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Abstract

We examine dualities of two dimensional conformal field theories by applying the methods developed in 
previous works. We first derive the duality between SL(2|1)k/(SL(2)k ⊗ U(1)) coset and Witten’s cigar 
model or sine-Liouville theory. The latter two models are Fateev-Zamolodchikov-Zamolodchikov (FZZ-
)dual to each other, hence the relation of the three models is named FZZ-triality. These results are used 
to study correlator correspondences between large N = 4 super Liouville theory and a coset of the form 
Y (k1, k2)/SL(2)k1+k2 , where Y (k1, k2) consists of two SL(2|1)ki

and free bosons or equivalently two 
U(1) cosets of D(2, 1; ki − 1) at level one. These correspondences are a main result of this paper. The 
FZZ-triality acts as a seed of the correspondence, which in particular implies a hidden SL(2)k′ in SL(2|1)k
or D(2, 1; k − 1)1. The relation of levels is k′ − 1 = 1/(k − 1). We also construct boundary actions in sine-
Liouville theory as another use of the FZZ-triality. Furthermore, we generalize the FZZ-triality to the case 
with SL(n|1)k/(SL(n)k ⊗ U(1)) for arbitrary n > 2.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction and summary

We examine dualities in two dimensional conformal field theories by deriving correlator cor-
respondences of primary operators. Combined with the match of symmetry algebras, we can 
deduce the equivalence of dual theories. In general, dualities are quite useful since it often hap-
pens that some features of a theory are easily captured by dual one. In particular, a strong/weak 
duality helps us to examine strong coupling phenomena from a dual theory in a tractable regime. 
In previous works [1–5], correlator correspondences for several important dualities have been 
derived by applying the reduction method from SL(2) Wess-Zumino-Novikov-Witten (WZNW) 
model to Liouville field theory [6–8] and its generalizations [9–12]. The results in the previous 
works may be regarded as conformal field theory realizations of dualities of corner vertex op-
erator algebras (VOAs) conjectured by Gaiotto and Rapčák via brane junctions in superstring 
theory [13] and proven in [14,15]. In this paper, we examine more dualities, which are not be 
directly related to the Gaiotto-Rapčák dualities. In particular, we derive correlator correspon-
dences between the large N = 4 super Liouville theory and a coset model, where the agreement 
of symmetry algebra was proven in [16].

Let us put this new duality into context: An important (strong/weak) duality is the one conjec-
tured by Fateev-Zamolodchikov-Zamolodchikov (FZZ) [17] and proven in [1]. The FZZ-duality 
is an equivalence between two dimensional cigar model described by the coset [18]

SL(2)k

U(1)
(1.1)
2
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and sine-Liouville theory, see, e.g., [19] for details. Its supersymmetric version was proven in 
[20] as a mirror symmetry and in [2] by the method similar to [1]. The supersymmetric version 
is useful to examine, e.g., singular Calabi-Yau geometry [21]. Two series of generalization of the 
FZZ-duality have been analyzed in [3–5]. A generalization is given by replacing the coset (1.1)
by a higher rank one [3,5]

SL(n + 1)k

SL(n)k ⊗ U(1)
. (1.2)

The coset appears as conformal field theory dual of higher spin (super-)gravity [22,23], thus the 
duality should be useful in that context as well. Another generalization is the free boson, i.e. 
U(1), coset of subregular W-algebras of sl(n) [4]. Arguably the most important example is the 
duality between sl(n) Toda field theory and the diagonal coset

SL(n)k ⊗ SL(n)−1

SL(n)k−1
(1.3)

analyzed in [5]. The duality may be regarded as an analytic continuation of coset realization of 
Wn-minimal model proven only rather recently in [24].

We have derived correlator correspondences by applying the reduction methods from SL(n)

WZNW model to sl(n) Toda field theory developed particularly in [8,12]. An important process 
is to adopt a simple first order formulation of coset models. Such a formulation was proposed in 
[25,26] and established in our recent paper [5]. A main idea is to express the denominator and 
numerator algebras of coset models by Wakimoto free field realizations with free bosons and 
(β, γ )-systems [27]. The proposal of [25,26] is to construct field space by using orthogonal free 
bosons and removing some sets of (β, γ )-systems. We can indeed show that the central charge 
of the reduced theory matches with that of the original coset model. In [5], we have not only 
derived the procedure but also established a way to obtain proper interaction terms by applying 
the BRST formulation of coset models [28–31] and Kugo-Ogima method [32]. In particular, it 
can be shown that the coset algebra obtained in this way is isomorphic to the one by Goddard-
Kent-Olive (GKO) construction [33]. Fortunately, the first order formulation of coset models is 
general enough to apply to more theories, in particular the problem of this work.

