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By using the generalized fractional analytical iteration method (GF-AEIM), the single, the double, and the triple heavy baryons
masses are calculated in the hyper-central model in the two cases. In the first case, the potential is a combination of
Coulombic potential, the linear confining potential, and the harmonic oscillator potential. In the second case, we add the
hyperfine interaction. The energy eigenvalues and the baryonic wave function are obtained in the fractional forms. The present
results are a good agreement with experimental data and are improved with other recent works.

1. Introduction

The constituent quark model (CQM), which is based on a
hyper-central approach, has lately become popular for
describing baryon internal structure [1–5]. Although the
various theories are somewhat distinct, the heavy baryon
spectrum is usually well described. Understanding the
dynamics of QCD at the hadronic scale necessitates research
into hadrons containing heavy quarks [6–10]. Due to the
experimental observation of several heavy flavor baryons,
heavy baryon characteristics have become a subject of con-
siderable attention in recent years. All single charm quark-
carrying spatial-ground-state baryons have been detected,
and their masses have been calculated. Many spin-1/2b-
baryons, Ξb, andΩb, as well as spin-3/2 baryons, have been
identified [11–15]. The doubly heavy baryons, which are
made up of two heavy quarks and one light quark, are par-
ticularly intriguing because they offer a new platform for
simultaneously exploring heavy quark symmetry and chiral
dynamics [16–18]. There are a lot of theoretical models,
and the mass of the doubly heavy baryon Ξ++cc is predicted
to be in the range of 3.5 ~ 3:7GeV. The mass splitting
between Ξ++cc and Ξ+cc is predicted to be several MeV
due to the mass difference of the light quarks u, d. The pre-

dicted mass in lattice QCD is about 3.6GeV, which is quite
close to the LHCb observation. The lifetimes of Ξ++cc and
Ξ+cc are predicted to be quite long, 50 ~ 250 and 200 ~ 700
fs [19–28], respectively. In Refs. [29–31], the authors calcu-
lated heavy flavor baryons containing single and double
charm (beauty) quarks with light flavor combinations and
considered the confinement potential as hyper-central Cou-
lomb plus power potential with power index ν. In Ref. [32],
the author calculated baryons using Feynman–Hellmann
theorem and semi-empirical mass formula within the frame-
work of a nonrelativistic constituent quark model. In Ref.
[33], the author studied heavy flavor baryons by using the
Bethe-Salpeter equation in the heavy quark limit and calcu-
lated the Isgur-Wise function. In Ref. [34], the author calcu-
lated different properties of single heavy flavor baryons
using heavy quark symmetry in the nonrelativistic quark
model. In Ref. [35], the author investigated charmed baryons
and spin splittings in quenched lattice QCD. In Ref. [7], the
author evaluated ground-state magnetic moments of heavy
baryons in the relativistic quark model using heavy-hadron
chiral perturbation theory. In Refs. [36, 37], the authors
solved the Schrodinger equation using the iteration method
to obtain masses of heavy baryons containing single, double,
and triple in a hyper-central approach with confining
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interaction and hyperfine interaction. In Ref. [38], the
authors solved the Schrodinger equation using a variational
method to obtain masses of single, double, and triple in
the hyper-central approach with confining interaction and
hyperfine interaction. In Ref. [39], the authors use two
potentials, the first potential is Cornell potential, and the
second potential is the same as Ref. [36, 37], and they solved
the Schrodinger equation numerically to obtain single, dou-
ble, and triple baryon masses. In Ref. [40], the authors
obtained the masses of heavy flavor baryon masses by using
the nonrelativistic quark model with hyper-central Coulomb
plus linear potential and Coulomb plus harmonic oscillator
potential. In Ref. [41], the authors obtained mass spectra of
the doubly heavy baryons that the two heavy quarks inside
a baryon form a compact heavy “diquark core” in a color
antitriplet and bind with the remaining light quark into a
colorless baryon. In Ref. [42], the author calculated masses
of the ground-state baryons consisting of three or two heavy
and one light quarks in the framework of the relativistic
quark model, and masses of the triply and doubly heavy
baryons are obtained by using the perturbation theory for
the spin-independent and spin-dependent parts of the
three-quark Hamiltonian. In Ref. [43], the author studied
heavy baryons within Isgur-Wise formalism by using the
extended Cornell potential and solved the Schrodinger equa-
tion using iteration to obtain eigenvalues of energy and bary-
onic wave function.

