (4.17) of the calculation as

2 Re

[
dΓ

dxe

]

xyyx̄

= lim
“a→0”

{
2 Re

[
dΓ

dxe

](∆t<a)

xyyx̄

+ 2 Re

[
dΓ

dxe

](D2)

xyyx̄

}
+ 2 Re

[
dΓ

dxe

](subtracted)

xyyx̄

,

(4.33)

where [dΓ/dxe]
(subtracted) represents the

∫
d(∆t)

[
F2(∆t)−D2(∆t)

]
term in (4.17). Details

are given in appendix F.

4.3.4 Renormalization

There are two equivalent ways to think about renormalization and the ultimate cancellation

of the xyyx̄ UV divergence appearing in (4.31). One is renormalized perturbation theory:

add counter-term diagrams such as figure 30, so that the combination

[
dΓ

dxe

]

xyyx̄

+

[
dΓ

dxe

]

counterterm
diagram

(4.34)

is finite. Note that in the large-Nf limit of QED, there is no electron wave function

renormalization and no vertex renormalization, and in QED the photon wave function

renormalization is equivalent to charge renormalization.

25The notation Ω̄ defined by (4.32) is unrelated to the notation Ω̄f in AI1 section VI.B [7]: there are only

so many accent marks, and we’ve been forced to recycle.
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+

Figure 30. Renormalization of the xyyx̄ diagram by adding the corresponding (time-ordered)

counter-term diagram.

The other viewpoint, which we find more straightforward to implement,26 is to imagine

that the contribution to dΓ/dxe from all e→γe diagrams, including the leading-order pro-

cess represented by the xx̄ diagram of figure 31 (plus its complex conjugate), are initially

computed using the bare coupling instead of the renormalized coupling. Afterwards, we

convert to the MS-renormalized coupling using the known relation

αbare = αren +
Nfα

2
ren

3π

(
2

ε
− γE + ln(4π)

)
+O(α3) (QED). (4.35)

When expressed in terms of renormalized α, the 1/ε divergences will then cancel in the

combination [
dΓ

dxe

]

xx̄

+

[
dΓ

dxe

]

xyyx̄

(4.36)

through order α2. Since the leading order [dΓ/dxe]
bare
xx̄ is proportional to αbare, (4.35) gives

[
dΓ

dxe

](bare)

xx̄

=

[
dΓ

dxe

](ren)

xx̄

+
Nfαren

3π

[
dΓ

dxe

](ren)

xx̄

(
2

ε
− γE + ln(4π)

)
+O(α3). (4.37)

We will combine the second term on the right-hand side with xyyx̄ to define

[
dΓ

dxe

](ren)

xyyx̄

=

[
dΓ

dxe

]

xyyx̄

+
Nfαren

3π

[
dΓ

dxe

](ren)

xx̄

(
2

ε
− γE + ln(4π)

)
, (4.38)

which is equivalent to figure 30. Note that, because it is multiplied by 2/ε, we will need to

use a d=2−ε formula for the leading-order [dΓ/dxe]xx̄ above, expanded through O(ε). The

explicit formula is given in (F.44) of appendix F.

26The second viewpoint avoids having to sort out a few possible sources of confusion. For example, when

computing amplitudes in quantum field theory, one multiplies external legs by Z
1/2
field instead of Zfield, but

it is the latter that comes from the divergences of self-energy loops such as the photon self-energy loop in

the xyyx̄ diagram. The seeming difference can be resolved by realizing that the leading-order xx̄ diagram

represents a rate rather than an amplitude, and so should be multiplied by |Z1/2
field|

2 = Zfield, which generates

the counter-term diagram in figure 30. But one could also worry about why we have not included other

time-orderings of that counter-term diagram, such as ones where the counter-term occurs later than both

emission vertices. Those contributions turn out to cancel between diagrams with the counter-term in the

amplitude and diagrams with the counter-term in the conjugate amplitude, because of the different signs

in the corresponding evolution operators exp(∓i δH t). The second viewpoint on renormalization allows us

to bypass all of these considerations.
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=

Figure 31. (left) Leading-order time-ordered diagram xx̄ for e → γe. This diagram should be

added to its complex conjugate by taking 2 Re[· · · ]. (right) A completely equivalent way to draw

this diagram.

Now combine the decomposition (4.33) of xyyx̄ into calculable divergent and finite

parts with the renormalization (4.38), and choose D2(∆t) according to (4.18). We find (see

appendix F.6)

[
dΓ

dxe

](ren)

xyyx̄

=−NfαEM

3π

[
dΓ

dxe

]

xx̄

(
ln

(
µ2

(1−xe)EΩi

)
+γE−2ln2+

5

3

)
+

[
dΓ

dxe

](subtracted)

xyyx̄

,

(4.39)

where µ is the renormalization scale. [dΓ/dxe]
(subtracted) is as defined earlier in (4.33), with

the result given by (F.40) of appendix F.

An aspect of handling xyyx̄ divergences worth mentioning here, that was unnecessary

in our previous application of dimensional regularization to real double splitting g → ggg

in ref. [9] (ACI3), is that we find we need the d = 2−ε result for a DGLAP splitting

function — specifically P
(d)
γ→eē, which is the additional splitting function factor in the xyyx̄

divergence (4.25) compared to the leading-order xx̄ diagram of figure 31.

4.4 Relation to the γ → eē virtual diagram (r)

As mentioned earlier in section 4.2, the diagram of figure 9r for NLO γ → eē is related

to the diagram of figure 8k just discussed by a combination of front-end and back-end

transformations. Specifically, similar to (4.4),

2 Re

[
dΓ

dye

]

(r)

= +2Nf Re

∫ 1

0
dxe

{[
dΓ

dxe dye

]

(k)

with substitutions (4.2)

followed by xe↔ye

}
, (4.40)

where [dΓ/dxe dye](k) represents the ye-integrand that integrates to (4.39), which may be

interpreted as

[
dΓ

dxe dye

](ren)

xyyx̄

= −NfαEM

3π

[
dΓ

dxe

]

xx̄

(
ln

(
µ2

(1−xe)EΩ̄i

)
+ γE − 2 ln 2 +

5

3

)
δ(ye)

+

[
dΓ

dxe dye

](subtracted)

xyyx̄

(4.41)

with the understanding that
∫ 1

0 dye δ(ye) = 1. Above, the use of Ω̄i ≡ Ωi sgn(Mi) is

necessary to generalize the xyyx̄ result to work with front-end transformations, as explained

in appendix F.2.3.
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Since we combine leading and next-to-leading order results when we renormalize as

in (4.37), we note here that the relation between leading-order results for γ → eē and

e→ γe is27

2 Re

[
dΓ

dye

]γ→eē

yȳ

= 2Nf(1−ye) Re

{[
dΓ

dxe

]e→γe

xx̄

with substitutions (4.2)

followed by xe↔ye

}
. (4.42)

This can be understood as an application of the same transformation law (4.40) if one

interprets [dΓ/dxe dye]
e→γe
xx̄ ≡ [dΓ/dxe]

e→γe
xx̄ δ(ye).

5 Conclusion

A complete summary of our final formulas for rates is given in appendix A. The work in

this paper completes the analytic calculation of the effect of overlapping formation times in

QED in the simplifying parametric limit α� Nfα� 1. Even though that is a QED limit

only a theorist could love, we think it will be interesting to look at the size of those effects

on shower development as one changes the value of Nfα to be closer and closer to O(1), as a

first exploration of how to carry out similar calculations for QCD if one pushes Nc αs(Q⊥)

to be larger and larger to answer the question of how small or overwhelming overlap effects

are in practice. We leave that QED analysis, as well as discussion of numerical results for

the formulas presented here, to forthcoming work [16].

With these QED results in hand, it should now be possible to complete similar calcu-

lations for large-Nc QCD.
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A Summary of results

In this appendix, we gather our results for three different quantities:
[

∆ dΓ

dxe dye

]

e→eēe
,

[
dΓ

dxe

]

e→γe
, and

[
dΓ

dye

]

γ→eē
. (A.1)

The first is the total overlap correction of figure 7 to real double splitting e → γe → eēe.

The last two are the single splitting rates expanded through next-to-leading order,
[
dΓ

dxe

]

e→γe
=

[
dΓ

dxe

]LO

e→γe
+

[
∆ dΓ

dxe

]NLO

e→γe
, (A.2)

[
dΓ

dye

]

γ→eē
=

[
dΓ

dye

]LO

γ→eē
+

[
∆ dΓ

dye

]NLO

γ→eē
, (A.3)

27The normalization factor (1−ye) in (4.42) is the type of normalization mentioned in footnote 21. For

the overall sign to work in (4.42), one must use the generalized formula (F.47) for [dΓ/dxe]xx̄ that works

for any sign of Mi.
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where the NLO contributions are given by figures 8 and 9 respectively. Note that our

convention is to use xe to refer to the final momentum fraction of an electron after

bremsstrahlung and ye to refer to the final momentum fraction of the electron in an eē

pair that was pair produced.

A.1 Leading-order single-splitting rates

As discussed in appendix C, the leading-order results for single splitting in QED go all the

way back to Migdal [3].

A.1.1 e→ γe

In our notation, the leading-order e→γe rate is28

[
dΓ

dxe

]LO

e→γe
=
α

π
Pe→e(xe) Re(iΩ0) =

α

π
Pe→γ(xγ) Re(iΩ0) (A.4)

with xγ = 1− xe,

Ω0 =

√
−i(1− xe)q̂

2xeE
=

√
−ixγ q̂

2(1− xγ)E
(A.5)

and the relevant DGLAP splitting function

Pe→e(xe) = Pe→γ(xγ) =
1 + x2

e

1− xe
=

1 + (1− xγ)2

xγ
. (A.6)

For the sake of later formulas for virtual corrections, it will later be helpful to also

express the above result in terms of the xx̄ diagram of figure 31 as

[
dΓ

dxe

]LO

e→γe
= 2 Re

[
dΓ

dxe

]

xx̄

. (A.7)

A.1.2 γ → eē

Leading-order pair production γ → eē is essentially the same except that

[
dΓ

dye

]LO

γ→eē
=
Nfα

π
Pγ→e(ye) Re(iΩγ→eē

0 ) (A.8)

with29

Ωγ→eē
0 =

√
−iq̂

2ye(1− ye)E
(A.9)

and

Pγ→e(ye) = y2
e + (1− ye)2. (A.10)

28QCD versions go back to BDMPS [27–29] and Zakharov [20, 21]. To relate the QED and QCD results

in our own notation: (A.4) is AI (1.5a) with Pg→g(x) replaced by Pe→e(xe). The formulas for Ω0 in QED

and QCD are both special cases of the general formula Ω2 = −i[(q̂1/x1) + (q̂2/x2) + (q̂3/x3)]/(2E) of AI

(2.33b), where q̂i is zero for the photon.
29See footnote 28.

– 40 –



J
H
E
P
1
2
(
2
0
1
8
)
1
2
0

A.2 Overlap corrections to real double splitting

We decompose our total results for the overlap correction to real double splitting as

[
∆ dΓ

dxe dye

]

e→eēe
=

[
∆ dΓ

dxe dye

]

seq

+

[
dΓ

dxe dye

]

(I)

+

[
dΓ

dxe dye

]

(II)

, (A.11)

where the pieces are given below and “I” indicates a contribution involving an instanta-

neous 4-fermion interaction. Below we mostly just collect formulas. See appendix E for a

discussion of where those formulas come from.

A.2.1 Sequential diagrams

The “seq” piece above is our result for diagrams (a–c) of figure 7, which are of a type

we refer to as “sequential” diagrams in earlier papers. Adopting notation similar to ACI4

appendix D.3 [10], our result is

[
∆ dΓ

dxe dye

]

seq

= 2NfAseq(xe, ye) (A.12)

with

Aseq(xe,ye)≡Apole
seq (xe,ye)+

∫ +∞

0
d(∆t)

[
2Re

(
Bseq(xe,ye,∆t)

)
+Fseq(xe,ye,∆t)

]
,

(A.13)

Bseq(xe,ye,∆t) =Cseq(x̂1, x̂2, x̂3, x̂4, ᾱ, β̄, γ̄,∆t)

=Cseq(−1,y,1−x−y,x, ᾱ, β̄, γ̄,∆t), (A.14)

Cseq =Dseq− lim
q̂→0

Dseq, (A.15)

Dseq(x1,x2,x3,x4, ᾱ, β̄, γ̄,∆t) =

α2
EMMiM

seq
f

32π4E2
(−x1x2x3x4)

Ω+ csc(Ω+∆t)

∆t

×
{

(β̄Y seq
y Y seq

x̄ +ᾱY
seq
yx̄ Y

seq
yx̄ )Iseq

0 +(ᾱ+β̄+2γ̄)Zseq
yx̄ I

seq
1

+
[
(ᾱ+γ̄)Y seq

y Y seq
x̄ +(β̄+γ̄)Y

seq
yx̄ Y

seq
yx̄

]
Iseq

2

−(ᾱ+β̄+γ̄)(Y
seq
yx̄ Y

seq
x̄ Iseq

3 +Y seq
y Y seq

yx̄ Iseq
4 )
}
, (A.16)

Fseq(xe,ye,∆t) =
α2

EMPe→e(xe)Pγ→e(
ye

1−xe )

4π2(1−xe)
[
Re(iΩi) Re

(
∆t(Ωseq

f )2 csc2(Ωseq
f ∆t)

)

+Re(iΩseq
f ) Re

(
∆tΩ2

i csc2(Ωi ∆t)
)]
, (A.17)

Apole
seq (x,y) =

α2
EMPe→e(xe)Pγ→e(

ye
1−xe )

2π2(1−xe)

(
−1

2
Re(iΩi+iΩ

seq
f )+

π

4
Re(Ωi+Ωseq

f )

)

(A.18)

and

Mi = x1x4(x1 + x4)E, M seq
f = x2x3(x2 + x3)E. (A.19)
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The Iseq
n above represent

Iseq
0 =

4π2

[Xseq
y Xseq

x̄ − (Xseq
yx̄ )2]

, (A.20a)

Iseq
1 = − 2π2

Xseq
yx̄

ln

(
1− (Xseq

yx̄ )2

Xseq
y Xseq

x̄

)
, (A.20b)

Iseq
2 =

2π2

(Xseq
yx̄ )2

ln

(
1− (Xseq

yx̄ )2

Xseq
y Xseq

x̄

)
+

4π2

[Xseq
y Xseq

x̄ − (Xseq
yx̄ )2]

, (A.20c)

Iseq
3 =

4π2Xseq
yx̄

Xseq
x̄ [Xseq

y Xseq
x̄ − (Xseq

yx̄ )2]
, (A.20d)

Iseq
4 =

4π2Xseq
yx̄

Xseq
y [Xseq

y Xseq
x̄ − (Xseq

yx̄ )2]
. (A.20e)

Here and in (A.16), the (X,Y, Z)seq are defined by
(
Xseq

y Y seq
y

Y seq
y Zseq

y

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y

(
Ω+ cot(Ω+ ∆t) 0

0 (∆t)−1

)
a−1

y , (A.21a)

(
Xseq

x̄ Y seq
x̄

Y seq
x̄ Zseq

x̄

)
≡
(
|M seq

f |Ω
seq
f 0

0 0

)
− i(aseq

x̄ )−1>

(
Ω+ cot(Ω+ ∆t) 0

0 (∆t)−1

)
(aseq

x̄ )−1,

(A.21b)
(
Xseq

yx̄ Y seq
yx̄

Y
seq
yx̄ Zseq

yx̄

)
≡ −ia−1>

y

(
Ω+ csc(Ω+ ∆t) 0

0 (∆t)−1

)
(aseq

x̄ )−1, (A.21c)

where the a’s and Ω’s will be given below. The quantities (ᾱ, β̄, γ̄) in (A.14) represent

various combinations of helicity-dependent DGLAP splitting functions and are


ᾱ

β̄

γ̄



e→eēe

=
1

(1− xe)6







−
+

+


 4

|xeyeze|
+




+

+

−



[(

1 +
1

x2
e

)(
1

y2
e

+
1

z2
e

)]



, (A.22)

where

ze ≡ 1−xe−ye. (A.23)

The normal-mode frequencies Ω and matrices a of normal mode vectors that are needed in

the above formulas are

Ωi(x1,x2,x3,x4) =

√
−iq̂
2E

(
1

x1
+

1

x4

)
, (A.24)

Ωseq
f (x1,x2,x3,x4) =

√
−iq̂
2E

(
1

x2
+

1

x3

)
, (A.25)

Ω+ =

√
− iq̂

2E

(
1

x1
+

1

x2
+

1

x3
+

1

x4

)
, (A.26)

ay =

[
(−x1x2x3x4)

(
1

x1
+

1

x2
+

1

x3
+

1

x4

)
E

]−1/2




√
x2x3
−x1x4

1

−
√
−x1x4
x2x3

1


 , (A.27)
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and

aseq
x̄ =

(
0 1

1 0

)
ay. (A.28)

We have written the Ω’s and a’s in general terms above, rather than plugging in the specific

values of (x1, x2, x3, x4) used in (A.14), because the more general form will later be useful

for other types of diagrams.

