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1 Introduction

The flavor-changing neutral-current b → sγ transition plays a key role in exploring the
flavor sector of the Standard Model (SM) [1–4] and in searches for possible physics beyond
the SM [5–7]. A prominent example is the inclusive B → Xsγ decay, whose normalization
is sensitive to beyond-SM contributions.
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Experimental measurements of B → Xsγ are most sensitive in the peak region at large
photon energy Eγ , where as a result also most information on the normalization of the
B → Xsγ rate comes from. Furthermore, the shape of the Eγ spectrum is directly sen-
sitive to the b-quark distribution function, known as shape function, which describes the
relevant nonperturbative dynamics of the b quark within the B meson [8–10]. Recently,
the first global fit exploiting all available experimental information on the B → Xsγ spec-
trum [11–14] was carried out by the SIMBA collaboration [15], simultaneously extracting
the normalization of the B → Xsγ rate, encoded in the effective inclusive Wilson coefficient
C incl

7 , the b-quark mass mb, as well as the shape function.
The shape function is a universal object that also enters the description of inclusive

B → Xu`ν [9, 10, 16] and B → Xs`
+`− [17, 18] decays, where one restricts the phase

space to small hadronic invariant masses to suppress the otherwise overwhelmingly large
background from b → c`ν transitions. In particular, it enters in the extraction of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vub| from B → Xu`ν, which is im-
portant for overconstraining the flavor sector of the SM as it is one of the few tree-level
quantities. Inclusive determinations of |Vub| show some tensions with its determination
from exclusive decays as well as the indirect determination from the CKM unitarity [19].

In the analysis of ref. [15], the theoretical predictions for the B → Xsγ spectrum
are obtained at NNLL′+NNLO. The final fit results exhibit a similar size of theoretical
and experimental uncertainties. On the experimental side, upcoming and future Belle II
measurements [20, 21] of B → Xsγ and B → Xu`ν will further reduce the experimen-
tal uncertainties. To benefit from the improved experimental precision, the theoretical
predictions have to be improved likewise.

In this work, we take an important step in this direction by extending the resummed
predictions to the next order, N3LL′, taking advantage of the recent computation of the
3-loop jet function and heavy-to-light soft function [22, 23]. At this order, the 3-loop hard
function, corresponding to the b→ sγ form factor, is also needed but currently not known.
Therefore, in our numerical results, we treat its unknown nonlogarithmic constant term at
O(α3

s) as a theory nuisance parameter [24, 25], which we vary as part of our perturbative
uncertainties.

To obtain a complete description of the spectrum away from the endpoint, we have to
match to the full fixed-order result. At N3LL′, this requires one to perform the matching
to N3LO. Since the full fixed-order results at this order are not known, we devise a method
to parametrize the missing ingredients in terms of a set of theory nuisance parameters
ck [24, 25] in such a way that the matching can be performed in a consistent manner and
the perturbative uncertainties due to the missing ingredients can be estimated. We denote
the so-constructed matched result as N3LL′+N3LO(ck). It provides a description of the
B → Xsγ spectrum which benefits from the improved precision at N3LL′ in the peak region
while consistently including the known fixed-order results up to O(α2

s) [26–28].
Throughout the paper, we focus on the contributions from the electromagnetic penguin

operator, O7, in the electroweak Hamiltonian, which induces the to-be-resummed singular
contributions that dominate at large photon energies. At sufficiently high order, operators
other than O7 also produce singular contributions, but these are always O7-like and are
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automatically included via the definition of C incl
7 . The purely nonsingular contributions

from non-O7 operators can simply be added to the order they are known as in ref. [15], so
we do not discuss them here further.

Extending the resummation order to N3LL′ turns out to be more subtle than one might
naively expect. We find that the 1S mass scheme [29–31], which was used at NNLL′ in
refs. [15, 32], fails to provide a stable prediction at N3LL′. The cause for this failure lies
in the intrinsic scale R1S(µS) of the 1S scheme, which at the soft scale µS becomes large
and incompatible with the power counting of HQET. On the other hand, by using the
MSR scheme [33] we are able to obtain stable predictions that exhibit good perturbative
convergence. Furthermore, at N3LL′ it turns out to become necessary to switch to a short-
distance mass scheme also in the jet and hard functions, which makes the RGE of the hard
function more involved, where mb plays the role of setting the hard kinematic scale.

The outline of this paper is as follows. In section 2 we present our theory framework
and discuss all the ingredients for computing the B → Xsγ photon energy spectrum at
N3LL′+N3LO(ck). We discuss the implementation of the short-distance mass scheme in
more detail in section 3. Our methodology for estimating the perturbative uncertainties
of our predictions is given in section 4. In section 5, we present our numerical results and
discuss alternative choices for the b-quark mass scheme and the treatment of higher-order
perturbative terms. We summarize our findings in section 6.

2 Theory framework

2.1 Overview

We follow the setup of ref. [15] and write the B → Xsγ photon energy spectrum as

dΓ
dEγ

= 2Γ0

(2Eγ
m̂b

)3 ∫
dk P̂ (k)F(mB − 2Eγ − k) +O

(ΛQCD
m̂b

)
, (2.1)

where m̂b denotes the b-quark mass in a short-distance scheme and

Γ0 = G2
F m̂

5
b

8π3
αem
4π |VtbV

∗
ts|2 . (2.2)

The function P̂ (k) is perturbatively calculable and corresponds to the partonic b → sγ

spectrum with k ∼ m̂b − 2Eγ . We write it as [15]

P̂ (k) =
∣∣C incl

7
∣∣2[W s

77(k) +W ns
77 (k)

]
+ 2 Re(C incl

7 )
∑
i 6=7
CiW ns

7i (k) +
∑
i,j 6=7
CiCjW ns

ij (k) . (2.3)

The coefficient C incl
7 contains by definition all virtual contributions from operators in the

electroweak Hamiltonian that give rise to singular contributions [15, 34]. It is dominated by
the Wilson coefficient C7 of the electromagnetic operator O7. In this paper, we focus on the
contributions proportional to

∣∣C incl
7
∣∣2, which are discussed in more detail in the following.

The function W s
77(k) in eq. (2.3) accounts for the contributions to the partonic spec-

trum ∼ δ(k) and lnn(k/m̂b)/k that are singular and dominant in the peak of the spectrum
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where k � m̂b. They can be resummed to all orders based on their well-known factoriza-
tion [35, 36]. We will resum them to N3LL′, as discussed in more detail in section 2.2. Note
that the overall factor (2Eγ/m̂b)3 in eq. (2.1) has a purely kinematic origin. It arises from
the photon phase space integration and derivative operators in the photon field strength
tensor of O7. As in ref. [15], we factor it out of the singular contributions and keep it
unexpanded in the endpoint region.

The function W ns
77 (k) in eq. (2.3) contains the remaining nonsingular contributions to

the partonic spectrum. They start at O(αs) and are accompanied by powers of k/m̂b

relative to the singular contributions in W s
77. Thus, they are power-suppressed in the peak

region where k � m̂b. On the other hand, in the tail region where k ∼ m̂b, they are of
similar size as the singular contributions. We will include their known results at fixed order
to O(α2

s), while the currently unknown corrections at O(α3
s) are estimated by introducing

appropriate theory nuisance parameters, as discussed in section 2.3.
The remaining non-77 contributions W ns

i7 and W ns
ij in eq. (2.3) are purely nonsingular

and thus only become relevant in the tail region. Since they do not have singular counter-
parts, they can be straightforwardly added to the order they are known, as was done in
ref. [15]. We neglect them in the following, since our focus here is on the resummation and
fixed-order matching of the dominant 77 contributions. Similarly, we neglect the remain-
ing O(ΛQCD/m̂b) terms in eq. (2.1), which contain subdominant resolved and unresolved
contributions.

To ensure that eq. (2.1) reproduces the full fixed-order result in the tail with a smooth
transition between the peak and tail regimes, we use profile scales to gradually switch off
the resummation away from the peak region, as discussed in section 2.4.

The nonperturbative function F(k) in eq. (2.1) contains the leading shape function as
well as the combination of subleading shape functions that appear at tree level in B → Xsγ.
It is discussed in section 2.5. The partonic spectrum P̂ and the shape function F are
completely factorized in eq. (2.1). This factorization enables a coherent description of the
spectrum in both peak and tail region. In the tail region only the first few moments of F
are relevant, while in the peak region its full form is required.

2.2 Singular contributions

The singular contributions W s
77(k) are the leading contributions to the spectrum in the

limit k � mb. Their well-known factorization theorem [35, 36] allows us to systematically
resum the large logarithmic distributions to all orders in perturbation theory. Here we
make use of the SCET-based factorization theorem following ref. [32]

W s
77(k) = ĥs(m̂b, µH) ÛH(m̂b, µH , µJ)

×
∫

dω dω′ m̂b Ĵ(m̂b(k − ω), µJ)US(ω − ω′, µS , µJ) Ĉ0(ω′, µS) , (2.4)

where ĥs, Ĵ , and Ĉ0 are the hard, jet, and partonic soft functions, respectively. The
hard and soft evolution kernels, ÛH and US , evolve the hard and partonic soft functions
from their characteristic hard and soft scales, µH and µS , to the jet scale, µJ , thereby
summing logarithms of the form ln(µH/µJ) and ln(µJ/µS). Since we choose to evolve
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everything to the jet scale, the jet evolution kernel ÛJ(p2, µJ , µJ) = δ(p2) drops out.
The hats indicate that an object is defined in a renormalon-free short-distance scheme, as
discussed in more detail in section 3. Explicit results for the perturbative ingredients are
collected in appendix A.

In eq. (2.4), ĥs(µH), Ĵ(µJ), Ĉ0(µS) are the boundary conditions for the evolution,
which are evaluated at fixed order. When doing so, by default we always strictly reexpand
their product to the given order in αs, i.e., we count αs(µH) ∼ αs(µJ) ∼ αs(µS) and drop
all higher-order cross terms in the product of their fixed-order series. By doing so, the
strict fixed-order expansion of W s

77 in terms of a common αs(µ) is reproduced simply by
taking all scales to be equal µH = µJ = µS = µ. This is different to refs. [15, 32], where
only the product Ĵ ⊗ Ĉ0 is reexpanded, while the hard function is kept unexpanded as an
overall multiplicative factor, which results in keeping certain higher-order cross terms in
the fixed-order limit. The effect of these differences is studied in section 5.2.

To resum the singular corrections using eq. (2.4) to N3LL′ order, we have to include
the fixed-order boundary conditions ĥs(µH), Ĵ(µJ), Ĉ0(µS) to O(α3

s) and use the 3-loop
noncusp and 4-loop cusp anomalous dimensions as well as the 4-loop beta function in the
evolution factors ÛH(µH , µJ) and US(µJ , µS). The jet and partonic soft functions have
been computed up to three loops in refs. [16, 22, 37] and refs. [16, 23, 38], respectively.