In the present work, we employ the generalized frac-
tional iteration method, and we calculate the masses of
heavy flavor baryons containing single, double, and triple
in the ground state in two cases: the first case, in the absence
of hyperfine interaction, and the second case, in the presence
of hyperfine interaction. To the best of our knowledge, the
masses of heavy flavor baryons are not considered in the
fractional quark models.

This paper is arranged as follows. In Section 2, we dis-
play interaction potential. In Section 3, the theoretical
method is explained. In Section 4, the results and discussion
are written. In Section 5, the conclusion is written.

2. Interaction Potential

The potentials could take any confining form (e.g., linear,
log, power law). In many practical applications, a harmonic
oscillator potential produces spectra not much different
from those obtained from potentials like the Coulombic plus
linear that QCD prejudice would favor. Since harmonic
oscillator models have nice mathematical properties, they
have often been employed as the confining potential. On
the other hand, the Coulombic term alone is not sufficient
because it would allow free quarks to ionize from the system.
As used by QCD [44, 45], the potential being studied in this
work consists of a Coulombic-like term combined with a lin-
ear confining term (ax − c/x), and the harmonic oscillator
potential, which has the form of x2, has been added [36].

V xð Þ = ax2 + bx − c
x
, ð1Þ

where x is the relative quark pair coordinate and a, b, and c
are constants. In Equation (1), two features the Coulomb
potential (CP) and confinement potential, the short distance
is described by CP, and the long distance is described by the
confinement part and supported confinement force by add-
ing harmonic potential x2. We consider the present potential
hyperfine interaction potentials. In the second case, we have
added hyperfine interaction potentials (Hs(x), HI (x), and
HSI (x)). The nonperturbative confining interaction poten-
tial is the potential as defined in Equation (1). The noncon-
fining potential due to the exchange interactions contains a δ
-like term, an illegal operator term [46]. We have changed it
by a Gaussian of the quark pair relative distance where the
non-confining spin-spin interaction potential is propor-
tional to a δ-function which is an illegal operator term. We
modify it to a Gaussian function of the relative distance of
the quark pair

Hs = AS
S1:S2ffiffiffiffi
π

p
σs

À Á3 Exp −x2

σs
2

� �
, ð2Þ

where si is the spin operator of the ith quark (si= σi/2), with
σibeing the vector of Pauli matrices) and AS and σs are con-
stants. Another spin as well as isospin-dependent interaction
potentials can arise from quark-exchange interactions. We
conclude that two additional terms should be added to the
Hamiltonian for quark pairs which result in hyperfine inter-
actions similar to Equation (3). The first one depends on iso-
spin only and has the form [36, 46].

HI = AI
t1:t2ffiffiffiffi
π

p
σI

À Á3 Exp −x2

σI
2

� �
, ð3Þ

where ti is the isospin operator of the ith quarks and AI and
σI are constants. The second one is a spin-isospin interac-
tion given by [36, 46]

HSI = ASI
S1:S2ð Þ t1:t2ð Þffiffiffiffiffiffiffiffiffi

πσSI
pÀ Á3 Exp −x2

σSI
2

� �
, ð4Þ

where si and ti are the spin and isospin operators of the ith
quark, respectively, and ASI and σSI are constants. Then,
from Equations (2), (3), and (4), the hyperfine interaction
(a nonconfining potential) is given by

Hint =Hs xð Þ +HI xð Þ +HSI xð Þ: ð5Þ

The parameters of the hyperfine interaction (5) are given
in Table 1.

3. Theoretical Method

3.1. Generalized Fractional Derivative. Fractional derivative
plays an important role in applied science. Riemann-
Liouville and Riesz and Caputo give a good formula that
allows applying boundary and initial conditions as in Ref.
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[48].

