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On configurations with 2þ 1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM
renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct
the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the
RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size 323 × 64 and with lattice
spacing 1=a ¼ 2.383ð9Þ GeV. The RCs in the MS scheme at 2 GeV are given at the end, with the
uncertainty of ZT reaching ≤ 1% for the tensor current. Results of the renormalized quark masses and
hadron matrix elements show that the renormalization procedure suppresses the ∼30% difference of the
bare quantities with or without HYP smearing into the 3%–5% level.

DOI: 10.1103/PhysRevD.108.054506

I. INTRODUCTION

The uncertainties of renormalization constants (RCs) can
be a main source of the uncertainties of hadronic matrix
elements as lattice quantum chromodynamics (LQCD) is
used to precisely calculate matrix elements numerically.
For example, in our previous work on meson decay
constants [1] the uncertainties of the tensor decay constants
of D�

ðsÞ are dominated by the uncertainty of the RC of the
tensor current (ZT). Therefore it is crucial to compute RCs
as precise as possible. In Ref. [2] the authors used
momentum-subtraction schemes as intermediate schemes
to determine ZT very precisely. After removing the non-
perturbative effects from condensate contaminations they

managed to obtain a precision better than 0.5% for ZT in the
MS scheme at the scale of the bottom quark pole mass.
The momentum-subtraction scheme (SMOM) [3,4] was

introduced to reduce the uncertainties of the RCs of quark
bilinear operators, especially for the scalar density (ZS) and
therefore for the quark mass (Zm) through Zm ¼ 1=ZS for
lattice chiral fermions. This scheme uses a symmetric
combination for the momenta on the legs of the Green
functions of the operators under renormalization. It is
expected to have less nonperturbative infrared contamina-
tions in the pseudoscalar and axial vector vertex functions
compared with the MOM scheme [5] which uses forward
Green functions. The perturbative conversion ratio of ZS

from the SMOMscheme to theMS schemewas shown [6–9]
to converge faster than that for the MOM scheme. Thus, the
truncation error from the perturbative conversion is reduced
significantly.
In our previous work [10] on renormalization of quark

bilinears for overlap fermions on domain-wall fermion
configurations, we compared SMOM and MOM schemes
numerically. We indeed see that the infrared effects in the
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pseudoscalar and axial vector vertex functions are more
suppressed in the SMOM scheme and ZS ¼ ZP and ZV ¼
ZA can be better satisfied. However we had difficulties to

describe the a2p2 dependence of ZMS
S;Pð2 GeV;a2p2Þ

obtained through the SMOM scheme, where a2p2 is the
initial scale in lattice units at which we do the renormal-
ization and from which we run ZS;P to 2 GeV. It seems that
we could not find a good renormalization window in a2p2

in which both the nonperturbative effects and lattice
discretization effects are small. While if we use the

MOM scheme, a good window for ZMS
S;Pð2 GeV; a2p2Þ

can be found, in which the a2p2 dependence can be well
fitted by a linear function and is attributed to Oða2p2Þ
discretization effects. Similar observations were made in a
more recent work [11], in which both the SMOM and
MOM schemes were used to obtain the RCs for overlap
quark bilinears on both domain-wall fermion and highly
improved staggered quark configurations.
In the mixed action setup of the χQCD collaboration

with overlap fermions on domain-wall fermion configura-
tions, one level of hypercubic (HYP) smearing [12] on the
gauge links is performed to construct the overlap Dirac
operator. This can expedite the inversions of the Dirac
operator [13]. Link smearing is widely used in LQCD
simulations for various lattice fermions and has many
benefits. For example, HYP smearing can suppress chiral
symmetry breaking effects in Wilson fermions besides
speeding up inversions for overlap fermions [14]. In
Ref. [15] the authors studied the effects of smearing on
vertex functions when momentum-subtraction schemes are
used for renormalization. The upper end of the renormal-
ization window is observed to be lowered by link smearing.
In this work we try to investigate the relation between the

HYP smearing that we use to construct our overlap Dirac
operator and the a2p2 dependence of ZMS

S ð2 GeV;a2p2Þ
and also of other RCs. Both the MOM and SMOM schemes
are used as intermediate schemes and the results are
compared. The configurations used here were generated
by the RBC/UKQCD collaborations with volume 323 × 64
and lattice spacing 1=a ¼ 2.383ð9Þ GeV (labeled as 32I)
[16]. This ensemble was also used in the study of [15]. We
calculate the RCs for the tensor current and the quark field
(Zq) in the MS scheme on the 32I ensemble that were not
done in our previous work [17]. The new three-loop
conversion ratio for ZT from the SMOM scheme to the
MS scheme [8] and four-loop ratios for ZS;T;q from MOM
to MS are used in this work. Thus the systematic uncer-
tainties of ZS;T are now reduced compared with those in
Refs. [10,17].
The paper is organized as follows. In Sec. II we describe

our lattice setup and briefly refresh the formulas of the
MOM and SMOM schemes. Then in Sec. III we give the
details of our calculation, the comparison of the results
from different levels of HYP smearing and different

intermediate schemes, and the discussions. We also inves-
tigate the renormalized meson two-point functions at
several quark masses in Sec. IV, to verify our renormaliza-
tion procedure and estimate the discretization error due to
different HYP smearing steps. Finally we summarize
in Sec. V.

II. METHODOLOGY

A. Simulation parameters

We use the 2þ 1-flavor gauge configurations generated
by the RBC/UKQCD collaborations [16]. The sea quarks
are domain-wall fermions with masses aml ¼ 0.004,
0.006, 0.008 and ams ¼ 0.03 for the mass degenerate up
and down quarks and the strange quark, respectively. The
parameters of the configurations are listed in Table I. More
detailed information can be found in Ref. [16].
For the valence quark we use overlap fermions. The

massless overlap Dirac operator [19] is defined as

DovðρÞ ¼ 1þ γ5εðγ5DwðρÞÞ; ð1Þ

where ε is the matrix sign function and DwðρÞ is the usual
Wilson fermion operator, except with a negative mass
parameter −ρ ¼ 1=2κ − 4 in which κc < κ < 0.25. We use
κ ¼ 0.2 in our calculation which corresponds to ρ ¼ 1.5.
The massive overlap Dirac operator is defined as

Dm ¼ ρDovðρÞ þm

�
1 −

DovðρÞ
2

�

¼ ρþm
2
þ
�
ρ −

m
2

�
γ5εðγ5DwðρÞÞ: ð2Þ

To accommodate the SU(3) chiral transformation, it is
usually convenient to use the chirally regulated field ψ̂ ¼
ð1 − 1

2
DovÞψ in lieu of ψ in the interpolation field and the

currents. This is equivalent to leaving the unmodified
currents and instead adopting the effective propagator,

G≡D−1
eff ≡

�
1 −

Dov

2

�
D−1

m ¼ 1

Dc þm
; ð3Þ

where Dc ¼ ρDov
1−Dov=2

satisfies fγ5; Dcg ¼ 0 [20]. With the
good chiral properties of overlap fermions, we can expect

TABLE I. Parameters of configurations used in this work. The
residual mass of the domain-wall fermion in lattice units amres is
in the two-flavor chiral limit as given in Ref. [18].

Label aml=ams Volume Nconf amres

f004 0.004=0.03 323 × 64 42 0.0006664(76)
f006 0.006=0.03 323 × 64 42
f008 0.008=0.03 323 × 64 49
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ZS ¼ ZP and ZV ¼ ZA. These relations were verified in our
previous works on renormalizations of those bilinear quark
operators [10,17].
We apply no smearing, one and two levels of HYP

smearing in constructing the overlap Dirac operator as
given in Eq. (1). In the rest of this paper the three cases are
labeled as “thin,” “HYP1,” and “HYP2” respectively.
Bootstrap and jackknife analyses are used to obtain the
statistical uncertainties.
Same ten valence quark masses in lattice units are used

for all smearing cases and ensembles. Their values are
given in Table II. The corresponding pion masses on the
ensemble f004 are also given in Table II, which are in the
range of 220 to 500 MeV and are obtained by fitting two-
point functions as described in Sec. III A. We use more
statistics for the HYP1 case which corresponds to the setup
used in most of the χQCD studies, and then the uncertainty
of amπ for this case is smaller. For the HYP1 case, we also
list themπL in the Table II. The fitted pion masses at a same
bare quark mass differ by renormalization effects and
discretization errors.