Regarding the hard function, its 3-loop anomalous dimension is also known via the
consistency relation with the jet and soft anomalous dimensions and is given in ref. [23].
The full hard function is currently only known up to NNLO [32, 39]. We account for all the
logarithmic terms at N3LO, which are determined using the RGE in terms of the known
anomalous dimensions and lower-order constant terms. The result is given in appendix A.2.
Thus, the only missing ingredient to obtain W s

77 at full N3LL′ is the finite, nonlogarithmic
3-loop constant of the hard function, h3, which is defined by expanding the (pole-scheme)
hard function at µ = mb as

hs(mb, µH = mb) = 1 + αs(mb)
π

h1 + α2
s(mb)
π2 h2 + α3

s(mb)
π3 h3 +O(α4

s) . (2.5)

We treat this unknown constant as a theory nuisance parameter,

h3 = 0± 80 , (2.6)

where the range of variation is estimated using the Padé approximation

h3 ∼
h2

2
|h1|
∼ 19.32

4.55 ∼ 80 . (2.7)

We will see in section 5 that it only has a minor impact on the perturbative precision of
our results.
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For future reference, we write the fixed-order expansion of the singular contribution
up to N3LO as

W s
77(m̂bx) = CF

m̂b

{
w

s(0)
77 (x) + αs(µ)

π

[
w

s(1)
77 (x) + ∆ws(1)

77 (µ, x)
]

+ α2
s(µ)
π2

[
w

s(2)
77 (x) + β0

2 w
s(1)
77 (x) ln µ

m̂b
+ ∆ws(2)

77 (µ, x)
]

+ α3
s(µ)
π3

[
w

s(3)
77 (x) +

(
β0w

s(2)
77 (x) + β1

8 w
s(1)
77 (x)

)
ln µ

m̂b

+ β2
0

4 w
s(1)
77 (x) ln2 µ

m̂b
+ ∆ws(3)

77 (µ, x)
]

+O(α4
s)
}
, (2.8)

where we have made the fixed-order µ dependence and its order-by-order cancellation
explicit. Numerically, we have

w
s(0)
77 (x) = 0.75δ(x) ,

w
s(1)
77 (x) =−4.54δ(x)−1.75L0(x)−1.00L1(x) ,

w
s(2)
77 (x) = (−30.5+3.01nf )δ(x)+(5.94+0.316nf )L0(x)+(12.4−0.181nf )L1(x)

+(7.63−0.250nf )L2(x)+0.667L3(x) ,

w
s(3)
77 (x) = (88.2+0.75h3−0.0269nf −0.0309n2

f )δ(x) (2.9)
+(138−9.16nf −0.00330n2

f )L0(x)
+(68.7−8.75nf +0.121n2

f )L1(x)+(−25.1−0.815nf +0.00694n2
f )L2(x)

+(−43.0+3.16nf −0.0648n2
f )L3(x)+(−6.53+0.278nf )L4(x)−0.222L5(x) ,

where Ln(x) ≡ [lnn(x)/x]+ are the usual plus distributions defined in eq. (A.4). Note
that at this order the unknown 3-loop constant h3 appears only in the δ(x) coefficient, so
w

s(3)
77 (x) is completely known for x > 0.

The correction terms ∆ws(n)
77 (µ, x) in eq. (2.8) arise from switching to the short-distance

b-quark mass m̂b, and their µ dependence separately cancels among them order by order.
They are discussed in more detail in section 3.4, and their explicit expressions are provided
in eq. (3.12).

2.3 Nonsingular contributions

The nonsingular contribution W ns
77 (k) is included at fixed order. It is obtained by sub-

tracting the fixed-order singular terms from the full fixed-order result for dΓ/dEγ , which
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is known up to O(α2
s) [26–28]. We write its perturbative expansion up to N3LO as

W ns
77 (m̂bx) = CF

m̂b(1− x)3

{
αs(µns)
π

w
ns(1)
77 (x)

+ α2
s(µns)
π2

[
w

ns(2)
77 (x) + β0

2 w
ns(1)
77 (x) ln µns

m̂b
+ ∆wns(2)

77 (µns, x)
]

+ α3
s(µns)
π3

[
w

ns(3)
77 (x) +

(
β0w

ns(2)
77 (x) + β1

8 w
ns(1)
77 (x)

)
ln µns
m̂b

+ β2
0

4 w
ns(1)
77 (x) ln2 µns

m̂b
+ ∆wns(3)

77 (µns, x)
]}

. (2.10)

The overall 1/(1− x)3 factor is included by convention. Explicit expressions for wns(1)
77 (x)

and wns(2)
77 (x) are given in eq. (S21) in ref. [15]. The O(α3

s) function wns(3)
77 (x) is currently

unknown. The ∆wns(n)
77 (µns, x) terms arise from switching to the short-distance mass m̂b

and are given in eq. (3.13).
In the peak region for k � m̂b, the nonsingular contributions are power-suppressed by

k/m̂b relative to the singular. Hence, the two can be considered as independent perturbative
series, which are treated separately from each other. In particular, it is consistent to include
the nonsingular only at fixed order, while the singular are being resummed. By contrast, for
k ∼ m̂b, the separation into singular and nonsingular becomes ill-defined and only the full
result given by their sum, W full

77 = W s
77 +W ns

77 , is meaningful. This is reflected by the fact
that there are typically large numerical cancellations between the singular and nonsingular
contributions for k → m̂b, as we will see explicitly in section 2.4. Consequently, as already
pointed out in refs. [40, 41], W s

77 and W ns
77 must be included using the same perturbative

expansion in this limit, i.e., at the same scale and the same perturbative order, to ensure
that the cancellations between them can take place and the proper full result is recovered.
This has important ramifications. First, since the full and nonsingular results are only
known at fixed order, it is essential to turn off the resummation for W s

77 for k ∼ m̂b such
that it also reduces to its fixed-order result. Second, the NnLL′ resummation reduces to
the fixed O(αns ) singular result, so consistently matching it to fixed order requires including
the nonsingular to O(αns ).

Therefore, at N3LL′ we need W ns
77 to O(α3

s), which means we have to parametrize the
unknown nonsingular function wns(3)

77 (x). We do so by considering its required asymptotic
behavior in the x→ 0 and x→ 1 limits. In particular, for x→ 1 we have to account for the
singular-nonsingular cancellations at O(α3

s), which basically implies that wns(3)
77 and ws(3)

77
are not independent. In addition, we want to exploit the parameterization to estimate the
perturbative uncertainty due to the missing wns(3)

77 (x).
We begin by separating wns(3)

77 (x) into a “correlated” and an “uncorrelated” piece,

w
ns(3)
77 (x) = wns(3)

cor (x) + wns(3)
uncor(x) . (2.11)

The “correlated” term w
ns(3)
cor (x) is designed to completely cancel the singular corrections

in the x → 1 limit without disturbing the hierarchy between singular and nonsingular
contributions in the x→ 0 limit. We define it as

wns(3)
cor (x) = −(1− x)3w

s(3)
77 (1) , (2.12)

– 7 –
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where the 3-loop singular function w
s(3)
77 (x) is defined in eq. (2.8). The overall factor

(1− x)3 simply cancels the overall 1/(1− x)3 in eq. (2.10). The remaining “uncorrelated”
piece wns(3)

uncor(x) can now be considered independent of the singular contribution, so we can
parametrize it. We do so by expanding it as

wns(3)
uncor(x) = (1− x)3

5∑
k=0

cns
k Lk(x) with L(x) = 1

4
w

ns(1)
77 (x)

(1− x)3 −
9
16 , (2.13)

where the function L(x) is positive for 0 < x < 1 and has the following asymptotics in the
x→ 0 and x→ 1 limits,

L(x) = −3
2 − ln x+O(x) , L(x) = 0 +O(1− x) . (2.14)

We construct L(x) using wns(1)
77 (x) with the expectation that its powers provide a reason-

able guess of the possible shape of the higher-order function wns(3)
77 (x) in the intermediate

region 0 < x < 1. Furthermore, eq. (2.13) incorporates the knowledge that at O(α3
s) the

nonsingular in the limit x → 0 is a degree-5 polynomial in ln x. Therefore we include up
to five powers of L(x) to ensure we are able to probe the complete logarithmic structure
in the small-x limit.

The parameters cns
0...5 can be treated as theory nuisance parameters with zero central

values and the following variation magnitudes:

cns
k = 0± δcns

k with δcns
0...5 = (20, 100, 80, 10, 5, 1) . (2.15)

To determine the range of variations for cns
1...5, we use the observation that in the limit

x→ 0 the expression 4xws(2)
77 (x) provides a good estimate of the size of logarithmic terms

in wns(2)
77 (x) at one and two loops,

4xws(1)
77 (x) = −7.00− 4.00 ln x ,

w
ns(1)
77 (x) = 3.75− 4.00 ln x+O(x) ,

4xws(2)
77 (x) = 28.8 + 46.7 ln x+ 26.5 ln2 x+ 2.67 ln3 x ,

w
ns(2)
77 (x) = 16.1 + 33.9 ln x+ 25.0 ln2 x+ 2.67 ln3 x+O(x) ,

4xws(3)
77 (x) = 406 + 142 ln x− 113 ln2 x − 125 ln3 x − 21.7 ln4 x − 0.889 ln5 x ,

= 259 + 95L(x) + 189L2(x) + 15.5L3(x)− 15.0L4(x) + 0.889L5(x) . (2.16)

In particular, the highest power of ln x in wns(1,2)
77 (x) is precisely determined by 4xws(1,2)

77 .
The reason is that, similar to the leading-power case, it is expected that the universal cusp
and a set of subleading noncusp anomalous dimensions govern the logarithmic structure at
subleading power. Thus, we similarly exploit 4xws(3)

77 (x) for estimating the typical size of
δcns

1...5.
To assess the uncertainty due to the missing wns(3)

77 we separately vary each nuisance
parameter in the ranges given above. The different nuisance parameters are considered as
independent such that the resulting individual uncertainties from varying them are added

– 8 –



J
H
E
P
0
7
(
2
0
2
3
)
2
1
4

in quadrature. This is discussed in more detail in section 4. Of course, this means that
the uncertainty necessarily increases by adding more parameters. Therefore, to obtain
a realistic uncertainty estimate and avoid becoming overly conservative we also put the
constraint that the total uncertainty estimate for the missing 3-loop correction does not
exceed the size of the 2-loop corrections. To satisfy this constraint, the values for δcns

2,3,4 are
chosen somewhat smaller than the corresponding coefficients of 4xws(3)

77 (x) in eq. (2.16).
It is easy to see from eq. (2.14) that all powers of L(x) approach zero in the far

tail of the spectrum. Thus, in this limit the constant term c0 dominates. Therefore, we
estimate the size of δcns

0 using the Padé approximation from the corresponding lower-order
corrections,

w
(k)
x→1 = lim

x→1

[
w

ns(k)
77 (x)

(1− x)3 + w
s(k)
77 (x)

]
, w

(3)
x→1 = cns

0 ∼
(w(2)

x→1)2

w
(1)
x→1

≈ 2.922

0.5 ∼ 20 . (2.17)

Finally, we like to stress that the purpose of the parameterization given by eqs. (2.11)
and (2.13) is not to construct an approximation of the unknown function wns(3)

77 (x). Rather,
the goal is first to enable a consistent matching at N3LL′, which is essentially achieved by
the separation in eq. (2.11), and second to obtain a reliable estimate of the perturbative
uncertainty due to its unknown form. For this purpose, we only need to estimate the
typical size of the theory nuisance parameters, say within a factor of a few, for which the
above considerations are sufficient. However, since eq. (2.10) includes all known O(α3

s)
contributions that are predictable from lower orders, and since the parameterization of the
remaining unknown w

ns(3)
77 (x) does include nontrivial information on its structure, we do

expect some improvement in the perturbative precision of our predictions beyond O(α2
s),

which will be reflected in the size of the resulting uncertainty, as we will see in section 5.

2.4 Profile scales

The resummation of the singular contributions is determined by the choices of the hard µH ,
jet µJ , and soft µS scales in the factorization theorem in eq. (2.4). To achieve the proper
resummation they must be chosen according to the kinematics relevant in the different
regions of the spectrum. In addition, the nonsingular scale µns determines the scale at
which the fixed-order nonsingular terms in eq. (2.10) are evaluated.

For our scale choices we follow ref. [15]. The Eγ spectrum has three parametrically
distinct kinematic regions:

• Shape function (nonperturbative) region: ΛQCD ∼ (mB − 2Eγ)� m̂b

This corresponds to the peak of the spectrum, where the full shape of the shape
function is relevant and the soft scale is fixed to the lowest still-perturbative scale
µS = µ0 & ΛQCD.