Dt
α rð Þ =

ðr
r0

Ka r − sð Þf nð Þ sð Þd sð Þ, r > r0, ð6Þ

with

Ka r − sð Þ = r − sð Þn−α−1
Г n − αð Þ , ð7Þ

where f ðnÞ is the n, the derivative of the function f ðtÞ, and
Kaðr − sÞ is the kernel, which is fixed for a given real number
α. The kernel Kaðr − sÞ has a singularity at r = s. Caputo and
Fabrizio [49] suggested a new formula for the fractional
derivative with a smooth exponential kernel of the form to
avoid the difficulties found in Equation (6)

Dt
α = M að Þ

1 − α

ðr
r0

exp α r − sð Þ
1 − α

� �
_y sð Þ d sð Þ, ð8Þ

where MðaÞ is a normalization function with Mð0Þ =Mð1Þ
= 1.

A new formula for a fractional derivative called general-
ized fractional derivative (CFD) is proposed [50]. General-
ized fractional derivative has been suggested to provide
more advantages than other classical Caputo and Rie-
mann–Liouville fractional derivative definitions, which gives
a new direction for simply solving fractional differential
equations (see Ref. [50]). Secondly, the fractional quark
model recently takes more attention to well-reproducing
meson properties (Refs. [51–53]).

Dα f nl rð Þ½ � = kr1−α f nl rð Þ, ð9Þ

Dα Dα f rð Þ½ � = k2 1 − αð Þr1−2 α f nl rð Þ + r2−2 α f nl ′′ rð Þ
h i

,

ð10Þ
where k = ðΓ½β�/Γ½α − β + 1�Þ with 0 < α ≤1, 0 <β≤1.

3.2. Generalized Fractional Exact Solution Method of the
Radial Schr€odinger Equation for the Confining Potential.
The baryon as a bound state of three constituent quarks,
we define the configuration of three particles by two the

Jacobi coordinates ρ and λ as [29, 36, 37, 46, 54–56]

ρ
! = 1ffiffiffi

2
p r1

!− r2
!À Á

,

λ
!
= 1ffiffiffi

6
p r1

!+ r2
!− 2r3!

À Á
,

ð11Þ

where

mρ =
2m1m2
m1 + m2ð Þ ,

mρ =
3m3 m1 +m2ð Þ
2 m1 +m2 +m3ð Þ ,

ð12Þ

where m1, m2, and m3 are the constituent quark masses.
Instead of ρ and λ, one can introduce the hyperspherical
coordinates, which are given by the angles Ωρ = ðθρ, φρÞ
and Ωλ = ðθλ, φλÞ together with the hyperradius x and the
hyperangle, ξ defined, respectively, by [46]

x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 + λ2

q
, ξ = tan−1 ρ

λ

� �
: ð13Þ

Therefore, the Hamiltonian will be

H =
pρ

2

2mρ

+ pλ
2

2mλ

+ v ρ, λð Þ = p2

2m + v xð Þ: ð14Þ

In the hyper-central constituent quark model (hCQM),
the quark potential, V , is assumed to depend on the hyper-
radius x only, which is to be hypercentral. Therefore, v = vð
xÞ is in general a three-body potential, since the hyperradius
x depends on the coordinates of all the three quarks. Since
the potential depends on x only, in the three-quark wave
function, one can factor out the hyperangular part, which
is given by hyperspherical harmonics. The remaining hyper-
radial part of the wave function is determined by the hyper-
central Schr€odinger equation [47, 57].

d2

dx2 + 5
x

d
dx −

γ γ + 4ð Þ
x2

" #
Ψv,γ xð Þ = −2m E – V xð Þð Þ�Ψv,γ xð Þ,

ð15Þ

where Ψv,γðxÞ is the hyperradial wave function and γ is the
grand angular quantum number given by γ =2n + lρ+ lλ; lρ
and lλ are the angular momenta associated with the ρ and
λ variables; and n is a nonnegative integer number. ν deter-
mines the number of the nodes of the wave function, and m
is the reduced mass [47].

m =
2mρ mλ

mρ +mλ

: ð16Þ

Now, we want to solve the hyperradial Schr€odinger
equation for the three-body potential interaction (1). The

Table 1: Constituent hyperfine–potential parameters used in cases
I and II [46, 47].