B. Momentum subtraction schemes

The MOM scheme [5] is defined in the quark massless
limit by imposing conditions on forward vertex functions
ΛO of quark bilinear operators O at a renormalization
scale μ,

lim
mq→0

Z−1
q ZO

1

12
Tr½ΛO;BðpÞΛtree

O ðpÞ−1�p2¼μ2 ¼ 1; ð4Þ

where the subscript B stands for bare and ΛO can be
calculated from the quark propagator SðpÞ and the Green
function GOðp1; p2Þ as

ΛOðp1; p2Þ ¼ S−1ðp1ÞGOðp1; p2ÞS−1ðp2Þ ð5Þ

withp1 ¼ p2 ¼ p. The projectorΛtree
O ðpÞ ¼ Γ for the quark

bilinear operators ψ̄Γψ [Γ ¼ I; γμγ5; σμνð¼ 1
2
½γμ; γν�Þ] con-

sidered in this work. The trace “Tr” is over the color and spin
indices. The quark field renormalization Zq is given by

ZMOM
q ðμÞ ¼ lim

mq→0

−i
48

Tr

�
γν
∂S−1ðpÞ
∂pν

�
p2¼μ2

; ð6Þ

so that the chiral Ward identities are satisfied in the MOM

scheme and we have ZMOM
A ¼ ZMS

A .
For the SMOM scheme [4], one considers symmetric

momentum combinations

q2 ≡ ðp1 − p2Þ2 ¼ p2
1 ¼ p2

2 ¼ μ2 ð7Þ

in Eq. (5). The renormalization conditions for the scalar and
tensor currents in the SMOM scheme are the same as
Eq. (4) but at the symmetric point Eq. (7). The conditions
for the quark field and the axial current are now

ZRI=SMOM
q ¼ lim

mq→0

1

12p2
Tr½S−1B ðpÞp�p2¼μ2 ð8Þ

and

lim
mq→0

Z−1
q ZA

1

12q2
Tr½qμΛμ

A;Bðp1; p2Þγ5q�sym ¼ 1; ð9Þ

respectively. Here the subscript “sym” denotes the sym-
metric condition in Eq. (7). The conditions in Eqs. (8) and
(9) are also consistent with the chiral Ward identities.

Therefore one has ZSMOM
A ¼ ZMS

A .
The Green function GO is computed between two

external off-shell quark states. Thus a gauge fixing (usually
Landau gauge) is used to implement the renormalization
conditions in both the MOM and SMOM schemes. In this
study we use point source to calculate the quark propagator,

SðpÞ ¼
X
x

e−ip·xhψðxÞψ̄ð0Þi; ð10Þ

and then

TABLE II. Valence quark masses in lattice units. The corresponding pion masses are from fittings to two-point
functions on ensemble f004 as explained in Sec. III A. Only statistical errors are given.

amq 0.00460 0.00585 0.00677 0.00765 0.00885
amπ Thin 0.0850(17) 0.0954(17) 0.1027(21) 0.1090(17) 0.1172(16)

HYP1 0.0955(07) 0.1073(07) 0.1152(07) 0.1222(07) 0.1310(07)
HYP2 0.0895(22) 0.1026(21) 0.1108(20) 0.1173(20) 0.1272(19)

mπL HYP1 3.1 3.4 3.7 3.9 4.2
amq 0.01120 0.01290 0.01520 0.01800 0.02400
amπ Thin 0.1318(19) 0.1413(19) 0.1531(19) 0.1664(18) 0.1889(18)

HYP1 0.1466(06) 0.1569(06) 0.1694(06) 0.1836(06) 0.2115(05)
HYP2 0.1432(19) 0.1537(18) 0.1666(18) 0.1812(18) 0.2091(18)

mπL HYP1 4.7 5.0 5.4 5.9 6.8
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GOðp1; p2Þ ¼
X
x;y

e−iðp1·x−p2·yÞhψðxÞOð0Þψ̄ðyÞi: ð11Þ

We use periodic boundary conditions in all four direc-
tions on our lattice when inverting the overlap Dirac
operator. Thus the momentum modes in lattice units can
be written as

ap ¼ 2π

�
k1
L
;
k2
L
;
k3
L
;
k4
T

�
; ð12Þ

where L ¼ 32, T ¼ 64 and kμ are integers:
k1;2;3 ¼ −8;−7;…; 8, k4 ¼ −16;−15;…; 16.
For the MOM scheme we apply a democratic cut on the

momentum modes

p½4�

ðp2Þ2 < 0.26; where p½4� ¼
X
μ

p4
μ; p2 ¼

X
μ

p2
μ

ð13Þ

to reduce the discretization effects from O(4) to H(4)
symmetry breaking on the lattice. Note this cut is more
strict than those used in Refs. [10,17].
It is difficult to apply the above democratic cut on all the

symmetric momentum modes (q2 ¼ p2
1 ¼ p2

2) required by
the SMOM scheme. But still we can apply a cut on both p1

and p2:

p½4�

ðp2Þ2 < 0.34; for p1 and p2: ð14Þ

That is to say p1 and p2 are almost body diagonal and q is
almost along an axis (to satisfy q2 ¼ p2

1). A typical
example [with p½4�=ðp2Þ2 ¼ 0.25] is

ap1 ¼
2π

L
ðk; k; k; kÞ; ap2 ¼

2π

L
ð−k; k; k; kÞ;

aq ¼ 2π

L
ð2k; 0; 0; 0Þ: ð15Þ

The cut 0.34 in Eq. (14) is looser than the 0.26 in Eq. (13)
because the symmetric condition q2 ¼ p2

1 should also be
satisfied. If 0.26 is applied, too fewmomentummodeswill be
left. In thisway the numerical results ofRCs from theSMOM
scheme will be less scattered around a smooth curve.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Local axial vector current

We start with the renormalization of the local axial vector
current. The RC ZA is then used to scale the other RCs for
the quark field, the scalar density and the tensor current. ZA
can be obtained by using the partially conserved axial
current relation

ZA∂μAμ ¼ 2ZmmqZPP; ð16Þ

where Aμ and P are the axial vector current and pseudo-
scalar density, respectively, and the quark mass RC Zm

equals Z−1
P for lattice chiral fermions such as the overlap

fermion used in this work.
Consider the zero momentum two-point correlators in

the pseudoscalar channel:

CPPðtÞ≡
X
x⃗

hΩjPðxÞP†ð0ÞjΩi; ð17Þ

CA4PðtÞ≡
X
x⃗

hΩjA4ðxÞP†ð0ÞjΩi: ð18Þ

From Eq. (16) one finds

ZWI
A ¼ 2mqhΩjPjπi

mπhΩjA4jπi
; ð19Þ

and

X
x⃗

hΩjZA∂μAμðxÞP†ð0ÞjΩi ¼ 2mq

X
x⃗

hΩjPðxÞP†ð0ÞjΩi;

ð20Þ

or

ZWI
A ¼ 4mqCPPðtÞ

CA4Pðtþ 1Þ − CA4Pðt − 1Þ ; ð21Þ

where the partial derivative is replaced by a difference.
One can simultaneously fit the two-point correlation

functions in Eqs. (17) and (18) at large time, where the
ground state contribution dominates, and use Eq. (19) to
calculate ZWI

A . Alternatively one may use the ratio Eq. (21)
to get ZWI

A . We compared the results from the two methods
in our previous work [10] and found that ZA from the first
method has less dependence on the valence quark mass.
Thus, we choose to use the first method in this work.
Two-point correlation functions on 42 configurations are

calculated with a Z3 noise wall source at a given time slice
for ensemble f004 for the three smearing cases. Note no
gauge fixing is needed for calculating the gauge invariant
correlation functions.
The results of ZWI

A are collected in Table III and drawn in
Fig. 1. To fairly compare the three smearing cases we use
the same statistics in Fig. 1. We can clearly see that
smearing decreases the statistical error of ZWI

A and drives
it closer to one as the level of smearing increases. By
linearly extrapolating ZWI

A to the valence quark massless
limit, one obtains

ZWI
A ¼ 1.445ð13Þ; 1.0808ð10Þ; 1.0506ð6Þ; ð22Þ
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for thin, HYP1 and HYP2, respectively. Since the uncer-
tainty of ZWI

A using the thin link is much larger than the
other cases, we repeat the calculation with a Coulomb wall
source [11] to improve the statistics, and obtain ZWI

A;thin ¼
1.4403ð6Þ which is consistent with that listed in Eq. (22)
but has much smaller uncertainty.
We also compare ZWI

A for the case HYP1 obtained here
with that from our previous work in Fig. 1. One can see that
the results are in good consistency although different
boundary conditions in the time direction are used here
and in [17]. This is not surprising since RCs are not
sensitive to finite volume effects from different boundary
conditions.
We will need the RCs for the HYP1 case for calculating

hadronic matrix elements in the future. To shrink the
statistical errors for this smearing case we use 628
configurations, 16 sources on 42 and 16 sources on 49
configurations to compute the two-point correlators in
Eqs. (17) and (18) on ensembles f004, f006, and f008,
respectively. The linear chiral extrapolation of ZWI

A ðamqÞ is

similar to those shown in Fig. 1. In the chiral limit of
valence quark we find

ZWI
A ¼ 1.0788ð2Þ; 1.0785ð5Þ and 1.0788ð5Þ; ð23Þ

respectively, on the three ensembles. Here the error is
statistical and we used all ten valence quark masses for
doing the chiral extrapolations. For the chiral limit of the up
and down quarks in the sea, we linearly extrapolate the
results on the three ensembles to aml þ amres ¼ 0 and
obtain ZA ¼ 1.0789ð7Þ. This extrapolation as well as a
constant fit [1.0788(2)] is shown in Fig. 2. The difference
between the linear extrapolation and the constant fit is taken
as a systematic error (0.0001) below. We repeat the above
chiral extrapolations for the other three choices of the
valence quark masses: (1) remove the lightest four;
(2) remove the heaviest two; and (3) remove the lightest
four and the heaviest two. Then the largest variation in the
center values is taken as a systematic uncertainty (0.0006).

