
Anomalous Dimensions from the N = 4 Supersymmetric Yang-Mills Hexagon

Burkhard Eden ,* Maximilian Gottwald ,† Dennis le Plat ,‡ and Tobias Scherdin §

Institut für Mathematik und Physik, Humboldt-Universität zu Berlin, Zum großen Windkanal 2, 12489 Berlin, Germany

(Received 4 November 2023; revised 23 January 2024; accepted 1 March 2024; published 16 April 2024)

We consider the correlator hLKK̃i of the Lagrange operator ofN ¼ 4 super Yang-Mills theory and two
conjugate two-excitation operators in an su(2) sector. We recover the planar one-loop anomalous dimension
of the renormalized operators from this hexagon computation.
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Introduction.—The on-shell Lagrangian density of
N ¼ 4 super Yang-Mills theory (SYM) can be written
as [1]

L ¼ 1

g2YM
tr

�
−
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2
FαβFαβ þ

ffiffiffi
2

p
ΨαI½ΦIJ;ΨJ

α�

−
1

8
½ΦIJ;ΦKL�½ΦIJ;ΦKL�

�
; ð1Þ

which contains the field strength Fαβ, four fermions ΨαI ,
and the antisymmetric scalar fields ΦIJ, where
I; J; K; L∈ f1…4g.
Correlation functions as defined by the path integral

hO1…Oni¼
Z

DðΦ;Ψ;Ψ̄;AÞO1…One
i
R
d4x0L0 ð2Þ

should therefore obey the identity

g2
d

dðg2Þ hO1…Oni ¼
−i
g2

Z
d4x0hL0O1…Oni: ð3Þ

Initially intended as a criticism [2], this observation has
been instrumental in constructing correlators of half-
BPS operators at the integrated level at one- and two-loop
order, and as integrands to very high order in the coupling
gYM [3–6].
In the present work we want to study equation (3) as a

relation between the two-point function of a renormalized
scalar primary operator K and its conjugate K̃, and the
three-point function obtained by insertingL into it. At Born
level

hL0K1K̃2i ¼
cðNÞ

ðx201Þ2ðx202Þ2ðx212ÞΔ0−2
: ð4Þ

Configuration space Feynman integrals yield the functional
dependence stated in the last formula. Here Δ0 is the naive
scaling dimension of K, and so the computation serves to
determine the constant cðNÞ, where N is the rank of the
gauge group.
The space time integral over the insertion point

Z
d4x0
x401x

4
02

is divergent in this situation. It reproduces the one-loop
divergence of the two-point function on the left of (3) so
that upon regularizing we must have

cðNÞ ∝ γ1 ð5Þ

if the planar scaling dimension of K has the coupling
constant expansion ΔK ¼ Δ0 þ g2γ1 þ g4γ2 þ � � � in terms
of the ‘t Hooft coupling g2 ¼ g2YMN=ð8π2Þ.
The spectrum problem of N ¼ 4 SYM is related to

finding the energy eigenstates of the Heisenberg spin chain
[7,8]. More recently, structure constants became accessible
to such integrability methods via the hexagon formalism of
[9]. In this Letter we present a first computation verifying
(5) entirely within the Bethe ansatz framework.
In the original spin chain approach to N ¼ 4 theory the

scalar Z ¼ Φ34 is regarded as a vacuum and other fields can
travel over a chain of such sites [7]. Unfortunately for our
endeavor, the complex conjugate vacuum Z̄ ¼ Φ12, half of
the fermions, and the field strength Fαβ, Ḟα̇ β̇ are excluded
from the set of excitations, and hence it would appear that
none of the terms of the on-shell Lagrangian (1) is captured.
On the other hand, for the so(6) sector comprising all

scalar fields it has been known for a long time how to
realize the missing conjugate of the vacuum as a double
excitation, by placing two scalars on the same site. The
missing fermions and the two parts of the field strength
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tensor are provided by further types of double excita-
tions [10].
Customarily, Bethe equations are diagonalized by the

nested Bethe ansatz [11]. Having found a solution, its
primary roots can be used also in the original Bethe ansatz
for theN ¼ 4 spectral problem, in which the (restricted set
of) excitations scatter on the chain by a psuð2j2Þ-invariant S
matrix [12]. Operators in higher-rank sectors are then
described by a multicomponent wave function.
The operator (1) is a supersymmetry descendent of the