Parameter Value

AS 67.4 f mð Þ2
σs 4.76 f mð Þ
AI 51.7 f mð Þ2
σI 1.57 f mð Þ
ASI -106.2 f mð Þ2
σSI 2.31 f mð Þ
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wave function is factorized similarly to the central potential
case. The transformation

Ψv,γ xð Þ = x−5/2ϕv,γ xð Þ, ð17Þ

reduces Equation (15) to the form

d2

dx2 + 2m E – V xð Þð Þ − 2γ + 3ð Þ 2γ + 5ð Þ
4x2

" #
ϕv,γ xð Þ = 0:

ð18Þ

Assume z = xA, x = z/A
where A = 1 GeV.
Then, Equation (1) becomes

V zð Þ = a z2

A2 + bz
A

−
c A
z
: ð19Þ

We note that Equation (18) becomes

d2

dz2 + 2m
A2 E –V zð Þð Þ − 2γ + 3ð Þ 2γ + 5ð Þ

4 z2

" #
ϕv,γ zð Þ = 0,

ð20Þ

to put the present model that defined Equation (20) in the
fractional quark model, and we used the fractional definition
defined in Equations (9) and (10) as in Ref. [50] in which we
replaced the classical derivative by fractional derivative

Dα Dαϕv,γ zαð Þ
h i

= −
2m
A2 E – V zαð Þð Þ + 2γ + 3ð Þ 2γ + 5ð Þ

4 z2
� �

ϕv,γ zαð Þ,

ð21Þ

where

V zαð Þ = a z2α

A2 + bzα

A
−
c A
zα

, ð22Þ

and we assume that

ϕv,γ zαð Þ = z−
1−α
2ð ÞRv,γ zð Þ: ð23Þ

By substituting Equations (9), (10), (22), and (23) into
Equation (21), we obtain the following equation

d2

dz2
+ εz2α−2 − a1z

4α−2 − b1z
3α−2 + c1z

α−2 −
2γ + 3ð Þ 2γ + 5ð Þ

4k2 z2
+ −α2/4
À Á

/ 1/4ð ÞÀ Á
z2

" #
Rv,γ zαð Þ = 0,

ð24Þ

where

ε = 2mE
A2k2

, a1 =
2ma
A4k2

, b1 =
2mb
A3k2

, c1 =
2mc
Ak2

: ð25Þ

The analytical exact iteration method (AEIM) requires

making the following ansatz [36] as follows

Rv,γ zαð Þ = f zαð Þ exp g zαð Þ½ �, ð26Þ

where

f zαð Þ=

1, n = 0,Yn
i=1

zα − αi
nð Þ

� �
n = 1, 2,⋯

8><
>: ,

g zαð Þ = −
1
2 α1z

2α − β1z
α + δ1 ln zα, α1 > 0, β1 > 0:

ð27Þ

It is clear that f ðzÞ are equivalent to the Laguere polyno-
mials at α = 1. From Equation (21), we obtain

Rv,γ ′′ zαð Þ = gl
′′ zαð Þ + gl ′

2
zαð Þ + f ′′ zαð Þ + 2f ′ zαð Þg′ zαð Þ

f zαð Þ

" #
Rv,γ zαð Þ,

ð28Þ

a1z
4α−2 + b1z

3α−2 − εz2α−2 − c1z
α−2

+ 2γ + 3ð Þ 2γ + 5ð Þ
4 k2

+ α2

4 −
1
4

� �
z−2 = α1

2α2z4α−2

+ 2α1α2β1z
3α−2 + −α 2α − 1ð Þα1 – 2α1α2δ + β1

2α2
À Á

z2α−2

+ −β1α α − 1ð Þ – 2β1α
2 δ

À Á
zα−2 + −δα + δ2α2

À Á
z−2:

ð29Þ
Now, comparing the coefficient of z both sides of Equa-

tion (29)

α1 =
ffiffiffiffiffi
a1

p
α

, ð30Þ

β1 =
b1

2α ffiffiffiffiffi
a1

p , ð31Þ

c1 = β1α α − 1ð Þ + 2β1α
2δ, ð32Þ

ε = α 2α − 1ð Þα1 + 2α1α2δ − β1
2α2, ð33Þ

δ = 1
2α 1 ± α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + 1

k2
4γ2 + 16 γ + 15
À Ár" #

: ð34Þ

Let us assume ω2 = 3k/m and then ω =
ffiffiffiffiffiffiffiffiffiffi
2a/m

p
as in Ref.