A.2.2 Diagrams with one instantaneous vertex

The “(I)” piece of our result (A.11) is the contribution from diagrams (e–g) of figure 7.

Paralleling the notation of ACI4 [10] as closely as possible,

[
dΓ

dxe dye

]

(I)

= 2Nf AI(xe, ye), (A.29a)

AI(xe, ye) ≡
∫ ∞

0
d(∆t) 2 Re

(
BI(xe, ye,∆t)

)
, (A.29b)

BI(xe, ye,∆t) =
4
(
xeye(1−xe−ye)

)1/2

(1− xe)2

[
DI(x̂1, x̂2, x̂3, x̂4, ζ,∆t)

+DI(−x̂3,−x̂4,−x̂1,−x̂2, ζ,∆t)
]

=
4
(
xeye(1−xe−ye)

)1/2

(1− xe)2

[
DI(−1, ye, 1−xe−ye, xe, ζ,∆t)

+DI(−(1−xe−ye),−xe, 1,−ye, ζ,∆t)
]
, (A.29c)

DI(x1, x2, x3, x4, ζ,∆t) = −α
2
EMM

seq
f

16π2E
(−x1x2x3x4)ζ

Ω+ csc(Ω+ ∆t)

∆t

Y seq
x̄

Xseq
x̄

, (A.29d)

where

ζ =
(1+|xe|) (|ye|+|ze|)
(1− xe)3(xeyeze)3/2

. (A.30)

M seq
f , Ωseq

f , and Ω+ are given here by the previous general formulas (A.19), (A.25),

and (A.26), for use in (A.21b) for Xseq
x̄ and Y seq

x̄ .

Later, we will need to refer separately to the contributions of the three diagrams (e–g).

The above formula for [dΓ/dxe dye](I) can be decomposed as

[
dΓ

dxe dye

]

(I)

= 2 Re

[
dΓ

dxe dye

]

(e)

+ 2 Re

[
dΓ

dxe dye

]

(f)

+ 2 Re

[
dΓ

dxe dye

]

(g)

(A.31)

where

2 Re

[
dΓ

dxe dye

]

(e)

= Eqs. (A.29) using only the first DI term in (A.29c); (A.32)

2 Re

[
dΓ

dxe dye

]

(f)

= Eqs. (A.29) using only the second DI term in (A.29c); (A.33)

2 Re

[
dΓ

dxe dye

]

(g)

= 0. (A.34)
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A.2.3 Diagrams with two instantaneous vertices

The “(II)” piece of our result (A.11) is the contribution from diagram (d) of figure 7,

which gives

[
dΓ

dxe dye

]

(II)

= 2 Re

[
dΓ

dxe dye

]

(d)

=
4Nfα

2
EM

π2

xeyeze
(1− xe)4

Re(iΩ+) ln 2. (A.35)

This completes the set of formulas needed to numerically evaluate ∆[dΓ/dxe dye]e→eēe.

A.3 NLO corrections to single splitting e→ γe

We will decompose the contributions of figure 8 to single splitting e→ γe as

[
∆dΓ

dxe

]NLO

e→γe
= 2Re

{[
∆dΓ

dxe

]

(h+i+j)

+

[
dΓ

dxe

]

(k)

+

[
dΓ

dxe

]

(l)

+

[
dΓ

dxe

]

(m)

+

[
dΓ

dxe

]

(n)

}
. (A.36)

By the back-end transformation (4.1),

2 Re

[
∆ dΓ

dxe

]

(h+i+j)

= −
∫ 1−xe

0
dye

[
∆ dΓ

dxe dye

]

seq

, (A.37)

2 Re

[
dΓ

dxe

]

(l)

= −
∫ 1−xe

0
dye 2 Re

[
dΓ

dxe dye

]

(e)

, (A.38)

2 Re

[
dΓ

dxe

]

(n)

= 0, (A.39)

where the integrands on the right-hand side are specified in (A.12), (A.32) and implic-

itly (A.34). By the combined front- and back-end transformation (4.6),

2 Re

[
dΓ

dxe

]

(m)

= +

∫ 1−xe

0
dye

{
2 Re

[
dΓ

dxe dye

]

(e)

with (xe, ye, E)→
(−ye
ze

,
−xe
ze

, zeE

)}

(A.40)

with 2 Re[dΓ/dxe dye](e) again given by (A.32).

Finally, diagram (k) is computed in appendices F and G, giving

2Re

[
dΓ

dxe

]

(k)

= 2Re

{
−NfαEM

3π

[
dΓ

dxe

]

xx̄

(
ln

(
µ2

(1−xe)EΩi sgnMi

)
+γE−2ln2+

5

3

)}

+

∫ 1−xe

0
dye2Re

[
dΓ

dxe dye

](subtracted)

xyyx̄

, (A.41)

where the leading-order xx̄ diagram is

[
dΓ

dxe

]

xx̄

=
αEM

2π
Pe→e(xe) iΩi sgnMi. (A.42)
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The “subtracted” rate above is
[

dΓ

dxe dye

](subtracted)

xyyx̄

= −Nfα
2
EMM

2
i

16π4E2
(−x̂1x̂2x̂3x̂4)

∫ ∞

0
d(∆t)

[

Ω+ csc(Ω+∆t)

∆t

{
(β̄Y 2

y + γ̄Y yy′Yyy′)I
new
0 + (2ᾱ+ β̄ + γ̄)Zyy′I

new
1

+
[
(ᾱ+ γ̄)Y 2

y + (ᾱ+ β̄)Y yy′Yyy′
]
Inew

2

− (ᾱ+ β̄ + γ̄)(Y yy′YyI
new
3 + YyYyy′I

new
4 )

}

− (2ᾱ+ β̄ + γ̄)
x̂2x̂3

x̂1x̂2
D(I)

2

]
(A.43)

and

D(I)
2 (∆t) = 2π2

[
ln(2iΩi ∆t sgnMi)

(∆t)2
− iΩ3

i ∆t csc2(Ωi ∆t) sgnMi

]
. (A.44)

Here the Inew
n are the same as the Iseq

n of (A.20) except that the (X,Y, Z)seq there are

replaced by
(
Xnew

y Y new
y

Y new
y Znew

y

)
=

(
Xnew

y′ Y new
y′

Y new
y′ Znew

y′

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y

(
Ω+ cot(Ω+ ∆t) 0

0 (∆t)−1

)
a−1

y ,

(
Xnew

yy′ Y new
yy′

Y
new
yy′ Znew

yy′

)
≡ −ia−1>

y

(
Ω+ csc(Ω+ ∆t) 0

0 (∆t)−1

)
a−1

y . (A.45)

[See (F.3) if further clarification desired.] The M ’s, Ω’s and a’s are as in section A.2.1

with (x1, x2, x3, x4) set to (x̂1, x̂2, x̂3, x̂4) = (−1, ye, 1−xe−ye, xe). The only reason that

the factors of sgnMi in (A.41)–(A.44) are necessary is to accommodate the transformation

of diagram (k) that will later be used to evaluate diagram (r).

The specific additive constants shown in (A.41) assume that the coupling αEM used in

the leading-order calculation (A.4) of single splitting is MS-bar αEM(µ). To use a different

renormalization scheme, one would need to convert (A.41) accordingly, but nothing else

would change.

A.4 NLO corrections to single splitting γ → eē

We will decompose the contributions of figure 9 to single splitting γ → eē as
[

∆dΓ

dye

]NLO

γ→eē
= 2Re

{[
∆dΓ

dye

]

(o+p+q)

+

[
dΓ

dye

]

(r)

+

[
dΓ

dye

]

(s)

+

[
dΓ

dye

]

(t)

+

[
dΓ

dye

]

(u)

}
. (A.46)

By the front-end transformation (4.3),

2 Re

[
∆ dΓ

dye

]

(o+p+q)

= −Nf

∫ 1

0
dxe

{[
∆ dΓ

dxe dye

]

seq

with (A.50) below

}
, (A.47)

2 Re

[
dΓ

dye

]

(s)

= −Nf

∫ 1

0
dxe

{
2 Re

[
dΓ

dxe dye

]

(f)

with (A.50) below

}
, (A.48)

2 Re

[
dΓ

dye

]

(u)

= 0, (A.49)
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where

(xe, ye, E)→
( −xe

1− xe
,

ye
1− xe

, (1−xe)E
)
. (A.50)

By front- and back-end transformation (4.4),

2 Re

[
dΓ

dye

]

(t)

= Nf

∫ 1

0
dxe

{
2 Re

[
dΓ

dxe dye

]

(f)

with (xe, ye, E)→
(−(1−ye)

ye
,
xe
ye
, yeE

)}
.

(A.51)

Finally, the result (A.41) for diagram (k) can be transformed using (4.40) to30

2Re

[
dΓ

dye

]

(r)

= 2Re

{
−NfαEM

3π

[
dΓ

dye

]γ→eē

yȳ

(
ln

(
µ2

EΩγ→eē
0

)
−iπ+γE−2ln2+

5

3

)}

+Nf

∫ 1

0
dxe

{
2Re

[
dΓ

dxe dye

](subtracted)

xyyx̄

with (xe,ye,E)→
( −ye

1−ye
,
xe

1−ye
,(1−ye)E

)}
,

(A.52)

where [
dΓ

dye

]

yȳ

=
NfαEM

2π
Pγ→eē(ye) iΩ

γ→eē
0 (A.53)

is the amplitude for which 2 Re[· · · ] gives the leading-order pair production rate (A.8).

B Similarities and dissimilarities with refs. [23, 25]

Refs. [23, 25] study processes somewhat similar to ours but in the context of next-to-

leading-order DIS in the dipole approximation appropriate to studying small-x physics.

As is standard, one can use the optical theorem to relate DIS cross-sections to the self-

energy of the virtual photon as depicted at leading order, for example, by the time-ordered

diagram in figure 32a. In their application to small-x physics, the medium is very thin

compared to the formation time, and we’ve depicted its extent by the very thin gray region

in figure 32a. Figure 32b shows the same process but now drawn using the conventions

that we have used in figure 7.31 In this paper, however, our explicit calculations are for the

case where the medium is thick compared to the relevant formation times, and so would

be analogous to figure 32c rather than figure 32b.

The photon in DIS is virtual, with a virtuality Q2 that should not be ignored. In

contrast, in our calculations of in-medium showering, we approximate the initial high-

energy particle in figures 7–9 as on-shell, with negligible mass or virtuality.

30See appendix H for technicalities on getting the first term in (A.52) from the transformation of (A.41).

Also, we have not bothered to write any general sgnM factors in (A.52) that would allow this result to in

turn be transformed back again to diagram (k). Instead, here we have just specialized to the specific values

of sgnM of diagram (r).
31In case the reader is wondering how the overall sign matches up between figure 32a and 32b: in our

formalism, the red portion of the diagram represents the conjugate amplitude and so evolves with e+iHt

instead of e−iHt. When doing time-ordered perturbation theory, the sign difference in e∓iHt manifests as a

sign difference between red vertices and blue vertices in our diagram.
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−i ×2 Im
γ∗ γ∗

(a) (b)

2 Re γ∗

(c)

2 Re γ∗

Figure 32. (a) The imaginary part of the leading-order (LO) time-ordered diagram for the vir-

tual photon self-energy for an extremely thin medium, as in the LO piece of the NLO results in

refs. [23, 25]. (b) The same, but drawn in the conventions [7] of our figure 7. (c) What the anal-

ogous process would be in the thick-medium limit considered in this paper. In all cases, the gray

area denotes the longitudinal size of the medium.

Yet another difference is that refs. [23, 25] write their final answers explicitly in terms

of Wilson lines running through the medium, which should be averaged over medium

fluctuations. Because the medium is thin, these Wilson lines do not have time to move

transversely as they cross the medium. For thick media, the paths inside the medium

do move transversely, and this dynamics is incorporated in our treatment of the LPM

effect [7] (based on Zakharov’s picture [20, 21]) in the language of two-dimensional quantum

mechanics with a non-Hermitian potential energy. This is an approximation that relies on

correlation lengths in the medium being small compared to both formation times and the

thickness of the medium. Finally, our explicit calculation in this paper further takes this

potential to be given by the q̂ approximation, appropriate for the LPM effect at high energy

(but see appendix C).

C q̂ in QCD and QED

In this appendix, we mention some qualitative differences between QCD and QED concern-

ing q̂ and its logarithmic dependence on energy at high energy. Though the development

of this paper does not depend on the medium itself being weakly-coupled, we start by

discussing that case.

C.1 q̂ for weakly-coupled systems

For weak coupling, q̂ is given by

q̂ =

∫
d2q⊥ q

2
⊥
dΓel

d2q⊥
, (C.1)

where dΓel/d
2q⊥ is the rate of elastic scattering from the medium for momentum transfer q⊥

perpendicular to the direction of motion of the high-energy particle. Coulomb interactions

give

dΓel

d2q⊥
∝ α2

q4
⊥

(C.2)
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for q⊥ large compared to the inverse electric screening length ξ−1 of the medium.32 For fixed

small coupling α, this behavior leads to a logarithmic UV divergence in the integral (C.1)

for q̂ in both QED and QCD:

q̂ ∝
∫ ∞

∼ξ−1

d(q2
⊥)

α2

q2
⊥
. (C.3)

One may then define q̂(Λ) as a function of some UV cut-off Λ on q⊥. It turns out

that the LPM calculation of the rate for splitting processes such as hard bremsstrahlung

depends on q̂(Q⊥) where Q⊥ is the order of magnitude of the total q⊥ transferred to the

high-energy particle during a formation time. As we’ll review below, this effect (though

not in this language) goes all the way back to the results of Migdal [3].33

That fact notwithstanding, it is interesting that QCD q̂(∞) as calculated by (C.3) is

actually convergent if one accounts for the running of the coupling as α = α(q⊥) in this

particular calculation. The slow decrease of α with increasing momentum due to asymptotic

freedom is just enough to then make the integral (C.3) convergent.34 In contrast, the

running of the coupling in QED makes the divergence slightly worse since αEM(q⊥) grows

with momentum.

But this apparent conclusion that q̂(∞) is finite for QCD, however, is an artifact of

ignoring other higher-order corrections (besides running of the coupling) to the leading-

order analysis (C.3), as we now review.

C.2 Small-x logs in QCD

In this paper, we have looked at splitting processes such as high-energy bremsstrahlung,

which are suppressed by a factor of αs(Q⊥), which is small at high enough energy even

if the medium itself is strongly coupled, i.e. even if αs(ξ
−1) is large. Liou, Mueller, and

Wu [34] have shown that the contribution of high-energy gluon bremsstrahlung to q̂ in QCD

is enhanced by a double logarithm, arising from emission of nearly-collinear gluons with

longitudinal momenta between the medium scale and the high-energy scale E. This double

log is related to double logs that occur in small-x physics. At large energy, the double

logarithm compensates for the small αs(Q⊥) and so QCD q̂(∞) is divergent after all, even

after resummation of leading logarithms at all orders. Refs. [4–6] extended this analysis to

the use of q̂ in the context of calculations of high-energy splitting rates. Ref. [4] argues that

the effective value of q̂ in splitting calculations scales like L2
√
ᾱs for large energy E, with

ᾱs ≡ Ncαs/π, and where L in the present context (infinite medium) means the formation

length. Since L scales like L ∼ E1/2 (for fixed x and small ᾱs), that gives q̂eff ∼ E
√
ᾱs ,

which diverges as E →∞.

C.3 The upshot for this paper

Whether we are talking about QED or QCD, there is some sort of logarithmic dependence

of q̂(Q⊥) on energy. The q̂ in this paper should be fixed to the one appropriate for the

32For a precise leading-order analysis of q̂ in the case of ultra-relativistic plasmas, including screening

effects with all the finicky details, see refs. [30, 31].
33For QCD, this observation can be found in the discussion of eq. (2.19) of ref. [29].
34See, for example, the discussion in ref. [32] or section 2.C of ref. [33].
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energy E. By making the approximation that we can describe scattering from the medium

in terms of a fixed effective value of q̂, we are ignoring one class of sub-leading corrections.

In the long term, one should be able to do a more complete calculation. In the medium

term, we will sidestep this particular issue in forthcoming work [16] by looking at certain

characteristics of high-energy showers that are not sensitive to the precise value of q̂.