half-BPS operator O20. Acting with all four generators
Qα

a0 yields

L ¼ 1

4
Q1

3Q
1
4Q

2
3Q

2
4trðΦ34Φ34Þ: ð6Þ

These generators transform the spin chain vacuum as

Qα
3Φ34 ¼ Ψα4; Qα

4Φ34 ¼ −Ψα3; ð7Þ

allowing us to identify the Lagrange operator with the four
excitations [10]

fΨ13;Ψ23;Ψ14;Ψ24g ð8Þ

on a length two chain. At lowest order in the coupling the
Bethe wave function exists because the fermions may
occupy the two sites in pairs

−Qα
3Q

β
4Φ34 ¼

����Ψ
α4

Ψβ3

�
¼ Fαβ: ð9Þ

The stacked state in the middle denotes a double excitation
at one site. On the other hand, the level one wave function
on which the four excitations scatter with the S operator of
[12] dissolves the concept of spin chain length. However,
the local structure of the wave function is of no further
relevance in spectrum computations. Even if the length two
Bethe solution with four excitations only exists owing to
double excitations, the latter will not play any further rôle in
calculations. Moreover, the hexagon [9] does also not
depend on the local wave function. In Refs. [10,13] it is
illustrated on a series of examples that it does correctly
compute structure constants for operators requiring the
presence of double excitations.
These calculations necessarily involve multicomponent

wave functions. A priori, we have to write one wave
function for every initial ordering of the four fermions in (8)
and of the cases

fΨ13;Ψ13;Ψ24;Ψ24g; fΨ23;Ψ23;Ψ14;Ψ14g: ð10Þ

Each of the resulting 36 wave functions comes with a
coefficient. Off shell, these amplitudes are uniquely

determined matching the entire state on the nested Bethe
ansatz [13,14].
On shell, the situation may be degenerate for descendent

states, i.e., when there are infinite Bethe rapidities. One of
our aims is to decide whether all 36 wave functions are
necessary to recover (5). Our answer will be no: on a gauge
invariant state, the four distinct supersymmetry generators
in (6) anticommute. Consequently, the sequence of taking
the supersymmetry variations can alter the result only by an
overall sign, and for the choices in (10) the variation
vanishes. Excitingly, the hexagon computation presented
below has the very same features: the initial ordering of the
four magnons only results in an overall sign, and the 12
cases from (10) rather nontrivially yield zero.
The computation.—The su(2) sector of the N ¼ 4 spin

chain model has n magnons X ¼ Φ24 traveling over a
closed chain of L sites, so there are L − n further fields
Z ¼ Φ34. Each magnon moves with a quasimomentum pj,
or, equivalently, the rapidity

uj ¼
1

2
cot

pj

2
: ð11Þ

In the planar approximation, the one-loop conformal
eigenstates for every L are exactly given by the wave
functions of the coordinate Bethe ansatz. Here we are
chiefly interested in their eigenenergies viz anomalous
dimensions. These can be found from the Bethe equations

eipjL
Y
k≠j

Sjk ¼ 1; Sjk ¼
uj − uk − i

uj − uk þ i
; ð12Þ

built from the shift operator eipj ¼ ðuj þ i=2Þ=ðuj − i=2Þ
and the scattering matrix S. Importantly, there is factor-
ized scattering: multiparticle scattering factorizes into
two-particle processes. Finally, translation invariance
along the chain implies the zero momentum constraintP

j pj ¼ 0.
A set fujg solving the Bethe equations are called Bethe

roots. In terms of these rapidities the energy of a Bethe
state is

γ1 ¼
Xn
j¼1

1

u2j þ 1
4

: ð13Þ

Specializing to the two-excitation case, the zero momentum
constraint yields u1 ¼ −u2 and therefore the remaining
Bethe equation simplifies to

eipjðL−1Þ ¼ 1: ð14Þ

The lowest two-excitation states are then characterized by
the roots and energy eigenvalues given in Table I.
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The spin chain model for the su(2) sector has been
extended to the more complete set of excitations [15]

fΦab0 ;Ψαb0 ; Ψ̄aβ̇; Dαβ̇g; ð15Þ

with a; α; β̇∈ f1; 2g, b0 ∈ f3; 4g. These can be written as a
tensor product of two suð2j2Þ excitations:

χAB
0 ¼ χA ⊗ χ̄B

0
; A¼ fa;αg; B0 ¼ fb0; β̇g: ð16Þ

We will henceforth refer to the magnons χA, χ̄B
0
as the left

and the right chain, respectively. The phase called S above
now becomes a true matrix. Its action is given by two
identical copies of the same suð2j2Þ invariant S matrix—
one acting on the A index, and the other one acting on the
B0 one—normalized by a common factor S as given in (12).
Further, the effect of higher-loop Feynman diagrams can be
included changing to the so-called Zhukowsky variable
x�ðu; g2Þ and introducing a certain phase factor [8,16,17].
Now, the full set of fields of the N ¼ 4 model also

comprises fΦ12;Ψαa; Ψ̄a0β̇; Fαβ; Ḟα̇ β̇g, which apparently do
not fit into the A ⊗ B0 tensor structure as each of them
carries two indices from the same representation. Yet, as
mentioned above, the missing fields are all secretly present
as double excitations [10,13]. While they are invisible in
the level-one wave function, their existence allows us to
trust the Bethe equations where we otherwise would not by
the quantum numbers—for instance, how could four
fermions fit on a chain of length two without double
occupation?
In Fig. 1 we depict a three-point function of spin chains,

or equivalently a three-string vertex. An efficient integrable
systems approach to three-point computations has been
devised in [9]. The three-vertex is split into its back and
front surface yielding hexagonal patches. In the figure, the
virtual edges are colored. These correspond to bunches of
propagators stretching between the operators. The physical
edges representing spin chains are marked in black.
The spin chains have to be split as well, taking into

account all distributions of excitations or magnons:

ψ l1þl2
fX1;X2g ≡ ψ l1

fX1;X2gψ
l2
fg − eip2l1ψ l1

fX1gψ
l2
fX2g

− eip1l1S12ψ
l1
fX2gψ

l2
fX1g

þ eiðp1þp2Þl1ψ l1
fgψ

l2
fX1;X2g; ð17Þ

where the symbol ψ l
f…g denotes a Bethe wave function of

length l with a given set of magnons. Shift operator and S
matrix are as in (12). The split wave function was baptized
an entangled state in [18].
Before tackling the correlator hLKK̃iwe ultimately want

to evaluate, we review the hexagon approach on the
example of the simpler but related three-point function
h1KK̃i, which computes the norm of the operatorK [9]. To
decrease the number of terms it is advisable to focus on
transverse excitations, which do not mix with the vacuum
under the twisted translation [9] used to put the outer points
to the standard positions 0, 1, ∞.
For transverse scalars X on K we have the rapidities

u5 ¼ −u6, while the operator K̃ must carry the conjugate
excitations X̄ with rapidities u7 ¼ −u8. The corresponding
spin chain is split as in (17), which allows us to express the
correlator in terms of hexagons as

A ¼
X

α∪ᾱ¼fu5;u6g
β∪β̄¼fu7;u8g

ð−1Þjαjþjβjωðl23; α; ᾱÞωðl23; β; β̄Þ�
hðfg; α; β̄Þhðfg; β; ᾱÞ: ð18Þ

Here α; ᾱ and β; β̄ denote the partitions of the sets of
magnons into two subsets, and the splitting factorsω can be
inferred from (17). In the Born approximation we do not
require coupling constant corrections to the splitting
factors.
In order to evaluate the hexagon form factor we first need

to move all magnons to the same physical edge by using
crossing transformations [9]. This sends

x�⟶
�2γ g2

2x�
; ð19Þ

so clearly the operation does not commute over the g
expansion. Therefore, the Zhukowsky variables x� can
only be restricted to the Born approximation after crossing.
Second, on the hexagon the suð2j2Þ invariant S matrix
[12] is multiplied by the scalar factor h [9] that has a
monodromy under crossing, since it contains the BES

FIG. 1. Splitting a three-point function into two hexagons.

TABLE I. Bethe roots u2 ¼ −u1 and energy eigenvalues γ1 for
su(2) primary operators of lengths L ¼ 4;…; 9.

