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We elucidate chirality production under parity breaking constant electromagnetic fields, with which we
clarify qualitative differences in and out of equilibrium. For a strong magnetic field the pair production
from the Schwinger mechanism increments the chirality. The pair production rate is exponentially
suppressed with mass according to the Schwinger formula, while the mass dependence of chirality
production in the axial Ward identity appears in the pseudoscalar term only. We demonstrate that, in a real-
time formulation with in and out states, the axial Ward identity with an in-in expectation value leads to a
chirality production rate consistent with the Schwinger formula, while the axial anomaly with an in-out
expectation value is canceled by the pseudoscalar condensate for any mass. We illuminate that such an in-
and out-state formulation clarifies subtleties in the chiral magnetic effect in and out of equilibrium, and we
discuss further applications to real-time condensates.
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Introduction.—Chirality is a topical keyword for anoma-
lous phenomena in physics and related subjects. In the
context of high-energy physics in which the fermion mass
is often neglected, the chirality and the helicity are
identifiable, which has also motivated a modern redefini-
tion of chirality in chemistry [1].
The most notable feature of chirality in relativistic

fermionic systems is the realization of the quantumanomaly.
Since relativistic fermionic dispersion relations are realized
in not only 2D but also 3D materials, as in the Weyl and
Dirac semimetals [2–5], it is of paramount importance to
probe the chiral anomaly in laboratory experiments, with
optical environments as well as in quantum chromodynam-
ics (QCD). One proposed signature for the chiral anomaly is
the negative magnetoresistance [6], which is a signal of
chiral anomaly through the chiralmagnetic effect [7]. For the
first experimental detection based on simple theoretical
arguments, see Ref. [8], and for the resummed field-
theoretical calculation of the negative magnetoresistance,
see Ref. [9].
In all ideas to access the chiral anomaly, the generation of

finite chirality imbalance is indispensable. The simplest
optical setup is, as discussed in Ref. [10], parallel electric
and magnetic fields. Then, the chirality production rate is

related to the Schwinger mechanism as used in
Refs. [10,11], and at the same time it is dictated by the
axial Ward identity as argued in Ref. [12]. Such a simple
electromagnetic configuration is also useful to test ideas in
real-time numerical simulations [13,14].
Even though the parallel electromagnetic fields are

simple to treat, there are still some controversies especially
on different manifestations of the chiral anomaly in and out
of equilibrium. In this Letter we clarify these controversies
by addressing the following two closely related problems,
namely: (i) The effect of fermion mass m; it is quite often
assumed that the mass dependent term can be dropped from
the axial Ward identity if m ¼ 0, but this is not always
justified. (ii) Real-time and Euclidean observables; the m
dependence is totally different depending on how to take
the expectation value in the presence of electric fields.
Answering these questions will naturally lead us to a

clear picture of chiral dynamics. Moreover, we will see that
our present considerations have many applications to be
studied in the future.
An enigma.—We choose constant and parallel electric E

and magnetic B fields in the three-axis direction. Then, the
celebrated formula for the Schwinger mechanism reads,

ω ¼ e2EB
4π2

coth

�
B
E
π

�
exp

�
−
πm2

eE

�
ð1Þ

for the pair production rate (for a comprehensive review,
see Ref. [15]). In a particular limit of strong B (i.e.,

ffiffiffiffiffiffi
eB

p
being the largest mass scale in a system), the spin direction
is completely aligned along B, so that particles have
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definite chirality in a reduced (1þ 1)-dimensional system
emerging in the lowest Landau level approximation
(LLLA). The right-handed (R) particles increase and the
left-handed (L) particles decrease creating L antiparticles
under E, as sketched in Fig. 1.
A pair of R and L̄ production thus changes the chirality

by two, leading to a relation as used in Ref. [10],

ω⟶
B≫E e2EB

4π2
exp

�
−
πm2

eE

�
¼ 1

2
∂tn5; ð2Þ

where n5 is the chiral charge density, that is an expectation
value of j05.
The right-hand side ∂tn5 is dictated by the axial Ward

identity, i.e.,

∂μj
μ
5 ¼ −

e2

16π2
ϵμναβFμνFαβ þ 2mψ̄iγ5ψ ð3Þ

on the operator level, where ϵμναβFμνFαβ ¼ −8EB for
parallel E and B in the present setup. After taking the
expectation value with hji5i ¼ 0 presumed (which is
checked by explicit calculations in the method discussed
later), the chirality production should follow,