C.4 The Coulomb logarithm in Migdal’s QED result

Since this is nominally a paper about QED (albeit large-Nf QED), it may be helpful

to relate our notation and the discussion of Coulomb logs above to the early results by

Migdal [3] for high-energy QED showering off of a medium made up of atoms, a useful

summary of which can be found in the review by Klein [35]. Migdal’s explicit solutions

to his equations rely on assuming that Coulomb logarithms are large, and he does not try

to precisely compute the constants under the logarithms. In the case of significant LPM

suppression (what Migdal would call s � 1), Migdal’s results for e→γe can be rewritten

in the following form at the same leading-log order:35

dΓLPM

dxγ
= n

dσLPM

dxγ
' α

π
Pe→γ(xγ) Re(iΩ), (C.4)

with Pe→γ(xγ) the DGLAP splitting function [1 + (1 − xγ)2]/xγ ,

Ω =

√
−ixγ q̂eff

(
|q̂/Ω|1/2

)

2(1− xγ)E
, (C.5)

and

q̂eff(b−1) = 8πZ2α2n





ln
(
aZ
b

)
, RA . b� m−1

e ;

ln
(
aZ
RA

)
, b . RA.

(C.6)

Physically, the argument of q̂eff in (C.5) represents Q⊥ ∼
√
q̂tform (from the definition of q̂),

remembering that the frequency Ω is of order 1/tform and that rough approximations are

all that are needed for the argument of the logarithm in (C.6) for a leading-log analysis.

The q̂ in the argument of q̂eff can be interpreted as self-consistently q̂eff itself, but it does

not matter at leading-log order. In (C.6), our notation q̂eff(b−1) is motivated by b ∼ 1/Q⊥
because we find it more convenient to express the right-hand side of (C.6) in terms of

transverse distance scales. Above, me is the electron mass, RA is the nuclear radius (which

Migdal somewhat obscures by approximating RA ' 0.5Z1/3α/me), aZ is the length scale

for screening of the nucleus’s Coulomb field by atomic electrons (for which Migdal uses the

Thomas-Fermi approximation aZ ' Z−1/3a0), and Z is atomic number. The case b� m−1
e

not shown above would correspond to no LPM suppression (what Migdal would call s� 1),

35It is easiest to take Migdal’s results from Klein (72–77) [35] because, among other things, Migdal

is inconsistent about whether he works in units where me = 1. In our notation, Klein’s ELPM/ξ(s) is

m4
e/2q̂eff(b), and Migdal and Klein’s s is m2

e|Ω|/81/2q̂eff(b) ∼ m2
e/Q

2
⊥. Our xγ is Klein’s k/E, which he also

calls y. Migdal’s crisp-seeming result that ξ(s) = 2 for s < s1 (what we refer to as b . RA) is actually an

approximation based on the coincidence that ln(aZ/RA) ≈ 2 ln(aZ/m
−1
e ).
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and the case b ' m−1
e would correspond to the transition where the LPM effect is first

turning on (which Migdal would call s ∼ 1).

The point of writing these formulas in the above form is that (C.4) is precisely the

leading-order result (A.4) in our notation. And the leading-log calculation (C.1) of q̂ in

Migdal’s application is

q̂ =

∫
d2q⊥ q

2
⊥
dΓel

d2q⊥
= n

∫
d2q⊥
(2π)2

Z2g4

q4
⊥

= 8πZ2α2n

∫ Λ

∼a−1
Z

dq⊥
q⊥

= 8πZ2α2n ln
( aZ

Λ−1

)
,

(C.7)

where n is the density of atoms. There are now two cases to consider. (i) We mentioned

previously that the scale Q⊥ acts as a UV cut-off on the relevant value of q̂eff for splitting

calculations. Taking Λ ∼ Q⊥, and then rewriting Q⊥ as 1/b for the sake of expressing

scales in terms of transverse distance scales instead of transverse momentum, gives the

logarithm shown for the RA . b � m−1
e case of (C.6). (ii) Ignoring the sub-structure of

the nucleus (whose effects are suppressed by powers of Z−1 except at very much higher

energies36), there is a UV-cutoff on the nucleus’s Coulomb field at b ∼ RA. The effective

cut-off for splitting calculations is therefore Λ−1 ∼ min(Q⊥, R
−1
A ) instead of just Λ ∼ Q⊥,

which accounts for the other case of (C.6).

D Diagrammatic vertex rules

In the main text, figures 17–19 gave examples of LCPT vertex rules and the corresponding

rules in our formalism. The rest of the rules that we need for the large-Nf QED diagrams of

figures 7–9 are shown explicitly in figures 33–36. In some transformations, we must negate

momentum variables (xn,pn) → (−xn,−pn), as indicated, to account for our convention

that momentum variables are negated for particles in conjugate-amplitudes (red lines in

the diagrams). Transverse position variables bn are unaffected. When applied to the defi-

nitions (3.1) and (3.4) of Pij and Bij , this transformation takes (Pij ,Bij)→ (Pij ,−Bij).

The annoying part of working with the rules laid out for matrix elements is that one

must be careful about Fermi statistics in the representation of states, e.g. |eē〉 = −|ēe〉. The

boxed LCPT rule for ēe→ γ in figure 34, for example, could just as well have been written

as 〈f|δH|3, 2〉rel = +gv̄2/εfu3. The sign would be compensated, in a photon self-energy

diagram for example, by whether the propagator between the two vertices was 〈2, 3; t′|2, 3; t〉
or its negative 〈2, 3; t′|3, 2; t〉. (The minus sign in the last case would be equivalent to the

usual accounting where one says that fermion loops come with minus signs.)

We should also clarify a point about our formulas for e → eēe matrix elements, such

as 〈2, 3, 4|δH|i〉rel and related formulas in figures 18 and 35. In these cases, we are only

36For Rp . b� RA, where Rp is the proton radius, the q⊥ integrand in (C.7) for Λ = 1/b is suppressed

for q⊥ � RA because the charges inside the nucleus do not then contribute coherently. (This suppression

replaces Z2 by Z in the integrand by the time q⊥ gets as small as q⊥ ∼ Rp.) As a result, Migdal’s leading-

log result for what we’d call q̂eff(1/b) does not change as b drops below RA. If one goes to energies high

enough (and so b small enough) to probe the substructure of the nucleons (which Migdal did not know

about), then, as a matter of principle, eventually the contribution of scattering from individual quarks

would become important at sufficiently small b� Rp.
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i
3

2
〈2, 3|δH|i〉rel = −gū3/εiv2

or

1 1 1

1
3

2

3

2

〈P |−i δH|〉 = −i above√
|2E1||2E2||2E3|

= ig
2E3/2 Pγ→eē · P32

〈B|−i δH|〉 = g
2E3/2 Pγ→eē ·∇δ(2)(B32)

1 + 4

1 1

3

2

4 4

〈P ′|−i δH|P32,P41〉
= previous× |x2 + x3|−1(2π)2δ(2)(P ′41−P41)

〈B′|−i δH|B32,B41〉
= previous× |x2 + x3|−1δ(2)(B′41−B41)

or

1

3

2
1

3

2

11 〈P |+i δH|〉 = 〈P |−i δH|〉∗(x,p)→(−x,−p)

= − ig
2E3/2 P∗γ→eē · P32

〈B|+i δH|〉 = 〈B|−i δH|〉∗(x,b)→(−x,b)

= − g
2E3/2 P∗γ→eē ·∇δ(2)(B32)

1 + 4
3

2

4 4

1 1

〈P ′|+i δH|P32,P41〉
= previous× |x2 + x3|−1(2π)2δ(2)(P ′41−P41)

〈B′|+i δH|B32,B41〉
= previous× |x2 + x3|−1δ(2)(B′41−B41)

3

2

1

〈|+i δH|P 〉 = 〈P |−i δH|〉∗ = − ig
2E3/2 P∗γ→eē · P32

〈|+i δH|B〉 = 〈B|−i δH|〉∗
= g

2E3/2 P∗γ→eē ·∇δ(2)(B32)

3

1

2

〈|−i δH|P 〉 = 〈|+i δH|P 〉∗(x,p)→(−x,−p)

= ig
2E3/2 Pγ→eē · P32

〈|−i δH|B〉 = 〈|+i δH|B〉∗(x,b)→(−x,b)

= − g
2E3/2 P∗γ→eē ·∇δ(2)(B32)

Figure 33. Like figures 17 and 19 but for pair production. We only show elements that are directly

used in the diagrams of figures 7–9.

giving the specific contribution associated with the accompanying vertex diagram. For

example, the contribution from swapping the two final-state electrons (which in any case

is sub-leading in 1/Nf) is not included, and would correspond to drawing a different vertex

diagram where the “2” and “4” lines were switched.

Keeping track of all the signs and different cases for matrix elements is painstaking.

However, there is an equivalent way to formulate our rules for diagrams that makes it easier

and a little bit more like the conventions for Feynman rules. All the cases of 1↔2 splittings

can be subsumed by the rule shown in figure 37, supplemented by a minus sign for each
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f
3

2
〈f|δH|2, 3〉rel = −gv̄2/εfu3

3

2

1

3

2

1

or 3

2

1

1

1

〈|−i δH|P 〉 = −i above√
|2E1||2E2||2E3|

= ig
2E3/2 P∗γ→eē · P32

〈|−i δH|B〉 = − g
2E3/2 P∗γ→eē ·∇δ(2)(B32)

3

2
1 + 4

4 4

1 1

〈P32,P41|−i δH|P ′〉
= previous× |x2 + x3|−1(2π)2δ(2)(P ′41−P41)

〈B32,B41|−i δH|B′〉
= previous× |x2 + x3|−1δ(2)(B′41−B41)

1

1

or

3

2

1

3

2

1 〈|+i δH|P 〉 = 〈|−i δH|P 〉∗(x,p)→(−x,−p)

= − ig
2E3/2 Pγ→eē · P32

〈|+i δH|B〉 = 〈|−i δH|B〉∗(x,b)→(−x,b)

= g
2E3/2 Pγ→eē ·∇δ(2)(B32)

Figure 34. Like figure 33 but for inverse pair production.

4

2

3

1

〈|+i δH|P34,P12〉 = 〈P34,P12|−i δH|〉∗ = ig2

|x3+x4|3E2

〈|+i δH|B34,B12〉 = ig2

|x3+x4|3E2 δ
(2)(B34) δ(2)(B12)

4

2

3 + 4

3

1

1 + 2

〈P ′|−i δH|P 〉 = −i boxed√
|2E1||2E2||2E3||2E4|

(x3+x4)−2 = −ig2

(x3+x4)4E2

〈B′|−i δH|B〉 = −ig2

|x3+x4|3E2 δ
(2)(B′34) δ(2)(B12)

4

1

2

3

〈|−i δH|P34,P12〉 = 〈P34,P12|+i δH|〉∗(x,p)→(−x,−p) = −ig2

|x3+x4|3E2

〈|−i δH|B34,B12〉 = −ig2

|x3+x4|3E2 δ
(2)(B34) δ(2)(B12)

Figure 35. The other variations of figure 18 that appear in figures 7–9. Above, “boxed” refers to

the boxed LCPT rule in figure 18.

fermion loop in the interference diagrams of figures 7–9 and 31. The rule of figure 37

sometimes differs by a sign from the particular conventions of the −i δH and +i δH matrix

elements we have written down for individual vertices, but the supplemental minus signs

for each fermion loop brings the two different procedures into agreement and also would

produce the correct Fermi-statistics sign for exchange diagrams such as figure 38 (which
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4

2

3 〈3, 4|δH|1, 2〉rel = −g2(v̄2γ+u1)(ū4γ+v2)

(p+
3 +p+

4 )2

1

4

2

3

3 + 41 + 2

〈P ′|−i δH|P 〉 = −i above√
|2E1||2E2||2E3||2E4|

(x3+x4)−2 = ig2

(x3+x4)4E2

〈B′|−i δH|B〉 = ig2

(x3+x4)4E2 δ
(2)(B′34) δ(2)(B12)

4

2

1

3

〈|−i δH|P34,P12〉 = −ig2

|x3+x4|3E2

〈|−i δH|B34,B12〉 = −ig2

|x3+x4|3E2 δ
(2)(B23) δ(2)(B41)

Figure 36. Like figures 18 and 35 but for the LCPT eē→ eē vertex.

are sub-leading in 1/Nf). There are different ways one could assign signs to the vertices

that would give the same net overall sign for interference diagrams such as figures 8–9;

we’ve picked one of them. The rule of figure 37 has the same form as the similar rule

given in AI1 [7] for the 3-gluon vertex except for details about signs. In the rule, the

factor P ēeγ(xi, xj , xk) depends implicitly on the helicities h of the lines as measured in the

directions of the small arrows. The definition of P ēeγ is as in AI1 section IV.E, adapted

here for the QED case as

P ēeγijk =
e(hi+hj+hk)

|xixjxk|
√
P ēeγhi,hj ,hk

(xi, xj , xk) (D.1)

with spin-dependent DGLAP splitting functions

P ēeγ−++(xi, xj , xk) ≡ P e→eγ+→++(−xi → xjxk) = P γ→eē−→−+(−xk → xixj) =
x2
i

|xk|
, (D.2a)

P ēeγ−+−(xi, xj , xk) ≡ P e→eγ+→+−(−xi → xjxk) = P γ→eē+→−+(−xk → xixj) =
x2
j

|xk|
, (D.2b)

P ēeγ−−+ ≡ P e→eγ+→−+ = P γ→eē−→−− = 0, (D.2c)

P ēeγ−−− ≡ P e→eγ+→−− = P γ→eē+→−− = 0, (D.2d)

and e± ≡ ex ± ey. The zeros above are a consequence of chirality conservation. As in

AI1 [7], the P (xi → xjxk) are defined in terms of the usual DGLAP splitting functions by

P (xi → xjxk) ≡ |xi|P (zj , zk) (D.3)

where z ≡ x/xi are the momentum fractions of the daughters relative to their immediate

parent. The advantage of the P (xi, xj , xk) is that they are normalized so that they are

symmetric with respect to permuting the parent with the daughters and so are the same
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k

i j

= − g
2E3/2 P ēeγ(xi, xj , xk) ·∇δ(2)(Bji)

×
{

+1, vertex in amplitude

−1, vertex in conjugated amplitude

m

n

m′

n′

= (above)× |xm + xn|−1 δ(2)(Bmn −B′mn)

Figure 37. (top) A general diagrammatic 3-point rule that covers all the various cases for 0↔3

and 2↔3 particle transitions in the interference diagrams of figures 7–9 and 31, provided one also

includes a minus sign for every fermion loop in the interference diagram. There is no arrow of time

in the drawing of the figure: each of the three lines could be initial or final ones in the corresponding

matrix element. Above, Bij ≡ (bi− bj)/(xi + xj), the signs of the momentum fractions x are to be

taken according to the flow of longitudinal momentum in the direction of the small arrows in the

figure, and Bij = Bjk = Bki. (bottom) The corresponding rule for 3↔4 particle transitions, where

the dashed lines represent spectators that could be fermions or photons.

Figure 38. Example of a final-state electron exchange contribution (which is sub-leading in 1/Nf).

for e → γe and γ → eē, as indicated in (D.2). Eqs. (D.2) only show half of the helicity

cases; the other half are given by Ph1,h2,h3 = P−h1,−h2,−h3 and so

Ph1,h2,h3 = P∗−h1,−h2,−h3
. (D.4)

Similar rules for the instantaneous photon interactions are given by figure 39, which is

similar in implementation to the 4-gluon vertex rule of ACI4 figure 10 [10].

E Calculation of real double splitting (figure 7)

The calculations of real double splitting diagrams e → eēe proceed the same way as the

g → ggg calculations of refs. [7, 8, 10] (AI1,ACI2,ACI4), with schematically very simi-

lar results.

In large Nf , we distinguish the final-state electron that carries the flavor of the initial-

state electron and refer to it as xe. The electron in the pair produced from the photon

(which has a different flavor in large Nf) is referred to as ye. Because we distinguish these
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i j

k l

= − ig2

|xk+xl|3E2 δ
(2)(Bji) δ(2)(Blk)×

{
+1, interaction in amplitude

−1, interaction in conjugated amplitude

Figure 39. Similar to figure 37 but for the 4-fermion vertex associated with longitudinal photon

exchange. The rule here is normalized to cover all the cases in this paper for 0 ↔ 4 or 2↔ 4 particle

transitions, which involve instantaneous e → eēe in either the amplitude or conjugate amplitude.

[We have not bothered presenting a generalized rule for 3 → 3 transitions such as in figures 7(g)

and 8(n) for e→ eēe and 9(u) for eē→ eē, since these diagrams give zero by symmetry arguments

similar to those of ACI4 section III.B [10].]

particles in our large-Nf formulas, ∆dΓ/dxe dye is normalized so that, in applications,

final-state integrations should be performed as

∫ 1

0
dxe dye θ(1−xe−ye) (E.1)

without any factor of 1
2 for identical final-state particles.