L u2 γ1

4 ð1= ffiffiffiffiffi
12

p Þ 6
5 1

2
4

6 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2= ffiffiffi

5
p Þ

q
5 ∓ ffiffiffi

5
p

7 ð ffiffiffi
3

p
=2Þ; ð1= ffiffiffiffiffi

12
p Þ 2, 6

8 1.038 26 1.506 04
0.398 737 4.890 08
0.114 122 7.603 88

9 1
2
ð ffiffiffi

2
p � 1Þ; 1

2
4 ∓ 2

ffiffiffi
2

p
; 4
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dressing phase [17]. In the conventions of [9] we associate
0γ crossing to edge 1 of both hexagons, on the back
hexagon (white hexagon in Fig. 1) we assume −2γ for
magnons of operator 2 and −4γ for magnons of operator 3.
On the front (gray) −2γ for operator 3 and −4γ for operator
2. Note also that crossing sends X → −X and X̄ → −X̄.
Further, as in the spectral problem the excitations are

represented as χAB
0 ¼ χA ⊗ χ̄B

0
. Again, we arrange all χ’s

on a left and all χ̄’s on a right chain. Next, the hexagon
scatters only one of the chains using the S matrix [12]
and finally the left and right chain are contracted employing
the rule

hϕa
j jϕ̄b0

j i ¼ ϵab
0
; hψα

j jψ̄ β̇
j i ¼ ϵαβ̇: ð20Þ

This assignment is valid in the spin chain frame [9,19].
In the norm computation, only hexagons with equal

numbers of X and X̄ magnons can be nonvanishing because
the transverse scalars cannot be contracted on the twisted
vacuum. The only distinct amplitudes are

hhjfgfgfgi ¼ 1;

hhjfgfX5gfX̄7gi ¼
i

u5 − u7
eip7 ;

hhjfgfX5X6gfX̄7X̄8gi ¼
4u5u7 · e2ip5

ð2u5 þ iÞð2u7 þ iÞ �

2u25 þ 2u27 þ 1

ðu5 − u7Þ2ðu5 þ u7Þ2:
ð21Þ

In the third row of the last equation we have identified
u6 ¼ −u5, u8 ¼ −u7 to obtain a concise formula. Note that
both nontrivial amplitudes contain particle creation poles
that occur when conjugate magnons occupy different
physical edges. Since both K and K̃ are characterized by
the same rapidities we cannot identify u7 ¼ u5 without
factoring out or regularizing [20] the real poles.
Fortunately, they do factor out upon adding up all the
partitions. Yet, this can only happen upon omitting the
explicit momentum factors from Eq. (21). The need to drop
these can be demonstrated deriving the amplitudes in the
string frame and switching to the spin chain picture
employing the formulas in [9,22]. Here we use the rule

2u − i → e−ipð2uþ iÞ: ð22Þ

since denominator factors of the form ð2u5 þ iÞ can, e.g.,
arise from the difference xþ5 − x−6 in Smatrix elements. The
need to rescale by momentum factors has been realized in
the original paper [9] and was extended for fermions
in [22].
After factorization we can identify u7 ¼ u5. By way of

example, the length 4 and 5 results are

h1K4K̃4i ¼ 512u25e
ip5

ð1þ 4u25Þ7
ð23 − 128u25 þ 992u45

− 512u65 þ 768u85Þ;

h1K5K̃5i ¼ 512u52e
ip5

ð1þ 4u25Þ9
ð65 − 952u25 þ 12 336u45

− 38 144u65 þ 87 808u85
− 30 720u105 þ 20 480u125 Þ: ð23Þ

Substituting the rapidities for L ¼ 4, 5 from Table I we find
the values 108ð−1Þ4=3;−80i, respectively, confirming [9,23]

h1KK̃i ¼ GS12; ð24Þ

where G is the Gaudin norm [24].
The hLKK̃i computation additionally requires an

entangled state at point 1 distributing the four magnons
of L with rapidities u1;…; u4 over the two hexagons. This
considerably augments the number of possible hexagon
amplitudes. In the Born approximation there is no eip