In this paper, we first examine correlation functions of the coset

SL(2|1)k

SL(2)k ⊗ U(1)
. (1.4)

As suggested by Gaiotto-Rapčák dualities [13] (see also [34]), the coset is conjecturally dual to 
the cigar model described by (1.1) with level k′

k′ − 1 = 1

k − 1
(1.5)

and sine-Liouville theory as well. We derive correlator correspondences of the “FZZ-triality.” 
We next derive correlator correspondences between a diagonal coset

SL(2)k1 ⊗ SL(2)k2

SL(2)k1+k2

(1.6)

and a theory with a d(2, 1; −ψ)-structure [35]. This can be regarded as a simplified version of 
our main problem with large N = 4 super Liouville theory. In fact this theory also appears as a 
coset of large N = 4 super Liouville theory [16].
3
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We then move to the main problem of this paper. The coset realization of large N = 4
superconformal algebra [36,37]1 was provided in [16]. In terms of conformal field theory, it 
corresponds to a duality between a coset model and large N = 4 super Liouville theory. The 
coset model takes the form [16]

Y(k1, k2)

SL(2)k1+k2

, (1.7)

where the numerator Y(k1, k2) consists of SL(2|1)k1 , SL(2|1)k2 and free bosons or two U(1)-
cosets of D(2, 1; −ψ) with ψ = 1 − k1, 1 − k2 at level one. The two affine superalgebras have 
subalgebras sl(2)k1 , sl(2)k2 and the coset is constructed by gauging the diagonal sl(2)k1+k2 . The 
large N = 4 superconformal algebra includes two affine sl(2) subalgebras with levels k′

1, k
′
2, 

where the relation of levels is k′
1 − 1 = 1/(k1 − 1), k′

2 − 1 = 1/(k2 − 1) as in (1.5). These two 
affine sl(2)k′ are hidden in sl(2|1)k or d(2, 1; k − 1) [38–40]. This implies that the FZZ-triality is 
a key relation for the duality between the coset (1.7) and the large N = 4 super Liouville theory.

The large N = 4 superconformal algebra is important particularly in the context of hologra-
phy. For instance, conformal field theory dual of superstrings on AdS3× S3× S3× S1 has the 
large N = 4 superconformal algebra as its symmetry [41–45], see also [46]. Moreover, the Wolf 
space model possesses the large N = 4 superconformal symmetry [47–49] and it was proposed 
to be dual to a higher spin gravity in [50]. We expect that our analysis helps us to reveal some 
important aspects of holography. The large N = 4 superconformal algebra itself deserves further 
study as well. Unitary representations were examined in [51–53], and it would be interesting to 
investigate the spectrum from the coset viewpoints as well.

In this paper, we mainly consider correlation functions on worldsheet of sphere topology. 
It is an important problem to extend the analysis to Riemann surfaces of higher genus g > 0. 
The original FZZ-duality was extended to higher genus worldsheet in [1], and it might not be 
so difficult to do so more generally. However, it would be more involved to examine Riemann 
surfaces with boundaries. In [2], we have shown the equivalence of boundary correlation func-
tions for D1-branes in the cigar model (1.1) and those for D2-branes in sine-Liouville theory. We 
have also analyzed fermionic FZZ-duality. In this paper, we extend the FZZ-triality to the case 
with boundary. The point is that there is a somehow understood procedure to obtain actions of 
boundary WZNW theories on supergroups [54–57]. Using in particular [55] we show that the 
FZZ-triality is useful to obtain boundary actions of sine-Liouville theory even for D1-branes and 
its supersymmetric counterparts form the coset (1.4).

1.1. Organization of the paper

The paper is organized as follows. In the next section, we collect mathematical facts underly-
ing the current works on dualities of two dimensional conformal field theories. In section 3, we 
review the first order formulation of coset models developed in our previous paper [5]. In par-
ticular, we closely examine the simplest but non-trivial example of the diagonal coset (1.3) with 
n = 2 and relate it to Liouville field theory. In section 4, we derive correlator correspondences 
between the coset (1.4) and sine-Liouville theory or the cigar model (1.1) by applying the first 
order formulation explained in section 3. We further consider its supersymmetric versions by 