[36].
Equations (30), (31), and (32) become

α1 =
mω

A2α k
, ð35Þ

Table 2: The values of the used quark masses in two cases in
GeV [59].

mu md ms mc mb

0.330 0.335 0.310 1.6 4.980
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β1 =
b

A αω k
, ð36Þ

c = b k α − 1ð Þ + 2α δð Þ
2mω

: ð37Þ

The energy eigenvalue for the mode ν = 0 and grand
angular momentum γ from Equations (24), (30), (31), (34),
and (35), (36) is

E0,γ =
ω

2 k 2α − 1ð Þ + ωkαδ −
b2

2mω2 , ð38Þ

then, from Equations (23), (26), and (34), (35), and (36), the
normalized eigenfunctions are given as

Ψ0,γ =N0,γx
α/2+δ α−3Exp −mω

2 αA2 k
x2α −

2mc

k2A α α − 1ð Þ + 2α2δð Þ x
α

 !
:

ð39Þ

4. Results and Discussion

We calculate the baryon masses given by three-quark masses
and the energy Evγ which is a function of a, b, and mq in two
cases, the first case without the hyperfine interaction masses
and the second case, with the hyperfine interaction potential
<H int> treated as a perturbation. The first-order energy cor-
rection from the nonconfining potential <Hint> can be
obtained by using the unperturbed wave function [36].

4.1. The Interaction Potential without Hyperfine Interaction.
In the first case, the Baryon mass then becomes the sum of
quarks mass and energy, thus [58]

M =mq1 +mq2 +mq3 + Evγ: ð40Þ

Table 3: Single charm baryon masses in the ground state (masses are in GeV) at (α =β=0.665). The last column shows the relative error in
comparison to experimental data.

Baryon Present work Exp. Ref. [36] Ref. [38] Ref. [30] Ref. [39] Ref. [29] Relative error

〠
++

c

uucð Þ 2.448 2.454 2.452 2.318 2.443 2.459 2.425 0.2%

〠
+

c

udcð Þ 2.453 2.453 2.457 2.323 2.460 2.461 — 0.0%

〠
0

c

ddcð Þ 2.458 2.454 2.461 2.328 2.477 2.462 2.460 0.2%

Total error 0.13% — 0.19% 5.3% 0.53% 0.26% 0.46%

Table 4: Single beauty baryon masses in ground state (masses are in GeV) at (α =β =0.56). The last column shows the relative error in
comparison to experimental data.

Baryon P.W Exp. Ref. [29] Ref. [36] Ref. [37] Ref. [39] Relative error

〠
+

b

uubð Þ 5.806 5.807 5.772 5.807 5.816 5.834 0.02%

〠
−

b

ddbð Þ 5.817 5.815 5.816 5.818 5.821 5.844 0.03%

Ξ0
b usbð Þ 5.784 5.787 5.880 5.821 5.886 5.956 0.05%

Ξ−
b dsbð Þ 5.789 5.792 5.903 5.826 5.887 5.961 0.05%

Total error 0.0375% — 1.0275% 0.42% 0.9% 1.7%

Table 5: Double charm and beauty baryon masses in the ground
state (masses are in GeV) at (α = β =0.1).

Baryon P.W
Ref.
[30]

Ref.
[36]

Ref.
[39]

Ref.
[40]

Ref.
[41]

Ξ++
cc uccð Þ 3.622 3.730 3.583 3.703 3.676 3.601

Ξ+
c dccð Þ 3.627 3.755 3.588 3.708 3.676 —

Ω+
cc sccð Þ 3.600 3.857 3.592 3.846 3.815 3.592

Ξ0
bb ubbð Þ 10.395 — 10.284 10.467 10.340 10.182

Ω−
bb sbbð Þ 10.373 — 10.239 10.606 10.454 10.276

Table 6: charm and beauty baryon masses in ground state (masses
are in GeV) at (α = β =0.2).