E.1 Sequential diagrams

E.1.1 Generic formulas

The calculation of the diagrams of figure 7(a–c) mimics that of the corresponding diagrams

in ACI2 [8]. Using the same notation, the results can be directly taken over, except for

some normalization factors and low-level details that we will get to in a moment. Adapting

the results summarized in ACI4 appendix D.3 [10],37 the sum of figures 7(a–c) yields the

equations (A.12)–(A.19) given in our summary of results. There are a few small differences

between those equations and g → ggg formulas.

• The naive translation of C2
Aαs to QED is

C2
Aαs → NfαEM (sequential diagrams) (E.2)

since (i) the factor of C2
A in QCD sequential diagrams came from d−1

A tr(T aT aT bT b),

which is 1 in QED, and (ii) there are Nf possible flavors of the eē pair produced by

the virtual photon in e→ γ∗e→ eēe.

• In the QED analysis, we do not have to worry about large-Nc “color routings,” which

affected the choice of how to write the g → ggg version of (A.12), as described in

ACI2 section 2.B.1 [8]. Each QCD diagram was the sum of two color routings, with

each routing represented by A. If we adopt the translation (E.2), that means that A
will represent half of each QED diagram, which is the reason for the overall factor of

37The summary in ACI4 appendix D [10] incorporates some corrections [9] to the analysis of “pole” terms

in the earlier paper ACI2 [8]. So it is better to take formulas from ACI4 appendix D than directly from the

original ACI2 analysis.
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2 in (A.12). We could have instead absorbed this factor of 2 into the normalizations

of Dseq, Fseq and Apole
seq , but it seemed more convenient to normalize the lower-level

formulas in exactly the same way as the QCD case.

• For g → ggg, there are three identical particles in the final state, and refs. [7,

8, 10] correspondingly add together all permutations of A(x, y) corresponding to

permuting x, y, and z ≡ 1−x−y. For e → eēe, there are two identical parti-

cles in the final state in ordinary Nf=1 QED, and so one might reasonably think

that, analogously, the Aseq(xe, ye) on the right-hand side of (A.12) above should be

Aseq(xe, ye) + Aseq(ye, xe). If so, one would integrate over final-state particles as
1
2

∫ 1
0 dxe dye θ(1−xe−ye) in applications of dΓ/dxe dye, where the factor of 1

2 would

avoid double counting of identical final states. In large Nf , however, we distinguish

the two electrons as explained previously. To allow applications the option of tracking

the fate of the initial-flavored electron, we have chosen not to include the xe↔ye per-

mutation in (A.12). When using our large-Nf dΓ/dxe dye in applications, one should

correspondingly integrate as in (E.1), without any final-state factor of 1
2 .

The quantities Iseq
n in (A.16) are defined the same way (A.20) as in ACI4 appendix

D.2 [10]. The formulas for (X,Y, Z)seq there and in (A.16), which are expressed in terms

of the eigenfrequencies and eigenmodes of the problem, are also given in ACI4 appendix

D.2 [10]. We will see below that one of the eigenfrequencies, Ω−, vanishes in our QED

application, and so the formulas for (X,Y, Z)seq specialize to (A.21), where

ay =

(
C+

41 C
−
41

C+
23 C

−
23

)
(E.3)

is a matrix of appropriately normalized modes of the double harmonic oscillator problem

in the basis (C41,C23) used by ACI2 [8] at the y vertex of the xyx̄ȳ diagram, and

aseq
x̄ =

(
C+

23 C
−
41

C+
23 C

−
41

)
=

(
0 1

1 0

)
ay (E.4)

is a permutation appropriate to the x̄ vertex.

E.1.2 QED formulas for (ᾱ, β̄, γ̄)

As in ACI2 [8], the (ᾱ, β̄, γ̄) in (A.14) are functions of xe and ye that represent various com-

binations of helicity-dependent DGLAP splitting functions from the vertices of figure 7a.

The relevant QED splitting functions are different from those of the g → ggg process in

QCD. Performing the same calculation as in ACI2 appendix E [8], but using the QED

splitting functions for e → γe and γ → eē appropriate to figure 7a, we find the results
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shown in (A.22).38 Note that

γ̄ = −ᾱ. (E.5)

One may check that

ᾱ+
1

2
β̄ +

1

2
γ̄ =

Pe→e(xe)

x2
e(1−xe)2

Pγ→e
( ye

1−xe
)

(1−xe)y2
e(1−xe−ye)2

, (E.6)

which is the straight-forward translation to QED of a similar relation for g → ggg.39

E.2 Frequencies Ω and eigenmodes

For all of the e → eēe diagrams of figure 7, we will need the relevant frequencies Ω for

3-particle and 4-particle evolution, and the eigenmodes for 4-particle evolution.

E.2.1 3-particle evolution frequency

Quite generally, 3-particle frequencies are given by

Ω(x1, x2, x3) =

√
−i
2E

(
q̂1

x1
+
q̂2

x2
+
q̂3

x3

)
. (E.7)

(See, for example, the review leading up to AI1 eq. (2.33b) [7].) For QED, the q̂ of a photon

is zero, and so this formula becomes

Ω(x
(ē)
1 , x

(γ)
2 , x

(e)
3 ) =

√√√√−iq̂
2E

(
1

x
(ē)
1

+
1

x
(e)
3

)
. (E.8)

For the initial 3-particle evolution of the sequential diagrams of figure 7(a–c) and virtual

diagrams of figure 8(h–k), this gives

Ωi =

√
−iq̂
2E

(
−1 +

1

xe

)
=

√
− i(1−xe)q̂

2xeE
, (E.9)

which is equivalent to (A.24)40 and is also the frequency we quoted for xyyx̄ in (4.12). For

the sequential diagrams, the corresponding final 3-particle evolution has frequency

Ωseq
f =

√
−iq̂
2E

(
1

ye
+

1

1−xe−ye

)
=

√
− i(1−xe)q̂

2ye(1−xe−ye)E
(E.10)

38Specifically, (A.22) is the e→ eēe analog of ACI2 eq. (E4) [8]. The use of the letter z here is unrelated

to the use in (D.3). The absolute value signs on |xeyeze| may seem redundant here, but they are included

for a reason similar to footnote 24: to make sure that (ᾱ, β̄, γ̄) behave appropriately under front-end

transformations (4.2). With the absolute value signs, a front-end transformation maps (ᾱ, β̄, γ̄) into (1 −
xe)

10 times the analogous helicity-averaged product of P’s that one would have constructed for the last

diagram of figure 26.
39See ACI2 eq. (E5) [8]. This is a re-assuring check because it has to hold in order for sequential

diagrams to match up with sequential “Monte Carlo” when the two splittings are far separated in time.

That requirement is implied by ACI2 footnote 28 [8] and the need for ACI2 eqs. (C7) and (C13) to match

up accordingly. Analogous statements must hold for QED.
40We should clarify that the electron line that is called “x

(e)
3 ” in the context of the 3-particle expres-

sion (E.8) happens to be called “x4” in the context of our 4-particle variables (x1, x2, x3, x4) used in the

context of (A.24).
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for figures 7(a,b) and its complex conjugate (Ωseq
f )∗ for figure 7(c). Eq. (E.10) is equivalent

to (A.25) in the case xi=x̂i relevant to sequential diagrams, as in (A.14).

E.2.2 4-particle evolution frequencies and modes

For 4-particle evolution, one just needs to repeat the derivation of AI1 section V.B [7], which

studied the medium-averaged evolution of four high-energy gluons in (large-Nc) QCD. One

can see from the diagrams of figures 7–9 that, for large-Nf QED, the only intermediate 4-

particles states are ēeēe, and so that is the only case we address here. (Beyond the large-Nf

limit, one would need to also consider ēγeγ.) The only difference in the derivation is that

the potential for four large-Nc gluons [AI1 eq. (4.19) [7]] is replaced by the potential

V = − iq̂
4

[
b212 + b223 + b234 + b241 − b213 − b224

]
(E.11)

for (ē, e, ē, e), where bij ≡ bi−bj and where the signs in front of the terms above are minus

the product of the corresponding charges ±1. (E.11) is algebraically equivalent to

V = − iq̂
4

(b1 − b2 + b3 − b4)2. (E.12)

Proceeding as in AI1 [7], one finds the normal mode frequencies (A.26) for Ω+ and

Ω− = 0. (E.13)

The corresponding eigenvectors ~C± are given by (A.27) for ay (E.3) and have been appro-

priately normalized so that (
Cj41

Cj23

)>
M′

(
Cj
′

41

Cj
′

23

)
= δjj

′
(E.14)

with

M′ =

(
x4x1(x4 + x1)

x2x3(x2 + x3)

)
E =

(
x1x4

−x2x3

)
(x1 + x4)E. (E.15)

We’ve chosen to work in the basis (C41,C23) here, rather than the basis (C34,C12) used

in AI1 [7], in order to match the numbering used on sequential diagrams in ACI2 fig-

ure 24 [8].41 One may check that

aya
>
y = (M′)−1, (E.16)

as implied by the normalization condition (E.14).

E.3 Diagrams with instantaneous vertices

The calculation of the real double-spitting diagrams involving instantaneous vertices, shown

in figure 7(d-g), is very similar to the calculation of the QCD diagrams involving 4-point

gluon vertices, shown in figure 40, which were computed in ACI4 [10].

41One may convert to the basis (C34, C12) by simple permutation of the indices. That’s because of charge

conjugation symmetry, which means that the result for (ē, e, ē, e) is the same as that for (e, ē, e, ē), and then

cyclically permute the indices of the latter to get back to (ē, e, ē, e) with (x1, x2, x3, x4)→ (x2, x3, x4, x1).
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Figure 40. QCD diagrams involving 4-gluon vertices, evaluated (for large Nc) in ACI4 [10]. In

this figure, the solid lines above all represent gluons. As usual, the complex conjugates of the above

interference diagrams should also be included by taking 2 Re[· · · ] of the above.

E.3.1 The IĪ diagram

Consider figure 41(d), which is a labeled version of figure 7(d). We will call this the

IĪ diagram with “I” short for “instantaneous 4-fermion vertex.” Its evaluation closely

parallels that of the 44̄ gluon diagram of ACI4 section III.C [10], with the only change

being that the overall factor

S ≡ 1

2dA

∑

h’s

∑

color

[
faiaxefayaze(δhi,hyδhz,−hx − δhi,hzδhx,−hy)

+ faiayefaxaze(δhi,hxδhy,−hz − δhi,hzδhx,−hy)

+ faiazefaxaye(δhi,hxδhy,−hz − δhi,hyδhz,−hx)
]2

= 9C2
A (E.17)

coming from the two 4-gluon vertices in ACI4 eq. (3.12) [10] is replaced here by the factor

S ≡ Nf

2

∑

h’s

[
4|x1x2x3x4|1/2
|x1 + x4|2

δhi,hxδhy ,−hz

]2

=
32Nf |x1x2x3x4|
|x1 + x4|4

. (E.18)

To see this, compare the 4-gluon vertex rule of ACI4 figure 10 [10] with the rule of figure 39

here. From ACI4 eq. (3.16) [10] (times 3 to sum up the equal results from all three color

routings), the QCD gluon result was
[

dΓ

dxe dye

]

44̄

= −9C2
Aα

2
s

16π2

∫ ∞

0
d(∆t) Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t). (E.19)

The corresponding result here is then
[

dΓ

dxe dye

]

IĪ

= −2Nfα
2
EM

π2

xeyeze
(1− xe)4

∫ ∞

0
d(∆t) Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t)

= −2Nfα
2
EM

π2

xeyeze
(1− xe)4

∫ ∞

0

d(∆t)

∆t
Ω+ csc(Ω+ ∆t). (E.20)

Following our general procedure from AI1 [7] of subtracting out the vacuum pieces of each

diagram (which must all cancel in the final result), this is
[

dΓ

dxe dye

]

IĪ

= −2Nfα
2
EM

π2

xeyeze
(1− xe)4

∫ ∞

0

d(∆t)

∆t

[
Ω+ csc(Ω+ ∆t)− 1

∆t

]

=
2Nfα

2
EM

π2

xeyeze
(1− xe)4

iΩ+ ln 2. (E.21)

Adding this diagram to its complex conjugate gives what we labeled as the “(II)” contri-

bution (A.35) to the total answer (A.11).
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x1=−1

x
4 =x

e

x
2 =y

e

x3

(d)

x1=−1

x
4 =x

e

x
2 =y

e

x3

(e)

x3=1

x2
=−
xe

x4
=−
ye

x1

(f)

Figure 41. Labeling of lines for the (d) IĪ, (e) Ix̄ȳ, and (f) x̄ȳI diagrams of figures 7(d–f).

E.3.2 Diagrams with one instantaneous vertex

Now consider the interference diagram of figure 41(e). Remember that our (large-Nf)

convention is that xe is the momentum fraction of the particular final-state electron that

is connected by an electron line to the initial electron.

There are just a few differences with the similar calculation of the 4x̄ȳ gluon process

given in ACI4 section II [10]. First, comparing figure 41(e) here with ACI4 figure 12(a),

our labeling conventions are a little different. The translation is that (x̂1, x̂2, x̂3, x̂4) =

(−1, y, 1−x−y, x) in ref. [10] is permuted to (x̂1, x̂4, x̂2, x̂3) = (−1, xe, ye, 1−xe−ye) here.

Another is that the 4-point vertex factor

faiaxefayaze(δhi,hyδhz,−hx − δhi,hzδhx,−hy)

+
1

2
faiayefaxaze(δhi,hxδhy,−hz − δhi,hzδhx,−hy) (E.22)

of ACI4 eq. (2.9) for its color routing 4ȳx̄2 should be replaced by

4|x1x2x3x4|1/2
(x2 + x3)2

δhi,hxδhy,−hz =
4(xeyeze)

1/2

(1− xe)2
δhi,hxδhy,−hz (E.23)

for the instantaneous vertex in our calculation here, for which there are no color routings

to consider. (Again, compare the 4-gluon vertex rule of ACI4 figure 10 [10] with the rule

of figure 39 here.) Also, unlike ACI4 eq. (2.10), there are no color factors associated with

the other vertices. Finally, g4
s becomes Nfg

4
EM. Making these changes, and keeping track

of the signs of the Bij in our figure 37 rule, we find that ACI4 eq. (2.12) translates to

[
dI

dx dy

]

Ix̄ȳ

= −
(
E

2π

)2 ∫

t(4)<tȳ<tx̄

∑

hx,hy,hz,h̄

∫

Bx̄

× 4i(xeyeze)
1/2

(1− xe)2
Nfg

4 δhi,hxδhy,−hz

× 1

2
E−3/2

[
Pγ→eē
h̄→hy,hz

(1−xe → ye, ze)
]∗
·∇Bȳ〈Bȳ, tȳ|Bx̄, tx̄〉

∣∣∣
Bȳ=0

× 1

2
E−3/2|x̂2 + x̂3|−1

[
Pe→γe
hi→h̄,hx

(1→ 1−xe, xe)
]∗
·∇Cx̄

14

〈C x̄
23,C

x̄
14, tx̄|CI

23,C
I
14, tI〉

∣∣∣
Cx̄

14=0=CI
14=CI

23; Cx̄
23=Bx̄

× (2E)−2|x̂1x̂2x̂3x̂4|−1/2|x̂2 + x̂3|−1. (E.24)
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The helicity sum analogous to ACI4 eqs. (2.14) is

∑

hx,hy,hz


∑

h̄

[
Pγ→eē
h̄→hy,hz

]n̄
(1−xe → ye, ze)

[
Pe→γe
hi→h̄,hx

]m̄
(1→ 1−xe, xe)



∗

× δhi,hxδhy,−hz |x̂1x̂2x̂3x̂4|−1/2. (E.25)

Using the QED formulas in appendix D here, we find that the initial-helicity average

of (E.25) above is

ζ(xe, ye) δ
n̄m̄ (E.26)

with42

ζ =
(1+|xe|) (|ye|+|ze|)
(1− xe)3(xeyeze)3/2

. (E.27)

Contrast to ACI4 eq. (2.16). Following ACI4, the final result, analogous to ACI4 eq. (2.25),

is then
[
dΓ

dx dy

]

Ix̄ȳ

= −Nfα
2
EMM

seq
f

2π2E

(xeyeze)
1/2

(1− xe)2
(−x̂1x̂2x̂3x̂4)ζ

×
∫ ∞

0
d(∆t) Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t)

Y seq
x̄

Xseq
x̄

= −Nfα
2
EM

2π2

(1+|xe|)yeze(|ye|+|ze|)
(1− xe)4

∫ ∞

0

d(∆t)

∆t
Ω+ csc(Ω+ ∆t)

Y seq
x̄

Xseq
x̄

, (E.28)

where Xseq
x̄ and Y seq

x̄ are as in (A.21).