• Shape function OPE region: ΛQCD � (mB − 2Eγ)� m̂b

This corresponds to the region left of the peak, i.e., the transition region between the
peak and the far tail. Here the soft scale has canonical scaling µS ∼ mB − 2Eγ .
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• Local OPE (fixed-order) region: ΛQCD � (mB − 2Eγ) ∼ m̂b

This corresponds to the far tail of the spectrum, which is described by fixed-order
perturbation theory. Here, the distinction between singular and nonsingular becomes
meaningless and the resummation must be turned off to ensure that singular and
nonsingular contributions properly recombine into the correct fixed-order result. This
requires that all scales become equal µS = µJ = µH = µns ≡ µFO ∼ m̂b.

The canonical value for the hard scale in all regions is µH ∼ m̂b. In the first two regions
the SCET resummation is applicable with the canonical scaling µJ ∼

√
µSµH .

To account for these different scale hierarchies we use the common approach of profile
scales [32, 42], where µS(Eγ), µJ(Eγ), µns(Eγ) are taken as functions of Eγ . The key ad-
vantage of using profile scales to connect the descriptions in the different parametric regions
is that they provide a smooth transition between the regions that is solely implemented in
terms of scale choices, such that the ambiguity in the precise choices of the transition are
equivalent to scale ambiguities, which by construction are formally beyond the order one
is working and reduce as we go to higher order.

For our numerical analysis we employ the profile scales used in ref. [15], given by

µH = eHm̂b ,

µS(Eγ) = µ0 + (µH − µ0) fθ
(
E1 − Eγ
E1 − E2

)
,

µJ(Eγ) =
[
µS(Eγ)

](1−eJ )/2
µ

(1+eJ )/2
H ,

µns(Eγ) =
[
µS(Eγ)

](1−ens)/4
µ

(3+ens)/4
H , (2.18)

where the function fθ(x) provides a smooth transition from fθ(x ≤ 0) = 0 to fθ(x ≥ 1) = 1,

fθ(x) =



0 x ≤ 0 ,
2x2 0 < x ≤ 1/2 ,
1− 2 (1− x)2 1/2 < x ≤ 1 ,
1 1 < x .

(2.19)

Figure 1 shows the absolute values of the singular and nonsingular contributions as well
as the full result at NNLO (i.e. without resummation), which is used to pick the transition
points E1 and E2 between the different parametric regions. For Eγ & E1 = 2.2 GeV, the
singular contributions clearly dominate, which also corresponds to the nonperturbative
region. For Eγ . E2 = 1.6 GeV, there are large cancellations between the singular and
nonsingular contributions. This corresponds to the fixed-order region, where the separation
into singular and nonsingular is ill-defined and only their sum is meaningful. Therefore,
the resummation of the singular must be turned off to ensure that this cancellation is not
spoiled by it and the correct full result is recovered. Since there is little space between E1
and E2, the transition region in between them effectively coincides with the intermediate
shape function OPE region.
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Figure 1. Comparison of the absolute values of the singular, nonsingular, and full contributions
to the B → Xsγ photon energy spectrum at fixed NNLO, using the MSR scheme for the b-quark
mass and short-distance definitions of the hadronic parameters λ̂1 and ρ̂1, which are defined in
section 3.1.

To summarize we use the following values for the profile scale parameters [15]:

eH = {1, 1/2, 2} , µ0 = max(1, eH)× {1.3, 1.1, 1.8}GeV ,

eJ = {0,−1/3,+1/3} , ens = {0,−1,+1} ,
E1 = {2.2, 2.1, 2.3}GeV , E2 = 1.6 GeV . (2.20)

For each parameter, the first value in the set is the central value and the next two are the
variations that we will use to assess perturbative uncertainties in section 4. The central
values for the profile scales along with their individual variation ranges are illustrated in
figure 2. Since the nonsingular contributions are treated at fixed order, a priori there is no
canonical scaling to guide the choice of the nonsingular scale µns beyond the fixed-order
region Eγ ≥ E2. In practice, it is picked as the geometric mean of the hard and central
jet scales to account for the fact that the nonsingular terms have some sensitivity to scales
below m̂b, and this choice is varied up to the hard and down to the central jet scales as
shown in figure 2.

Note that the individual scales are not independent of each other but are parametrized
in such a way that their relative hierarchies are preserved upon varying the profile pa-
rameters. For example, they all depend on µH , such that varying µH up and down (by
varying eH) simultaneously moves the other scales up and down accordingly. In particular
all scales always merge into a common value for Eγ ≤ E2 to properly turn off the resum-
mation. Similarly, µJ and µns depend on µS , such that varying µ0 not only varies µS but
also moves µJ and µns up and down accordingly to preserve the hierarchy between them.
The variations for µJ and µns parametrized by eJ and ens correspond to small deviations
from the default hierarchy. This also means that the µ0, eJ , and ens variations smoothly
turn off between E1 and E2 like the resummation itself, such that below E2 only the overall
µH variation remains corresponding to the usual fixed-order scale variation.
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Figure 2. Profile scales used for the hard, jet, soft, and nonsingular scales. The bands show the
individual ranges for the jet, soft, and nonsingular scales. The black and red arrows indicate the
variations for the parameter eH and the transition point E1.

2.5 Shape function

The leading-power factorization theorem for B → Xsγ in eq. (2.4) separates all soft dy-
namics into the hadronic soft function

S(ω, µ) ≡ 〈B|b̄vδ(iD+ − δ + ω)bv|B〉 , (2.21)

where bv is the HQET b-quark field, |B〉 is the full QCD B-meson state, and δ = mB−mpole
b .

This definition of S(ω, µ) is such that it has support for ω ≥ 0 [32]. The hadronic soft
function contains both perturbative soft radiation as well as the nonperturbative Fermi
motion of the b quark inside the B meson. Following ref. [32], we further factorize it as

S(ω, µ) =
∫

dk Ĉ0(ω − k, µ)F(k) , (2.22)

where the partonic soft function Ĉ0 can be calculated in perturbation theory, while the
shape function F(k) is a nonperturbative object. It has support for k ≥ 0 and peaks
around k ∼ ΛQCD. Following conventional terminology, we will often refer to S(ω, µ) as
just the soft function.

In the tail region where ω � ΛQCD, the right-hand side of eq. (2.22) can be expanded
in powers of ΛQCD/ω,

S(ω, µ) =
∞∑
n=0

(−1)n
n!

dnĈ0(ω, µ)
dωn Mn , (2.23)

where Mn ∼ ΛnQCD are the moments

Mn ≡
∫

dk knF(k) . (2.24)

Hence, in the tail region the leading nonperturbative corrections are encoded in the first
few nonperturbative moments of F(k), and its moment expansion recovers the local-OPE
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description of the spectrum. On the other hand, in the peak region where ω ∼ ΛQCD, the
full function F(k) is needed.

As discussed in ref. [32], an important feature of the factorization in eq. (2.22) is
that it provides a common description of the nonperturbative effects across these different
kinematic regions, incorporating all available perturbative information in the limit ω �
ΛQCD without having to explicitly carry out an expansion in ΛQCD/ω, whose precise region
of validity would be unclear. That is, all perturbative corrections to moments of S(ω, µ) are
encoded in the perturbative function Ĉ0(ω), while the shape function F(k) is a genuinely
nonperturbative function that is formally independent of the perturbative order and can
be extracted from experimental data.

The first few moments of F(k) are given in terms of B-meson matrix elements of local
HQET operators,

M0 = 1 ,
M1 = mB − m̂b + · · · ,

M2 = (mB − m̂b)2 − λ̂1
3 + · · · ,

M3 = (mB − m̂b)3 − λ̂1(mB − m̂b) + ρ̂1
3 + · · · , (2.25)

The hadronic parameters λ̂1 and ρ̂1 are matrix elements of local HQET operators defined
in a short-distance scheme as discussed in section 3.3. The ellipses denote terms that
suppressed by relative powers of ΛQCD/m̂b arising from subleading shape functions that
are typically absorbed into F(k) [15], but which are not relevant for our purposes here.

A general method for parametrizing F(k) via a systematic expansion around a given
base model has been developed in ref. [32], which was used in ref. [15] to fit F(k) from
data. Since our primary interest in this paper are the perturbative corrections, the precise
form of F(k) is not relevant here. We only need a reasonably realistic model for it in order
to illustrate our results numerically. For this purpose, we take the exponential base model
used in refs. [15, 32], given by

F(k) = 1
λ
Y

(
k

λ

)
with Y (x) = (p+ 1)p+1xp

p! e−(p+1)x . (2.26)

Its normalization and first moment are

M0 =
∞∫
0

dkF(k) = 1 , M1 =
∞∫
0

dk kF(k) = λ . (2.27)

By picking λ ≈ mB − m̂b ≈ 0.6 GeV this base model already provides a good fit of the
experimental measurements [15].

Note that evaluating the NnLO soft function in a short-distance scheme involves taking
n derivatives of F(k). Therefore, at N3LL′, which needs the N3LO soft function, and assum-
ing integer p, we require p ≥ 4 to ensure that the soft function vanishes for ω → 0, which
in turn is required for the Eγ spectrum to vanish at the kinematic endpoint Eγ → mB/2.
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3 Short-distance schemes

A major challenge in B physics is to parametrize nonperturbative effects in such a way that
their extraction from experimental measurements is stable with (and ideally independent
of) the perturbative order. Achieving this stability is not trivial due to infrared sensitivity
of the involved perturbative series and the resulting ambiguity in the asymptotic series of
perturbative QCD, which is known as the renormalon problem. The renormalon problem
manifests itself in practice as poor or no convergence of the perturbative series even at low
orders. Since physical (measurable) quantities are independent of the perturbative order,
the large perturbative corrections at each order are compensated by corresponding large
changes in some associated nonperturbative parameter. In other words, the renormalon
ambiguity in the perturbative series is compensated order by order by an equal and opposite
renormalon ambiguity in the nonperturbative parameter.

Conceptually, to resolve this issue, the renormalon must be identified and subtracted
from both the perturbative quantity (C) and the associated parameter (p), such that both
become renormalon free and perturbatively stable. To give a simple toy example,

C − p = (C − δp)− (p− δp) ≡ Ĉ − p̂ . (3.1)

On the left-hand side, the renormalon only cancels between C and p. On the right-hand
side, the so-called residual term δp is a perturbative series in αs that contains the renor-
malon. Its specific choice defines a specific so-called short-distance scheme. The renormalon
then cancels within each of the parenthesis defining the short-distance Ĉ and p̂, which are
now separately free of the renormalon.

3.1 Soft function

In reality, the structure is of course more complicated than the above simple toy example.
In our case, the leading-power perturbative series that suffers from renormalon ambigui-
ties is that of the partonic soft function C0(ω, µ), whose renormalons are cancelled by the
nonperturbative object F(k). Its leading renormalon ambiguity of O(ΛQCD) is due to the
pole mass definition of the b quark, mpole

b , which explicitly enters in the definition of the
soft function S(ω, µ) in eq. (2.21) and henceforth shows up in all the moments of F(k).
(At subleading power, also the jet and hard functions involve the pole-mass renormalon,
which we come back to in section 3.4.) Furthermore, the hadronic parameter λ1, which
first appears in the second moment of F(k), has a subleading O(Λ2

QCD) renormalon ambi-
guity [43, 44]. Similarly, we expect the hadronic parameter ρ1, which first appears in the
third moment, to have an O(Λ3

QCD) renormalon.
We write the parameters in a generic short-distance scheme as

m̂b = mpole
b − δmb , λ̂1 = λ1 − δλ1 , ρ̂1 = ρ1 − δρ1 . (3.2)

The residual terms δmb, δλ1, and δρ1 are defined to cancel the renormalon in their respec-
tive parameter such that the short-distance parameters on the left-hand side are renormalon
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free. The original1 HQET parameters λ1 and ρ1 are defined in dimensional regularization
as [45, 46]

λ1 = 〈B| b̄v(iD)2bv |B〉 , ρ1 = 〈B| b̄v(iDµ)(v · iD)(iDµ)bv |B〉 . (3.3)

The construction of the short-distance partonic soft function Ĉ0(ω, µ) with the appro-
priate renormalon subtractions is derived in detail in ref. [32]. Up to N3LO, we have

Ĉ0(ω, µ) =
[
1− δλ1

6
d2

dω2 −
δρ1
18

d3

dω3 + · · ·
]
eδmb

d
dωC0(ω, µ)

=
[
1 + δmb

d
dω + 1

2

(
δm2

b −
δλ1
3

) d2

dω2

+ 1
6

(
δm3

b − δmbδλ1 −
δρ1
3

) d3

dω3 + · · ·
]
C0(ω, µ) , (3.4)

where the original pole-scheme C0(ω, µ) is defined and given in appendix A.4. Importantly,
for the renormalons to cancel on the right-hand side, it must always be fully expanded to
a given fixed order in αs, including the δmb, δλ1, δρ1 and their products with each other
and with C0. With these subtractions both Ĉ0(ω, µ) and F(k) become renormalon free,
up to yet higher-order renormalons. In particular, the moments of F(k) are then given by
the short-distance parameters m̂b, λ̂1, ρ̂1, as shown in eq. (2.25). [Note that F(k) ≡ F̂(k)
in eq. (2.22) is already the short-distance parameter.] To evaluate the convolution integral
Ĉ0⊗F , we use integration by parts to move all the derivatives in eq. (3.4) to act on F [32].
The renormalon subtractions significantly improve the perturbative convergence of the soft
function compared to the pole scheme, which we demonstrate numerically in section 5.3.