TABLE III. ZWI
A at ten valence quark masses for the three smearing cases on ensemble f004. 42 configurations are

used to calculate two-point functions with a Z3 noise wall source. The uncertainties are statistical and are from
bootstrap analyses.

amq 0.00460 0.00585 0.00677 0.00765 0.00885
Thin 1.446(28) 1.443(26) 1.439(24) 1.442(22) 1.442(19)

ZWI
A HYP1 1.0808(27) 1.0804(20) 1.0806(17) 1.0807(18) 1.0808(14)

HYP2 1.0511(14) 1.0504(12) 1.0505(10) 1.0511(8) 1.0506(8)
amq 0.01120 0.01290 0.01520 0.01800 0.02400

Thin 1.442(17) 1.442(16) 1.442(15) 1.442(13) 1.437(10)
ZWI
A HYP1 1.0807(12) 1.0806(11) 1.0803(9) 1.0804(9) 1.0803(6)

HYP2 1.0506(7) 1.0507(7) 1.0507(6) 1.0507(5) 1.0509(4)

FIG. 1. Left panel: ZA from Eq. (19) for HYP1 and HYP2. Right panel: ZA from Eq. (19) for all three smearing cases. The straight lines
in both graphs are linear chiral extrapolations of ZA. The values in the chiral limit are given in the right graph. For the case HYP1
comparison is also shown with our previous work [17] with an antiperiodic boundary condition in the time direction.
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Another systematic uncertainty comes from the massive
strange quark in the sea. By using half of the slope from
the linear chiral extrapolation of the up/down sea
quarks, we estimate the change of ZA to be 0.0003 in
the limit ams þ amres ¼ 0. In the end we have ZA ¼
1.0789ð7Þð1Þð6Þð3Þ. Adding up all the errors quadratically,
one gets ZA ¼ 1.0789ð10Þ. This value agrees with our
previous result 1.086(2) [17] at ∼3σ. We now have more
statistics and consider more carefully the systematical
uncertainties in our new result.
From the fitting of the two-point functions we also obtain

the pionmass at each valence quarkmass as given in Table II.
Since the renormalization conditions in both the MOM

and SMOM schemes are consistent with the chiral Ward

identities, we haveZMOM
A ¼ ZSMOM

A ¼ ZWI
A in the continuum

limit. On the lattice they can differ by discretization effects.

B. Scalar density

The scalar density renormalization constant ZMOM
S can

be obtained from ZWI
A computed in Sec. III A and the ratio

of projected vertex functions,

ZMOM
S

ZMOM
A

¼ ΓAðpÞ
ΓSðpÞ

����
p2¼μ2

; ð24Þ

where

ΓAðpÞ ¼
1

48
Tr½Λμ

A;BðpÞγ5γμ�; ΓSðpÞ ¼
1

12
Tr½Λμ

S;BðpÞ�:
ð25Þ

The scale dependence of the ratio in Eq. (24) is governed by
the anomalous dimension of the scalar density since ZA is
scale independent.
The chiral extrapolation of the valence quark is done

with an ansatz,

ZS

ZA
ðamqÞ ¼

As

ðamqÞ2
þ Bs þ Cs · ðamqÞ; ð26Þ

which was also used in Refs. [3,10,11,17]. Bs is taken as
the chiral limit value of ZS=ZA. We find the contribution of
the first term on the right-hand side of Eq. (26) in our data is
small. Thus, we also tried linear extrapolations in amq and
checked that consistent results are obtained in the chiral
limit. Examples of both extrapolations at a2p2 ¼ 3.855 or
8.135 on ensemble f004 are shown in Fig. 3. In our
following analyses we generally use data points at scales
above a2p2 ¼ 4 to avoid possible large nonperturbative
effects.

FIG. 2. The linear extrapolation of ZWI
A to the sea quark

massless limit (red) and the constant fit (black).

FIG. 3. Examples of chiral extrapolations of the valence quark for all three smearing cases at the scale a2p2 ¼ 3.855 (left panel) or
8.135 (right panel) on ensemble f004. Both the ansatz in Eq. (26) and a linear function are tried for the chiral extrapolation.
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For the three smearing cases we obtain ZMOM
S =ZMOM

A in the valence quark chiral limit by using Eq. (26). The results are
shown in the left panel of Fig. 4.
The conversion to the MS scheme is done by using the ratio in Landau gauge up to four loops [21–23]:

ZMS
S

ZMOM
S

¼ 1þ 16

3

�
αs
4π

�
þ ð188.6513392 − 9.888888972nfÞ

�
αs
4π

�
2

þ ð7944.242769 − 888.4579373nf þ 13.65785627n2fÞ
�
αs
4π

�
3

þ ð386340.3540 − 68772.60194nf þ 2976.616735n2f − 27.97607914n3fÞ
�
αs
4π

�
4

þOðα5sÞ; ð27Þ

wherenf is thenumber of flavors. To run the results in theMS
scheme from the initial scale jpj to 2 GeV, we use the quark
mass anomalous dimension given in Ref. [22] since
ZS ¼ Z−1

m . The four-loop (next-to-next-to-next-to-leading
order) running results are shown in the right panel of
Fig. 4. Here we use the inverse lattice spacing 1=a ¼
2.383ð9Þ GeV as determined in [24] to get the position of
2 GeV. This 1=a is about 4% higher than that used in our
previous work [17]. ΛMS

QCD ¼ 332ð17Þ MeV [25] is used to
calculate the strong coupling constant by using its perturba-
tive running to four loops [26,27].
Now we turn to the SMOM scheme. The ratio

ZSMOM
S

ZSMOM
A

¼ ΓAðp1; p2Þ
ΓSðp1; p2Þ

����
sym

ð28Þ

for the three smearing cases is shown in the left panel of
Fig. 5 in the valence quark massless limit. Here

ΓAðp1; p2Þ ¼
1

12q2
Tr½qμΛμ

A;Bðp1; p2Þγ5q �;

ΓSðp1; p2Þ ¼
1

12
Tr½ΛS;Bðp1; p2Þ�: ð29Þ

The massless limit is obtained from linear extrapolations in
the valence quark mass.
The perturbative conversion ratio to the MS scheme has

been calculated up to three loops [6–9]:

ZRI=SMOM
S

ZMS
S

¼ 1 − 0.6455188560

�
αs
4π

�

− ð22.60768757 − 4.013539470nfÞ
�
αs
4π

�
2

− ð860.2874030 − 164.7423004nf

þ 2.184402262n2fÞ
�
αs
4π

�
3

: ð30Þ

FIG. 4. Left panel: ZMOM
S =ZA as a function of the renormalization scale squared a2p2 from Eq. (24) for no smearing, HYP1 and HYP2,

respectively. Right panel: ZMS
S ð2 GeV; a2p2Þ=ZA obtained through the MOM scheme as a function of the initial scale a2p2 for the three

smearing cases. The straight lines show linear extrapolations to a2p2 ¼ 0 using data points in the range a2p2 ∈ ½5; 10�.
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After the conversion we can run ZMS
S ða2p2Þ=ZA to 2 GeV.

The results are shown in the right panel of Fig. 5.