1 There are two types of large N = 4 superconformal algebra, which are often called as linear and non-linear ones. In 
this paper, we only deal with non-linear one.
4
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adding a complex fermion. In section 5, we derive correlator correspondences between a diag-
onal coset (1.6) and a theory with a d(2, 1; −ψ)-structure [35]. In section 6, we investigate the 
coset (1.7). We first realize D(2, 1; −ψ) at level one as a coset of SL(2|1) and free bosons. We 
then construct Y(k1, k2) in the numerator of the coset (1.7) by making use of the expressions. Ap-
plying the first order formulation of [5] and the reduction methods of [1], we rewrite the N -point 
functions of the coset (1.7) by those of a different theory. Applying the fermionic FZZ-duality, 
we show that the theory obtained in this way is indeed the large N = 4 super Liouville theory, 
which corresponds to a free field realization of large N = 4 superconformal algebra in [58]. We 
also check that a coset of the theory reduces to the model analyzed in section 5. We consider the 
case with additional fermions as well. In section 7, we construct boundary actions for branes in 
sine-Liouville theory and N = 2 super Liouville theory by making use of boundary FZZ-triality. 
In appendix A, we summarize our conventions for generators of Lie superalgebras sl(2|1) and 
sl(n|1) with n > 2. In appendix B, we explicitly write down the operator product expansions 
(OPEs) for generators of large N = 4 superconformal algebra. In appendix C, we obtain clas-
sical boundary actions for B-branes and A-branes in SL(2|1) WZNW model by following the 
analysis for OSP(1|2) WZNW model in [55]. In appendix D, we generalize the FZZ-triality 
analyzed in section 4 and reduce the coset

SL(n|1)k

SL(n)k ⊗ U(1)
(1.8)

with n > 2 to a theory with an sl(n|1)-structure by applying the first order formulation reviewed 
in section 3.

2. Dualities

S-duality of four dimensional N = 4 supersymmetric GL-twisted theories is closely related 
to the quantum geometric Langlands correspondence as well as dualities of vertex algebras. Both 
are mathematical cousins of dualities in two dimensional conformal field theory. The quantum 
geometric Langlands correspondence is concerned with twisted D-modules, which in turn arise 
as spaces of conformal blocks. Vertex algebras are the symmetry algebras of conformal field 
theory.

We recall some results of [39]. Fix a compact Lie group G, the gauge group. Let ψ be the 
coupling of the gauge theory, a complex number. One then considers three dimensional boundary 
conditions. If two such boundary conditions, say B1 and B2 intersect in a two dimensional corner, 
then this corner usually supports a vertex operator algebra. This VOA depends on the choice of 
boundary condition and on G. Line defects can end on vertex operators associated to modules of 
the VOA at the corner. The type of modules is determined by the boundary conditions B1 and B2. 
The duality group is the modular group PSL(2, Z). Let g be an element of PSL(2, Z). It acts 
on ψ via Möbius transformation and acts on boundary conditions in a certain way, see section 
2.3 of [39]. It acts on VOAs via a certain convolution, that is it maps the VOA V to a certain 
BRST-cohomology of V ⊗Kg with Kg a very special kernel VOA. In particular duality is not an 
isomorphism of VOAs but only a correspondence. The idea however is that this correspondence 
respects line defects. This should be visible in the VOA setting that VOAs that are related via 
duality have equivalent categories of modules. Geometrically this means that one expects to have 
equivalent spaces of conformal blocks, exactly as the quantum geometric Langlands correspon-
dence predicts. From the conformal field theory point of view this means that one would like to 
have dualities between correlation functions of two theories whose underlying VOAs are dual. 
5
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The idea is that both dualities of conformal field theories and equivalences of vertex algebra ten-
sor categories can be explained using the kernel VOAs. The FZZ-trialities exactly correspond to 
such duality operations, while our coset realization of N = 4 super Liouville theory is a low rank 
example of a somehow more complicated story that is under current investigation.

The kernel VOAs are of the form

An[g,g′,ψ] =
⊕

λ∈P+∩L

V ψ(λ) ⊗ V φ(τ(λ)) (2.1)

with
1

�gψ
+ 1

�g′φ
= n (2.2)

and g′ is a Lie (super)algebra related to g. In most cases, the two coincide, but for example if g is 
of type so2m+1 and n is odd, then g′ = osp1|2m. L is a suitable sublattice of the weight lattice P
of g. P + is the set of dominant weights, n is an integer (usually positive), and ψ, φ are the levels 
shifted by the respective dual Coxeter numbers h∨

g , h∨
g′ . τ is a suitable map from weights of g to 

g′. Finally �g is the lacety of g (and for osp1|2n it is two). The existence of these VOAs has been 
conjectured in [39] and proven in [59,60].

The simplest example is

An[gl1,gl1,ψ] =
⊕
m∈Z

πψ
m ⊗ πφ

m
∼= V√

nZ ⊗ π (2.3)

which is just the lattice VOA V√
nZ times a free boson π . Here πψ

n denotes the Fock module of 
highest-weight n of a free boson of level ψ .