In general, the residual terms are scale dependent, leading to a similar scale dependence
of the short-distance parameter, which we suppress for simplicity in our generic notation.
The scale dependence can be explicit, as e.g. for the MS mass, in which case it is usually
governed by an associated RGE. It can also be only internal, as e.g. for the 1S mass or the
MSR mass, in which case δmb (and also m̂b) is formally scale independent (with only the
usual scale dependence from truncating the perturbative series that is cancelled by higher
orders). In either case, the residual terms must be expanded at the same scale µ, i.e.,
in terms of the same αs(µ), that is used for the perturbative series whose renormalon is
supposed to be subtracted to ensure that the renormalon actually cancels. In our case this
is the soft scale µS at which we evaluate the fixed-order boundary condition Ĉ0(ω, µS) in
the factorization theorem in eq. (2.4).

In this context, the power counting of the HQET Lagrangian provides a powerful
constraint on the generic size of the residual mass term δmb,

LHQET = b̄v (iv ·D − δmb) bv . (3.5)

A suitable short-distance scheme for the bottom-quark mass should respect the power
counting of residual soft momentum δmb ∼ αs v · D ∼ αs k ∼ αsΛQCD [47]. Note that

1These are often referred to as defined in the “pole scheme” borrowing the language from the pole mass.
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the perturbative series for δmb starts at NLO and therefore scales like αs. As stated in
the previous section, in B → Xsγ the residual momentum of the bottom quark in the B
meson scales like k ∼ mB − 2Eγ , which in the peak region scales like ΛQCD. Thus, in the
peak region one expects that a low-scale mass scheme, such as the 1S scheme [29–31] or
the MSR scheme [33] with R ∼ ΛQCD, are applicable. In the context of B → Xsγ, the 1S
mass scheme has been extensively discussed in ref. [32], and we remind the reader of the
main features of the MSR scheme in the following section.

3.2 MSR mass scheme

The MSR mass scheme is a short-distance mass scheme designed to subtract the pole-mass
renormalon by introducing an infrared cutoff scale R as follows,

δmb(R) ≡ mpole
b −mMSR

b (R) = R
∞∑
n=1

aMSR
n

[
αs(R)

4π

]n
, (3.6)

where aMSR
n coefficients are determined from matching the MSR mass scheme onto the MS

mass scheme at mb(mb). The infrared scale R controls the size of self-energy contributions
which are absorbed into the mass definition [33, 48]. In our analysis we use the so-called
“natural” MSR mass definition, where the series coefficients aMSR

n = aMS
n (nl, nh = 0) , see

ref. [49] for more details.
The MSR mass is a natural extension of the MS mass for R ≤ mb(mb), which inter-

polates between all short-distance schemes with residual power counting δmb(R) ∼ Rαs.
In the limit where mMSR

b (mMSR
b )→ mb(mb) one approaches the MS mass, whereas in the

opposite limit, R → 0 , the MSR mass formally approaches the pole mass. In practice,
when taking this limit one encounters the Landau pole of the coupling constant. This issue
is deeply related to the pole mass renormalon and cannot be addressed unambiguously.

Values of the MSR mass at different R scales are related by the so-called R-evolution
equation [33], whose solution resums logarithms ln(R1/R0) in the perturbative correction
between mMSR

b (R1) and mMSR
b (R0). The R evolution can be used to obtain the MSR mass

value at a low R from the MS mass and vice versa.
In contrast to the 1S scheme, the infrared scale R of the MSR scheme is an external

parameter. We exploit this feature and pick R = 1 GeV to be of the same order as the
soft scale in the peak region. In section 5.3 we demonstrate that this ensures a proper
cancellation of the renormalon in the soft function. In principle, it is possible to pick a
different value for the R scale in different regions of the spectrum by introducing a profile
function R(Eγ) [50], as long as the R evolution is consistently used to relate the shape
functions at different R scales. This can be used to enforce R ∼ µS over the whole spectrum
and to eliminate logarithms ln(µS/R) in the series of δmb(R). Ref. [42] implements this R-
evolution setup for an analogous soft function for the thrust distribution in jet production.
In our case the use of R evolution does not lead to a significant improvement in convergence,
so for simplicity in our numerical analysis we use a fixed value of R.
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3.3 Short-distance schemes for λ1 and ρ1

To express the B-meson matrix elements λ1 and ρ1 in a short-distance scheme, we use
analogous schemes to the “invisible” scheme for λ1 [32], where δλ1 ∝ α2

s. The reason
for this α2

s scaling in the invisible scheme compared to the kinetic scheme [51, 52], where
δλ1 ∝ αs, is that in the invisible scheme one employs Lorentz-invariant UV regulators for
regularizing the kinetic energy operator [43, 44], while in the kinetic scheme the regulator
is not Lorentz-invariant. Indeed it has been shown in ref. [32] that using the kinetic scheme
for λ1 leads to an over-subtraction of the u = 1 renormalon in the soft function. It is worth
to note here that there is no analogous study for the u = 3/2 renormalon present in ρ1.
Following these features of the invisible scheme for λ1, we write

δλ1(Rλ, µ) = R2
λ

α2
s(µ)
π2

[
δλ

(2)
1 + αs(µ)

π

(
δλ

(3)
1 + δλ

(2)
1 β0 ln µ

Rλ

)]
+O(α4

s) ,

δρ1(Rρ, µ) = R3
ρ

α3
s(µ)
π3 δρ

(3)
1 +O(α4

s) , (3.7)

where we set Rλ = Rρ = 1 GeV by default. Note that λ1 and ρ1 appear in the second and
third moments of the shape function and contain an O(Λ2

QCD) and O(Λ3
QCD) renormalon

ambiguities, respectively. Therefore by dimensional analysis they must scale like δλ1 ∝ R2
λ

and δρ1 ∝ R3
ρ. Furthermore, we take δρ1 ∝ α3

s to impose a plausible “invisibility” of our
scheme choice and to avoid diluting the lower-order corrections arising from δmb and δλ1.
For δλ(2)

1 we use the value given in ref. [32] for the invisible scheme, δλ(2)
1 = π2/3 − 1.

Values of δλ(3)
1 and δρ(3)

1 are not available so far.
Usually, one defines a short-distance scheme to all orders by exploiting the perturba-

tive series of some physical and thus renormalon-free quantity. However, this is not strictly
necessary, since after all the main goal of the renormalon subtractions is to obtain a stable
perturbative result. Thus, here we take a pragmatic approach and simply define our “invis-
ible” scheme for λ̂1 and ρ̂1 at O(α3

s) by choosing numerical values for δλ(3)
1 and δρ(3)

1 such
that the resulting soft function at different perturbative orders manifests good convergence,
i.e. that the size of scale variations reduces when including higher-order corrections, that
the resulting uncertainty bands at different orders have reasonable overlaps, that the peak
position for the soft function remains stable, and finally that it remains positive at small
k and approaches zero with similar slopes at different orders. Following this procedure, we
find a satisfactory convergence for the soft function, see figure 11, by taking

δλ
(3)
1 = 16 , δρ

(3)
1 = −3 . (3.8)

In principle, we could also consider the perturbative convergence of the final spec-
trum. However, since it also receives contributions from the jet and hard functions, the
dependence on the soft function is washed out in the spectrum. Therefore, we use the
convergence of the soft function to define the short-distance scheme. This is also the most
natural, since the soft function is the object containing the renormalons to be subtracted.
This is somewhat similar to the “shape-function” scheme in ref. [53], where the second and
third moments of the perturbative shape function with some, largely arbitrary, hard cutoff
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is used to define the short-distance parameters. (Similarly, the short-distance b-quark mass
is defined based on the first moment.) The disadvantage of that approach is that it yields
δλ, δρ1 ∼ αs, which leads to massive oversubtraction similar to the kinetic scheme.

3.4 Subleading δmb corrections

As discussed in section 3.1, the leading renormalon at leading power comes from the b-quark
mass that enters via the argument of the soft function. In addition to the soft function, the
b-quark mass also enters in the hard and jet functions through the SCET label momentum
p− ∼ mb. By default, label momentum conservation sets p− = mpole

b . Formally, choosing a
different label p− = m̂b amounts to a power-suppressed effect. For this reason, in ref. [15]
the resulting corrections from changing to the m̂b scheme could effectively be absorbed into
the nonsingular corrections. As we will see, at N3LL′ this is no longer viable, so instead
we will explicitly switch both hard and jet functions to a short-distance mass scheme.

To derive the scheme change, we consider the partonic function W (k) appearing in
eq. (2.3), which can be either the singular, the nonsingular, or the full contribution. It has
mass dimension −1 and depends on two dimensionful quantities, k and mb. Therefore, by
dimensional analysis it must have the form

W (k) = 1
mb

w

[
k

mb
, αs(µ), ln µ

mb

]
= 1
mb

w

[
k

mb
, αs(mb)

]
, (3.9)

where all dependence on mb is made explicit on the right-hand side and w(x, αs, L) is a
scaleless function of its arguments. SinceW (k) is defined to be µ independent, the µ depen-
dence on the right-hand is only the internal µ dependence from αs(µ) which cancels order by
order. Therefore, we can pick µ = mb, which eliminates all logarithms and allows us to track
the associated mb dependence via the dependence on αs(mb). After switching the scheme,
we can easily reintroduce the µ dependence by reexpanding αs(mb) in terms of αs(µ).