rescaling for the magnons of L because of their vanishing
momenta (viz infinite rapidities). Thus the rescaling is tied
solely to the occupation by scalar excitations from K; K̃ at
given momentum and crossing. We can infer it from (21)
where an inverse image in h1KK̃i exists. However, a new
feature of hLKK̃i is the occurrence of nonvanishing
hexagon amplitudes with one or three of the scalars from
K; K̃ and also one or three of the magnons of L.
Fortunately, the rescaling should not depend on the flavor
of the scalars in question so that we can compare to a norm
calculation with longitudinal scalars where necessary. In
Table II we list the additional hexagon amplitudes [25] and
the momentum factors which need to be removed.
According to (6), the Lagrange operator is a fourfold

supersymmetry descendent of the vacuum. We therefore
expect four infinite Bethe roots. In order to find a regulated
Bethe solution for the Yang-Mills term of the Lagrange
operator as derived in [10] a twist regulator in a nested
Bethe-ansatz for an suð2j2Þ sector was employed. To this
end a factor eimjβ is introduced into the level-j Bethe
equation, with a universal order parameter β ≪ 1. The
Bethe roots are assumed to have an expansion

TABLE II. Additional momentum factors for amplitudes con-
taining magnons from K; K̃.

Hexagon Factor

hhjf…gfY5gfgi; hhjf…gfgfY7gi 1
hhjf…gfY5Y6gfgi e2ip5

hhjf…gfY5Y6gfY7gi e2ip5e2ip7

hhjf…gfgfY7Y8gi; hhjf…gfY5gfY7Y8g 1

PHYSICAL REVIEW LETTERS 132, 161605 (2024)

161605-4



uj →
uj;−1
β

þ uj;0 þ uj;1β þ… ð25Þ

of which we will only need the leading order in β in this
Letter. The hexagon calculation only depends on the level
one roots, so we just need

uj;−1 ∈
�þ1þ iffiffiffi

2
p ;

þ1 − iffiffiffi
2

p ;
−1þ iffiffiffi

2
p ;

−1 − iffiffiffi
2

p
�

ð26Þ

with j ¼ 1;…; 4. We will henceforth drop the -1 label on
these roots. Note that they satisfy

Q
j uj ¼ 1.

Since twist is needed on the supersymmetry and on an
auxiliary R symmetry node one might wonder whether
supersymmetry and R invariance are manifest in every
partial wave function of the multicomponent ansatz or
rather only in the sum over all 36 parts. For the Yang-Mills
term of the Lagrangian the individual wave functions
are degenerate—will we find the same in our three-point
calculation?
To form the entangled state of L we generalize (17) by

scattering the four fermions with the full suð2j2Þ2 S matrix
[12]. Born level means restricting to leading order in g and
β. It is advisable to do so from the very beginning, resulting
in the simple scattering

ϕa
1ψ

γ
2 → ψγ

2ϕ
a
1;

ψα
1ϕ

c
2 → ϕc

2ψ
α
1;

ϕa
1ϕ

c
2 → ϕc

2ϕ
a
1 þ

g̃
u1u2

ϵacϵαγψ
α
2ψ

γ
1Z

−;

ψα
1ψ

γ
2 → ψγ

2ψ
α
1 þ

g̃
u1u2

ϵαγϵacϕ
a
2ϕ

c
1Z

þ ð27Þ

on both chains. Here we introduced g̃ ¼ ðgβ2Þ= ffiffiffi
2

p
. Thus

scattering is diagonal up to the remnants of the C12 and F12

elements of the Smatrix [12], where the Z� indicate length
changing effects. In [10] the calculation

hLOLOLi ¼ 0 ð28Þ

with two half-BPS statesO of length L was presented. This
computation is chiral in the sense that four fermions can
only be self-contracted under certain conditions. Namely,
the scattering processes to form the entangled state as well
as those in the evaluation of the hexagons need to produce
in total C2, CF, F2 (or higher) for every term. Thereby, all
the leading contributions come with the factor

g̃2Q
juj

→ g̃2 ð29Þ

if we go on shell. In fact, the actual Bethe solution is never
needed because the rapidity dependence is global.
Furthermore, the length-changing effects denoted by Z�

referring to the insertion or deletion of a site in (27) are
irrelevant because all magnons have infinite rapidities.
On the other hand, when evaluating hLKK̃i length

changing is of the utmost importance since there are
magnons with finite rapidities. Recall that we can scatter
on either chain when computing hexagons. For instance,
scattering on the right chain produces C elements so that
only spin chain shortening operations Z− appear. We can
then move the Z markers to the left using [12]