The general idea is that one has two VOAs, V −ψ and Wφ , such that V −ψ has an affine VOA 
g−ψ−h∨

g
of g at level −ψ − h∨

g as subalgebra and Wφ has an affine VOA g′
φ−h∨

g′ of g′ at level 

−φ − h∨
g′ as subalgebra. Assume that these two VOAs are dual in the sense that their cosets 

coincide

V −ψ

g−ψ−h∨
g

= Wφ

g′
φ−h∨

g′
, (2.4)

the main examples of isomorphisms of such cosets are provided by Gaiotto-Rapčák triality [13]
proven in [14,15]. Let HBRST

g ( • ) denote the semi-infinite Lie algebra cohomology of ̂g, relative 
to g [61]. It satisfies

HBRST
g (V −ψ(λ) ⊗ V ψ(μ)) =

{
C if μ = λ∗ ,

0 else .
(2.5)

The proposal of [14,15] is that the Gaiotto-Rapčák dualities extend to the relation

HBRST
g (V −ψ ⊗ A1[g,g′,ψ]) = Wφ. (2.6)

See [62] for the mathematics of this statement for g = gl1 and [63] for the general case. The 
simplest example is g = g′ = gl1 and V −ψ the WZNW theory of SL(2) at level −ψ − 2 and 
Wφ the N = 2 superconformal algebra at same central charge as the WZNW theory. In this case 
the kernel VOA is just a pair of free fermions times a free boson and our procedure is exactly 
the Kazama-Suzuki coset realization of the super conformal algebra [64,65]. The corresponding 
duality of conformal field theories is the well established H+ model to N = 2 super Liouville 
3

6
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duality [20,2]. The natural generalization is Feigin-Semikhatov’s duality between subregular W -
algebras and principal W -superalgebras [66], proven in [67].

This means if we take a module M of V −ψ , then HBRST
g (M ⊗ A1[g, g′, ψ]) is automatically 

a Wφ-module. The idea is that there is a blockwise equivalence of categories of V −ψ and Wφ

whose underlying functor is the BRST-cohomology against the kernel VOA. This functor should 
also provide isomorphisms on spaces of intertwining algebras, which is indeed true for g = gl1
by [62]. From a conformal field theory perspective one prefers a precise matching of correlation 
functions and similarly from the quantum geometric Langlands point of view one is interested in 
an equivalence of spaces of conformal blocks. Our aim is to provide this conformal field theory 
perspective. If g = gl1, then we already succeeded [4].

We now want to turn to non-abelian underlying Lie algebras. The most interesting case is 
the large N = 4 superconformal algebra that has been realized as a BRST-cohomology of two 
algebras associated to the exceptional Lie superalgebra d(2, 1; 1 − ψ) at level one [16]. In fact 
d(2, 1; 1 − ψ) at level one is exactly the kernel VOA A1[sl2, sl2, ψ]) [39] and the N = 4 super-
conformal algebra is a simple current extension of HBRST

sl2
(A1[sl2, sl2, −ψ]) ⊗A1[sl2, sl2, ψ])).

In order to lift dualities of VOAs of this type to correspondences of conformal field theory 
we have to understand how to implement the BRST-cohomology (2.6) on the level of correlation 
functions. The first step for this is a suitable first order formulation of the conformal field theory.

3. First order formulation of coset models

In the analysis of this paper, we utilize the first order formulation of coset models in [5] which 
refines the proposal of [25,26] along with the reduction methods of [8,1]. In this section, we 
review the first order formulation of cosets in [5] using the BRST formulation [28–31] and the 
Kugo-Ogima method [32]. In order to illustrate the formulation, we analyze the simplest and 
non-trivial example the coset (1.3) with n = 2 and relate it with Liouville field theory.

In the BRST formulation, the effective action of the coset theory (1.3) is given by

S = SWZNW
k [φ,β, γ ] + Sψ [ψ] + SWZNW

−k+5 [φ̃, β̃, γ̃ ] + Sbc[ba, ca] . (3.1)

For the action of SL(2) WZNW model, we use the first order formulation as

SWZNW
k [φ,β, γ ] = 1

2π

∫
d2w

[
∂φ∂̄φ + β∂̄γ + β̄∂γ̄ + b

4
√

gRφ + λββ̄e2bφ

]
(3.2)

with b = 1/
√

k − 2. Here gμν represents the worldsheet metric and g = detgμν . Furthermore, R
is the Ricci curvature with respect to the worldsheet metric. We denote the sl(2) currents at level 
k by J a with a = ±, 3, which are expressed as