The partonic rate in the pole scheme is given by eq. (3.9) evaluated at k = mpole
b −2Eγ

andmb = mpole
b . To switch to a short-distance scheme, we thus have to replace k → k+δmb

and mb → mpole
b = m̂b + δmb in eq. (3.9) and expand in δmb. This gives

m̂bW (m̂bx) = 1
1 + δmb/m̂b

w

(
x+ δmb/m̂b

1 + δmb/m̂b
, αs(m̂b + δmb)

)
=
{

1 + δmb

m̂b

d
dx(1− x) + 1

2
δm2

b

m̂2
b

d2

dx2 (1− x)2

+ 1
3!
δm3

b

m̂3
b

d3

dx3 (1− x)3 + δmb

m̂b
β[αs(m̂b)]

d
dαs

+O(α4
s)
}
w[x, αs(m̂b)] , (3.10)

where for convenience we multiplied by m̂b and switched variables, k = m̂bx, such that
m̂bW (m̂bx) is a dimensionless function of x. In the second step, we expanded in δmb keeping
only terms that contribute up to O(α3

s), recalling that δmb ∼ O(αs) and β(αs) ∼ α2
s. The

derivatives act on everything to their right.
Substituting the explicit αs expansions for δmb/m̂b, β(αs), and w(x, αs), it is straight-

forward to derive the correction terms ∆ws(n)
77 and ∆wns(n)

77 appearing in eqs. (2.8)
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and (2.10). Writing the αs expansion of δmb/m̂b as

δmb

m̂b
= αs(µ)

4π δ(1)
m (µ) +

[
αs(µ)

4π

]2
δ(2)
m (µ) +

[
αs(µ)

4π

]3
δ(3)
m (µ) +O(α4

s) , (3.11)

we find for the singular

∆ws(1)
77 (µ, x) = 1

4δ
(1)
m (µ) d

dxw
s(0)
77 (x) ,

∆ws(2)
77 (µ, x) = 1

16

{
δ(2)
m (µ) d

dx + 1
2
[
δ(1)
m (µ)

]2 d2

dx2

}
w

s(0)
77 (x)

+ 1
4δ

(1)
m (µ) d

dx
[
(1− x)ws(1)

77 (x)
]
,

∆ws(3)
77 (µ, x) = 1

64

{
δ(3)
m (µ) d

dx + δ(1)
m (µ)δ(2)

m (µ) d2

dx2 +
[
δ(1)
m (µ)

]3 1
3!

d3

dx3

}
w

s(0)
77 (x)

+ 1
16

{
−2β0δ

(1)
m (µ) +

[
δ(2)
m (µ) + 2β0δ

(1)
m (µ) ln µ

m̂b

] d
dx(1− x)

+ 1
2
[
δ(1)
m (µ)

]2 d2

dx2 (1− x)2
}
w

s(1)
77 (x)

+ 1
4δ

(1)
m (µ) d

dx(1− x)ws(2)
77 (x) , (3.12)

and the nonsingular

∆wns(2)
77 (µns, x)
(1− x)3 = 1

4δ
(1)
m (µns)

d
dx

[
w

ns(1)
77 (x)

(1− x)2

]
,

∆wns(3)
77 (µns, x)
(1− x)3 = 1

16

{
−2β0δ

(1)
m (µns) +

[
δ(2)
m (µns) + 2β0δ

(1)
m (µns) ln µns

m̂b

] d
dx(1− x)

+ 1
2
[
δ(1)
m (µns)

]2 d2

dx2 (1− x)2
}
w

ns(1)
77 (x)

(1− x)3

+ 1
4δ

(1)
m (µns)

d
dx

w
ns(2)
77 (x)

(1− x)2 . (3.13)

As we have seen above, there are three sources of δmb corrections:

1. Shifting the argument k → k + δmb.

2. Changing to m̂b in the argument k/m̂b, which yields the rescaling x → x/(1 +
δmb/m̂b).

3. Changing to m̂b in the µ dependence of αs(m̂b).

Considering just the singular contributions and only keeping the first and neglecting the
latter two corrections amounts to only keeping the leading-power terms in eq. (3.10),

m̂bW
s(m̂bx) =

[
1 + δmb

m̂b

d
dx + 1

2
δm2

b

m̂2
b

d2

dx2 + 1
3!
δm3

b

m̂3
b

d3

dx3

]
ws[x, αs(m̂b)] . (3.14)
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The relevant formal power counting here is δmb/m̂b ∼ λ � 1, d/dx ∼ 1/x ∼ λ−1, so
all terms on the right-hand side are leading power. These terms are exactly reproduced
by the factorized result at fixed order by changing the soft function to the m̂b scheme,
which involves the analogous shift of its argument. In the numerical implementation, the
derivatives d/d(m̂bx) = d/dk are moved via integration by parts to act on the shape
function F(k) so they count as 1/ΛQCD. Since δmb ∼ ΛQCD, we see again that all terms
in eq. (3.14) are leading power, counting as (δmb d/dk)n ∼ 1.

All terms ∼ xnws(x, αs) are thus induced by the second source. By moving the deriva-
tives to act onto the shape function, we see that they are explicitly power-suppressed by x
and hence nonsingular. For this reason, they could be included as part of the nonsingular
correction terms ∆wns

77, as was done in ref. [15]. In the singular contributions, the k/mb

dependence only appears in logarithms which are factorized into the soft, jet, and hard
functions, where mb corresponds to the large p− label momentum, which only appears in
the hard and jet functions, while the soft function only depends on the small momentum
k. Therefore, the associated correction terms can be reproduced by the leading-power
factorized result by changing the mb dependence in the hard and jet functions to the
short-distance m̂b.

Finally, the third source produces the last term in eq. (3.10),

δmb

m̂b
β(αs)

d
dαs

[w(x, αs(m̂b)] = −α
3
sCF
8π3 δ(1)

m β0w
s(1)
77 (x) +O(α4

s) . (3.15)

Since it starts at O(α3
s) it first appears at N3LL′. Formally, this term is also subleading

power, because δmb/m̂b ∼ λ. However, since there is no explicit kinematic suppression
by x, the x dependence itself is still singular ∼ 1/x, involving δ(x) and logarithmic plus
distributions. Hence, this term cannot simply be absorbed into the nonsingular contri-
butions but must be properly accounted for in the resummed singular contribution. The
m̂b dependence in the corresponding fixed-order ln(µ/m̂b) also corresponds to the p− label
momentum. Therefore, to account for the distributional structure of this contribution and
to resum it, we consistently switch the hard and jet functions to the short-distance mass
m̂b. The details of this procedure are discussed in the following two subsections.

3.5 Hard function

The hard function in a short-distance scheme is obtained by writing the b-quark mass in the
pole-scheme hard function in eq. (A.5) in terms of a short-distance mass and reexpanding
the result strictly in powers of αs(µ). At N3LO we obtain

ĥs(m̂b, µ) = hs(m̂b, µ)−
∞∑
n=2

2n−3∑
m=0

∆H(n)
m (µ)

[
αs(µ)

4π

]n
lnm µ

m̂b
, (3.16)
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where the coefficients ∆H(n)
m are given by

∆H(2)
0 (µ) = δ(1)

m (µ)H(1)
1 ,

∆H(2)
1 (µ) = 2δ(1)

m (µ)H(1)
2 ,

∆H(3)
0 (µ) = δ(2)

m (µ)H(1)
1 + δ(1)

m (µ)H(2)
1 − 1

2
(
δ(1)
m (µ)

)2(
H

(1)
1 + 2H(1)

2

)
,

∆H(3)
1 (µ) = 2δ(2)

m (µ)H(1)
2 + 2δ(1)

m (µ)H(2)
2 −

(
δ(1)
m (µ)

)2
H

(1)
2 ,

∆H(3)
2 (µ) = 3δ(1)

m (µ)H(2)
3 ,

∆H(3)
3 (µ) = 4δ(1)

m (µ)H(2)
4 . (3.17)

Here H(n)
m are the coefficients of the pole-scheme hard function defined in eq. (A.5), and

δ
(n)
m (µ) are defined in eq. (3.11).

Similarly, the RGE for the hard function in a short-distance mass scheme is derived
by rewriting the pole mass in eq. (A.6) in terms of a short-distance mass,

dĥs(m̂b, µ)
d lnµ =

{
ΓH [αs(µ)] ln µ

m̂b
+ γH [αs(µ)] + ∆γH(µ)

}
ĥs(m̂b, µ) , (3.18)

where

∆γH(µ) = ΓH [αs(µ)] ln m̂b

mpole
b

= −ΓH [αs(µ)] ln
(

1 + δmb

m̂b

)

= −
[
αs(µ)

4π

]2
ΓH0 δ(1)

m (µ)

−
[
αs(µ)

4π

]3{
ΓH1 δ(1)

m (µ) + ΓH0
[
δ(2)
m (µ)− 1

2(δ(1)
m (µ))2

]}
+O(α4

s) , (3.19)

and the hard cusp anomalous dimension coefficients ΓHn = −2Γn are defined in eq. (A.1).
Note that the reexpansion in eqs. (3.16) and (3.18) must be performed in terms of the same
αs(µ), such that ĥs(m̂b, µ) in eq. (3.16) indeed satisfies the RGE in eq. (3.18).

We expect that the renormalon associated with the pole mass cancels in the perturba-
tive series of the hard anomalous dimension. The cusp anomalous dimension is universal
and arises in the evolution of many perturbative objects with Sudakov double logarithms
that do not involve the b-quark mass at all. Therefore, the ΓH series cannot know about the
pole-mass renormalon, so the cancellation must happen between γH and ∆γH . For this rea-
son, it is important to consistently expand ∆γH in powers of αs(µ) to the same order as γH .

The all-order solution to the differential equation (3.18) can be written as

ÛH(m̂b, µH , µ) = UH(m̂b, µH , µ)×∆UH(µH , µ) , (3.20)

where UH is the usual hard evolution factor given in eq. (A.10), and the correction factor
∆UH is given by

∆UH(µH , µ) = exp
[∫ µ

µH

d lnµ∆γH(µ)
]
. (3.21)
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Note that in general, the µ dependence of ∆γH(µ) coming from δ
(n)
m (µ) can be more

involved than for the usual anomalous dimension, such that the µ integral may have to be
performed numerically. Using the MSR mass and up to N3LL, we can still perform the
integral by employing an analytic approximation analogous to the one used for the K and
η integrals in eq. (A.3). We find up to N3LL

ln ∆UH(µH , µ) = αs(µH)
4π

ΓH0
2β0

δ
(1)
MSR(r − 1)

+ αs(µH)
4π

ΓH0
4β0

{
αs(µH)

4π

[(
δ

(2)
MSR −

1
2(δ(1)

MSR)2 + 2δ(1)
MSRβ0 ln µH

R

)
+ δ

(1)
MSR

(
ΓH1
ΓH0
− β1
β0

)]
(r2 − 1)− δ(1)

MSR(r − 1)2
}
, (3.22)

where r = αs(µ)/αs(µH) and

δ
(n)
MSR ≡

R

mMSR
b (R)

aMSR
n . (3.23)

At NNLL only the first line on the right-hand side of eq. (3.22) is kept.

3.6 Jet function

Similar to the hard function in the previous section, we define the jet function in a short-
distance scheme by expressing mpole

b in terms of a short-distance mass m̂b. To this end,
we start with the jet function in the pole scheme given in eq. (A.11) and set s = mpole

b ω.
Then we write mpole

b in terms of m̂b and reexpand the result strictly in powers of αs(µ),
such that mpole

b J(mpole
b ω, µJ) = m̂bĴ(m̂bω, µJ) order by order. This yields up to N3LO

Ĵ(m̂bω, µ) = J(m̂bω, µ) +
3∑

n=2

2n−4∑
m=−1

∆J (n)
m

[
αs(µ)

4π

]n 1
µ2Lm

(
m̂bω

µ2

)
. (3.24)

The expansion coefficients ∆J (n)
m read

∆J (2)
−1 (µ) = δ(1)

m (µ)J (1)
0 ,

∆J (2)
0 (µ) = δ(1)

m (µ)J (1)
1 ,

∆J (3)
−1 (µ) = δ(2)

m (µ)J (1)
0 + δ(1)

m (µ)J (2)
0 − 1

2
(
δ(1)
m (µ)

)2(
J

(1)
0 − J (1)

1

)
,

∆J (3)
0 (µ) = δ(2)

m (µ)J (1)
1 + δ(1)

m (µ)J (2)
1 − 1

2
(
δ(1)
m (µ)

)2
J

(1)
1 ,

∆J (3)
1 (µ) = 2δ(1)

m (µ)J (2)
2 ,

∆J (3)
2 (µ) = 3δ(1)

m (µ)J (2)
3 , (3.25)

where the δ(n)
m are defined in eq. (3.11) and the J (n)

m coefficients are those of the original
pole-scheme jet function as defined in eq. (A.11).
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4 Perturbative uncertainties

For our predictions we can distinguish perturbative and parametric uncertainties. Para-
metric uncertainties arise from the uncertainty in input parameters, such as C incl

7 , |Vtb V
∗
ts|2,

mb, F(k). These are not considered in the following. We normalize our numerical results by
dividing out the overall prefactor Γ0

∣∣C incl
7
∣∣2, so the associated uncertainties drop out. We

also ignore the parametric uncertainties due to the shape function F(k) and mb, which do
affect the shape of the spectrum, because we do not compare with experimental B → Xsγ

measurements, in which case they would be determined by the fit to the data.
Our primary focus is on the perturbative results and their perturbative uncertainties

arising from missing higher-order corrections. For these there are various different sources,
which fall into two categories:

• Profile scale variations: we identify three sources of perturbative uncertainties
that are estimated by a suitable set of variations of the profile scales discussed in sec-
tion 2.4. The resummation uncertainty ∆resum is obtained by taking the maximum
envelope of all 27 simultaneous variations of the profile function parameters eH , eJ ,
µ0, which corresponds to scale variations in the resummed singular contributions,
together with corresponding correlated variations in the nonsingular contributions.
Note also that despite its name, ∆resum reduces to the overall fixed-order scale vari-
ation in the fixed-order region. The nonsingular uncertainty ∆ns is determined by
varying the ens parameter, which determines the central value of the nonsingular scale
in the resummation regions. The matching uncertainty ∆match comes from varying
the transition point E1, which marks the start of the transition region. These three
sources are considered independent and are thus added in quadrature,

∆profile = ∆resum ⊕∆ns ⊕∆match . (4.1)

For notational convenience, we use the symbol ⊕ to denote addition in quadrature,
x⊕ y ≡

√
x2 + y2.