∂tn̄5 ¼
e2EB
2π2

þ 2mhψ̄iγ5ψi: ð4Þ

(The reason for changing n5 by n̄5 will be explained below.)
One might have thought that Eqs. (2) and (4) are consistent
ifm ¼ 0, which is frequently assumed in the literature. The
justification is not so trivial, however, even for the m ¼ 0
case. Because parallel E and B make a parity breaking
combination, hψ̄iγ5ψi ∝ EB is anticipated. In fact, for the
pseudoscalar condensate, Schwinger performed the calcu-
lation using the proper-time method to discuss the inter-
action between the neutral meson and the proton, which
results in [16]

P̄ ≔ hψ̄iγ5ψi ¼ −
e2EB
4π2m

: ð5Þ

This makes ∂tn̄5 ¼ 0 for anym including evenm ¼ 0 limit.
This apparent contradiction between ω and ∂tn̄5 is quite

often overlooked in a naive treatment of dropping
mhψ̄iγ5ψi for m ¼ 0. As a matter of fact, it is well known
that anm ¼ 0Abelian gauge theory could be quite different
from a theory in the m → 0 limit, where in the former the
electric charge is completely shielded [17]. In QCD, m ≈ 0
only approximately holds, so we should consider the latter
limit judiciously.
In state and out state.—To resolve this puzzle, the crucial

observation is that the vacua at t → �∞ are not identical
when an E field is imposed, even if E itself is static. If we
take A0 ¼ 0 gauge, A3ðtÞ is needed for E along the three-
axis direction, and the in state jini and the out state jouti are
different by A3ð�∞Þ, which are connected by the
Bogoliubov transformation. Let us introduce the following
notation for the in- and out-state expectation values:

hOi ≔ houtjOðtÞjini; ⟪O⟫ ≔ hinjOðtÞjini ð6Þ
for an operator OðtÞ in the Heisenberg representation. In
quantum field theory calculus the generating functional
represents an amplitude houtjini, and we must clearly
distinguish,

n̄5 ≔ hj05i; n5 ≔ ⟪j05⟫: ð7Þ
In principle, one can utilize the Schwinger closed time path
formalism to deal with ⟪O⟫. The straightforward approach
is, however, technically complicated for our present prob-
lem, especially with A3ðtÞ.
Fortunately, for the constant E case, a much simpler

formulation has been known. According to Ref. [18] the
two-point correlation function takes the following proper-
time representation,

Scinðx; yÞ ≔ i⟪TψðxÞψ̄ðyÞ⟫ ¼ ðiDx þmÞΔc
inðx; yÞ; ð8Þ

where we can express Δc
inðx; yÞ using z ¼ x − y and the

proper time s as

Δc
inðx;yÞ¼

�
θðz3Þ

Z
Γ>
dsþθð−z3Þ

Z
Γ<
ds

�
gðx;y;sÞ: ð9Þ

Here, the integration contours Γ> and Γ< are shown in
Fig. 2, respectively, where we introduced a slightly differ-
ent (but equivalent) representation from Ref. [18].
After some calculations we find the integration kernel

with parallel E and B as

gðx;y;sÞ¼ e2EB
ð4πÞ2 sinh

−1ðeEsÞsin−1ðeBsÞ

×exp

�
−i
�
1

2
eFσþm2

�
sþ iφðx;y;sÞ

�
; ð10Þ

wherem2 should be understood asm2 − iϵ for convergence
in Minkowskian spacetime. We used a shorthand notation,
Fσ ¼ Fμνσ

μν, whose explicit form is

FIG. 1. Schematic picture of the pair production in a reduced
(1þ 1)-dimensional system in the LLLA form ¼ 0; right-handed
particles and left-handed antiparticles and thus net chirality are
generated with parallel E along the three-axis direction.
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e−ið1=2ÞeFσs¼

0
BBBBB@

e−eðE−iBÞs 0

eeðE−iBÞs

eeðEþiBÞs

0 e−eðEþiBÞs

1
CCCCCA

ð11Þ

in the chiral representation of γμ. The coordinate dependent
phase is

φðx; y; sÞ ¼ 1

2
xeFy −

1

4
z cothðeFsÞeFz; ð12Þ

where xeFy ¼ xμeFμνyν, etc. Armed with the explicit form
of the two-point correlation function, we are ready for
concrete calculations.
An éclaircissement.—Let us first consider,