1. Comparison of the three smearing cases (via MOM)

As shown in the right panel of Fig. 4, the dependence of

ZMS
S ð2 GeV; a2p2Þ=ZA on a2p2 is similar for all three cases

when MOM is used as the intermediate scheme. At large
momentum scale this a2p2 dependence can be described by
a polynomial function,

ZMS
S ð2GeV;a2p2Þ

ZA
¼ZMS

S ð2GeVÞ
ZA

þc1ða2p2Þþc2ða2p2Þ2;

ð31Þ

where the last two terms on the right-hand side contain the

discretization effects in ZMS
S ð2 GeV; a2p2Þ=ZA. The fit-

tings of Eq. (31) without the c2 term to data points in the
range a2p2 ∈ ½5; 10� give χ2=d.o.f. < 1 for all three smear-
ing cases. Therefore the Oðða2p2Þ2Þ discretization effects
are smaller than our current statistical error. We take this

linear extrapolation value ZMS
S ð2 GeVÞ=ZA as the final

result, which is collected in Table IV. The fitting range of
a2p2 is varied to [4, 10] and [6, 10] to estimate the

systematic error in ZMS
S ð2 GeVÞ=ZA given in Table VI from

the choice of the lower bound.
There are curvatures in ZMS

S ð2 GeV; a2p2Þ=ZA for
HYP1 and HYP2 especially at a2p2 < 5. Thus we also
try the following ansatz to study the a2p2 dependence for
these two smearing cases:

ZMS
S ð2 GeV; a2p2Þ

ZA
¼ ZMS

S ð2 GeVÞ
ZA

þ c−1
a2p2

þ c1ða2p2Þ;

ð32Þ

ZMS
S ð2 GeV; a2p2Þ

ZA

¼ ZMS
S ð2 GeVÞ

ZA
þ c−1
a2p2

þ c1ða2p2Þ þ c2ða2p2Þ2: ð33Þ

We find both Eqs. (31) and (32) can describe the data well
in the range a2p2 ∈ ½2; 10� with a roughly same χ2=d.o.f.,
which is less than 1. Thus, it is hard to attribute the
curvature to only nonperturbative effect or Oða2p2Þ effect.
We then use Eq. (33) to fit the data in a2p2 ∈ ½5; 10�. The
resulted center values of ZMS

S ð2 GeVÞ=ZA change by
0.82% and 0.41% for HYP1 and HYP2, respectively.
This ansatz dependence is checked on all three ensembles
f004, f006, and f008 for HYP1. The resulted change

(0.98%) in the final result of ZMS
S ð2 GeVÞ=ZA in the sea

FIG. 5. Left panel: ZSMOM
S ða2p2Þ=ZA as a function of the renormalization scale a2p2 for the three smearing cases. Right panel:

ZMS
S ð2 GeV; a2p2Þ=ZA obtained through the SMOM scheme as a function of the initial scale a2p2 for the three smearing cases. The

lines are polynomial extrapolations to a2p2 ¼ 0 as explained in the text.

TABLE IV. ZMS
S ð2 GeVÞ=ZA on ensemble f004 for the three

smearing cases. These values are obtained after removing the
discretization effects by using a straight-line extrapolation in
a2p2 ∈ ½5; 10� (MOM, thin of SMOM), or Eq. (31) (HYP1 of
SMOM) or a third order polynomial (HYP2 of SMOM). The
error is for statistics and a2p2 extrapolation.

ZMS
S ð2 GeVÞ=ZA Thin HYP1 HYP2

MOM 0.8561(79) 0.9353(15) 0.9561(12)
SMOM 0.8881(32) 0.9126(37) 0.9657(88)
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quark massless limit is given in Table VI as a system-
atic error.

2. Comparison of the three smearing cases (via SMOM)

When the SMOM scheme is used as the intermediate
scheme, the dependence of ZMS

S ð2 GeV; a2p2Þ=ZA on a2p2

(right panel of Fig. 5) looks similar for the two smearing
cases HYP1 and HYP2, which, however, seems to be quite
different from the thin link case. The a2p2 dependence is
more flat at a2p2 > 4 when no smearing is applied. All
linear extrapolations in a2p2 in the ranges a2p2 ∈ ½4; 10�,
[5, 10], and [6, 10] have χ2=d.o.f. < 1 and give consistent
extrapolated results for the thin link case. The numbers
from using the range [5, 10] are given in Table IV.
If we use Eq. (31) to fit ZMS

S ð2 GeV; a2p2Þ=ZA with the
c2 term for the HYP1 case, the χ2=d.o.f. are, respectively,
1.78, 0.78, and 1.06 for a2p2 ∈ ½4; 10�, [5, 10], and [6, 10].
If we drop the c2 term, that is to say, use a linear fit, then we
get large χ2=d.o.f. (42, 8.7, and 3.7 for the three ranges,
respectively). Thus, we choose the second order polyno-

mial extrapolation and get ZMS
S ð2 GeVÞ=ZA ¼ 0.9126ð37Þ

in Table IV. The dependence on extrapolation ansatz is
checked by using Eqs. (32) and (33) on all three ensembles
f004, f006, and f008. The variation in the center value is
treated as a systematic error as collected in Table VI.
For the case HYP2 of SMOM we tried six ansatz: linear,

second and third order polynomials of a2p2 with or without
an inverse term c−1=ða2p2Þ to take into account possible
nonperturbative effects at small a2p2. None of them can
easily fit the data in the above three ranges of a2p2. The
χ2=d.o.f. are in the range 2.3 to 107.
One possible reason is the following. The statistical error

decreases as the level of smearing increases. Then the other
systematic errors [such as the O(4) to H(4) breaking effects]
are no longer small compared with the statistical error. We
use the (near) diagonal momentum modes to suppress those
effects. However, in the case of SMOM more off-diagonal
momentum modes have to be used than in the MOM case.
Therefore, we increase the error of the fitting results byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d.o.f.

p
to compensate the ignorance of those system-

atic effects.
If we use the same range a2p2 ∈ ½3.5; 9� as that in

Ref. [11] for ensemble 64I and use a same third order

polynomial, then we obtain χ2=d.o.f. ¼ 41.4=17 ¼ 2.4

and ZMS
S ð2 GeVÞ=ZA ¼ 0.9657ð88Þ, where the error has

been enlarged by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d.o.f.

p
.

The a2p2 dependence of ZMS
S ð2 GeV; a2p2Þ=ZA

obtained through the SMOM scheme for the case HYP2
cannot be readily described by polynomial discretization
effects even at large a2p2. This dependence seems to
change significantly as one applies smearing compared
with the thin link case. For the case HYP1, the extrapolated
results are more sensitive to the fitting range of a2p2 as
shown by the corresponding systematic uncertainty in
Table VI compared with MOM. When MOM is used as
the intermediate scheme, the a2p2 dependence of

ZMS
S ð2 GeV; a2p2Þ=ZA can be well described by a linear

function for all three smearing cases at large a2p2. Thus, we
use the results obtained through the MOM scheme as our

final results for ZMS
S .

3. Final results for one level of HYP smearing

On the other two ensembles f006 and f008 with smearing
HYP1, we do similar calculations in the MOM scheme and
obtain ZMS

S ð2 GeVÞ=ZA ¼ 0.9287ð26Þ and 0.9352(17),
respectively, in the valence quark massless limit. The
results on all three ensembles are collected in Table V as
well as those obtained through the SMOM scheme. Then
with the results on all three ensembles we do a linear
extrapolation in ðaml þ amresÞ to the light sea quark

massless limit and find ZMS
S ð2 GeVÞ=ZA ¼ 0.9348ð88Þ

with a confidence level 0.021, where the error has been
enlarged by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d.o.f.

p
¼ ffiffiffiffiffiffiffi

5.3
p

. The slope from this
extrapolation is consistent with zero [−0.09ð57Þ], of which
the center value is used to estimate the systematic uncer-
tainty due to a nonzero strange sea quark mass given in

Table VI. We also tried a constant fit of ZMS
S ð2 GeVÞ=ZA

on the three ensembles to go to the sea quark massless limit.
The difference in the center values from the linear and
constant fits is set to be the systematic error for extrapo-
lation in ml in Table VI.
We list all systematic uncertainties in Table VI for

ZMS
S ð2 GeVÞ=ZA. They are estimated in similar ways as

in Refs. [10,11,17]. The truncation error in the conversion
ratio from MOM to MS is found to be 0.67%, which is

TABLE V. ZMS
S ð2 GeVÞ=ZA on ensembles f004, f006, and f008 for HYP1. They are obtained after removing the

discretization effects by using a straight-line (via MOM) or a second-order polynomial (via SMOM) extrapolation in
a2p2. The error is from statistics and a2p2 extrapolation. The values in the sea quark massless limit are from linear
extrapolations. For the intermediate MOM scheme the error is enlarged by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d.o.f.

p
¼ ffiffiffiffiffiffi

5.3
p

.