• Theory nuisance parameter variations: the uncertainties ∆h3 and ∆cns are
estimated by varying the nuisance parameters h3 and cns

k , respectively, within the
ranges given in sections 2.2 and 2.3, where we abbreviate ∆cns = (∑5

k=0 ∆2
cns

k
)1/2.

Note that by definition the central values of all nuisance parameters are zero.

The nuisance parameters at N3LL′+N3LO(ck) are introduced in such a way that
the scale dependence cancels at this order, i.e., all terms that are predicted by scale
dependence are correctly included. This means that at N3LL′+N3LO(ck) the profile
scale variations estimate the uncertainty due to the missing next order N4LL′+N4LO,
while the nuisance parameters capture the uncertainty due to the missing O(α3

s)
ingredients at N3LL′+N3LO(ck).

The total perturbative uncertainty is obtained by adding all sources in quadrature,

∆total = ∆profile ⊕∆h3 ⊕∆cns . (4.2)
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Parameter Value
mB 5.279 GeV

αs(µ = 4.7 GeV) 0.2155
mMSR
b (R = 1 GeV) 4.7 GeV

λ 0.6 GeV
p 4

Table 1. Numerical values of required input parameters.

The nuisance parameter uncertainties only contribute at the highest order
N3LL′+N3LO(ck), while at lower orders we simply have ∆total = ∆profile.

Note that in ref. [15] the perturbative uncertainty was estimated from profile scale vari-
ations by taking the maximum envelope of 35 = 243 profile scale variations corresponding
to simultaneous variations of the above five profile scale parameters. Here we have refined
the estimation procedure by separating conceptually different sources of perturbative un-
certainties, which leads to an overall more consistent picture of the resulting uncertainties
when including the new highest order at N3LL′. In part, this becomes possible because
we are now able to reexpand the fixed-order hard function against the product of the
fixed-order jet and soft functions. We have also checked that the total ∆profile estimated
as described above is comparable in size to what we obtain in our setup by taking the
maximum envelope of all 35 = 243 variations excluding a small set of obvious outliers.

5 Results

In this section, we present our numerical results for the photon energy spectrum. All
numerical results are implemented and obtained with the SCETlib [54] library.

Our default numerical setup is as follows. The values used for input parameters are
summarized in table 1. The spectrum is always divided by the overall normalization factor
Γ0
∣∣C incl

7
∣∣2, so its numerical value is not needed. For the shape-function model in eq. (2.26)

we use λ = 0.6 GeV and p = 4 as the default settings. We illustrate the impact of changing
p and λ later in this section. We neglect finite-charm-mass corrections and work in QCD
with nf = 4 massless quarks. We always use the 4-loop running of αs, which is sufficient
for resummation at N3LL. We use the MSR scheme for the b-quark mass and adopt short-
distance schemes for λ1 and ρ1 as discussed in section 3.3. The impact of the short-distance
mass scheme is discussed in section 5.3. Throughout this section, the colored bands always
show the perturbative uncertainties obtained from profile scale variations ∆profile.

5.1 Main results

To begin, in figure 3, we show the contribution of the resummed singular corrections to
the full result at NNLL′ (left panel) and N3LL′ (right panel). The resummed contribution
is indeed dominant across the peak of the spectrum, while it decreases rapidly in the tail
and eventually changes sign at Eγ . 1.8 GeV, where the resummation is getting turned
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Figure 3. Comparison of the absolute value of resummed contribution to the full B → Xsγ

photon energy spectrum in the MSR mass scheme. The left panel shows the 2-loop predictions, the
right panel shows the 3-loop predictions. The overall factor Γ0

∣∣C incl
7
∣∣2(Eγ/m̂b)3 is divided out (see

eq. (2.1)).

off. Here, only the full matched result is meaningful, which remains positive and slowly
approaches zero in the far tail.

Our main predictions for the B → Xsγ photon energy spectrum at different pertur-
bative orders are presented in figure 4. In addition to the colored bands showing ∆profile,
the gray dashed line shows ∆profile ⊕∆h3 , and the black solid line shows ∆total defined in
eq. (4.2). The first column shows the results for the spectrum, and the second column shows
the relative difference to the central value at the highest order, i.e. to the red solid line on
the left. In the first row, we use the same value for the shape-function parameter p = 4
for all orders, whereas in the second row, we use different values for p. In figure 5 we show
the breakdown of the relative perturbative uncertainties into the individual contributions
at NNLL′+NNLO and N3LL′+N3LO(ck).

We remind the reader that the choice p = 4 was needed to ensure that the spectrum
at the highest order N3LL′ still vanishes in the limit Eγ → mB/2. In practice, when fitting
to the experimental data, the fit will always fix the precise shape near the endpoint to that
of the data irrespective of the perturbative order, while the perturbative differences get
moved (at least partially) into the fit result for F . By using the same fixed model for F at
each order, we can directly assess the perturbative convergence in the spectrum. However,
by using a common p, the spectrum at lower orders vanishes correspondingly faster, i.e.,
quadratically at NNLL′ and cubically at NLL′, which also affects to some extent the shape of
the spectrum into the peak. Therefore, in the lower panels of figure 4 we also show an alter-
native order comparison, where we do change the model at each order by using successively
lower values for p at the lower orders, such that the spectrum vanishes linearly at each order.

The results in figures 4 and 5 manifest a good perturbative convergence, especially
from NNLL′+NNLO to N3LL′+N3LO(ck). The relative uncertainties are under good con-
trol over the entire Eγ range, except at the very endpoint where the spectrum vanishes so
the relative uncertainties necessarily blow up. Apart from the very endpoint, the total un-
certainty at N3LL′+N3LO(ck) is at most 15% and in most of the Eγ range well below that.
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Figure 4. The B → Xsγ spectrum at different perturbative orders. The Eγ spectrum itself is
shown on the left, while the relative differences to the highest-order central value are shown on the
right. In the top row, we use the same value p = 4 at each order, while in the bottom row we use
successive values at each order. The colored bands show the perturbative uncertainty estimated
by just profile scale variations, ∆profile. The dashed gray line includes in addition the uncertainty
due to h3. The solid black line further includes in addition the nonsingular nuisance parameters,
corresponding to the total perturbative uncertainty at N3LL′+N3LO(ck).

1.6 1.8 2.0 2.2 2.4 2.6

-30

-20

-10

0

10

20

30

1.6 1.8 2.0 2.2 2.4 2.6

-30

-20

-10

0

10

20

30

Figure 5. Breakdown of the perturbative uncertainty for the B → Xsγ spectrum into its compo-
nents at NNLL′+NNLO (left panel) and N3LL′+N3LO(ck) (right panel).
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Figure 6. The B → Xsγ spectrum using different values for the shape-function parameters p (left
panel) and λ (right panel) at N3LL′+N3LO(ck). The remaining theory parameters are set to their
default values.

The uncertainties at N3LL′+N3LO(ck) are substantially reduced compared to
NNLL′+NNLO, even accounting for the fact that not all 3-loop perturbative ingredients
are known. As expected, the higher-order uncertainties estimated from profile scale varia-
tions (∆resum, ∆ns, ∆match) are much reduced. Also recall that in the fixed-order tail ∆resum
turns into the usual fixed-order scale variation. The uncertainty ∆h3 is visible but subdom-
inant. Across the entire peak of the spectrum, the uncertainty ∆cns from the missing 3-loop
nonsingular corrections is at most comparable to the other sources thanks to the power sup-
pression of the nonsingular. As expected, in the tail below Eγ . E1 = 2.1 GeV it starts to
take over and becomes the dominant uncertainty. This demonstrates that in our approach
we are able to substantially benefit from the increased precision of the N3LL′ resummation
even in the absence of the full N3LO result. Furthermore, in the fixed-order tail the total un-
certainty dominated by ∆cns is still reduced compared to the scale-variation based estimate
at NNLL′+NNLO. As discussed at the end of section 2.3, this is anticipated and justified
because of the additional nontrivial perturbative information included at N3LO(ck).

The effect of varying the shape function model parameters p and λ is illustrated in
figure 6. As expected, the position and height of the peak depend on the model parameters.
We can clearly see how the value of p controls how fast the spectrum vanishes toward the
endpoint Eγ → mB/2. The value of λ determines the width of shape function, which
as a result controls the width of the peak. We stress that these results are just meant
as an additional illustration. In particular, the differences seen in figure 6 are not to
be interpreted as an additional theoretical uncertainty in the predictions. As mentioned
before, the actual shape of F will be determined by fitting to the experimental data.

5.2 Different treatments of higher-order singular cross terms

When evaluating the singular correction using the factorization theorem in eq. (2.4) by
default we expand the fixed-order boundary conditions of the hard, jet, and partonic
soft functions against each other. This is usually done, because it ensures that when
switching off the resummation in the far-tail region and adding the fixed-order nonsingular
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Figure 7. B → Xsγ spectrum with unexpanded hard function.

correction, the fixed-order results are exactly reproduced. In ref. [15] it was observed
that in the 1S scheme and up to NNLL′+NNLO the perturbative convergence in the
resummation region is substantially improved by keeping the hard function unexpanded
as an overall factor. The main reason is that this ensures that the hard function does not
affect the shape of the spectrum, which receives relatively large corrections from the jet
and soft functions. The disadvantage is that this has the danger of generating unphysically
large higher-order corrections in the fixed-order limit. In ref. [15] it was checked that this
does not happen in the region of interest.

In this section, we study the differences in our perturbative setup between expanding
the hard function against soft and jet functions (our default) vs. keeping it unexpanded.

A priori, the additional higher-order terms induced by keeping the hard function un-
expanded can easily spoil the delicate cancellation between singular and nonsingular con-
tributions in the far tail of the spectrum. To fix this problem, we compensate for these
higher-order terms by adding a constant term that cancels them in the fixed-order region
but is only a power-suppressed correction in the peak region,[

W s
77(k) +W ns

77 (k)
]
→
[
W s,unexp

77 (k)−W s,unexp
77,FO (m̂b)

]
+
[
W ns

77 (k) +W s,exp
77,FO(m̂b)

]
, (5.1)

where we subtract the singular with unexpanded hard function, W s,unexp
77,FO (m̂b) and add it

back with expanded out hard function, W s,exp
77,FO(m̂b). Both of these terms are evaluated at

fixed order and at k = m̂b, corresponding to the tail limit x = 1, so in the peak region they
are indeed power suppressed. This prescription allows us to take advantage of keeping the
hard function unexpanded in the peak region while avoiding unphysically large corrections
from higher-order cross terms in the fixed-order region, since they are explicitly removed
in the x→ 1 limit.