χB
0
Z� → e�ipZ�χB0

; ð30Þ

and remove them from the form factor as [9]

hhjZ�χB0
1ðp1Þ…χB

0
nðpnÞi

¼
Yn
j¼1

e∓ipj=2hhjχB0
1ðp1Þ…χB

0
nðpnÞi: ð31Þ

Note that �2γ on the second edge inverts momentum
factors. Further, crossing can create entire powers of eip

when acting on the Zhukowsky variables in the usual
combinations like xþ − y−; 1 − g2=ð2x−yþÞ;… in the S
matrix elements. Half integer powers may arise from the
relative normalization between bosons and fermions:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðx− − xþÞ

p
ju∓2γ ¼∓ eip=2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðx− − xþÞp
xþ

����
u0γ

ð32Þ

as well as from (31). Finally we have to deal with the Z
markers arising from scattering the four fermions according
to (27) when building the entangled state of L. As the
Lagrangian is inserted at point 1 and its magnons have
vanishing momentum, we can move these markers to the
very left without picking up any additional factors. Then we
utilize (31) once again. Using our assumptions on the
rapidities (vanishing momenta p1…p4 for the magnons of
L and u6 ¼ −u5, u8 ¼ −u7 on K, K̃), we tabulate the extra
momentum factors for all contributing partitions and notice
that they are equal on the front and back hexagon. We are
thus free to choose on which hexagon to act with the
markers from the entangled state for L. Applying them to
both would overcount their effect. In a tessellation [23,26]
with more hexagon tiles around the Lagrangian insertion
one will presumably need some averaging prescription
[27]. Last, for these three-point functions a curious obser-
vation with respect to the total Z marker action is the
symmetry under Zþ ↔ Z−. This can be traced to the
similarity of the C and F elements.
Given all these precautions the miracle happens: there

are only integer powers of eip and the particle creation
poles factor out as in the norm computation. Despite the
fact that 2286 of 35 664 possible hexagon amplitudes are
nontrivial, there are maximally 180 contributing partitions
in any partial wave function so that factorization can again
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be achieved analytically. More precisely, the 24 permuta-
tions of four distinct fermions (8) each yield 104 partitions,
and the results are equal up to the obvious signs. The 12
cases with degenerate fermions (10) all nontrivially vanish.
Here 144, 168, or 180 partitions sum to zero.
In h1KLK̃Li the width of the edge connecting the

operators at points 2, 3 is unambiguously l23 ¼ L because
the identity has length 0 [9,28]. In general, the bridge length
reads l23 ¼ ðL2 þ L3 − L1Þ=2 and for hLKLK̃Li we obtain
l23 ¼ L − L1=2. The leading trðF2Þ term surely has
L1 ¼ 2. In our factorization exercise there are always
two Z markers in any term. To the combinations
Z−Z−;ZþZ−;ZþZþ we could assign operator length 0,
2, 4, respectively. If we do not want to destroy the
cancellation of the particle creation pole, every partition
will have to have the same starting value for l23 while we
rely on the markers to correctly incorporate the length
changing effects.
In analogy to (23), for l23 ¼ 2…8 we find the rational

functions given in Table III for the initial ordering
fψ13;ψ14;ψ23;ψ24g of the L excitations.
Curiously, l23 ¼ L yields zero from the third row on

upon substituting the Bethe roots from Table I. This
confirms operator length two for the full Lagrangian,
and indeed for all operators [29] in Table I,

hLKLK̃Li
h1KLK̃Li ¼

g̃2γ1
L

; ð33Þ

with l23 ¼ L − 1. This is our main result.
Conclusions.—We have successfully generalized the

simple test in [10] to the formula hLKK̃i ∝ γ1 as expected
from field theory, see (5). However, we do not fully
understand the normalization. For a connected correlator,
the hexagon result should be scaled up by a factor

ffiffiffiffi
L

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
Q

i<jSij
q ð34Þ

per operator. Now, h1KK̃i is disconnected, by which token
the factor

ffiffiffiffi
L

p
should be omitted there, explaining the

appearance of the explicit 1=L in (33).