ZMS
S ð2 GeVÞ=ZA f004 f006 f008 aml þ amres ¼ 0

MOM 0.9353(15) 0.9287(26) 0.9352(17) 0.9348(88)
SMOM 0.9126(37) 0.9123(54) 0.9102(42) 0.9155(94)
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smaller than the 1.5% in [17] and the 2.29% in [11]. One
reason is that here the lower limit of jpj used in the a2p2

extrapolation is about 5.3 GeV, which is higher than the
4 GeV in [17] and the 3 GeV in [11]. The other reason is
now we use the newly calculated four-loop conversion ratio

Eq. (27). Each of ΛMS
QCD and the inverse lattice spacing is

varied in one sigma to check the resulted change in

ZMS
S ð2 GeVÞ=ZA. The perturbative running in the MS

scheme includes a four-loop result and thus gives a
negligible truncation error. In total the systematic uncer-
tainty is found to be 1.28% when one uses the MOM
scheme.
Thus, our final result is ZMS

S ð2 GeVÞ=ZA ¼
0.9348ð88Þð120Þ. Adding up quadratically the statistical
and systematic uncertainties, we get

ZMS
S ð2 GeVÞ=ZA ¼ 0.935ð15Þ: ð34Þ

By using ZA ¼ 1.0789ð10Þ from Sec. III A, we then find

ZMS
S ð2 GeVÞ ¼ 1.009ð16Þ. This center value is about 4% (or

1.6σ) away from our previous result 1.056(6)(24) given in
[17]. This change is mainly from the different inverse lattice
spacings used here and there. Also, the a2p2 extrapolation
ranges are different in the two works. We confirmed that we
obtain consistent results if the same inverse lattice spacing
and a2p2 range are used here as in [17]. Through the SMOM

scheme, one gets ZMS
S ð2 GeVÞ ¼ 0.988ð53Þ, which agrees

with that obtained through theMOMscheme.Our final result

ZMS
S ð2 GeVÞ ¼ 1.009ð16Þ agrees with the 1.034(25) given

in [11] for its ensemble 64I, which has a similar setup as the
ensemble used here.

C. Tensor current

The renormalization constant of the tensor current is
needed in calculating observables such as the tensor decay
constant of vector mesons [1] and nucleon isovector tensor
charge [28]. The ratio of the RCs of the tensor and axial
vector current in the MOM scheme is given by

ZMOM
T

ZMOM
A

¼ ΓAðpÞ
ΓTðpÞ

����
p2¼μ2

; ð35Þ

where

ΓTðpÞ ¼
1

144
Tr½Λμν

T;BðpÞσμν�: ð36Þ

The left panel of Fig. 6 shows the numerical results of the
above ratio for the three smearing cases on ensemble f004
in the linearly extrapolated valence quark massless limit.

TABLE VI. Systematic uncertainties of ZMS
S =ZAð2 GeV) in the

chiral limit through the MOM or SMOM scheme for case HYP1.

Source Via MOM (%) Via SMOM (%)

Conversion ratio 0.67 0.12

ΛMS
QCD

0.12 0.42

Lattice spacing 0.11 0.07
Perturbative running <0.02 <0.02
Fit range of a2p2 0.39 1.10
Different fit ansatz 0.98 4.95
msea

s ≠ 0 0.21 0.98
Extrapolation in ml 0.06 0.42
Total systematic uncertainty 1.28 5.20

FIG. 6. Left panel: ZMOM
T ða2p2Þ=ZA as a function of the renormalization scale a2p2 for the three smearing cases on ensemble f004.

Right panel: ZMS
T ð2 GeV; a2p2Þ=ZA as a function of the initial scale a2p2 for the three smearing cases obtained through the MOM

scheme.
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The conversion ratio to the MS scheme for ZMOM
T up to four loops is given by [22,29,30]

ZMS
T

ZMOM
T

¼ 1þ ð−35.49868825þ 3.197530250nfÞ
�
αs
4π

�
2

þ ð−1516.369372þ 235.7846995nf − 4.837941n2fÞ
�
αs
4π

�
3

þ ð−62979.85943þ 15747.71519nf − 879.7527617n2f þ 9.395037500n3fÞ
�
αs
4π

�
4

þOðα5sÞ: ð37Þ

After finishing the conversion and four-loop running to
2 GeV from the initial scale a2p2 in the MS scheme, we
obtain the right panel of Fig. 6.
The calculation in the SMOM scheme starts with the

ratio

ZSMOM
T

ZSMOM
A

¼ ΓAðp1; p2Þ
ΓTðp1; p2Þ

����
sym

; ð38Þ

where

ΓTðp1; p2Þ ¼
1

144
Tr½Λμν

T;Bðp1; p2Þσμν�: ð39Þ

The numerical results of this ratio are shown in the
left panel of Fig. 7 for all three smearing cases in the
valence quark massless limit on ensemble f004. The
valence chiral extrapolation is done by using a linear
function in amq.

The three-loop conversion of ZT from the SMOM
scheme to the MS scheme is [8]

ZMS
T

ZRI=SMOM
T

¼ 1 − 0.21517295

�
αs
4π

�

− ð43.38395007 − 4.10327859nfÞ
�
αs
4π

�
2

− ð1950.76ð11Þ − 309.8285ð28Þnf
þ 7.063585ð58Þn2fÞ

�
αs
4π

�
3

þOðα4sÞ: ð40Þ

By using this conversion ratio and the anomalous dimen-
sion of ZT up to four loops in the MS scheme [31], we

obtain ZMS
T ð2 GeV; a2p2Þ=ZA as a function of the initial

scale a2p2. The results are shown in the right panel
of Fig. 7.

FIG. 7. Left panel: ZSMOM
T ða2p2Þ=ZA as a function of the renormalization scale a2p2 for the three smearing cases on ensemble f004.

Right panel: ZMS
T ð2 GeV; a2p2Þ=ZA as a function of the initial scale a2p2 for the three smearing cases obtained through the SMOM

scheme.
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For nf ¼ 3 and scale jpj ¼ 5.3 GeV, the conversion
ratio in Eq. (40) is

ZMS
T

ZRI=SMOM
T

ðjpj ¼ 5.3 GeV; nf ¼ 3Þ

¼ 1− 0.017123αs − 0.196779α2s − 0.546687α3s þOðα4sÞ
¼ 1− 0.0034− 0.0078− 0.0043þOðα4sÞ: ð41Þ

Assuming the coefficient in theOðα4sÞ term is 3 times as big
as that in the Oðα3sÞ term, we can estimate the size of the
Oðα4sÞ term to be around 0.0026. Therefore, the truncation
error is about 0.26%, which is a little bit larger than that for
the MOM scheme at the same order.
One can then extrapolate ZMS

T ð2 GeV; a2p2Þ=ZA at large
a2p2 to a2p2 ¼ 0 to remove lattice artifacts proportional to
a2p2 [and ða2p2Þ2] by using a linear function (or a second-
order polynomial) of a2p2. To avoid the nonperturbative

effects at small a2p2 we use ZMS
T ð2 GeV; a2p2Þ=ZA in the

range a2p2 ∈ ½5; 10�. We vary the range to [4, 10] and [6,
10] to estimate the systematic error from the choice of
fitting ranges.
For the case HYP1 we find that a linear function of a2p2

is good enough (χ2=d.o.f. < 1) to describe ZMS
T ð2 GeV;

a2p2Þ=ZA in the range a2p2 ∈ ½5; 10� or [6, 10] obtained
through either the MOM or the SMOM scheme. Figure 8
shows the linear extrapolations using the data at
a2p2 ∈ ½5; 10� for both intermediate schemes. For the linear
extrapolations in the range a2p2 ∈ ½4; 10� we get
χ2=d.o.f. ¼ 1.7, which is more or less acceptable, and
0.7 for MOM and SMOM, respectively. The extrapolated
results are given in Table VII along with the χ2=d.o.f. for
different fitting ranges. The uncertainties in the Table are
from statistics and the extrapolations. The change in

ZMS
T ð2 GeVÞ=ZA is around or less than 0.2% as we vary

the fitting ranges for both intermediate schemes. The

difference in ZMS
T ð2 GeVÞ=ZA from the two schemes is

around 0.9%.
For the case without smearing, the linear extrapolations

of ZMS
T ð2 GeV; a2p2Þ=ZA to a2p2 ¼ 0 are similar to those

for HYP1. The χ2=d.o.f. are smaller because the statistical
uncertainties in the data are bigger. The difference in

ZMS
T ð2 GeVÞ=ZA from the two schemes is around 1.7%.
For the case HYP2 we find that linear extrapolations in

a2p2 give large χ2=d.o.f. (> 2) when MOM is used as the
intermediate scheme. Thus a second-order polynomial in
a2p2 is used for the extrapolation (χ2=d.o.f. ¼ 16=32

for a2p2 ∈ ½5; 10�) and we obtain ZMS
T ð2 GeVÞ=ZA ¼

1.0559ð7Þ. For the intermediate SMOM scheme both
linear and second-order polynomial extrapolations have
χ2=d.o.f. ∼ 1.6 and give consistent extrapolated results

1.0705(9) and 1.0731(54). The difference in ZMS
T ð2 GeVÞ=

ZA from the two schemes is 1.6% from the second-order
polynomial extrapolation.
We do similar analyses of ZMS

T ð2 GeVÞ=ZA for the other
two ensembles f006 and f008 for the case HYP1. The final
results for all three ensembles are collected in Table VIII.
The values in the sea quark massless limit are from linear
extrapolations in aml þ amres. The two numbers from the
two intermediate schemes are in agreement at 1.2σ, with a
1.0% change in the center values.
The systematic uncertainties of ZMS

T ð2 GeVÞ=ZA are
given in Table IX. The analysis procedure is similar to

that for ZMS
S ð2 GeVÞ=ZA. To check the model dependence

FIG. 8. Linear extrapolations of ZMS
T ð2 GeV; a2p2Þ=ZA to

a2p2 ¼ 0 from the two intermediate schemes. a2p2 is the initial
renormalization scale squared.