The numerical results using this prescription are shown in figure 7, where we adopt
the MSR scheme with short-distance schemes for λ̂1 and ρ̂1. We compare these results to
our default setup using the expanded hard function in figure 8. Here one can see that,
overall, both scenarios lead to somewhat compatible results. Nevertheless, the choice of
expanding the hard function or not clearly has a large impact at lower orders (which are
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Figure 8. Comparison of B → Xsγ spectrum with expanded and unexpanded hard function. The
colored and gray bands at each order display the spectrum with expanded and unexpanded hard
function, respectively.

expected to be more sensitive to the treatment of higher-order cross terms). Keeping the
hard function unexpanded leads to a rather unnatural reduction of scale variations in the
peak region of the spectrum. This behavior is quite dramatic at NNLL′+NNLO, where the
uncertainty band with an unexpanded hard function (the gray band) barely captures the
central line from the results with expanded hard function (solid blue line), and its size is
almost as large as the scale variations at N3LL′+N3LO(ck). This is also visible in figure 7,
where the blue band suspiciously narrows down in the peak region of the spectrum and
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Figure 9. The hadronic soft function (left panel) and the B → Xsγ spectrum (right panel) at
different orders in the pole mass scheme. Small values of k in the soft function correspond to large
Eγ in the spectrum. The pole-mass renormalon leads to the large negative dip at small k and large
Eγ and an unstable position of the peak.

competes with the orange band. Based on this set of observations we conclude that in our
setup keeping the hard function unexpanded is disfavored. Hence, for our final numerical
results we opt for the conventional treatment of fully expanding the fixed-order boundary
conditions of the hard, jet, and partonic soft functions against each other, since it yields
an overall more consistent picture of perturbative uncertainties and convergence.

5.3 Impact of short-distance schemes: 1S vs. MSR mass schemes

As already explained in section 3 a suitable choice of short-distance scheme for the b-quark
mass plays a key role in stabilizing the predictions at different orders in perturbation theory.
In this section we illustrate the numerical impact of expressing mb, λ1, and ρ1 in short-
distance schemes. Moreover, we show that the 1S mass scheme, which was successfully
used in previous works [15, 32] up to NNLL′+NNLO, starts to break down at N3LL′, while
the MSR mass scheme yields convergent, stable results.

In the following figures we show our numerical predictions for the hadronic soft function
(left column) and photon energy spectrum (right column) at different orders using the pole
(figure 9), 1S (figure 10 and figure 12), and MSR (figure 11) schemes. In these plots, we
always use our default setup modulo the different short-distance schemes as indicated. For
the soft function, we always show the combination S(k, µ0) ⊗ US(k, µ0, 1.3 GeV), i.e., we
use the soft evolution kernel to evolve the soft function to a fixed scale µ = 1.3 GeV. In this
way, the µ0 dependence cancels up to higher order, so we can use our default µ0 variations
to estimate the perturbative uncertainties for the soft function.

In figure 9 we clearly see that the soft function in the pole scheme suffers from a sizable
renormalon ambiguity, which is intrinsic to the pole scheme, leading to a large negative
deep before the peak. Moreover, the peak position varies significantly from one order to
another, which reflects the instabilities in the first moments of the shape function. All these
features are also mirrored in the corresponding results for the spectrum. This behaviour of
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Figure 10. The hadronic soft function (left panel) and the B → Xsγ spectrum (right panel) in
the 1S mass scheme. The top panels use the pole scheme for λ1 and ρ1, while the bottom panels
use a short-distance scheme. In both cases the spectrum, and in particular the position of its
peak, are stable at NLL′+NLO and NNLL′+NNLO, but at N3LL′+N3LO(ck) the predictions start
breaking down.

the pole scheme was already observed in ref. [32] up to NNLL′, and we see that it continues
to get worse at N3LL′.

The predictions in the 1S mass scheme are presented in figure 10. Although the
differential decay rate up to NNLL′ is somewhat stable, the prediction fails dramatically
at N3LL′. In particular, the uncertainty band from scale variation is completely out of
control. Adopting short-distance schemes for λ1 and ρ1 slightly improves the spectrum up
to NNLL′+NNLO, but the picture at N3LL′+N3LO(ck) does not change. Neither does it
seem to be possible to substantially improve the convergence by adjusting the values of
the residual short-distance coefficients δλ(2)

1 , δλ(3)
1 , and δρ(3)

1 . Keeping the hard function
unexpanded in the 1S scheme somewhat improves the picture up to NNLL′+NNLO but
does not help at all with the bad behaviour at N3LL′+N3LO(ck).

The results in the MSR scheme are presented in figure 11. In this case we observe
much more stable results in comparison to the 1S scheme. Here in the first row, where
we only switch the b-quark mass to the MSR scheme, we still observe that the spectrum is
very sensitive to the behavior of the soft function at small k. This sensitivity is reflected in
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Figure 11. The hadronic soft function (left panel) and the B → Xsγ spectrum (right panel) in the
MSR mass scheme. The top panels use the pole scheme for λ1 and ρ1, while the bottom panels use
a short-distance scheme. The convergence is significantly better than in the other mass schemes,
and is further improved by adoption of short-distance schemes for λ1 and ρ1.

the uncertainty estimates from scale variation. By subtracting the subleading renormalons
present in λ1 and ρ1, we find a substantial improvement in the peak region of the spectrum,
and the result exhibits excellent convergence between all orders (second row). From these
results we can conclude that the MSR scheme is indeed a much more suitable mass scheme
for the B → Xsγ spectrum when going beyond NNLL′.

To understand the reason for the breakdown of the 1S scheme at N3LL′ we recall the
relation between the pole and 1S schemes up to the 3-loop order,

mpole
b = m1S

b +R1S(µ)
3∑

n=1

n−1∑
m=0

c1S
nm

[
αs(µ)

4π

]n[
ln µ

R1S(µ)

]m
. (5.2)

where R1S(µ) = CF m
1S
b αs(µ) is the built-in infrared cutoff scale of the 1S scheme. The
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numerical values for the cnm coefficients are

c1S
10 = 2.0944 ,
c1S

20 = 135.438− 10.2393nf ,
c1S

21 = 92.1534− 5.58505nf ,
c1S

30 = 11398.2− 1372.75nf + 38.9677n2
f ,

c1S
31 = 7766.02− 1077.92nf + 33.5103n2

f ,

c1S
32 = 3041.06− 368.614nf + 11.1701n2

f . (5.3)

By contrast to the MSR scheme where the R scale is a parameter we can choose, in the 1S
scheme R1S(µ) depends on the renormalization scale µ via the coupling constant. Hence its
size increases when decreasing the scale µ, e.g. at the hard scale we find R1S(4.75 GeV) =
1.36 GeV, whereas at the soft scale we obtain R1S(µS = 1.3 GeV) = 2.40 GeV, which is
almost twice the size of the soft scale itself. Such a large infrared scale violates the power
counting of HQET that is used to describe the heavy quarks in the B meson with the
residual soft momenta k ∼ ΛQCD in the peak region.

The mismatch between the size of R1S and µS ∼ k not only breaks the power counting
of the EFT description of the decay rate, but also spoils the renormalon subtraction in the
soft function. To see this explicitly, we consider the conversion between the 1S and MSR
schemes ∆mb(R) ≡ mMSR

b (R) −m1S
b , which formally does not involve a renormalon. We

obtain the following perturbative series for ∆mb(R = µ) at various scales,

∆mb(R = µ)
∣∣∣
µ=4.2 GeV

= −0.35 ε− 0.12 ε2 − 0.04 ε3 [GeV] ,

∆mb(R = µ)
∣∣∣
µ=1.93 GeV

= −0.15 ε− 0.06 ε2 + 0.02 ε3 [GeV] ,

∆mb(R = µ)
∣∣∣
µ=1.3 GeV

= −0.06 ε− 0.06 ε2 + 0.10 ε3 [GeV] , (5.4)

where ε ≡ 1 is an auxiliary parameter denoting the perturbative order of the corrections.
The perturbative series in the first line shows a rather good convergence for ∆mb at the
hard scale. In this regime the perturbative expansion for the 1S scheme contains logarithms
of the form ln(µ/R1S(µ))|µ=4.7 GeV ∼ ln(4.7/1.36). These logarithms are suppressed by
R1S(µ = m1S

b )/m1S
b = 1.36/4.7 and are therefore harmless in the fixed-order expansion.

For example, in the context of calculating the total decay rate, it is well-known that the
1S scheme provides a good description for the bottom mass.

We can also define a natural scale for the 1S scheme, which we denote as µ1S , at
which all logarithms of the form ln(µ1S/R

1S(µ1S)) are resummed. It corresponds to the
fixed point of the R1S scale where R1S(µ1S) = µ1S , which yields µ1S = 1.93 GeV. The
perturbative series for ∆mb(µ1S) is shown in the second line of eq. (5.4). It shows the same
good convergence as the first line, but with overall smaller corrections and a change of sign
in the O(ε3) coefficient.

Finally, the last line in eq. (5.4) shows the perturbative series for ∆mb(µS) at the soft
scale µS = 1.3 GeV. Contrary to the first two lines, the resulting series exhibits no conver-
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Figure 12. The hadronic soft function (left panel) and the B → Xsγ spectrum (right panel) in
the 1S mass scheme. A short-distance scheme is used for the hadronic parameters λ1 and ρ1. In
contrast to the other plots, larger values are used for the soft scale: µ0 ∈ {2.2, 1.9, 3}GeV. The
larger soft scale amends the breakdown of 1S scheme at N3LL′+N3LO(ck), but is not compatible
with the SCET scale hierarchy.

gence and breaks down at the 3-loop order. This behavior vividly explains the failure of the
1S mass scheme when used at the soft scale to remove the renormalon in the soft function.

Another interesting conclusion from the discussion above is that one can retain the use
of the 1S scheme as soon as the actual soft scale in the problem is roughly of the same order
of R1S = µ1S ∼ 1.93 GeV. To examine this hypothesis, in figure 12 we show the results for
the soft function and the photon energy spectrum in the 1S mass scheme where the soft
scale is chosen to have larger values, µS ∈ {2.2, 1.9, 3}GeV. Indeed the resulting spectrum
exhibits a significant improvement at all orders compared to figure 10, and in particular the
N3LL′+N3LO(ck) result is now much more well behaved. However, in practice this setup is
not really ideal since the soft scale is now much larger than ΛQCD and our default soft scale,
which leads to larger unresummed logarithms in the soft function. Consequently, the results
in figure 12 do not reach the same level of stability as those in the MSR scheme in figure 11.

6 Conclusions

In this paper, we presented the photon energy spectrum in B → Xsγ at N3LL′+N3LO(ck),
mediated by the electromagnetic operator in the weak Hamiltonian. For the singular
contributions we used the SCET factorization theorem to resum large logarithms, which
arise in the description of the spectrum close to the kinematic endpoint. We accounted
for the complete soft and jet functions at N3LO and treated the unknown nonlogarithmic
constant of the 3-loop hard function as a nuisance parameter. In addition, the RG evolution
is performed at complete N3LL, taking advantage of the fully-known 3-loop anomalous
dimensions. We matched the resummed predictions to fixed order at the formal N3LO
order, developing a method that allows us to consistently include the known NNLO results,
while parametrizing the missing nonsingular corrections at 3-loop order in terms of suitable
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theory nuisance parameters ck. The variation of these nuisance parameters provides an
estimate of the uncertainty that arises from our ignorance of these missing terms.