Following the strategy of ACI4 section III.A, the x̄ȳI diagram of figure 41(f) here is like

the mirror reflection of 41(e). Given how we have labeled particles,43 this mirror reflection

transformation can be achieved by the replacement

(x1, x2, x3, x4)→ (−x̂3,−x̂4,−x̂1,−x̂2), (E.29)

including inside of M seq
f = x2x3(x2 + x3)E and

Ωseq
f (x1, x2, x3, x4) =

√
−iq̂
2E

(
1

x2
+

1

x3

)
. (E.30)

For the Ix̄ȳ diagram, Ωseq
f (x̂1, x̂2, x̂3, x̂4) is just a way to write the Ωseq

f of (E.10) in terms of

the 4-particle variables (x̂1, x̂2, x̂3, x̂4). But the form (E.30) has the advantage that, after

the substitution (E.29), it also gives the correct Ω for the initial 3-particle evolution for

x̄ȳI as depicted in figure 41(f).

42Similar to the discussion in footnote 38, absolute value signs have been judiciously included in (A.30) so

that ζ does the right thing under front-end transformations, which for the diagram at hand is implemented

by (4.5). Note that the front-end transformation rule (4.5) for this diagram does not change the sign of

xeyeze, and so there is no need to write |xeyeze| here like there was in (A.22).
43The labeling of figures 41(e) and (f), and so the specifics of the transformation (E.29), are slightly

different than in ACI4 in order to maintain our convention here that xe always refers to the final-state

electron whose electron line is connected to the initial-state electron.
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The x̄Iȳ diagram of figure 7(g) vanishes by parity symmetry for the same reasons as

the ȳ4x̄ diagram in ACI4 section III.B.

These results for diagrams with one instantaneous vertex are summarized in sec-

tion A.2.2.

F Explicit formulas for evaluation of xyyx̄ diagram

F.1 General formula for d=2

From the starting formula (4.8), following the same steps as our earlier work [7, 8]

(AI1,ACI2) on real double splitting rates in (large-Nc) QCD, one obtains formulas that

schematically have the same form. Namely,

[
dΓ

dxe dye

]

xyyx̄

= −Nfα
2
EMM

2
i

16π4E2
(−x̂1x̂2x̂3x̂4)

∫ ∞

0
d(∆t) Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
{

(β̄Y 2
y + γ̄Y yy′Yyy′)I

new
0 + (2ᾱ+ β̄ + γ̄)Zyy′I

new
1

+
[
(ᾱ+ γ̄)Y 2

y + (ᾱ+ β̄)Y yy′Yyy′
]
Inew

2

− (ᾱ+ β̄ + γ̄)(Y yy′YyI
new
3 + YyYyy′I

new
4 )

}
. (F.1)

[which here must eventually be integrated over ye as in (4.7)]. In our QED application,

Ω− = 0 (E.13), and so

Ω− csc(Ω−∆t) =
1

∆t
(F.2)

above. The Inew
n are just like the Iseq

n of (A.20),

Inew
0 =

4π2

[Xnew
y Xnew

y′ − (Xnew
yy′ )2]

, (F.3a)

Inew
1 = − 2π2

Xnew
yy′

ln

(
1−

(Xnew
yy′ )2

Xnew
y Xnew

y′

)
, (F.3b)

Inew
2 =

2π2

(Xnew
yy′ )2

ln

(
1−

(Xnew
yy′ )2

Xnew
y Xnew

y′

)
+

4π2

[Xnew
y Xnew

y′ − (Xnew
yy′ )2]

, (F.3c)

Inew
3 =

4π2Xnew
yy′

Xnew
y′ [Xnew

y Xnew
y′ − (Xnew

yy′ )2]
, (F.3d)

Inew
4 =

4π2Xnew
yy′

Xnew
y [Xnew

y Xnew
y′ − (Xnew

yy′ )2]
, (F.3e)

except that the (X,Y, Z)seq of (A.21) are replaced by (X,Y, Z)new in which M seq
f is replaced

by Mi (because the final 3-particle evolution in the xyyx̄ diagram, figure 29, involves the

same particles as the initial stage of 3-particle evolution) and the aseq
x̄ are replaced by

ay′ = ay (because the particles that merge at the end of the interim 4-particle evolution
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are the same as the ones that split at its start):

(
Xnew

y Y new
y

Y new
y Znew

y

)
=

(
Xnew

y′ Y new
y′

Y new
y′ Znew

y′

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y

(
Ω+ cot(Ω+ ∆t) 0

0 (∆t)−1

)
a−1

y ,

(F.4a)
(
Xnew

yy′ Y new
yy′

Y
new
yy′ Znew

yy′

)
≡ −ia−1>

y

(
Ω+ csc(Ω+ ∆t) 0

0 (∆t)−1

)
a−1

y . (F.4b)

F.2 Small ∆t expansion

F.2.1 Structure

To study the UV divergence of xyyx̄, we want to identify which terms of the integrand

in (F.1) are important as ∆t→ 0. For that, we need the small-∆t expansion of (F.4). At

leading order in ∆t, the expansion is the same for (X,Y, Z)new
y and (X,Y, Z)new

yy′ :

(
Xnew Y new

Y new Znew

)
' −i

a−1>
y a−1

y

∆t
=
−iE(x1 + x4)

∆t

(
x1x4 0

0 −x2x3

)
, (F.5)

where the second equality uses (E.15) and (E.16). This approximation is fine for the Y ’s

and Z’s in (F.1), but it is inadequate for the combination Xnew
y Xnew

y′ −(Xnew
yy′ )2 that appears

in (F.3), which is zero at the order of (F.5).

Going to next order in ∆t,

Xnew
y = Xnew

y′ '
−iMi

∆t
+ |Mi|Ωi +O(∆t), (F.6a)

Xnew
yy′ '

−iMi

∆t
+O(∆t), (F.6b)

Y new
any = O(∆t), (F.6c)

Znew
any =

ix2x3(x1 + x4)E

∆t
+O(∆t), (F.6d)

which gives

Xnew
y Xnew

y′ − (Xnew
yy′ )2 =

−2iM2
i Ωi

∆t
sgnMi +O

(
(∆t

)0
). (F.6e)

One then finds that the Inew
n of (F.3) are all O(∆t). Using these expansions in (F.1) shows

that all the terms in the integrand are finite as ∆t→ 0 except for the term involving Zyy′I1,

whose dependence on ∆t is

Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)Zyy′I
new
1 ∼ 1

(∆t)2
. (F.7)

This Zyy′I1 term contains the small-∆t divergence represented by (4.25) in the main text.

[We will discuss the translation to (4.25) later.]

Because (F.7) blows up as (∆t)−2, we also potentially have a sub-leading divergence

(∆t)−1 if there are any corrections in the small-∆t expansion that are suppressed by only

one more power of ∆t. Tracing back through (F.7) and the expansions (F.6), and noting
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that ln
[
1−X2

yy′/XyXy′
]

= ln
[
(XyXy′ −X2

yy′)/XyXy′
]

in (F.3b), the only correction that

contributes at this order is the O
(
(∆t)0

)
correction to (F.6e). Computing this correction

requires the O(∆t) terms in (F.6a) and (F.6b).

There is a simplification that will allow us to work out a useful formula for the needed

corrections to Xnew
y and Xnew

y′ more generally than for the QED application of relevance

here. So, even though Ω− = 0 for QED, let us be more general and rewrite (F.4) as

(
Xnew

y Y new
y

Y new
y Znew

y

)
=

(
Xnew

y′ Y new
y′

Y new
y′ Znew

y′

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y Ω cot(Ω ∆t)a−1
y , (F.8a)

(
Xnew

yy′ Y new
yy′

Y
new
yy′ Znew

yy′

)
≡ −ia−1>

y Ω csc(Ω ∆t)a−1
y (F.8b)

with

Ω ≡
(

Ω+

Ω−

)
. (F.9)

Noting that (4.9) and (A.19) give x1x4(x1 + x4)E = Mi in (F.5), the small-∆t expansions

of the X’s are then

Xnew
y = Xnew

y′ =
−iMi

∆t
+ |Mi|Ωi +

i

3

[
a−1>

y Ω2a−1
y

]
11

∆t+O
(
(∆t)3

)
, (F.10a)

Xnew
yy′ =

−iMi

∆t
− i

6

[
a−1>

y Ω2a−1
y

]
11

∆t+O
(
(∆t)3

)
. (F.10b)

Then

Xnew
y Xnew

y′ −(Xnew
yy′ )2 =

−2iM2
i Ωi

∆t
sgnMi+M

2
i Ω2

i +Mi

[
a−1>

y Ω2a−1
y

]
11

+O
(
∆t
)
. (F.11)

The expression
[
a−1>

y Ω2a−1
y

]
11

sounds like a mess that depends on detailed formulas for

Ω± and ay. Happily, it can be recast into a very simple form.

F.2.2 Value of a−1>Ω2a−1

As in appendix E.2.2 above, return again to the derivation of eigenfrequencies Ω± and

normal modes in AI1 section V.B [7]. From AI1 (5.17), the relevant Lagrangian has the form

L =
1

2
~̇C>M ~̇C − 1

2
~C>K ~C, (F.12)

where ~C is (C41, C23) or whatever permutation you want, and M and K are 2× 2 matrices

in that basis. The 1
2
~C>K ~C above encodes the potential V of the double harmonic oscillator

problem, e.g. (E.12) in our case. For our basis choice (C41, C23), M is given by (E.15).

The equation of motion from (F.12) is

M ~̈C = −K ~̈C, (F.13)

and the corresponding normal-mode eigenvalue problem is

MΩ2
±
~C± = K~C±. (F.14)
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We can rewrite both cases (±) of this equation simultaneously as

MaΩ2 = Ka, (F.15)

where

a ≡
(
~C+

∣∣ ~C−
)

(F.16)

is the 2 × 2 matrix ay [(E.3) in this paper, or whatever permutation is relevant to one’s

choice of basis for ~C].

Multiplying (F.15) by a> on the left,

a>MaΩ2 = a>Ka. (F.17)

Because the normal modes are orthogonal with respect to M and then normalized (E.14)

so that

( ~Cj)>M ~Cj
′

= δjj
′
, (F.18)

we have a>Ma = 1 and so

Ω2 = a>Ka. (F.19)

Thus,

(a−1)>Ω2a−1 = K. (F.20)

This result is independent of details about the eigenfrequencies or eigenmodes and which

basis we pick for ~C.

In the application to xyyx̄, we want in particular the first element of this matrix,

[
(a−1)>Ω2a−1

]
11

= K11, (F.21)

in the (C41, C23) basis (numbered as in the right-hand diagram of figure 29). In that

context, K11 corresponds to the (complex) spring constant of the problem if we were to set

C23 to zero. That would be the same as setting b2 = b3 and so the same as placing the

e and ē of the photon self-energy loop on top of each other. In that case, the eē pair is,

with regard to charge, indistinguishable from the photon that created them (i.e. no charge

in the QED case here). In this case, the potential in the 4-particle evolution of figure 29

would be the same as that in the preceding 3-particle portion. But that means that K11

must be identical to the spring constant for the initial 3-particle evolution, and so

K11 = MiΩ
2
i (F.22)

in the context of the xyyx̄ diagram. One may verify this general relation in our QED

case by starting from the potential (E.12), following the method of AI1 section V.B [7]

to construct

K = − iq̂
2

(x1 + x4)2

(
1 −1

−1 1

)
(F.23)

in the (C41, C23) basis, and then checking (F.22) using (4.9), (4.12), and (4.22). A similar

check works in the case of (large-Nc) QCD.
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F.2.3 Putting it together

Using the results above, (F.11) becomes

Xnew
y Xnew

y′ − (Xnew
yy′ )2 =

−2iM2
i Ωi

∆t
sgnMi + 2M2

i Ω2
i +O

(
∆t
)
. (F.24)

Using this and our earlier expansions in (F.1) gives the unregulated (ε=0) divergence

[
dΓ

dxe dye

](∆t<a)

xyyx̄

= −Nfα
2
EMM

2
i

16π4E2
(−x̂1x̂2x̂3x̂4)(2ᾱ+β̄+γ̄)

∫ a

0

d(∆t)

(∆t)2
Zyy′I

new
1 +O(a) (F.25)

with

∫ a

0

d(∆t)

(∆t)2
Zyy′I

new
1 =

x̂2x̂3

x̂1x̂4
Iunregulated, (F.26)

Iunregulated = 2π2

∫ a

0
d(∆t)

[
ln(2iΩ̄i ∆t)

(∆t)2
− iΩ̄i

∆t

]
+O(a). (F.27)

This is the origin of (4.11) in the main text. As we will see below, the Iunregulated above is

the unregulated (ε=0) version of the I introduced in (4.30) of the main text. We will see

that the X of (4.25) turn out to represent the Xnew of (F.4) without the |Mi|Ωi terms, i.e.

Xnew
y = |Mi|Ωi + Xy, Xnew

yy′ = Xyy′ . (F.28)

The expansions (4.26) of the X then follow from the expansions (F.10) of the X. Finally,

we note that the relationship (E.6) and the explicit values (4.9) of the xi can be used to

rewrite (F.25) as

[
dΓ

dxe dye

](∆t<a)

xyyx̄

= −Nfα
2
EMM

2
i

8π4E2

Pe→e(xe)Pγ→e
( ye

1−xe
)

xeye(1−xe−ye)(1−xe)3

∫ a

0

d(∆t)

(∆t)2
Zyy′I

new
1 +O(a).

(F.29)

The overall factors of Pe→ePγ→e are the source of the similar overall factors in (4.25),

except that we will need to generalize the derivation to d = 2− ε transverse dimensions.

F.3 Needed generalizations to d=2−ε

In the case of QCD g → ggg, the dimensional regularization of diagrams was carried out

in ACI3 [9]. We can adapt intermediate results from that paper if we (i) first look at

its sequential diagram result for xyx̄ȳ [ACI3 eq. (5.10)], (ii) convert to QED by making

the same modifications as in section F.1 of this paper, and then (iii) adapt the results to

the virtual xyyx̄ diagram as in (4.8). But, for the reasons described in section 4.3.3, we

also need to backtrack in the derivation of ACI3 and never expand the Bessel functions

Kd/4(1
2 |M |ΩB2) [ACI3 eq. (4.15)]. The result is the following generalization of the divergent
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Zyy′I1 term of (F.1) to d dimensions:

[
dΓ

dxe dye

](∆t<a)

xyyx̄

=−
(
µ2

E

)ε
Nfα

2
EMM

2
i

2d+2π2d+1idE2
Γ2

(
1

2
+
d

4

)
(−x̂1x̂2x̂3x̂4)d/2(dᾱ+β̄+γ̄)

×
∫ a

0

d(∆t)

(∆t)d

∫

By′,By

By′ ·By

( |Mi|Ωi

(By′)2

)d/4
Kd/4

(
1

2
|Mi|Ωi(B

y′)2

)

×
( |Mi|Ωi

(By)2

)d/4
Kd/4

(
1

2
|Mi|Ωi(B

y)2

)

×Zyy′ exp

[
−1

2
Xy(By)2− 1

2
Xy′(B

y′)2+Xyy′B
y ·By′

]
+O(a), (F.30)

where the Mi, Ωi and (X , Y, Z) are defined exactly the same as for d=2.

To make contact with the derivation in ACI3, compare (F.30) above to the Z term in

ACI3 (4.14) for the QCD xyȳx̄ diagram. The structure is the same. In addition to a factor

of 2 related to converting the QCD group factors for xyȳx̄ to QED, and the different way

(ᾱ, β̄, γ̄) are contracted here to make dᾱ+β̄+γ̄ for the Z term of xyyx̄, there is one minor

change in the overall pre-factor concerning the powers of µ and E in (F.30) above. µ is the

renormalization scale, which we introduce by writing the d-dimensional coupling constant

gd, which has dimensions of (mass)ε/2, as

gd = µε/2g, (F.31)

where g is the dimensionless coupling constant for ε=0. As a result, the dimensionless

α2
EM in (F.30) is associated with a factor of µ2ε, as written explicitly in the pre-factor.

The overall power of E then follows from dimensional analysis if one takes the conven-

tion, as in ACI3 [9], that the d-dimensional generalizations of (ᾱ, β̄, γ̄) are defined to be

dimensionless.44

We may now use the d-dimensional generalization [9]45

ᾱ+
1

d
β̄ +

1

d
γ̄ =

P
(d)
e→e(xe)

x2
e(1−xe)2

P
(d)
γ→e

( ye
1−xe

)

(1−xe)y2
e(1−xe−ye)2

(F.32)

44To wit, there was a mistake in the prefactors in ACI3 [9], which are off by an overall factor of (µ/E)2ε.