TABLE VII. Linear extrapolations in a2p2 for

ZMS
T ð2 GeV; a2p2Þ=ZA for the two cases thin and HYP1 on

ensemble f004.

Thin Fitting range [4, 10] [5, 10] [6, 10]

MOM χ2=d.o.f. 12.9=40 6.2=33 2.6=26

ZMS
T ð2 GeVÞ=ZA

1.0928(7) 1.0940(10) 1.0955(15)

SMOM χ2=d.o.f. 0.8=18 0.2=13 0.03=7

ZMS
T ð2 GeVÞ=ZA

1.1106(27) 1.1126(45) 1.1139(80)

HYP1 Fitting range [4, 10] [5, 10] [6, 10]

MOM χ2=d.o.f. 69=40 31.3=33 10.0=26

ZMS
T ð2 GeVÞ=ZA

1.0701(2) 1.0709(2) 1.0717(3)

SMOM χ2=d.o.f. 11.8=18 10.2=13 5.0=7

ZMS
T ð2 GeVÞ=ZA

1.0798(7) 1.0803(10) 1.0796(16)
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of the a2p2 extrapolation we also use the following ansatz:

ZMS
T ð2 GeV; a2p2Þ

ZA
¼ ZMS

T ð2 GeVÞ
ZA

þ cT−1
a2p2

þ cT1 ða2p2Þ;

ð42Þ

besides the linear extrapolation. The resulted difference in
the chiral limit is included as a systematic error. Finally, one
obtains

ZMS
T ð2 GeVÞ=ZA ¼ 1.0721ð51Þð65Þ ðvia MOMÞ; ð43Þ

ZMS
T ð2 GeVÞ=ZA ¼ 1.0821ð71Þð71Þ ðvia SMOMÞ; ð44Þ

where the two errors are statistical and systematic, respec-
tively. We take the number from the MOM scheme as the

final result for ZMS
T ð2 GeVÞ=ZA and treat half of the

difference in the center values of Eqs. (43) and (44) as

another systematic error to give

ZMS
T ð2 GeVÞ=ZA ¼ 1.0721ð51Þð65Þð50Þ: ð45Þ

Adding up all the errors quadratically and using ZA ¼
1.0789ð10Þ from Sec. III A, we get

ZMS
T ð2 GeVÞ ¼ 1.157ð11Þ; ð46Þ

which is in agreement with the result 1.150(5) for ensemble
64I in Table XVII of Ref. [11].

D. Quark field renormalization

QCD propagators such as the quark propagator can
provide nonperturbative information about QCD as, for
example, discussed in Ref. [32]. Studies of quark propa-
gators in Landau gauge by using lattice QCD can be found
in, for example, Refs. [33,34]. The quark field renormal-
ization constant ZMS

q in the MS scheme is useful when
quark propagators are used to determine the quark chiral
condensate as was tried in Ref. [35].
To obtain ZMS

q , the following ratios are calculated and
then converted to the MS scheme:

ZMOM
q

ZMOM
A

¼ΓAðpÞjp2¼μ2 ;
ZSMOM
q

ZSMOM
A

¼ΓAðp1;p2Þjsym: ð47Þ

The valence quark chiral extrapolations of those ratios are
finished by using a linear function in amq as were done in
Refs. [10,11].
The four-loop conversion ratios to the MS scheme for the

two intermediate schemes are [22,23], respectively,

ZMS
q

ZMOM
q

¼ 1þ
�
−14.29753930þ 5

3
nf

��
αs
4π

�
2

þ ð−945.7120794þ 173.2442907nf − 4.534979350n2f

��
αs
4π

�
3

þ ð−44917.79393þ 11291.87285nf − 701.6008859n2f þ 8.854793272n3fÞ
�
αs
4π

�
4

þOðα5sÞ; ð48Þ

TABLE VIII. ZMS
T ð2 GeVÞ=ZA on ensembles f004, f006, and f008. They are obtained after removing the

discretization effects by using a straight-line extrapolation in a2p2. The error is from statistics and a2p2

extrapolation. The values in the sea quark massless limit are from linear extrapolations, whose errors are enlarged byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d.o.f.

p
(if > 1).

ZMS
T ð2 GeVÞ=ZA f004 f006 f008 aml þ amres ¼ 0

MOM 1.0709(02) 1.0733(02) 1.0706(2) 1.0721(51)
SMOM 1.0803(10) 1.0852(16) 1.0797(9) 1.0821(71)

TABLE IX. Systematic uncertainties of ZMS
T =ZAð2 GeV) in the

chiral limit through the MOM and SMOM schemes.

Source MOM (%) SMOM (%)

Conversion ratio 0.07 0.26

ΛMS
QCD

0.16 0.15

Lattice spacing 0.03 0.04
Perturbative running <0.01 <0.01
Fit range of a2p2 0.07 0.18
Different fit ansatz 0.53 0.47
msea

s ≠ 0 0.21 0.27
Extrapolation in ml 0.05 0.12
Total systematic uncertainty 0.60 0.66
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and

ZMS
q

ZSMOM
q

¼ 1þ
�
−
359

9
þ 12ζ3 þ

7

3
nf

��
αs
4π

�
2

þ
�
−
439543

162
þ 8009

6
ζ3 þ

79

4
ζ4

−
1165

3
ζ5 þ

24722

81
nf −

440

9
ζ3nf −

1570

243
n2f

��
αs
4π

�
3

×

�
21391

1458
n3f −

356864009

5184
ζ5 −

146722043

864
−
29889697

5184
ζ23 −

1294381

108
ζ3nf

−
1276817

972
n2f −

440

9
ζ5n2f −

20

3
ζ4n2f þ

8

27
ζ3n3f þ

100

3
ζ6nf þ

2291

72
ζ4nf

þ 5704

27
ζ3n2f þ

565939

864
ζ4 þ

1673051

324
ζ5nf þ

3807625

10368
ζ6 þ

6747755

288
ζ7

þ 55476671

1944
nf þ

317781451

2592
ζ3 − 1029ζ7nf − 24ζ23nf

��
αs
4π

�
4

þOðα5sÞ: ð49Þ

From Eqs. (48) and (49), one can estimate the size of the
truncated higher order terms. At a2p2 ¼ 5 or jpj ¼
5.3 GeV the higher order terms are of size 0.0006 and
0.0012 for the MOM and SMOM scheme, respectively.
They are given in Table XI as systematic errors.
Then ZMS

q =ZA at renormalization scale a2p2 can be run to

2 GeV by using the field anomalous dimension γMS
q , which

has been calculated to four loops in Landau gauge [36] in
perturbation theory. The two graphs of Fig. 9 show

ZMS
q =ZAð2 GeV; a2p2Þ after the running as functions of

the initial scale a2p2 for the two intermediate schemes,

respectively. The a2p2 dependence of ZMS
q =ZAð2 GeV;

a2p2Þ can be described by either a leading discretization

effect proportional to a2p2 (thin of SMOM) or the following
function with a higher order term:

ZMS
q ð2GeV;a2p2Þ

ZA
¼ZMS

q ð2GeVÞ
ZA

þcq1ða2p2Þþcq2ða2p2Þ2:

ð50Þ

From the linear or second-order polynomial dependence on
a2p2 at large scale (a2p2 ∈ ½5; 10�) we extrapolate