Baryon P.W Ref. [39] Ref. [39] Ref. [41] Ref. [42]

Ω+
cb ucbð Þ 7.027 7.087 6.988 6.931 6.792

Ω0
cb scbð Þ 7.01 7.226 7.103 7.033 6.999

Ω+
ccb ccbð Þ 8.321 8.357 8.190 — 8.018

Ω0
cbb cbbð Þ 11.706 11.737 11.542 — 11.280
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We use the same potential of Refs. [36, 38, 39], but we
solve the Schrodinger equation by using the generalized frac-
tional analytical iteration method. The quark masses and
potential parameters are listed in Tables 1 and 2 and the
constants a, b, and c of the potential and ω as in Ref. [39].
We note that the generalized fractional analytical iteration
method plays an important role. In Table 3, we calculate sin-
gle charm baryon masses in the ground state (masses are in
GeV) at (α = β = 0:665). The present results are close with
experimental data such that ∑+

c ðudcÞ and are good com-
pared with other works such that in Ref. [36] total error is
0.19%. In Ref. [38], the total error is 5.3%. In Ref. [30], the
total error is 0.53%. In Ref. [39], the total error is 0.26%,
and in Ref. [29], the total error is 0.46%, but the total error
of the present work is 0.13%.

In Table 4, we calculate single beauty baryon masses in
the ground state (masses are in GeV) at (α =0.56). The pres-

ent results are close to experimental data and are a good
agreement compared with other works such that in Ref.
[36] the total error is 0.42%. In Ref. [39], the total error is
1.7%. In Ref. [5], the total error is 1.0275%. In Ref. [37],
the total error is 0.26%, and in Ref. [29], the total error is
0.9%, but the total error of the present work is 0.0375%.

In Table 5, we calculate double charm and beauty baryon
masses in the ground state at (α = β = 0:1), and we note that
the present results are a good agreement with recent works
such that [30, 36, 39–41]. In Table 6, we calculate charm
and beauty baryon masses in the ground state (masses are
in GeV) at (α = β = 0:2), and our results are a good agree-
ment with recent works such that [39, 41, 42].

4.2. The Interaction Potential with Hyperfine Interaction. In
the second case, the Baryon mass then becomes the sum of
quarks mass and energy with the hyperfine interaction

Table 7: Single charm and beauty baryon masses in ground state (masses are in GeV) at (α = β = 0:678) and (α = β = 0:54). The last column
shows the relative error in comparison to experimental data.

Baryon I(jp) <Hint> P.W Exp Ref. [36] Ref. [38] Relative error

〠
++

c

uucð Þ
1( 1/2+) 0.00292501 2.454 2.454 2.452 2.318 0.0%

1( 3/2+) 0.0157481 2.467 2.518 2.581 2.446 2%

〠
+

c

udcð Þ
1( 1/2+) 0.00292876 2.460 2.453 2.457 2.323 0.3%

1( 3/2+) 0.0157452 2.472 2.518 2.586 2.451 1.8%

〠
0

c

ddcð Þ
1( 1/2+) 0.00293254 2.465 2.454 2.461 2.328 0.4%

1( 1/2+) 0.0157422 2.478 2.518 2.591 2.456 1.6%

〠
+

b

uubð Þ
1( 1/2+) 0.00636099 5.807 5.807 5.807 5.700 0.0%

1( 3/2+) 0.0135397 5.815 5.829 5.936 5.826 0.2%

〠
−

b

ddbð Þ 1( 1/2+) 0.0063621 5.818 5.815 5.818 5.708 0.05%

1( 3/2+) 0.013539 5.826 5.836 5.946 5.836 0.2%

Total error — — 0.655% — 0.953% 2.765%

Table 8: Double and triple charm and beauty baryon masses in the ground state (masses are in GeV) at (α = β = 0:39).