This mistake did not matter there because the 1/ε poles all cancel when one adds up all of the real-double

splitting diagrams (because there should be no UV divergence in the total result if there are no loops in the

amplitude or in the conjugate amplitude). In that case, the ε dependence of an overall factor common to

all diagrams will not matter when we set ε=0 at the end of the day. In this paper, however, the 1/ε poles

do not cancel when we sum the virtual diagrams of figure 8 — they can’t, because we know we need to get

coupling renormalization at this order. ACI3’s error in the overall factor comes in the paragraph of ACI3

appendix A concerning ACI3 eq. (4.3), which forgets that the d-dimensional coupling is dimensionful.
45The argument for this relation is the same as that for ACI3 (5.17) [9]. However, fixing the overall

normalization error described in footnote 44 of the current paper modifies the (1 − x)d−1 in the second

denominator of that equation to 1−x. Like the overall normalization, this correction does not affect any of

ACI3’s final results because of the cancellation of divergence there, but it is important for our current work.
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of (E.6) to rewrite (F.30) as

[
dΓ

dxe dye

](∆t<a)

xyyx̄

=

(
µ2

E

)ε
dNfα

2
EM

2d+2π2did
Γ2

(
1

2
+
d

4

)
P

(d)
e→e(xe)P

(d)
γ→e(ye)

(1− xe)
[
xeye(1−xe−ye)

]ε/2 I +O(a),

(F.33)

where here I is defined by (4.30) with (M,Ω) set to (Mi,Ωi). The explicit formulas (4.9)

and (4.22) for x̂i and Mi have been used above, as well as the small-∆t expansion (F.6d)

of Zyy′ . ye ≡ ye/(1− xe) as in (2.16) is the longitudinal momentum fraction of the virtual

pair’s electron relative to the its immediate parent, the photon. When combined with the

definition of I, (F.33) supplies the proportionality constant that we did not show in the

corresponding version (4.25) in the main text.

We will see later that we do not need the d-dimensional version of the DGLAP splitting

function P
(d)
e→e(xe) in (4.25) because it is common to xyyx̄ and the leading-order process

xx̄. But we will need the d-dimensional version of the other DGLAP splitting function

P
(d)
γ→e(ye), which is46

P (d)
γ→e(z) = z2 + (1−z)2 − 2ε

2−ε z(1−z), (F.34)

which reproduces the usual result in the case ε=0.

F.4 The subtraction D2(∆t)

We now turn to the subtraction D2(∆t) introduced in (4.16) and (4.17),

lim
“a→0”

[∫ a

0
d(∆t)Fd(∆t)+

∫ ∞

a
d(∆t)D2(∆t)

]
+

∫ ∞

0
d(∆t)

[
F2(∆t)−D2(∆t)

]
+O(ε), (F.35)

which will allow us to (i) turn the d=2 expression (F.1) for xyyx̄ into a convergent integral

that can be done numerically, corresponding to the
∫
d(∆t) [F2(∆t)−D2(∆t)] term above,

and (ii) cancel the a dependence of the ∆t<a contribution (F.33), as in the first two terms

above. We will choose D2(∆t) proportional to (4.18). To get the ultimate proportionality

constant, see (F.25)–(F.27), but first we will define a D(I)
2 (∆t) by choosing a proportionality

constant corresponding to the Iunregulated of (F.27):

D(I)
2 (∆t) = 2π2

[
ln(2iΩ̄i ∆t)

(∆t)2
− iΩ̄3

i ∆t csc2(Ω̄i ∆t)

]
. (F.36)

This is equivalent to (A.44), given the definition (4.32) of Ω̄i.

F.4.1 Combination with I

One of the integrals we need in (F.35) is then
∫ ∞

a
d(∆t)D(I)

2 (∆t) = 2π2

(
ln(2iΩ̄ia) + 1

a
+ iΩ̄i

[
ln(2iΩ̄ia)− 1

])
+O(a). (F.37)

46See, for example, eq. (16) of ref. [36], which one may verify independently. Our ε is their 2ε, and their

TR is 1 in the QED case we consider here. The result implicitly depends on the convention [37] that the

trace of the Dirac identity matrix is simply defined as tr(1Dirac) ≡ 4 in d dimensions, which is part of

Conventional Dimensional Regularization for fermions.
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Combining this with the result (4.31) for I, we see that the a dependence cancels, leaving

I+
∫ ∞

a
d(∆t)D2(∆t) = 2π2(iΩ̄i)

d−1

[
−
(

2

ε
−γE+ln(4π)

)
+4ln2+3lnπ−1

]
+O(a)+O(ε).

(F.38)

Now multiply this by the prefactors shown in (F.33) to convert I into the ∆t<a result for

xyyx̄ to get

lim
“a→0”

{[
dΓ

dxe dye

](∆t<a)

xyyx̄

+

[
dΓ

dxe dye

](D2)

xyyx̄

}

= −
(
µ2

E

)ε
dNfα

2
EM

2d+2π2d
Γ2

(
1

2
+
d

4

)
P

(d)
e→e(xe)P

(d)
γ→e(ye)

(1− xe)
[
xeye(1−xe−ye)

]ε/2

× 2π2iΩ̄d−1
i

[
−
(

2

ε
− γE + ln(4π)

)
+ 4 ln 2 + 3 lnπ − 1

]
+O(ε). (F.39)

We’ll leave it in this form for the moment.

F.4.2 The subtracted piece

Using the normalization of (F.26) for the relation between Iunregulated and
∫

(∆t)−2ZI1, the∫
d(∆t) [F2(∆t)−D2(∆t)] term of (F.35) then corresponds to modifying (F.1) and (F.2) to

[
dΓ

dxe dye

](subtracted)

xyyx̄

= −Nfα
2
EMM

2
i

16π4E2
(−x̂1x̂2x̂3x̂4)

∫ ∞

0
d(∆t)

[

Ω+ csc(Ω+∆t)

∆t

{
(β̄Y 2

y + γ̄Y yy′Yyy′)I
new
0 + (2ᾱ+ β̄ + γ̄)Zyy′I

new
1

+
[
(ᾱ+ γ̄)Y 2

y + (ᾱ+ β̄)Y yy′Yyy′
]
Inew

2

− (ᾱ+ β̄ + γ̄)(Y yy′YyI
new
3 + YyYyy′I

new
4 )

}

− (2ᾱ+ β̄ + γ̄)
x̂2x̂3

x̂1x̂2
D(I)

2

]
. (F.40)

As designed, this is an integral that can be done numerically.

F.5 Integration over ye

For the virtual diagram, we need to integrate over ye as in (4.7). For the subtracted

piece (F.40), this is another integral we will do numerically:

[
dI

dxe

](subtracted)

xyyx̄

=

∫ 1−xe

0
dye

[
dI

dxe dye

](subtracted)

xyyx̄

. (F.41)
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For the other piece (F.39), we will do the ye integral analytically. We start by changing

integration variable from ye to ye ≡ ye/(1− xe):

lim
“a→0”

{[
dΓ

dxe

](∆t<a)

xyyx̄

+

[
dΓ

dxe

](D2)

xyyx̄

}

= −
(
µ2

E

)ε
dNfα

2
EM

2d+2π2d
Γ2

(
1

2
+
d

4

)
P

(d)
e→e(xe)

x
ε/2
e (1− xe)ε

∫ 1

0
dye

P
(d)
γ→e(ye)[

ye(1− ye)
]ε/2

× 2π2iΩ̄d−1
i

[
−
(

2

ε
− γE + ln(4π)

)
+ 4 ln 2 + 3 lnπ − 1

]
+O(ε). (F.42)

Ωi does not depend on ye, and the ye integral can be done using the formula (F.34) for

P
(d)
γ→e, giving ∫ 1

0
dye

P
(d)
γ→e(ye)[

ye(1− ye)
]ε/2 =

4 Γ
(

4−ε
2

)

Γ(4−ε) =
2

3
+

5

9
ε+O(ε2). (F.43)

F.6 Renormalization

To carry out renormalization as in (4.38), we need the leading-order result [dΓ/dxe]xx̄ in d

transverse dimensions. That can be taken from the similar result in ACI3 [9] for g → gg

except that CAαs Pg→gg(x) in QCD is replaced by αEM Pe→e(xe) here:47

[
dΓ

dxe

]

xx̄

= −µ
εαEMd

8π
P (d)
e→e(xe) B

(
1

2
+
d

4
,−d

4

) (
2π

MiΩ̄i

)ε/2
iΩ̄i, (F.44)

where B(x, y) ≡ Γ(x) Γ(y)/Γ(x+y) is the Euler Beta function and the factor of µε associated

with αEM comes from (F.31).

Using (4.33) and (F.42)–(F.44), and expanding as necessary in ε, we can rewrite

[
dΓ

dxe

]

xyyx̄

= −NfαEM

3π

[
dΓ

dxe

]

xx̄

(
2

ε
+ ln

(
πµ2

(1−xe)EΩ̄i

)
+

5

3

)
+

[
dΓ

dxe

](subtracted)

xyyx̄

. (F.45)

Renormalizing using (4.38) then leaves us with

[
dΓ

dxe

](ren)

xyyx̄

= −NfαEM

3π

[
dΓ

dxe

]

xx̄

(
ln

(
µ2

(1−xe)EΩ̄i

)
+ γE − 2 ln 2 +

5

3

)

+

∫ 1−xe

0
dye

[
dΓ

dxe dye

](subtracted)

xyyx̄

, (F.46)

in which [dΓ/dxe dye]
(subtracted)
xyyx̄ is given by (F.40). Eq. (F.46) is the result (4.39) quoted

in the main text, but generalized here to handle either sign of Mi and so handle front-end

transformations such as in (4.40). Since the renormalized result (4.39) is finite, we may

use the d=2 version (A.42) of (F.44) there, which is
[
dΓ

dxe

]

xx̄

=
αEM

2π
Pe→e(xe) iΩ̄i for d=2. (F.47)

47Specifically, ACI3 eqs. (3.1), (3.2) and (3.7) [9] give 2 Re[dΓ/dx]xx̄. We’ve used the more general

Ω̄i (4.32) instead of Ωi to fit how we’ve written results for xyyx̄, which we want to have the option of front-

and back-end transforming via transforming via (4.40).
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So, as previously promised, we never need the d-dimensional version of the structure func-

tion factor P
(d)
e→e(xe) that was common to the leading-order xx̄ and the virtual correc-

tion xyyx̄.

F.7 q̂ and dimensional regularization

Throughout this paper, we have used q̂ as an independent parameter describing interactions

with the medium, which could either be calculated theoretically (in certain limiting cases)

or used as a phenomenological parameter. One might worry whether or not the use of

dimensional regularization requires knowing the O(ε) corrections to the 3+1 dimensional

value of q̂, given that various of our formulas along the way have involved 1/ε divergences

multiplying expressions that depend on q̂ through complex frequencies Ω. Fortunately, this

is not an issue. Imagine that we used the full d-dimensional value of q̂ (whatever it is)

everywhere in our intermediate calculations. Since our final, renormalized results are finite

expressions where the ε→ 0 limit is taken, the q̂ in those expressions can then be replaced

in the last step by 3+1 dimensional q̂, just as we did for Pe→e(xe) above.48

G The integral I

In this appendix, we derive the result (4.31) for the I integral defined by (4.30).

G.1 Perturbative treatment of O(MΩ2 ∆tB2) corrections to the exponent

The definition (4.30) of I is

I≡ iM(|M |Ω)d/2

π

∫ a

0

d(∆t)

(∆t)d+1

∫

B,B′

B ·B′
(B2)d/4(B′2)d/4

Kd/4

(
1

2
|M |ΩB2

)
Kd/4

(
1

2
|M |ΩB′2

)

×exp

[
−1

2
XyB

2− 1

2
Xy′B

′2+Xyy′B ·B′
]
, (G.1)

where the X have the small-∆t expansions (4.26)

Xy = Xy′ = − iM
∆t

+
iMΩ2∆t

3
+ · · · , (G.2a)

Xyy′ = − iM
∆t
− iMΩ2∆t

6
+ · · · . (G.2b)

Plugging these expansions into the exponential of (G.1) gives

exp

[
−1

2
XyB

2− 1

2
Xy′B

′2+Xyy′B ·B′
]

= exp

[
iM

2∆t
(B−B′)2

]
exp

[
O(MΩ2∆t{B2,B′

2})
]
,

(G.3)

where the last exponential factor represents the corrections from the second terms in the

expansions (G.2) and O(· · · ) means “of order.” Because of the bound (4.29) on the sizes

of both B and B′ that contribute to I, the exponent of this second exponential is small:

|MΩ2 ∆tB2| . |Ω ∆t| ≤ |Ωa| � 1. (G.4)

48We are assuming here that q̂ has been defined in a physically relevant way so that it itself is not infinite

in 3+1 dimensions. See appendix C.
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We will need this correction, but we can treat it as perturbative, rewriting (G.3) as

exp

[
−1

2
XyB

2− 1

2
Xy′B

′2+Xyy′B ·B′
]

= exp

[
iM

2∆t
(B−B′)2

][
1+O(MΩ2∆t{B2,B′

2})
]
.

(G.5)

Formally, it will be convenient to implement this expansion by introducing a redundant

parameter ξ=1 into (G.2),

Xy = Xy′ = − iM
∆t

+ ξ
iMΩ2∆t

3
+O

(
MΩ4(∆t)3

)
, (G.6a)

Xyy′ = − iM
∆t
− ξ iMΩ2∆t

6
+O

(
MΩ4(∆t)3

)
, (G.6b)

and then think of I as a function I(ξ) of ξ. The above discussion then translates to

I =
[
I(ξ)

]
ξ=1

=

[
I(0) + ξ I′(0) +

ξ2

2!
I′′(0) + · · ·

]

ξ=1

= I(0) + I′(0) +O(a). (G.7)

For the same reason that the unregulated (ε=0) discussion of appendix F.2 did not require

the yet-higher order terms not explicitly shown in (G.6), we will not need them here either.

They give vanishing contribution to I for a→ 0.

G.2 Units

In order to simplify the presentation of calculations, in this appendix we will start by

assuming M > 0 and evaluate I in units where

M = 1 and Ω = 1. (G.8)

At the end, we will be able to put M and the complex-valued Ω back into the answer using

the scaling properties of the definition (G.1) of I and then analytic continuation of Ω back

to complex values. Then we will generalize the result to also cover the case M < 0.

G.3 Representation of Bessel functions

Integrating complicated things involving Bessel functions is hard, which motivates us to

replace each Bessel function with the integral representation49

z−νKν(z) =
π1/2

2νΓ(1
2 + ν)

∫ ∞

1
dp (p2 − 1)ν−

1
2 e−pz (z > 0). (G.9)

So (G.1) for I becomes

I=
i2−d

Γ2(d+2
4 )

∫ ∞

1
dpdq(p2−1)−ε/4(q2−1)−ε/4

×
∫ a

0

d(∆t)

(∆t)d+1

∫

B,B′
B ·B′ exp

[
−1

2
(Xy+p)B2− 1

2
(Xy′+q)B

′2+Xyy′B ·B′
]
. (G.10)

49See, e.g., Gradshteyn & Ryzhik (8.432.3) [38] for a more precise statement on range of validity.
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G.4 Doing the B integrals

To do theB integrals above, it is convenient to take advantage of the form of the exponential

to replace

B ·B′ exp[· · · ]→ ∂

∂Xyy′
exp[· · · ]. (G.11)

The B integral of the exponential gives

∫

B,B′
exp

[
− 1

2
(Xy + p)B2 − 1

2
(Xy′ + q)B′

2
+ Xyy′B ·B′

]

= (2π)d

[
det

(
Xy + p −Xyy′

−Xyy′ Xy′ + q

)]−d/2

=
(2π)d

[
(XyXy′ −X 2

yy′) + Xy′p+ Xyq + pq
]d/2 . (G.12)

Now use (G.11), giving

∫

B,B′
B ·B′ exp

[
−1

2
(Xy + p)B2 − 1

2
(Xy′ + q)B′

2
+ Xyy′B ·B′

]

=
d(2π)dXyy′

[
(XyXy′ −X 2

yy′) + Xy′p+ Xyq + pq
] d

2
+1

. (G.13)

Now specialize to our case by using (G.6) to get

∫

B,B′
B ·B′ exp

[
−1

2
(Xy + p)B2 − 1

2
(Xy′ + q)B′

2
+ Xyy′B ·B′

]

=
−id(2π)d

∆t
[
− i(p+q)

∆t + pq + ξ
] d

2
+1

[
1 +O

(
(∆t)2

)]
. (G.14)

As discussed earlier, the relative O
(
(∆t)2

)
corrections can be dropped because they will

lead to a convergent ∆t integral in d=2 that vanishes as a→ 0.