P ≔ ⟪ψ̄iγ5ψ⟫ ¼ −lim
y→x

tr½γ5Scinðx; yÞ�: ð13Þ

For this expectation value a term involving D
in Eq. (8) vanishes in the y → x limit, and so P ¼
−imtr½γ5Δc

inðx; y → xÞ�, leading to

P ¼ −4i
me2EB
ð4πÞ2

Z
Γ
dse−im

2s ¼ −
e2EB
4π2m

ð1 − e−πm
2=ðeEÞÞ;

ð14Þ

where Γ is either Γ> or Γ<, which is irrelevant for the
computation of P since there is no pole in the integrand.
Then, taking the ⟪…⟫ expectation value of Eq. (3) and
plugging Eq. (14) into it, we see that Eq. (2) holds as it
should. We note that Eq. (14) was conjectured in Ref. [11]
from the Schwinger formula, but the clear recognition of
differences with in and out states as revealed in this workwas
missing.
Interestingly, using our method, we can directly evaluate

n5 from Eq. (8) to reach a consistent conclusion, i.e., n5 ¼
2ωt correctly (where t appears from the phase space volume
[18]), while we find n̄5 ¼ 0 as is again consistent with

∂tn̄5 ¼ 0. Although the details for the n5 and n̄5 calculations
are extremely intriguing on their own, wewill spell out step-
by-step procedures in a follow-up publication.
Now, we have clarified that n5 in the Schwinger mecha-

nism should be a real-time observable as defined by ⟪O⟫ in
Eq. (6), which has a demystified consistency with the axial
Ward identity. Then, it is interesting to consider what ∂tn̄5 ¼
0 means. To answer this question it would be convenient to
Wick-rotate the time (not the proper time) as t → τ to switch
to Euclidean theory, in which jini and jouti are the ground
states at τ ¼ 0 and τ ¼ β, respectively. Then, what we
computed by hOi corresponds to the static and Euclidean
expectation value at β ¼ ∞ (i.e., zero temperature).
The situation is evenmore transparent if we performed the

Euclidean Monte Carlo calculation on the lattice. As dis-
cussed in Ref. [19], even with real E (for which two flavors
are oppositely charged to avoid the sign problem, whichmay
well be called an “isospin” E [19]), the lattice simulation
always measures hOi and cannot describe the real-time
particle production; only the charge distribution deformedby
E or the polarization in the final state is observed.
We note that ∂tn̄5 ¼ 0 should be interpreted as h∂τjτ5i ¼ 0

with theEuclidean time derivative. Onemight be surprised by
the fact that the anomaly effect completely vanishes with the
Euclidean expectation value, but one can easily understand
why it should be so for the m ¼ 0 case. The topological
properties of the ground state are characterized by the θ angle,
and the ground state energy is independent of θ if there is any
m ¼ 0 fermion. Then, there is no nonzero topological charge
and no chirality flip. In this way, h∂τjτ5i ¼ 0 is actually
demanded for m ¼ 0 and the careful m → 0 limit of the
second term in Eq. (4), which may not always vanish, is
crucial. See also Ref. [20] for an independent approach
leading to the same conclusion as ours for m ¼ 0. We must
emphasize that it is astonishing that h∂τjτ5i ¼ 0 holds for any
m, about which we have no simple explanation.
One important extension along these lines of n5 is found in

the calculation of the chirality fluctuation. In particular, in the
high-energy nuclear collision experiments, fluctuations aver-
aged over many collision events or even with a single event
are important physical observables. Then, it is an urgent task
in theory to compute, χ5 ≔ ð⟪N2

5⟫ − ⟪N5⟫
2Þ=V, where

N5 ≔
R
d3xj05ðxÞ to quantify the idea of the local parity

violation. Our setup with parallel E and B is very simple
but mimics the initial condition of the nuclear collision
known as the Glasma flux tubes. Again, if we performed
the lattice Monte Carlo simulation, we would get
χ̄5 ≔ ðhN2