Baryon I(jp) P.W Ref. [36] Ref. [39] Ref. [39] Ref. [42] Ref. [38] Ref. [41]

Ξ++
cc uccð Þ 1/2( 1/2+) 3.608 3.583 3.703 3.532 3.510 3.597 3.601

1/2( 3/2+) 3.760 3.722 3.765 3.623 3.548 3.708 3.703

Ω+
cc sccð Þ 0( 1/2+) 3.586 3.592 3.846 3.667 3.719 3.718 3.710

0( 3/2+) 3.738 3.731 3.904 3.758 3.746 3.847 3.814

Ξ+
c dccð Þ 1/2( 1/2+) 3.613 3.588 3.708 3.537 3.510 3.584 3.606

1/2( 3/2+) 3.765 3.726 3.770 3.629 3.548 3.713 3.706

Ω++
ccc cccð Þ 0( 3/2+) 5.053 4.842 5.035 4.880 4.803 4.978 —

Ξ0
bb ubbð Þ 1/2( 1/2+) 10.380 10.284 10.467 10.334 10.130 10.339 10.182

1/2( 3/2+) 10.532 10.427 10.525 10.431 10.144 10.468 10.214

Ω0
bb dbbð Þ 1/2( 1/2+) 10.386 10.289 — — 10.130 10.344 —

1/2( 3/2+) 10.538 10.432 — — 10.144 10.473 —

Ω−
bb sbbð Þ 0( 1/2+) 10.359 10.293 10.606 10.397 10.424 10.478 10.276

0( 3/2+) 10.510 10.436 10.664 10.495 10.432 10.607 10.309

Ω−
bbb bbbð Þ 0( 3/2+) 15.208 14.810 15.175 15.023 14.569 15.118 —
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potential <Hint> treated as a perturbation, thus as in Refs.
[36, 37, 39]

<H int > =
ð
ΨHintΨ dx,

M =mq1 +mq2 +mq3 + Evγ+ <H int > :

ð41Þ

In this case, we also get good results with experiment and
theoretical works as in Table 7, and we calculate single
charm and beauty baryon masses in the ground state
(masses are in GeV) at (α = 0:678) in case charm and
(α = 0:54) in case beauty. The present results are a good
agreement with experimental data such as ∑++

c ðuucÞ and
are good compared with other works such that in Ref. [36]
the total error is 0.953%. In Ref. [38], the total error is
2.765%, but the total error of the present work is 0.655%.
In Table 8, we calculate double and triple charm and beauty
baryon masses in the ground state (masses are in GeV) at
(α = 0:39). The present result is good with recent works such
that Refs. [36, 37, 39, 41, 42]. In Table 9, we calculate charm
and beauty baryon masses in the ground state (masses are in
GeV) at (α = 0:2). The present result is a good agreement
with recent works such that Refs. [36, 39, 41, 42].

In Refs. [36, 37], the authors solved the Schrodinger
equation using the iteration method, and the considered
potential is a combination of Coulombic, linear confining,
and harmonic oscillator terms to obtain masses of heavy
baryons containing single, double, and triple in the hyper-
central approach with confining interaction and hyperfine
interaction in the first case, and the total error in Ref. [36]
is 0.19% and 0.42% when they calculated single charm and
beauty baryon masses in the ground state, respectively; in
the second case, the total error is 0.953% when they calcu-
lated single charm and beauty baryon masses in the ground
state. In Ref. [37], the total error is 0.9% when they calcu-
lated single beauty baryon masses in the ground state. In
Ref. [38], the authors solved the Schrodinger equation using