Using (G.14) in (G.10) gives

I(ξ) =
dπd

Γ2(d+2
4 )

∫ ∞

1
dp dq (p2 − 1)−ε/4(q2 − 1)−ε/4

×
∫ a

0

d(∆t)

(∆t)(d+2)/2

[
−i(p+ q) + (pq + ξ)∆t

]−(d+2)/2
+O(a). (G.15)

We find it convenient to change integration variables to

u =
1

p
, v =

1

q
, (G.16)
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to get50

I(ξ) =
dπd

Γ2(d+2
4 )

∫ 1

0
du dv (1− u2)−ε/4(1− v2)−ε/4

×
∫ a

0

d(∆t)

(∆t)(d+2)/2

[
−i(u+ v) + (1 + ξuv)∆t

]−(d+2)/2
+O(a). (G.17)

G.5 Doing the ∆t integral

To perform the ∆t integrals, we use51

∫ a

0

d(∆t)

(∆t)r(β + α∆t)s
=
a1−rβ−s

(1− r) F

(
1−r, s; 2−r;−α

β
a

)
, (G.18)

where F = 2F1 is the hypergeometric function. In our application (G.17),

∫ a

0

d(∆t)

(∆t)(d+2)/2

[
−i(u+ v) + (1 + ξuv)∆t

]−(d+2)/2

= − 2

dad/2β(d+2)/2
F

(
−d

2
, 1 +

d

2
; 1− d

2
;−α

β
a

)
(G.19)

with

α ≡ 1 + ξuv, β ≡ −i(u+ v) (G.20)

(not to be confused with any other use of the letters α or β in this paper, but there are

only so many letters in the alphabet). Use the hypergeometric transformation

F (a, b; c; z) =
Γ(c) Γ(b− a)

Γ(b) Γ(c− a)
(−z)−a F

(
a, 1− c+ a; 1− b+ a;

1

z

)

+
Γ(c) Γ(a− b)
Γ(a) Γ(c− b) (−z)−b F

(
b, 1− c+ b; 1− a+ b;

1

z

)
, (G.21)

together with F (a, 0; c; z) = 1 [which follows from the series expansion that defines the

hypergeometric function], to rewrite (G.19) as

∫ a

0

d(∆t)

(∆t)(d+2)/2

[
−i(u+ v) + (1 + ξuv)∆t

]−(d+2)/2

= −2

d

[
Γ(1− d

2) Γ(1 + d)

Γ(1 + d
2)

αd/2

β1+d
+

Γ(1− d
2) Γ(−1− d)

Γ(−d
2) Γ(−d)

F
(
1 + d

2 , 1 + d; 2 + d;− β
αa

)

a1+dα1+ d
2

]

= −2 Γ(1− d
2) Γ(1 + d)

dΓ(1 + d
2)

αd/2

β1+d
− F

(
1 + d

2 , 1 + d; 2 + d;− β
αa

)

(1 + d)a1+dα1+ d
2

. (G.22)

The advantage of this rewriting is that the second term on the right-hand side of (G.22)

is finite if we set d = 2. That is, the 1/ε divergence arising from the ∆t integration is

50One check of (G.17) is to set d=2 and ξ = 1, do the (u, v) integrals, and verify that the result repro-

duces (F.27).
51The integral (G.18) can be derived by expanding the integrand in a Taylor series in α and integrating

term by term.
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isolated in the first term. Moreover, we will see that the integration of the finite second

term over (u, v) is also finite, so we do not need to keep dimensional regularization in order

to do those (u, v) integrals: we can just set d=2 there and be done with it. All together,

using (G.22) in the expression (G.17) for I gives

I(ξ) = Idiv(ξ) + Iregular(ξ) +O(a) +O(ε) (G.23)

with (dimensionally regularized) divergent piece

Idiv(ξ) =− dπd

Γ2(d+2
4 )

∫ 1

0
dudv(1−u2)−ε/4(1−v2)−ε/4

2Γ(1− d
2)Γ(1+d)

dΓ(1+ d
2)

αd/2

β1+d

=−2πdΓ(1− d
2)Γ(1+d)

Γ(1+ d
2)Γ2(d+2

4 )

∫ 1

0
dudv(1−u2)−ε/4(1−v2)−ε/4

(1+ξuv)d/2

[−i(u+v)]1+d
(G.24)

and regular, finite piece

Iregular(ξ) = −2π2

∫ 1

0
du dv

F
(
2, 3; 4;− β

αa

)

3a3α2
= −2π2

3a3

∫ 1

0
du dv

F
(
2, 3; 4; i(u+v)

(1+ξuv)a

)

(1 + ξuv)2
. (G.25)

The hypergeometric function above is given in terms of elementary functions as

F (2, 3; 4; z) =
6 [ln(1− z) + z + 1

2z
2]

z3
+

3

1− z (G.26)

and falls like 3/z2 for large z.

G.6 Evaluating Iregular

We have not investigated whether the (u, v) integrals (G.25) for Iregular(ξ) can be performed

by brute force, but the integrals simplify if we use the trick of expanding in ξ as in (G.7):

I = I(0) + I′(0) +O(a). (G.27)

One can use symbolic integration software to do the integrals corresponding to Iregular(0)

and I′regular(0). Alternatively, one can rewrite du dv = 1
2 d(u+v) d(u−v) with appropriate

limits of integration and do the relatively simple u−v integration by hand, followed by the

u+v integration. By either method, the results, when expanded in a, are

Iregular(0) = −2π2

a

[
ln(2ia) + 1

]
− iπ2

[
3 ln(ia) + ln 2− 3

]
+O(a), (G.28)

I′regular(0) = iπ2
[
ln(ia) + 3 ln 2

]
+O(a), (G.29)

so that

Iregular(0) + I′regular(0) = −2π2

a

[
ln(2ia) + 1

]
− iπ2

[
2 ln

(
ia

2

)
− 3

]
+O(a). (G.30)

The ignorability of higher-order terms in the ξ-expansion (G.27) of I in the a→0 limit

will hold for the total I = Idiv + Iregular but turns out not to hold separately for Idiv
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and Iregular. A check we should make on our calculation is that the O(ξ2, ξ3, · · · ) terms

indeed cancel between Idiv and Iregular. For this purpose, it will be sufficient to check that

I′′div(ξ) + I′′regular(ξ) = O(a) for arbitrary ξ ≤ 1. So, for later reference, we note here that

differentiating the integrand of (G.25) twice with respect to ξ gives

I′′regular(ξ) = 4π2i

∫ 1

0
du dv

(uv)2

(
u+ v + i(1 + ξuv)a

)3
(1 + ξuv)

= 4π2i

∫ 1

0
du dv

(uv)2

(u+ v)3(1 + ξuv)
+O(a). (G.31)

G.7 Evaluating Idiv

Rewrite (G.24) as

Idiv(ξ) = −2πd Γ(1− d
2) Γ(1 + d)

Γ(1 + d
2) Γ2(d+2

4 )
id+1A(ξ)

= 4π2i

(
2

ε
− γE − 2 ln(iπ)− 2 +O(ε)

)
A(ξ), (G.32)

where

A(ξ) ≡
∫ 1

0
du dv (1− u2)−ε/4(1− v2)−ε/4

(1 + ξuv)d/2

(u+ v)1+d
. (G.33)

As before, we take the ξ expansion (G.27) of I and so here of A. The integral

A(0) =

∫ 1

0

du dv

(u+ v)1+d
(1− u2)−ε/4(1− v2)−ε/4 (G.34)

does not converge for d = 2−ε near 2, and so we cannot simply expand the integrand in

powers of ε. Dimensional regularization tells us to imagine doing the integral in dimensions

d < 1 where it converges and then analytically continuing the result in d. But we can make

that job easier if we first rewrite (G.34) as

A(0) =

∫ 1

0

du dv

(u+ v)1+d
+

∫ 1

0

du dv

(u+ v)1+d

[
(1− u2)−ε/4(1− v2)−ε/4 − 1

]
. (G.35)

The first integral is relatively easy, whereas the second integral converges for d = 2−ε near

2 and so we may expand that integrand in powers of ε. So, using u↔v symmetry of the

integrand,

A(0) =

∫ 1

0

du dv

(u+ v)1+d
− ε

2

∫ 1

0

du dv

(u+ v)3
ln(1− u2) +O(ε2)

=
2(1− 2−d)

d(1− d)
− ε

2

(
−1

4
− ln 2

2

)
+O(ε2)

= −3

4

[
1 +

(
4

3
− 2

3
ln 2

)
ε+O(ε2)

]
. (G.36)

The next term in the ξ expansion is

A′(0) =
d

2

∫ 1

0
du dv

uv

(u+ v)1+d
(1− u2)−ε/4(1− v2)−ε/4. (G.37)
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This integral is convergent for d near 2, and so we may expand the integrand in powers of

ε. Again using u↔ v symmetry,

A′(0) =
d

2

[∫ 1

0
du dv

uv

(u+ v)3
− ε

2

∫ 1

0
du dv

uv

(u+ v)3
ln(1− u2)

+ ε

∫ 1

0
du dv

uv

(u+ v)3
ln(u+ v)

]

=
d

2

[
1

4
− ε

2

(
1

4
− 1

2
ln 2

)
+ ε

(
3

8
− 3

4
ln 2

)]

=
1

4

[
1 +

(
1

2
− 2 ln 2

)
ε+O(ε2)

]
. (G.38)

Combining this with (G.36) gives

A(0) + A′(0) = −1

2

[
1 +

7

4
ε+O(ε2)

]
(G.39)

and thence, from (G.32),

Idiv(0) + I′div(0) = 2π2i

[
−2

ε
+ γE + 2 ln(iπ)− 3

2
+O(ε)

]
. (G.40)

Let’s also pause to check the cancellation of higher-order terms O(ξ2, ξ3, · · · ) in the ξ

expansion. Differentiating (G.24) twice with respect to ξ gives

I′′div(ξ) =−2πdΓ(1− d
2)Γ(1+d)

Γ(1+ d
2)Γ2(d+2

4 )

∫ 1

0
dudv(1−u2)−ε/4(1−v2)−ε/4

d
2(d2−1)(1+ξuv)

d
2
−2(uv)2

[−i(u+v)]1+d
.

(G.41)

The integral is convergent for d near 2, and expanding in ε gives

I′′div(ξ) = −4π2i

∫ 1

0
du dv

(uv)2

(u+ v)3(1 + ξuv)
+O(ε). (G.42)

As promised, this indeed cancels the corresponding behavior (G.31) up to O(a) corrections,

confirming the expansion I = I(0) + I′(0) +O(a) for the total I = Idiv + Iregular.

G.8 Final result for I for M > 0

Combining (G.7), (G.23), (G.30), and (G.40), we get the result for the integral I defined

by (4.30):

I = 2π2i

[
−
(

2

ε
− γE + ln(4π)

)
− ln(2ia) + 1

ia
− ln a+ 3 ln(2π) +

iπ

2

]
(G.43)

in units where M = 1 and Ω = 1. We have isolated the combination 2
ε − γE + ln(4π) above

because that is the combination that appears in MS renormalization (4.35).

To restore M and Ω, note that we could scale out all the M and Ω from the original

integral (G.1) combined with (G.2) by rescaling integration variables as

B → B

(MΩ)1/2
, ∆t→ ∆t

Ω
. (G.44)
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This rescaling brings (G.1) into a dimensionless form times (i) the M(MΩ)d/2 already ex-

plicit in (G.1), (ii) a factor of Ωd from the d(∆t)/(∆t)d+1, and (iii) a factor of (MΩ)−(d+2)/2

from the ddB ddB′ B ·B′/(B2)d/4(B′2)d/4. These combine into an overall factor of Ωd−1.

We can therefore go backward and restore the original units to (G.43) by (a) replacing a

(which is a cut-off on ∆t) by Ωa and (b) multiplying by Ωd−1 overall, giving

I = 2π2iΩd−1

[
−
(

2

ε
− γE + ln(4π)

)
− ln(2iΩa) + 1

iΩa
− ln(Ωa) + 3 ln(2π) +

iπ

2

]
, (G.45)

which can also be written as

I = 2π2(iΩ)d−1

[
−
(

2

ε
− γE + ln(4π)

)
− ln(2iΩa) + 1

iΩa
− ln(iΩa) + 3 ln(2π)

]
, (G.46)

G.9 Generalization to include M < 0

Let I(M,Ω) represent I as a function of M and Ω. From the definition of I by (G.1)

and (G.2), one can see that

I(−M,Ω) = [I(M,Ω∗)]∗. (G.47)

This relation tells us how to get the result for negative M from the result (G.46) for positive

M . We can implement the relation by rewriting (G.46) as

I = 2π2(iΩ̄)d−1

[
−
(

2

ε
− γE + ln(4π)

)
− ln(2iΩ̄a) + 1

iΩ̄a
− ln(iΩ̄a) + 3 ln(2π)

]
(G.48)

with Ω̄ ≡ Ω sgnM as in (4.32). This is the result that was quoted in (4.31).

H Technical points concerning front-end transformations

H.1 Branch cuts for the transformation (k)→(r)

The result given by eqs. (A.41) and (A.42) for diagram (k) contains a term

− Nfα
2
EM

6π2
Pe→e(xe) 2 Re

{
iΩi sgn(Mi) ln

(
µ2

(1−xe)EΩi sgnMi

)}
. (H.1)

Under a combined front-end and back-end trasnformation, this term transforms the same

way as (4.42). [See the comment after (4.42) to understand the relation to (4.40).] Under

this transformation, Ωi → (Ωγ→eē
0 )∗ and sgn(Mi)→ −1. (H.1) transforms to

− Nfα
2
EM

6π2
Pγ→e(ye) 2 Re

{
−i(Ωγ→eē

0 )∗ ln

(
µ2

−E(Ωγ→eē
0 )∗

)}

= −Nfα
2
EM

6π2
Pγ→e(ye) 2 Re

{
iΩγ→eē

0 ln

(
µ2

−EΩγ→eē
0

)}
. (H.2)

This result may be confusing depending on whether one thinks that the minus sign inside

the logarithm represents eiπ or e−iπ. In general, we try to write expressions so that the

relevant branch cut for logarithms is along the negative real axis. Since Ωγ→eē
0 ∝

√
−i
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(which should be interpreted as e−iπ/4 in LPM formulas), that means that (H.2) above is

the same as

− Nfα
2
EM

6π2
Pγ→e(ye) 2 Re

{
iΩγ→eē

0

[
ln

(
µ2

EΩγ→eē
0

)
− iπ

]}
, (H.3)

which is how we have written it in (A.52).

To understand why this is the correct interpretation of the logarithm in (H.2), and the

origin of why there is a −iπ term in (H.3) for diagram (r) that is not in (H.1) for diagram

(k), we need to step back to an earlier stage of the derivation. The important difference

revolves around the overall factor of 1/id in (F.30) for the xyyx̄ (k) diagram. This factor

can be traced back to the small-∆t expression for the 4-particle (effectively 2-particle)

propagator in ACI3 (4.9) [9], which can be viewed as the product of a free propagator for

C34 times a free propagator for C12,

〈C34,C12,∆t|C ′34,C
′
12, 0〉 '

(
M34

2πi∆t

)d/2
ei|C34−C′34|2/2 ∆t ×

(
M12

2πi∆t

)d/2
ei|C12−C′12|2/2 ∆t,

(H.4)

with

M34 = x3x4(x3+x4)E, (H.5a)

M12 = x1x2(x1+x2)E = −x1x2(x3+x4)E (H.5b)

For the xyyx̄ diagram, (x1, x2, x3, x4) = (−1, ye, 1−xe−ye, xe), which means that both

of the masses (M34,M12) are positive. The total phase associated with the exponential

prefactors in (H.4) is then

(
1

i

)d/2
×
(

1

i

)d/2
=

(
1

i

)d
for diagram (k). (H.6)

This is the origin of the overall i−d in (F.30). The reason (M34,M12) given by (H.5) were

positive was that for the 4-particle portion of the evolution in figure 8k there is only one line

which is in the conjugate amplitude (x1 < 0) and the other three are all in the amplitude

(x2, x3, x4 > 0). In contrast, for the 4-particle portion of the evolution in figure 9r, there

are two lines in the conjugate amplitude (two of the xi < 0) and two in the amplitude (the

other two xi > 0), and so one of (M34,M12) will be positive and one will be negative. The

analog of (H.6) is then

(
1

i

)d/2
×
(
−1

i

)d/2
= 1 for diagram (r). (H.7)

One can consider (H.7) as the product of an ordinary free propagator times the conjugate

of an ordinary free propagator, for which the overall phases cancel.

In consequence, if we had done a direct calculation of (r) [instead of using our front-

end trick], there would have been a relative factor of id between our calculations of (k)

and our calculations of (r). When multiplied by the 2/ε divergence of those calculations,
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like in (F.45), this leads to a relative additive term ±iπ between the finite terms in (F.45)

and their analog for (r). So, ultimately, the origin of the −iπ difference between the form

of (H.1) and (H.3) is that in figure 8k the earliest splitting and the photon self-energy loop

both happen in the amplitude whereas in figure 9r, one happens in the amplitude and the

other in the conjugate amplitude.

H.2 Front-end transformations in d=2−ε dimensions

The front-end transformation rules given in the main text were for d=2. On a diagram

by diagram basis, there are some subtleties conerning overall normalization when d=2−ε,
which we now discuss, but they do not affect any of the results in this paper.