How about the normalization of L, though? The Gaudin
determinant from the full set of Bethe equations including
secondary roots equals 1442β16, whereas the phase

Q
i<j Sij

associated to the Lagrangian is 1. On the other hand,
reading off coefficients for the individual wave functions of
the multicomponent ansatz from an equivalent nested Bethe
ansatz leads to the conjecture that each such coefficient is
given by the complete above level-one wave function
[10,13]. We have verified this with L > 2 for the off-shell
problem with four level-one Q2

3 excitations and two
auxiliary sl(2) (left) and su(2) (right) excitations each.
For example, the coefficient of the fψ13;ψ14;ψ23;ψ24g
partial wave function discussed above is the nested
wave function for auxiliary excitations with rapidities
fv1w1;v2;w2;1g, respectively, on the four level-one vacuum
sites ψ24ðuiÞ. Here we have to scatter the two left wing and
the two right wingmagnons over each other resulting in four
similar blocks. Given the degeneracy of the 24þ 12 wave
functions described in the last section we compute an extra
factor of−24

ffiffiffi
3

p
β4 from the sum of these coefficients put on

shell. For the explicit Bethe solution see [10]. The right-hand
side of formula (33) should thus be rescaled as

β4

2

γ1
L
� −24

ffiffiffi
3

p
β4

144β8
�

ffiffiffiffiffiffiffiffiffi
2LL

p
¼ −

γ1ffiffiffiffi
4!

p : ð35Þ

While the powers of β fall into place andwemay dismiss the
minus sign as somewhat accidental, we have no good
explanation for the factor

ffiffiffiffi
4!

p
in the normalization of the

Lagrange operator. Note, however, that differences between
operator norms in integrability and field theory, respectively,
are not uncommon [9].
Nevertheless, we have presented evidence for the

Lagrangian insertion to work in integrability as in field
theory. Our computation is perfectly stable although
descendent operators can be quite intricate to handle in
the hexagon approach. In fact, explicit knowledge of a
Bethe solution for L is not required unless we are interested
in the exact normalization in (5). If not, we may pick any of
the wave functions without degenerate fermions and ignore
the rest of the ensemble.

TABLE III. Rational functions obtained from the hexagon evaluation for bridge lengths l23.

l23 Rational function

2 0
3 ½8192u25eip5=ð1þ 4u25Þ5�
4 ½8192u25eip5=ð1þ 4u25Þ7� · ð1 − 12u25Þ2
5 ½8192u25eip5=ð1þ 4u25Þ9� · 8ð1 − 4u25Þ2ð1 − 8u25 þ 80u45Þ
6 ½8192u25eip5=ð1þ 4u25Þ11� · ð1 − 40u25 þ 80u45Þ2ð5 − 24u25 þ 80u45Þ
7 ½8192u25eip5=ðð1þ 4u25Þ13Þ� · ð3 − 4u25Þ2ð1 − 12u25Þ2ð3 − 80u25 þ 1824u45 − 5376u65 þ 8960u85Þ
8 ½8192u25eip5=ð1þ 4u25Þ15� · 2ð1 − 84u25 þ 560u45 − 448u65Þ2ð7 − 112u25 þ 928u45 − 1792u65 þ 1792u85Þ
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The obvious future applications of the technique would
be an extension to other types of operators carrying
anomalous dimension, and most of all nonplanar correc-
tions to the anomalous dimension of transverse su(2) sector
operators by using a tessellation as in Refs. [21,28,30].
Finally, the derivative of scaling dimensions with respect

to the coupling constant was also discussed in the fishnet
model [31] in [32] from a hexagon point of view and in [33]
using separation of variables. The second article empha-
sizes how the relevant fishnet expressions derive from those
of the parent N ¼ 4 theory, and in the third it is advocated
to apply the separation of variables technique in N ¼ 4
SYM in order to gain access to nonperturbative physics.
Our work can hopefully provide some hints in this context
although it is currently aimed at the weak coupling
expansion. Note that we consider the excitations forming
the Lagrange operator as physical; with respect to the
superpotential see also [10].
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