ZMS
q =ZAð2 GeV; a2p2Þ to a2p2 ¼ 0 to remove the lattice

artifacts.
Besides the linear function or Eq. (50), we try functions

with a nonperturbative term

FIG. 9. Extrapolations of ZMS
q ð2 GeV; a2p2Þ=ZA to a2p2 ¼ 0 from the two intermediate schemes. a2p2 is the initial renormalization

scale squared.
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ZMS
q ð2 GeV; a2p2Þ

ZA

¼ ZMS
q ð2 GeVÞ

ZA
þ cq−1
a2p2

þ cq1ða2p2Þ þ cq2ða2p2Þ2 ð51Þ

to estimate the uncertainty of ZMS
q ð2 GeVÞ=ZA from the

fitting ansatz as given in Table XI.
The extrapolated results ZMS

q =ZAð2 GeVÞ on the three
ensembles with HYP1 are listed in Table X along with the
values in the sea quark massless limit. The sea quark chiral
extrapolation is done linearly in ðaml þ amresÞ. A constant
extrapolation in the light sea quark mass is used to estimate
the associated systematic error. The slope from the linear
extrapolation is used to estimate the systematic error due to
the nonzero strange sea quark mass. The final results in the
chiral limit obtained through the two intermediate schemes
are in good agreement.
The systematic uncertainties of ZMS

q ð2 GeVÞ=ZA are
given in Table XI. Then we find

ZMS
q ð2 GeVÞ=ZA ¼ 1.097ð22Þð07Þ ðvia MOMÞ; ð52Þ

ZMS
q ð2 GeVÞ=ZA ¼ 1.091ð27Þð09Þ ðvia SMOMÞ; ð53Þ

where the first error is statistical and the second error
systematic. The dominant error is statistical due to the
a2p2-extrapolation with a second-order polynomial.
Adding up all the errors quadratically and using ZA ¼
1.0789ð10Þ from Sec. III A, we get

ZMS
q ð2 GeVÞ ¼ 1.184ð25Þ; ð54Þ

where we have taken the value via the MOM scheme as our

final result. This number agrees with the ZMS
q ð2 GeVÞ ¼

1.188ð5Þ for ensemble 64I in Table XVII of Ref. [11].

IV. TEST THE RENORMALIZATION

In this section, we check the HYP smearing dependence
of the renormalized light quark mass and hadron matrix
elements on the f004 ensemble, based on the renormaliza-
tion constants obtained in the previous section and col-
lected in Table XII (without the chiral extrapolation of the
sea quark mass). Besides the systematic uncertainty from
the sea quark mass extrapolation, we also dropped the
systematic uncertainty from the conversion ratio for ZS
since it is independent of the HYP smearing setup.
The quark mass dependence of the pion mass squared is

shown in Fig. 10 on the ensemble f004. About 42
configurations are used for all three smearing cases. In
the left panel we do linear fits ðamπÞ2 ¼ A · amq þ B
separately for the three cases, where mq is the bare quark
mass. The data can be well described by this linear function
and the intercepts B are all consistent with zero with our
statistical uncertainties. At a same bare quark mass the pion
masses are different because the renormalized quark masses
are different (and the discretizaton effects are also different)
for the different smearing cases.
In the right panel of Fig. 10 we plot the pion mass

squared as a function of the renormalized quark mass

mR
q ð2 GeV;MSÞ ¼ mq=ZMS

S ð2 GeVÞ, where ZMS
S ð2 GeVÞ

are given in Table XII. Then we find that all data points can
be fitted to one linear function ðamπÞ2 ¼ A0 · amR

q þ B0.
Thus, after applying renormalization for the different
smearing cases, one can expect to obtain a renormalized
light quark mass independent of smearing with the given
statistics.

TABLE X. ZMS
q ð2 GeVÞ=ZA on ensembles f004, f006, and

f008 for HYP1. They are obtained after removing the discretiza-
tion effects by using a second-order polynomial function in a2p2.
The error is from statistics and a2p2 extrapolation. The values in
the sea quark massless limit are from linear extrapolations, whose
error is enlarged by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d.o.f.

p
¼ ffiffiffiffiffiffiffiffiffi

1.39
p

for the intermediate
scheme MOM.

ZMS
q ð2 GeVÞ=ZA f004 f006 f008 aml þ amres ¼ 0

MOM 1.094(08) 1.110(12) 1.095(7) 1.097(22)
SMOM 1.088(12) 1.104(18) 1.089(9) 1.091(27)

TABLE XI. Systematic uncertainties of ZMS
q =ZAð2 GeVÞ in the

chiral limit through the MOM and SMOM schemes for HYP1.

Source MOM (%) SMOM (%)

Conversion ratio 0.06 0.12

ΛMS
QCD

0.07 0.05

Lattice spacing 0.09 0.01
Perturbative running 0.10 0.10
Fit range of a2p2 0.18 0.16
Different fit ansatz 0.55 0.73
msea

s ≠ 0 0.26 0.20
Extrapolation in ml 0.11 0.10
Total systematic uncertainty 0.66 0.80

TABLE XII. ZA and ZMS
S;Tð2 GeVÞ on ensemble f004 for the

three smearing cases. The two errors are for the statistics
uncertainty and the systematic ones. We dropped the systematic
uncertainty from the conversion ratio for ZS as it is a perturbative
correction and independent of the HYP-smearing steps.

Thin HYP1 HYP2

ZA 1.4403(6) 1.0808(10) 1.0506(6)

ZMS
S ð2 GeVÞ 1.233(11)(13) 1.011(2)(11) 1.004(1)(11)

ZMS
T ð2 GeVÞ 1.576(1)(9) 1.157(1)(6) 1.110(1)(6)
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Because of the correlation between the data with differ-
ent HYP smearing steps, the independence of smearing can
be checked with even higher precision. We calculate the
point 4-4-4 grid source [13] propagators on two time slices
on about 40 configurations, and construct the meson

correlators with different gamma matrices. Such a setup
is equivalent to 43 × 2 ¼ 128 measurements per configu-
ration of the following point source meson correlator at
short distance

CR
2;OðtÞ≡ Z2

O

�X
x⃗

Oðx⃗; tÞO†ð0⃗; 0Þ
	

¼
X
i

hOjii2R
2mi

e−mit⟶
t→∞

hOj0i2R
2m0

e−m0t; ð55Þ

where mi and hOjii are the ith state mass and matrix
elements, respectively. Since the HYP smearing can change
the UV behavior of the hadron spectrum, we will concen-
trate on the impact of HYP smearings on the ground state

mass m0 and also the renormalized ground state matrix
element hOj0iR ¼ ZOhOj0i.
On a lattice with finite size T in the time direction,

Eq. (55) should be modified into

CR
2;OðtÞ ¼

X
i

hOjii2R
2mi

½e−mit þ e−miðT−tÞ�⟶
tðm1−m0Þ≫1

hOj0i2R
2m0

½e−m0t þ e−m0ðT−tÞ�: ð56Þ

For the pseudoscalar correlator which has good signal around T=2, we apply the one-state fit with the following ansatz in
the range 0 ≪ t ≪ T:

CR
2;O¼P=A4ðtÞ ¼

hOj0i2R
2m0

½e−m0t þ e−m0ðT−tÞ�; ð57Þ

and do the two-state fit for the cases of other hadrons,

CR
2;O≠P=A4ðtÞ ¼

hOj0i2R
2m0

½e−m0tð1þ c1e−δmtÞ þ e−m0ðT−tÞð1þ c1e−δmðT−tÞÞ�; ð58Þ

at relatively smaller t as the results around T=2 can be very
noisy, where c1 and δm are additional parameters to describe
the contaminations from the excited states. We do the
folding C̄ðtÞ ¼ 1

2
½CðtÞ þ CðT − tÞ� on the correlator and

require the C̄ðtÞ at the maximum t used in the fit to have at
least 3–5σ signal (or T=2 in the pseudoscalar case), and tune
the minimum t to make the χ2=d.o.f. to be around one and
the corresponding Q value of the fit to be larger than 0.05.

FIG. 10. Squared pion mass as a function of the bare quark mass (left panel) or of the renormalized quark mass mR
q ¼ mq=ZS (right

panel) for the three smearing cases on ensemble f004. The straight lines in the left panel are linear fits for the different smearing cases. In
the right panel, all data points are fitted by one straight line. The intercepts of all fits are consistent with zero as given in the graphs.
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Because of the discretization error, the meson mass using
the same renormalized quark mass can be different with
different HYP-smearing steps. Thus, we can consider this
effect in a reversed way, by tuning the quark masses to
make the corresponding pseudoscalar masses obtained by
C2;P as the following four values regardless of the HYP-
smearing steps:
(1) 0.302 GeV which corresponds to the unitary pion

mass on the f004 ensemble;
(2) 0.675 GeV which corresponds to the strange quark

mass, mMS
q ð2 GeVÞ ∼ 0.1 GeV;

(3) 0.976 GeV which corresponds to mMS
q ð2 GeVÞ∼

0.2 GeV; and
(4) 1.230 GeV which corresponds to mMS

q ð2 GeVÞ∼
0.3 GeV.