H.2.1 Transformation of leading-order rates

The easiest way to find the necessary modifications is to consider the transformation (4.42)

that related leading-order rates for e → γe and γ → eē. In d = 2−ε dimensions, the xx̄

diagram for e→ γe is given by (F.44) as

[
dΓ

dxe

]e→γe

xx̄

= −µ
εαEMd

8π
P (d)
e→e(xe) B

(
1

2
+
d

4
,−d

4

)(
2π

MiΩ̄i

)ε/2
iΩ̄i (H.8)

with Ω̄i = Ωi sgn(Mi) and Mi = xe(1−xe)E. If we take a front-end and back-end transfor-

mation, as shown in figure 42, we should get the conjugate of the analogous γ → eē result,

which is
[
dΓ

dye

]γ→eē

yȳ

= −Nfµ
εαEMd

8π
P (d)
γ→e(ye) B

(
1

2
+
d

4
,−d

4

)(
2π

Mγ→eēΩ̄γ→eē

)ε/2
iΩ̄γ→eē (H.9)

with Mγ→eē = ye(1−ye)E. In addition to the d-dimensional splitting function of (F.34),

we also need52

P (d)
e→e(z) =

1 + z2

1− z −
ε

2
(1−z). (H.10)

One can check that the transformation (4.42) does not do the job to relate (H.8) to (H.9).

To get it to work, one must modify the overall power of 1−ye in (4.42) to (1−ye)1−ε. One

also needs to account for the fact that the rate e→ γe is averaged over electron helicities and

summed over photon helicities, whereas the rate for γ → eē is the opposite. In dimensional

regularization, the number Nγ of initial photon helicities is 2− ε, but the number of initial

electron helicites Ne is fixed by the convention tr(1Dirac)≡4 to be exactly 2. We need to

account for this difference by including a factor Ne/Nγ in our transformation. One can

check already at the level of the DGLAP splitting functions (F.34) and (H.10) that

P (d)
γ→e(z) = (1−z)

Ne
Nγ

P (d)
e→e

( −z
1−z

)
. (H.11)

Using that, one finds that the d=2−ε generalization of (4.42) is

2Re

[
dΓ

dye

]γ→eē

yȳ

= 2Nf(1−ye)1−ε Ne
Nγ

Re

{[
dΓ

dxe

]e→γe

xx̄

with (xe,E)→
( −ye

1−ye
,(1−ye)E

)}
.

(H.12)

52See, for example, eq. (14) of ref. [36] with similar conversions as in our earlier footnote 46.
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Figure 42. The conversion of the leading-order diagram xx̄ for e→ γe via front-end and back-end

transformation into the conjugate of the leading-order diagram yȳ for γ → eē.

∗

xyȳx̄ (xȳyx̄)∗

Figure 43. The conversion of the QCD diagram xyȳx̄ for g → ggg via front-end and back-end

transformation into the conjugate of the diagram xȳyx̄ for g → ggg. Long and short dashed lines

represent final-state gluons with longitudinal momentum fractions x and y respectively.

H.2.2 Transformation of NLO rates

To get the transformation law for NLO rates, we can just use the obsevation after (4.42)

that one can interpret [dΓ/dxe dye]
e→γe
xx̄ ≡ [dΓ/dxe]

e→γe
xx̄ δ(ye) in the leading-order rate

formula. The d=2−ε analog of (4.40) will then be

2 Re

[
dΓ

dye

]

(r)

= 2Nf(1−ye)−ε
Ne
Nγ

Re

∫ 1

0
dxe

{[
dΓ

dxe dye

]

(k)

with

(xe, ye, E)→
( −ye

1−ye
,
xe

1−ye
, (1−ye)E

)}
. (H.13)

However, we do not need this in this paper. Because the additional factor of (1−ye)−εNe/Nγ
we needed to add to the d=2 transformation laws was the same for both the leading-order

and NLO rates, it can be factored out when transforming the final renormalized rate (F.46).

Since the renormalized rate is finite, we can then set ε=0, and so the additional factor is

just 1 and makes no difference there. We would only need the additional factor if we wanted

to individually transform divergent diagrams.

H.2.3 A check: the QCD xyȳx̄ and xȳyx̄ diagrams

Part of the reason we went through this discussion is so that we could make an explicit check

of front-end transformations using previous results [7, 9] for QCD diagrams. In particular, a

front-end plus back-end trasnformation should relate the two g → ggg interference diagrams

depicted in figure 43. These diagrams are each UV divergent (particular time-orderings of

tree-level diagrams can be UV divergent even though the sum of all time-orderings is not),

and so one must use the d=2−ε version of the transformation. Here, the initial particles
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are always gluons, so that transformation law is simply

2 Re

[
∆ dΓ

dx dy

]

xȳyx̄

= 2(1−y)−ε

{[
∆ dΓ

dx dy

]

xyȳx̄

with (x, y, E)→
( −y

1−y ,
x

1−y , (1−y)E

)}
.

(H.14)

Using formulas for xyȳx̄ and xȳyx̄ from AI1 [7] and ACI3 [9], we have checked that the

above transformation indeed works.53
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in order to be able to implement front-end transformations (see footnote 38). Since it is only x (and not y

or 1−x or 1−y or 1−x−y) that negates under the transformation in (H.14), it is sufficient to just replace

the factors of x and x3 by |x| and |x|3 in AI (4.39).

– 82 –

https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/search?p=find+IRN+661082
https://inspirehep.net/search?p=find+IRN+664006
https://doi.org/10.1103/PhysRev.103.1811
https://doi.org/10.1103/PhysRev.103.1811
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,103,1811%22
https://doi.org/10.1016/j.nuclphysa.2014.05.018
https://doi.org/10.1016/j.nuclphysa.2014.05.018
https://arxiv.org/abs/1403.2323
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2323
https://doi.org/10.1007/JHEP10(2014)095
https://arxiv.org/abs/1403.1996
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1996
https://doi.org/10.1007/JHEP12(2014)081
https://arxiv.org/abs/1408.5459
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5459
https://doi.org/10.1007/JHEP04(2015)070
https://arxiv.org/abs/1501.04964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04964
https://doi.org/10.1007/JHEP09(2016)078
https://arxiv.org/abs/1605.07624
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.07624
https://doi.org/10.1007/JHEP10(2016)100
https://arxiv.org/abs/1606.08853
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08853
https://doi.org/10.1007/JHEP10(2016)124
https://arxiv.org/abs/1608.05718
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05718


J
H
E
P
1
2
(
2
0
1
8
)
1
2
0

[11] G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum

Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

[12] S.J. Brodsky and G.P. Lepage, Exclusive Processes in Quantum Chromodynamics, Adv. Ser.

Direct. High Energy Phys. 5 (1989) 93 [INSPIRE].

[13] S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories

on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].

[14] Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Camb. Monogr.

Part. Phys. Nucl. Phys. Cosmol. 33 (2012) [errata available at

https://www.physics.ohio-state.edu/∼yuri/typos.pdf] [INSPIRE].

[15] L. Mantovani, B. Pasquini, X. Xiong and A. Bacchetta, Revisiting the equivalence of

light-front and covariant QED in the light-cone gauge, Phys. Rev. D 94 (2016) 116005

[arXiv:1609.00746] [INSPIRE].

[16] P. Arnold, S. Iqbal and T. Rase, Strong- vs. weak-coupling pictures of jet quenching: a dry

run using QED, arXiv:1810.06578 [INSPIRE].

[17] G.D. Moore, Transport coefficients in large Nf gauge theory: Testing hard thermal loops,

JHEP 05 (2001) 039 [hep-ph/0104121] [INSPIRE].

[18] A. Ipp, G.D. Moore and A. Rebhan, Comment on and erratum to ‘Pressure of hot QCD at

large Nf ’, JHEP 01 (2003) 037 [hep-ph/0301057] [INSPIRE].

[19] G.D. Moore, Pressure of hot QCD at large Nf , JHEP 10 (2002) 055 [hep-ph/0209190]

[INSPIRE].

[20] B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED

and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

[21] B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and

quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

[22] G. Beuf, Dipole factorization for DIS at NLO: Loop correction to the γ∗T,L → qq light-front

wave functions, Phys. Rev. D 94 (2016) 054016 [arXiv:1606.00777] [INSPIRE].

[23] G. Beuf, Dipole factorization for DIS at NLO: Combining the qq̄ and qq̄g contributions,

Phys. Rev. D 96 (2017) 074033 [arXiv:1708.06557] [INSPIRE].

[24] T. Lappi and R. Paatelainen, The one loop gluon emission light cone wave function, Annals

Phys. 379 (2017) 34 [arXiv:1611.00497] [INSPIRE].

[25] H. Hänninen, T. Lappi and R. Paatelainen, One-loop corrections to light cone wave

functions: the dipole picture DIS cross section, Annals Phys. 393 (2018) 358

[arXiv:1711.08207] [INSPIRE].

[26] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics,

Chin. Phys. C 40 (2016) 100001 [INSPIRE].

[27] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, The

Landau-Pomeranchuk-Migdal effect in QED, Nucl. Phys. B 478 (1996) 577

[hep-ph/9604327] [INSPIRE].

[28] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of

high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483

(1997) 291 [hep-ph/9607355] [INSPIRE].

– 83 –

https://doi.org/10.1103/PhysRevD.22.2157
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D22,2157%22
https://doi.org/10.1142/9789814503266_0002
https://doi.org/10.1142/9789814503266_0002
https://inspirehep.net/search?p=find+IRN+2019329
https://doi.org/10.1016/S0370-1573(97)00089-6
https://arxiv.org/abs/hep-ph/9705477
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9705477
https://www.physics.ohio-state.edu/~yuri/typos.pdf
http://inspirehep.net/record/1217905
https://doi.org/10.1103/PhysRevD.94.116005
https://arxiv.org/abs/1609.00746
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00746
https://arxiv.org/abs/1810.06578
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.06578
https://doi.org/10.1088/1126-6708/2001/05/039
https://arxiv.org/abs/hep-ph/0104121
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0104121
https://doi.org/10.1088/1126-6708/2003/01/037
https://arxiv.org/abs/hep-ph/0301057
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0301057
https://doi.org/10.1088/1126-6708/2002/10/055
https://arxiv.org/abs/hep-ph/0209190
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0209190
https://doi.org/10.1134/1.567126
https://arxiv.org/abs/hep-ph/9607440
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9607440
https://doi.org/10.1134/1.567389
https://arxiv.org/abs/hep-ph/9704255
https://inspirehep.net/search?p=find+J+%22JETPLett.,65,615%22
https://doi.org/10.1103/PhysRevD.94.054016
https://arxiv.org/abs/1606.00777
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00777
https://doi.org/10.1103/PhysRevD.96.074033
https://arxiv.org/abs/1708.06557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06557
https://doi.org/10.1016/j.aop.2017.02.002
https://doi.org/10.1016/j.aop.2017.02.002
https://arxiv.org/abs/1611.00497
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00497
https://doi.org/10.1016/j.aop.2018.04.015
https://arxiv.org/abs/1711.08207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.08207
https://doi.org/10.1088/1674-1137/40/10/100001
https://inspirehep.net/search?p=find+J+%22Chin.Phys.,C40,100001%22
https://doi.org/10.1016/0550-3213(96)00426-9
https://arxiv.org/abs/hep-ph/9604327
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9604327
https://doi.org/10.1016/S0550-3213(96)00553-6
https://doi.org/10.1016/S0550-3213(96)00553-6
https://arxiv.org/abs/hep-ph/9607355
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9607355


J
H
E
P
1
2
(
2
0
1
8
)
1
2
0

[29] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and

p⊥-broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265

[hep-ph/9608322] [INSPIRE].

[30] P.B. Arnold and W. Xiao, High-energy jet quenching in weakly-coupled quark-gluon plasmas,

Phys. Rev. D 78 (2008) 125008 [arXiv:0810.1026] [INSPIRE].

[31] S. Caron-Huot, O(g) plasma effects in jet quenching, Phys. Rev. D 79 (2009) 065039

[arXiv:0811.1603] [INSPIRE].

[32] A. Peshier, QCD running coupling and collisional jet quenching, J. Phys. G 35 (2008)

044028 [INSPIRE].

[33] P.B. Arnold, Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding

Medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].

[34] T. Liou, A.H. Mueller and B. Wu, Radiative p⊥-broadening of high-energy quarks and gluons

in QCD matter, Nucl. Phys. A 916 (2013) 102 [arXiv:1304.7677] [INSPIRE].

[35] S. Klein, Suppression of Bremsstrahlung and pair production due to environmental factors,

Rev. Mod. Phys. 71 (1999) 1501 [hep-ph/9802442] [INSPIRE].

[36] S. Catani and M. Grazzini, Collinear factorization and splitting functions for

next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143

[hep-ph/9810389] [INSPIRE].

[37] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

[38] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th corrected and

enlarged edition, Academic Press (1980).

– 84 –

https://doi.org/10.1016/S0550-3213(96)00581-0
https://arxiv.org/abs/hep-ph/9608322
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9608322
https://doi.org/10.1103/PhysRevD.78.125008
https://arxiv.org/abs/0810.1026
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1026
https://doi.org/10.1103/PhysRevD.79.065039
https://arxiv.org/abs/0811.1603
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1603
https://doi.org/10.1088/0954-3899/35/4/044028
https://doi.org/10.1088/0954-3899/35/4/044028
https://inspirehep.net/search?p=find+J+%22J.Phys.,G35,044028%22
https://doi.org/10.1103/PhysRevD.79.065025
https://arxiv.org/abs/0808.2767
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2767
https://doi.org/10.1016/j.nuclphysa.2013.08.005
https://arxiv.org/abs/1304.7677
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7677
https://doi.org/10.1103/RevModPhys.71.1501
https://arxiv.org/abs/hep-ph/9802442
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9802442
https://doi.org/10.1016/S0370-2693(98)01513-5
https://arxiv.org/abs/hep-ph/9810389
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9810389
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B44,189%22

	Introduction
	Overview
	Overlapping formation times in large-N(f) QED
	Assumptions and approximations
	Some qualitative results
	Outline
	Reference acronyms

	Qualitative differences between QCD and QED
	Single splitting
	Formation times
	Splitting rates
	An aside on nearly-democratic splitting

	Overlapping double splitting
	Review of QCD estimate for g –> ggg
	QED estimate for e –> e bar e e
	Leading-log formula for e –> e bar e e


	Light cone perturbation theory for overlapping LPM
	Diagrammatic rules and their translation
	An implicit approximation

	Virtual corrections to single splitting
	Back-end transformation
	Front-end transformations
	The fundamental virtual diagram
	Overview
	Dimensional regularization: strategy
	Dimensional regularization: application to xyy bar x
	Renormalization

	Relation to the gamma –> e bar e virtual diagram (r)

	Conclusion
	Summary of results
	Leading-order single-splitting rates
	e –> gamma e
	gamma –> e bar e

	Overlap corrections to real double splitting
	Sequential diagrams
	Diagrams with one instantaneous vertex
	Diagrams with two instantaneous vertices

	NLO corrections to single splitting e –> gamma e
	NLO corrections to single splitting gamma –> e bar e

	Similarities and dissimilarities with refs. [20,22]
	hat q in QCD and QED
	hat q for weakly-coupled systems
	Small-x logs in QCD
	The upshot for this paper
	The Coulomb logarithm in Migdal's QED result

	Diagrammatic vertex rules
	Calculation of real double splitting (figure 7)
	Sequential diagrams
	Generic formulas
	QED formulas for (bar alpha,bar beta,bar gamma)

	Frequencies Omega and eigenmodes
	3-particle evolution frequency
	4-particle evolution frequencies and modes

	Diagrams with instantaneous vertices
	The I bar I diagram
	Diagrams with one instantaneous vertex


	Explicit formulas for evaluation of xyy bar x diagram
	General formula for d =2
	Small Delta t expansion
	Structure
	Value of a**( - 1)T Omega**(2) a**( - 1)
	Putting it together

	Needed generalizations to d =2 -epsilon
	The subtraction D(2) (Delta t)
	Combination with I
	The subtracted piece

	Integration over y(e)
	Renormalization
	hat q and dimensional regularization

	The integral I
	Perturbative treatment of O(M Omega**(2) Delta t B**(2)) corrections to the exponent
	Units
	Representation of Bessel functions
	Doing the B integrals
	Doing the Delta t integral
	Evaluating I(regular)
	Evaluating I(div)
	Final result for I for M > 0
	Generalization to include M < 0

	Technical points concerning front-end transformations
	Branch cuts for the transformation (k) –>(r)
	Front-end transformations in d =2 -epsilon dimensions
	Transformation of leading-order rates
	Transformation of NLO rates
	A check: the QCD x y bar y bar x and x bar y y bar x diagrams