a variational method, and the considered potential is Cou-
lomb as well as linear confining terms and the spin–isospin
dependent potential to obtain masses of single, double, and
triple in the hyper-central approach with confining interac-
tion and hyperfine interaction, in the first case total error
is 5.3% when they calculated single charm baryon masses
in the ground state and the second case total error is
2.765%% when calculated single charm and beauty baryon
masses in the ground state. In Ref. [30], the authors obtained
the masses of the baryons containing a single charm, and
beauty quark in the presence confinement potential is
assumed in the hyper-central coordinates of the Coulomb
plus power potential form; in the first case, the total error
is 0.53% when they calculated single charm baryon masses
in the ground state. In Ref. [39], the authors use two poten-
tials: the second potential is the same as the hyper-central
approach of Ref. [36, 37] and uses the Cornell potential
and the hyper-central approach, but they solved the Schro-
dinger equation numerically to obtain single, double, and
triple baryon masses, and in the first case, the total error is
0.26% and 1.7% when they calculated single charm and
beauty baryon masses in the ground state. In Ref. [29], in
the first case, the total error is 0.46% and 1.0275% when cal-
culating single charm and beauty baryon masses in the
ground state. The authors obtained the masses of heavy fla-
vor baryon masses by using the nonrelativistic quark model
with hyper-central Coulomb plus linear potential and Cou-
lomb plus harmonic oscillator potential in Ref. [40]. In
Ref. [41], the authors obtain that the mass spectra of the
doubly heavy baryons are computed assuming that the two
heavy quarks inside a baryon form a compact heavy
“diquark core” in a color antitriplet and bind with the
remaining light quark into a colorless baryon. The two
reduced two-body problems are described by the relativistic
Bethe-Salpeter equations (BSEs) with the relevant QCD-
inspired kernels. In Ref. [42], the author calculates the
masses of the ground-state baryons consisting of three or
two heavy and one light quark in the framework of the rela-
tivistic quark model and the hyperspherical expansion. The
masses of the triply and doubly heavy baryons are obtained
by using the perturbation theory for the spin-independent
and spin-dependent parts of the three-quark Hamiltonian.

5. Conclusion

In this paper, we employ the generalized fractional iteration
method and calculate the masses of heavy flavor baryons
containing single, double, and triple in the ground state in
the two cases. In the first case, the hyperfine interaction is
not included, and the second case is the presence of hyper-
fine interaction. We calculate the three-body analytical solu-
tion of the hyper-central Schrodinger equation using the
generalized fractional analytical iteration method. The pres-
ent method plays an important role in improving the results
in comparison with experimental data and other works.

In the case of the interaction potential without hyperfine
interaction, we calculate single charm baryon masses that are
close to experimental data and are a good agreement com-
pared with other works because in Ref. [36], the total error

Table 9: charm and beauty baryon masses in the ground state
(masses are in GeV) at (αβ = 0:2).

Baryon I(jp) P.W
Ref.
[36]

Ref.
[39]

Ref.
[41]

Ref.
[42]

Ω+
cb ucbð Þ

1/2
( 1/2+) 6.951 6.935 7.078 6.931 6.792

1/2
( 3/2+) 7.103 7.076 7.145 6.997 6.827

Ω0
cb scbð Þ

1/2
( 1/2+) 6.929 6.945 7.226 7.033 6.999

1/2
( 3/2+) 7.081 7.085 7.284 7.101 7.024

Ω+
ccb ccbð Þ

1/2
( 1/2+) 8.244 8.038 8.357 — 8.018

1/2
( 3/2+) 8.397 8.186 8.415 — 8.025

Ω0
cbb cbbð Þ 0( 1/2+) 11.631 11.363 11.737 — 11.280

0( 3/2+) 11.782 11.512 11.795 — 11.287
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is 0.19%; in Ref. [38], the total error is 5.3%; in Ref. [30], the
total error is 0.53%; in Ref. [39], the total error is 0.26%; and
in Ref. [29], the total error is 0.46%, but the total error of
present work is 0.13%.

We have calculated a single beauty baryon mass as ∑++
c

ðuucÞ which closes with experimental data and is improved
in comparing with other works as in Refs. [29, 36, 37, 39] in
which the total error is 0.42%, 1.7%, 1.0275%, and 0.26%,
respectively, but the total error of the present work is
0.0375%.

In the case of the interaction potential with hyperfine
interaction, we calculate single charm and beauty baryon
masses that are close with experimental data such that ∑++

c ð
uucÞ and are a good agreement compared with other works
because in Ref. [36], the total error is 0.953%. In Ref. [38],
the total error is 2.765%, but the total error of the present work
is 0.655%. We conclude that the interaction potential without
and with hyperfine interaction in the framework of GF-AEIM
gives a good description of the heavy flavor baryons in com-
parison with experimental data and other works.
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