5i − hN5i2Þ=V, which is qualitatively different
from our interested χ5. As we already saw, the disconnected
piece, ⟪N5⟫ ¼ R

d3x2ωt, grows linearly with time, and the
term∝ t2 in ⟪N2

5⟫ is subtracted in χ5. This also implies that a
term∝ t still remains in χ5, which is absent in χ̄5. We actually
find such a term∝ tEBe−2πm

2=ðeEÞ, all the details about which
shall be reported in a follow-up publication. Instead, below,
we shall focus on local observables involving only one

FIG. 2. For the standard propagator, ihTψðxÞψ̄ðyÞi, the proper-
time integration should go along Γc (dashed line), while for Scin
the contour is complexified as Γ> for z3 > 0 and Γ< for z3 < 0.
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Scinðx; yÞ, namely, the expectationvalues of the current and the
scalar operators.
Chiral magnetic effect in and out of equilibrium.—It is a

straightforward exercise to compute the vector current
associated with the chiral magnetic effect. In Ref. [10]
the answer was inferred from the Lorentz transformation of
the Schwinger formula. With our method, although it is a
tedious calculation, particularly complex poles in the
proper-time integration need careful treatments, after all
we arrive at

j3 ¼ ⟪ψ̄γ3ψ⟫ ¼ −lim
y→x

tr½γ3Scinðx; yÞ� ¼ 2ωt; ð15Þ

which is the right answer for strong B; generated n5 is
immediately converted to j3. We note that the above result
does not rely on the LLLA; we simply used the LLLA
argument to relate the axial Ward identity and the
Schwinger formula, but our results of P, n5, j3 are all
valid beyond the LLLA.
Here, interestingly, a simple calculation yields

j̄3 ≔ hψ̄γ3ψi ¼ 0 ð16Þ

in the same way to obtain n̄5 ¼ 0. This is a very important
result to demonstrate unambiguously that the chiral mag-
netic effect does not exist in Euclidean spacetime. In short,
in equilibrium, there is no chirality generation, and there is
no topological current.
Such a statement about equilibrium chiral magnetic effect

itself is not quite new, see Ref. [21]. Some confusion is
attributed to a chiral chemical potential μ5; with μ5 it seems
that the equilibrium chiral magnetic effect is always exist [7]
but one should be aware of the fact that the introduction of μ5
implicitly assumes a systemout of equilibrium (otherwise,μ5
should be vanishing). Thus, μ5 is a very useful bookkeeping
device to access the correct physics out of equilibrium even
within equilibrium framework. However, the price to pay is
that qualitative differences in the chiralmagnetic effect in and
out of equilibrium cannot be clear as long as μ5 is incorpo-
rated. Equations (15) and (16) clearly show that the chiral
magnetic effect is an intrinsically real-time phenomenon.
Also we note that, if one performed the lattice Monte Carlo
simulation with Euclidean or isospin real E and B trying to
quantify a chiral magnetic current on the lattice, Eq. (16)
predicts that the lattice answer for the current should be zero.
Dynamical chiral condensate.—Now, let us turn to

another problem, that is, a scalar condensate (which is
commonly called the chiral condensate in QCD). Since we
already discussed the pseudoscalar condensates, P̄ and P, it
would be a quite natural extension of the study. The scalar
condensate is as important as P̄ and P since it would induce
constituent masses. In the absence of E, it is established that
strong B and a tiny interaction would inevitably lead to a
finite chiral condensate, and this is referred to as the

magnetic catalysis [22,23]. In this case the induced chiral
condensate (apart from interaction contributions) reads,

Σ̄jE¼0 ≔ hψ̄ψiE¼0 ¼ −
eB
4π2

m
Z
ΓΛ
c

ds
s
e−im

2s cotðeBsÞ

≃ −
eB
4π2

mΓ½0; m2=Λ2�; ð17Þ

where we can imaginary rotate [24] the proper time is → s
to make the above look identical to the expression in
Refs. [22,23]. We can also approximate the incomplete
gamma function as Γ½0; x� ∼ −γE − lnx for small x, with γE
being the Euler-Mascheroni constant. The ultraviolet diver-
gence is regularized by a shift of Γc near the origin as
s ¼ 0 → 1=Λ2, which is denoted by ΓΛ

c . From the first to
the second line, cothðeBsÞ ∼ 1, corresponding to the
LLLA, is used. The logarithmic singularity with respect
to m2 above is translated into a term ∼m2lnðΛ2=m2Þ in the
effective potential, which indicates a negative infinite
curvature near m ∼ 0, and this gives rise to the magnetic
catalysis. In our present formulation it is easy to include a
finite E;