Practically we calculate at two quark masses around each
of the above cases, and do the interpolation to make the
pseudoscalar mass to be exact.
Then we compare the renormalized quark mass with

different HYP-smearing steps. The ratio of the quark
masses with one or two steps HYP smearing over that
with the thin link are plotted in Fig. 11. The results with
different HYP smearing are based on the same configura-
tions, and the data correlation has been taken into account
to suppress the uncertainty of the ratios.

In Fig. 11, the yellow triangles show the ratio of the quark
mass with one-step HYP smearing (the standard χQCD
setup). We can see that the ratio is around 2%–3% smaller
than 1. Such a difference is slightly larger than the joint
uncertainty ofZSwith the thin link, but an order ofmagnitude
smaller than that of the bare quark masses with or without
HYP smearing (∼20%). On the other hand, the green dots
show the case using the quark mass with two-step HYP
smearing in the numerator. The deviation seems to be smaller
comparing to the one-HYP case, and the result at unitary pion
mass seems to be consistent with one with much larger
statistical uncertainty. Thus, we conclude that the HYP
smearing may introduce around 3% discretization error in
the renormalized quark mass at this specific lattice spacing.
Then we are ready to compare the renormalized ground

state matrix elements hOj0i with different O, through
the ratio Rn¼1;2

O ¼ hOj0inHYPR =hOj0ithinR . R ¼ 1 means the
renormalization matrix elements are independent of the
HYP smearing steps, and a nonvanishing deviation sug-
gests a discretization error as the HYP smearing depend-
ence should vanish in the continuum.
Figure 12 shows the cases of the pseudoscalar (left

panel) and scalar (right panel) matrix elements, while the
pseudoscalar case has much better signal and shows an
obvious quark mass dependence. After the chiral extrapo-
lation, the deviation from one in the one-HYP pseudoscalar
case is around 3%, while the two-HYP case is around 1%.
The uncertainty in the scalar case is much larger and the
result after chiral extrapolation is consistent with the
pseudoscalar case. Note that the lightest quark mass case
in the scalar channel is dropped since the mixture between
the σ and ππ states makes the two-state fit defined in
Eq. (58) to be unreliable. For similar reason, we dropped
the light quark mass cases in all the channels except the
pseudoscalar ones.
In the channels using the vector or axial-vector currents,

the pseudoscalar channel using O ¼ q̄γ5γ4q also has good
signal (upper left panel of Fig. 13) and suggests that the
renormalized matrix elements in the chiral limit is inde-
pendent of the HYP smearing, for both the one-HYP and
two-HYP cases. Similarly to the scalar case, the results
from the spatial components of the vector and axial-vector
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1.02

0 0.1 0.2 0.3

m
q,
Pn
H
YP
/m
q,
Pt
hi
n

mqthin(GeV)

2HYP
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FIG. 11. Ratio mn-HYP
q =mthin

q of the renormalized quark masses
with n ¼ 1 (yellow triangles) and n ¼ 2 (green dots) steps of
HYP smearing, to make the corresponding pseudoscalar meson
mass to be 0.302, 0.675, 0.976, and 1.23 GeV, respectively.

0.8

0.9

1

1.1

1.2

0 0.1 0.2 0.3
mqthin(GeV)

2HYP
1HYP

0.8

0.9

1

1.1

1.2

0 0.1 0.2 0.3
mqthin(GeV)

2HYP
1HYP

FIG. 12. The ratio Rn¼1;2
O ¼ hOj0inHYPR =hOj0ithinR for the pseudoscalar (left panel, O ¼ q̄γ5q) and scalar (right panel, O ¼ q̄q) matrix

elements using ZS ¼ ZP. The lightest quark mass case in the scalar channel is dropped due to the mixture between the single-hadron and
multiple-hadron states.
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currents are noisier as shown in the other panels of Fig. 13,
while the discretization error due to the HYP smearing is at
the 5% level in the cases we investigated.
As shown in Fig. 14, the operator O ¼ q̄γ4γiq corre-

sponds to the vector channel which is lighter than the tensor
channel using the operator O ¼ q̄γiγjq, and then has a
better signal. We can see that the HYP smearing depend-
ence in the vector channel is at the same level as the other
cases, while the tensor channel seems to have larger
deviations but the uncertainties are also large.

V. SUMMARY

Renormalization constants are necessary in lattice QCD
calculations of various hadronic matrix elements, which are
important in precise determinations of the parameters of the

Standard Model and in searching new physics. Thus, one
needs to calculate RCs as precise as possible.
Gauge link smearings are widely used in lattice QCD

calculations. They can suppress the ultraviolet fluctua-
tions of the gauge fields and decrease the statistical
uncertainties in practice calculations besides bringing in
many other benefits. They can also affect the vertex
functions of quark operators which are used in (S)MOM
renormalization of those operators. Therefore we inves-
tigate the effects of HYP smearing on the renormalization
window in this work as we try to get RCs as precise as
possible by using both MOM and SMOM as intermediate
schemes. We check the a2p2 dependence of ZMS

X (2 GeV;
a2p2) (X ¼ S, T, q) as it is obtained by running from the
initial scale jpj to 2 GeV.
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FIG. 13. The ratio Rn¼1;2
O ¼ hOj0inHYPR =hOj0ithinR for pseudoscalar (upper left panel, O ¼ q̄γ5γ4q), axial-vector (upper right panel,

O ¼ q̄γ5γiq), and vector (lower panel,O ¼ q̄γiq) matrix elements using ZV ¼ ZA. The lightest quark mass cases in the vector and axial-
vector channels are dropped due to the mixture between the single-hadron and multiple-hadron states.

0.8

0.9

1

1.1

1.2

0 0.1 0.2 0.3
mqthin(GeV)

2HYP
1HYP

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3
mqthin(GeV)

2HYP
1HYP

FIG. 14. The ratio Rn¼1;2
O ¼ hOj0inHYPR =hOj0ithinR for vector (left panel, O ¼ q̄γ4γiq) and tensor (right panel, O ¼ q̄γiγjq) matrix

elements using ZT . The lightest quark mass cases are dropped due to the mixture between the single-hadron and multiple-hadron states.
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For our lattice setup, in general, the a2p2 dependence of
ZMS
X (2 GeV; a2p2) via the MOM scheme is not very

sensitive to the HYP smearing although it is affected by
the levels of smearing that we use (no smearing, one hit and
two hits). The a2p2 dependence of ZMS

S;T(2 GeV; a2p2) can
be described straightforwardly by a linear function in the
range a2p2 ∈ ½5; 10� for all smearing cases. In physical
units the range is jpj∈ ½5.3; 7.5� GeV. The a2p2 depend-
ence of ZMS

q (2 GeV; a2p2) can be described by a second-
order polynomial for all three smearing cases.
For the intermediate SMOM scheme, the behavior of the

a2p2 dependence of ZMS
X (2 GeV; a2p2) is sensitive to

whether HYP smearing is applied or not. From the right
panels of Figs. 5, 7, and 9 we can see that the behaviors of
ZMS
X (2 GeV; a2p2) for HYP1 and HYP2 are apparently

different from that for the thin case. ZMS
X (2 GeV; a2p2) can

be described by a linear function of a2p2 when no smearing
is applied. Among the three RCs (X ¼ S, T, q) the a2p2

dependence of ZMS
T (2 GeV; a2p2) has the least sensitivity to

smearing. It can still be fitted to linear functions for both
HYP1 and HYP2 although the slope has a sizable change
compared with no smearing. The a2p2 dependence of
ZMS
q (2 GeV; a2p2) changes from a linear function to a

second-order polynomial after smearing is applied.
ZMS
S (2 GeV; a2p2) has the largest sensitivity to smearing.

With HYP2 we find it is hard to describe the a2p2

dependence of ZMS
S (2 GeV; a2p2) no matter if we use

high order terms for discretization effects or inverse terms
for possible nonperturbative effects.
By going to higher renormalization scale than in [17] and

using four-loop conversion ratios from the MOM scheme to
MS, we reduce the systematic errors of the RCs for the

scalar and tensor operators. For ZMS
T ð2 GeVÞ we obtain a

total uncertainty less than 1%.
We also checked the HYP smearing dependence of the

renormalized quark masses and hadron matrix elements.
The results show that the renormalization suppresses the
∼30% difference of the bare quantities into 3%–5% level,
while more than one step of HYP smearing may not make
the residual deviation to be smaller.
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