We incorporated nonperturbative effects by convolving the partonic spectrum with a
universal shape function. The first moments of the shape function depend on the b-quark
mass mb and the HQET parameters λ1 and ρ1. It is crucial to define these parameters
in a suitable short-distance scheme to avoid renormalon ambiguities that would spoil the
convergence of perturbative series. Another important aspect of our analysis was the
implementation and choice of an appropriate short-distance scheme at N3LL′. By using
the MSR mass scheme for mb and adopting an analogous scheme to the “invisible” scheme
for λ1 and ρ1 we are able to obtain stable predictions. We also find, quite unexpectedly,
that the 1S mass scheme, which has been successfully used in the past for this process up
to NNLL′, starts to badly break down at N3LL′+N3LO(ck). We demonstrated that the
reason for this sudden breakdown is that the 1S scheme is ultimately not designed for use
at very low scales. This is because its built-in infrared cutoff scales with αs(µ) and thus
increases at lower scales and quickly becomes too large when the soft scale is lower than
µ1S = 1.93 GeV, such that it effectively breaks the power counting of the underlying HQET.

Our main results are presented in section 5.1. Our final predictions for the photon
energy spectrum in the MSR scheme and invisible schemes for λ1 and ρ1 exhibit excel-
lent perturbative stability, in particular considering the rather low scales involved in the
problem. In particular, we observe a substantial improvement of the perturbative theory
uncertainties from NNLL′+NNLO to N3LL′+N3LO(ck). Importantly, even without the
complete fixed O(α3

s) information available, with our method we are able to benefit from
the increased perturbative precision at N3LL′, allowing us to improve the precision of the
theory predictions across the entire phenomenologically important peak region. Indeed, the
uncertainties due to the missing fixed-order results at O(α3

s) only become dominant in the
fixed-order tail of the spectrum, which is phenomenologically less relevant. Nevertheless,
their calculation is still encouraged and needed to further reduce the theory uncertainties.

In the future, we look forward to confronting our improved predictions with both
existing and future experimental measurements, enabling more precise determinations of
the shape function F(k), the b-quark mass, and the normalization of the B → Xsγ rate.

Acknowledgments

This work was supported in part by the Helmholtz Association Grant W2/W3-116.

A Resummation ingredients

A.1 General definitions

We write the perturbative series for the cusp and noncusp anomalous dimensions as

Γcusp(αs) ≡ Γqcusp(αs) =
∞∑
n=0

Γn
(
αs
4π

)n+1
, γF (αs) =

∞∑
n=0

γFn

(
αs
4π

)n+1
. (A.1)
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At N3LL′, we need the quark cusp anomalous coefficients up to four loops [55–58]. The
coefficients βn of the QCD β function in MS are defined as

dαs(µ)
d lnµ = β

[
αs(µ)

]
= −2αs(µ)

∞∑
n=0

βn

[
αs(µ)

4π

]n+1
. (A.2)

At N3LL′ they are also needed up to four loops [59–62].
The RGE solutions are written in terms of the following standard integrals

KΓ(µ0, µ) =
∫ α(µ)

αs(µ0)

dαs
β(αs)

Γcusp(αs)
∫ αs

αs(µ0)

dα′s
β(α′s)

,

ηΓ(µ0, µ) =
∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γcusp(αs) ,

Kγ(µ0, µ) =
∫ αs(µ)

αs(µ0)

dαs
β(αs)

γ(αs) . (A.3)

In principle, they can be performed analytically [63]. For simplicity, in our numerical
results we employ the standard approximate analytic solutions [64], which are obtained by
performing the integrals after expanding the numerators in αs. For our purposes here, the
numerical accuracy of the approximate analytic solutions is sufficient [64].

Following ref. [32], we define the plus distributions

L−1(x) = δ(x) ,

Ln(x) =
[
θ(x) lnn x

x

]
+

= lim
ε→0

d
dx

[
θ(x− ε) lnn+1 x

n+ 1

]
(n ≥ 0) ,

La(x) =
[
θ(x)
x1−a

]
+

= lim
ε→0

d
dx

[
θ(x− ε) x

a − 1
a

]
. (A.4)

A.2 Hard function

We write the perturbative series for the hard function in the pole-mass scheme as

hs(mpole
b , µ) =

∞∑
n=0

2n∑
m=0

H(n)
m

[
αs(µ)

4π

]n
lnm

(
µ

mpole
b

)
. (A.5)

It satisfies the following RGE,

dhs(mpole
b , µ)

d lnµ =
{

ΓH [αs(µ)] ln µ

mpole
b

+ γH [αs(µ)]
}
hs(mpole

b , µ) , (A.6)

where ΓH(αs) ≡ −2Γcusp(αs) and γH(αs) = 2γq(αs) + 2γQ(αs) are the hard cusp and
noncusp anomalous dimensions. The noncusp anomalous coefficients γHn = 2γqn + 2γQn are
known to three loops [23].
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The nonlogarithmic coefficients of the hard function in eq. (A.5) are known to two
loops [32, 39],

H
(0)
0 = 1 ,

H
(1)
0 = −CF

(
12 + π2

6

)
,

H
(2)
0 = 16CF

[
3.88611CF + 5.89413CA −

(7859
3456 + 109π2

576 + 13ζ3
48

)
β0

+ 3563
1296 −

29π2

108 −
ζ3
6

]
, (A.7)

The 3-loop coefficient H(3)
0 is currently unknown and treated as a nuisance parameter as

discussed in section 2.2, where hn ≡ H(n)
0 /4n.

The coefficients of the logarithmic terms H(n)
m≥1 are determined by iteratively solving

the RGE in eq. (A.6) order by order. Substituting eq. (A.5) into eq. (A.6), we obtain a
recurrence relation that expresses them in terms of the anomalous dimensions and lower-
order nonlogarithmic coefficients,

H(n)
m = 1

m

{
t1∑
j=0

(
γHj + 2 (n− j − 1)βj

)
H

(n−j−1)
m−1 + θ(m ≥ 2)

t2∑
j=0

ΓHj H
(n−j−1)
m−2

}
, (A.8)

where m ≥ 1, the summation limits are t1 = bn− (m+ 1)/2c and t2 = bn−m/2c, and the
symbol bc denotes the floor function. The condition θ(m ≥ 2) indicates that the second
sum is present only if m ≥ 2. The explicit expressions up to three loops read

H
(1)
1 = γH0 ,

H
(1)
2 = 1

2 ΓH0 ,

H
(2)
1 = H

(1)
0
(
2β0 + γH0

)
+ γH1 ,

H
(2)
2 = 1

2
{

2β0 γ
H
0 +

(
γH0
)2 +H

(1)
0 ΓH0 + ΓH1

}
,

H
(2)
3 = 1

6 ΓH0
(
2β0 + 3 γH0

)
,

H
(2)
4 = 1

8
(
ΓH0
)2
,

H
(3)
1 = H

(2)
0
(
4β0 + γH0

)
+H

(1)
0
(
2β1 + γH1

)
+ γH2 ,

H
(3)
2 = 1

2
{

2β1 γ
H
0 + 4β0 γ

H
1 + 2 γH0 γH1 +H

(2)
0 ΓH0

+H
(1)
0

(
8β2

0 + 6β0 γ
H
0 +

(
γH0
)2 + ΓH1

)
+ ΓH2

}
,

H
(3)
3 = 1

6
{

8β2
0 γ

H
0 +

(
γH0
)3 +

(
2β1 + 3 γH1

)
ΓH0 + 3 γH0

(
H

(1)
0 ΓH0 + ΓH1

)
+ β0

(
6
(
γH0
)2 + 8H(1)

0 ΓH0 + 4 ΓH1
)}

,

H
(3)
4 = 1

24 ΓH0
(
8β2

0 + 20β0 γ
H
0 + 6

(
γH0
)2 + 3H(1)

0 ΓH0 + 6 ΓH1
)
,
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H
(3)
5 = 1

24
(
ΓH0
)2 (4β0 + 3 γH0

)
,

H
(3)
6 = 1

48
(
ΓH0
)3
. (A.9)

The all-order solution of the RGE in eq. (A.6) is given by

hs(mpole
b , µ) = hs(mpole

b , µH)UH(mpole
b , µH , µ) , (A.10)

UH(mb, µH , µ) = exp
[
−2KΓ(µH , µ)− 2ηΓ(µH , µ) ln µH

mb
+KγH (µH , µ)

]
.

A.3 Jet function

The perturbative series for the renormalized jet function reads

J(s, µ) =
∞∑
n=0

2n−1∑
m=−1

J (n)
m

[
αs(µ)

4π

]n 1
µ2 Lm

(
s

µ2

)
. (A.11)

The jet function is normalized such that J (n)
−1 = 1. Explicit expressions for the coefficients

J
(n)
m up to 3-loop order in our notation are given in refs. [22, 65].

For completeness, the jet function obeys the RGE

dJ(s, µ)
d lnµ =

{
ΓJ [αs(µ)] 1

µ2 L0

(
s

µ2

)
+ γJ [αs(µ)] δ(s)

}
⊗s J(s, µ) (A.12)

where ΓJ(αs) = −2Γcusp(αs) and the symbol ⊗s denotes the convolution of the form

f(s)⊗s g(s) =
∫

ds′ f(s− s′) g(s′) . (A.13)

In our numerical implementation, we do not need to explicitly solve the jet-function RGE,
because we always evolve the hard and soft functions to the jet scale.

A.4 Partonic soft function

In the pole scheme the partonic soft function C0(ω, µ) is given by the b-quark matrix
element

C0(ω, µ) = 〈bv|b̄vδ(iD+ + ω)bv|bv〉 . (A.14)

Its perturbative expansion is written as

C0(ω, µ) =
∞∑
n=0

2n−1∑
m=−1

S(n)
m

[
αs(µ)

4π

]n 1
µ
Lm
(
ω

µ

)
. (A.15)

The expansion coefficients S(n)
m can be found in ref. [23].

The RGE for the partonic soft function reads

dC0(ω, µ)
d lnµ =

{
ΓS [αs(µ)] 1

µ
L0

(
ω

µ

)
+ γS [αs(µ)] δ(ω)

}
⊗ω C0(ω, µ) , (A.16)
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where ΓS(αs) = 2Γcusp(αs) and the noncusp anomalous coefficients are known to three
loops [23]. By solving it iteratively, we can obtain a recurrence relation for all logarithmic
coefficients S(n)

m≥0,

S(n)
m = − 1

m+ δm0

{
t1∑
j=0

[
γSj + 2 (n− j − 1)βj

]
S

(n−j−1)
m−1 +

t2∑
j=0

2(n−j)−3∑
i=tm−2

ΓSj V 0i
m−1 S

(n−j−1)
i

}
,

(A.17)
where the summation limits are t1 = bn − 1 − m/2c , t2 = bn − (tm + 1)/2c and tm =
max (m, 1). The coefficients V mn

k appear in the convolution algebra of plus distributions,

Ln(x)⊗x Lm(x) =
n+m+1∑
k=−1

V nm
k Lk(x) , (A.18)

and are given in ref. [32]. It is easy to check that eq. (A.17) reproduces the explicit results
to three loops in ref. [23].

The all-order solution of the soft RGE is [32, 66–68]

C0(ω, µ) = C0(ω, µS)⊗ω US(ω, µS , µ) ,

US(ω, µS , µ) = exp
[
−2KΓ(µS , µ) +KγS (µS , µ)

]
V[2ηΓ(µS , µ), µS , ω] ,

V(η, µ, ω) = e−γEη

Γ(1 + η)

[
η

µ
Lη
(
ω

µ

)
+ δ(ω)

]
(A.19)

where KΓ, ηΓ, Kγ are defined in eq. (A.3), γE is the Euler-Mascheroni constant, and the
Lη(x) plus distribution is defined in eq. (A.4).

Note that in the short-distance schemes we consider, the residual terms δmb, δλ1, δρ1
are formally µ independent, such that the evolution for the partonic soft function in a
short-distance scheme Ĉ0(ω, µ) is the same as in the pole scheme.
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