Σ̄ ¼ −
e2EB
4π2

m
Z
ΓΛ
c

dse−im
2s cotðeBsÞ cothðeEsÞ

≃ −
eB
4π2

m

�
ln
Λ2e−γE

2eE
− Reψ

�
im2

2eE

�
−

iπ

eπm
2=ðeEÞ − 1

�
:

ð18Þ

Here, we used approximations, cothðeBsÞ ∼ 1 and
e−m

2=Λ2 ∼ 1, and wrote only terms nonvanishing in the
large-Λ2 limit. In the second line ψðxÞ represents the
digamma function. Using an asymptotic expansion, ψðxÞ ∼
lnx − 1=2x for large x, we can exactly recover Eq. (17)
from the eE → 0 limit of Eq. (18).
From Eq. (18) we see that the magnetic catalysis is

overridden by eE and there is no longer a logarithmic
singularity with respect tom2 (for related work on the phase
structure with parallel E and B, see Ref. [25]). Another
noticeable feature of Eq. (18) is that the scalar condensate
takes a complex value, which is analogous to a complex
chiral condensate at finite strong-θ angle [26,27]. Since θ
and E ⋅ B share the same quantum number, we can
naturally anticipate the same behavior on the scalar con-
densate. An interesting point in Eq. (18) is that ImΣ̄ takes a
form of the Fermi-Dirac distribution function with the
energy over the temperature replaced by πm2=ðeEÞ.
In view of the fact that P turns out to be quite different

from P̄ as in Eqs. (5) and (14), we may well anticipate such
changes for the Euclidean and the real-time chiral con-
densates. In the same way as P, we can perform the
calculation using Scinðx; yÞ, and then the imaginary rotated
(is → s) expression takes the following form,
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Σ ≔ ⟪ψ̄ψ⟫ ¼ −mtr½Δc
inðx; y → xÞ�

¼ −
e2EB
4π2

m
Z

π=eE−1=Λ2

1=Λ2

dse−m
2s

× cothðeBsÞ cotðeEsÞ
≃ ½1 − e−πm

2=ðeEÞ�ReΣ̄; ð19Þ
wherewe dropped a term involvingD in the y → x limit, and
kept only terms nonvanishing in the large-Λ2 limit. It should
be noted that the ultraviolet divergences appear from both
edges of the integration range, that is, the integration without
the cutoff would diverge in the ultraviolet or short-range limit
of z ¼ x − y → 0 in exactly the same way near s ¼ 0 and
π=ðeEÞ (in theLLLA).We thus regularized the integrationby
shifting both edges equally by 1=Λ2. Then, this overall factor
in Eq. (19) happens to be the same as that between P and P̄.
We remark that no imaginary part appears in this case due to
deformation of the integration contour, which is guaranteed
by Hermiticity of physical operators.
From the point of view of the spontaneous symmetry

breaking, Eq. (19) means that the generation of the chiral
condensate and thus the constituent mass is more diminished
as compared to the equilibrium case. From the dynamical
point of view, Eq. (19) is a further significant result. It is
sometimes a puzzling question whether the Schwinger
mechanism produces the bare particles or the dressed
particles. In other words, the question is whether the
Schwinger critical mass is characterized by the bare mass
or the constituentmass. Equation (19) indicates that, once the
pair production is activated with e−πm

2=ðeEÞ ∼ 1, the dynami-
cal chiral condensate Σ should melt, so that there is no
constituent mass (which is defined by a mean-field approxi-
mation for the in-in expectation values). Our speculation
could be tested experimentally with the Landau-Zener effect
for interacting systems, i.e., breakdown of insulator into
conductor which occurs through the Schwinger mechanism.
Summary.—We have clarified important differences asso-

ciated with the in and out states in the presence of electric
field E. In particular the mass dependence appears quite
different, which resolves some controversies in the inter-
pretations of the axial Ward identity, the chiral magnetic
effect, and the chiral condensate. Here, to make our point not
blurred by technicalities, we limited ourselves to the calcu-
lations involving one propagator only, namely, the expect-
ation values of the current and the scalar operators. We will
elsewhere discuss systematic computations of higher order
observables, such as the real-time chirality fluctuations.
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