J+(z) = β , J 3(z) = b−1∂φ + βγ , J−(z) = βγ γ + 2b−1γ ∂φ − k∂γ . (3.3)

For the third action, the level k is replaced by −k + 1 − 2cSL(2) = −k + 5, where cSL(2) = −2
is the dual Coxeter number of SL(2). We also use b̃ = 1/

√−k + 3. The sl(2) currents at level 
k̃ = −k + 5 is denoted by J̃ a with a = ±, 3. The second action Sψ [ψ] is for complex free 
fermions ψ±, ψ̄± and given by

Sψ [ψ] = 1

2π

∫
d2w

[
ψ+∂̄ψ− + ψ̄+∂ψ̄−] . (3.4)

The conformal weights of the fermions are 1/2. We frequently use its bosonized formulation as
7
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ψ± = e±i
√

2YL

, YL(z)YL(0) ∼ −1

2
ln z . (3.5)

We also introduce YR(z̄) in a similar manner and set Y = YL +YR . This model has the symmetry 
of sl(2) current algebra with level −1, and the generators are

J+
ψ = −e2iYL

, J 3
ψ = i∂YL , J−

ψ = e−2iYL

. (3.6)

The other action Sbc[ba, ca] is for the BRST ghosts and given by

Sbc[ba, ca] = 1

2π

∫
d2w

∑
a=±,3

[
ba∂̄ca + b̄a∂c̄a

]
, (3.7)

where the conformal weights of (ba, ca) are (1, 0). We can construct sl(2) currents at level 
2cSL(2) = −4, which are denoted by J a

bc with a = ±, 3. The BRST charge for the holomorphic 
part is then given by

Q =
∮

dz

2πi

[
ca(z)

(
J a(z) + J a

ψ(z) + J̃ a(z) + 1

2
J a

bc(z)

)]
, (3.8)

which satisfies the nilpotency condition as Q2 = 0. The physical states are given by elements of 
Q-cohomology in the BRST formulation.

We consider the correlation functions of vertex operators of the form

V = P(γ, γ̃ )e2bjφe2i(sYL+s̄Y R)e2b̃j̃ φ̃ , (3.9)

where P is a function of γ, γ̃ (and γ̄ , ¯̃γ ). We define an operator

Nβγ =
∞∑

m=−∞
β−mγm (3.10)

and decompose the BRST charge as Q = Q1 +Q0 +Q−1 by its eigenvalue. In particular, we have 
Q1 =∑m β−mc+,m, which satisfy (Q1)

2 = 0 as well. Defining R =∑m γ−mb+
m , we introduce

S = {Q1,R} =
∞∑

m=1

β−mγm +
∞∑

m=0

γ−mβm +
∞∑

m=1

b+−mc+,m −
∞∑

m=0

c+,−mb+
m . (3.11)

The terms including the BRST ghosts will be neglected in the current analysis. Since S commute 
with Q1, we can deal with eigenstates of S in Q1-cohomology as S|s〉 = s|s〉. If s is non-zero, 
then we can rewrite the eigenstate as

|s〉 = 1

s
{Q1,R}|s〉 = 1

s
Q1R|s〉 , (3.12)

which is Q1-exact. Thus, non-trivial elements of Q1-cohomology come from the sector with 
zero eigenvalue. With a new operator U = {Q0 + Q−1, R}, a new state can be defined by

|s′〉 = (1 − S−1U + S−1US−1U − · · · )|s〉 . (3.13)

If S|s〉 = 0, then we can show that (S + U)|s′〉 = 0. This means that |s′〉 can be an non-trivial 
element of Q-cohomology as well. In other words, a non-trivial element of Q-cohomology can 
be put in the form of (3.13).

In the effective action (3.1) with (3.2), an interaction term includes β , which increases the 
eigenvalue of Nβγ defined in (3.10). The field can be removed by subtracting a BRST exact term 
as
8
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β(w) −
∮
w

dz

2πi
b+(z)Q(w) = e2iYL

(w) − β̃(w) − J+
bc(w) . (3.14)

After removing β in the action, there is no operator increasing the eigenvalue of Nβγ defined in 
(3.10). On the other hand, we have shown that elements of Q-cohomology can be put into the 
form (3.13) and the terms except for the first one in the right hand side decrease the eigenvalue 
of Nβγ . Therefore, we can conclude that β, γ can be removed from the system once β in the 
interaction term is replaced by (3.14).

We can restrict the form of vertex operators furthermore. We notice that the operators

J
tot,3
0 ≡ {Q,b3

0} = J 3
0 + J 3

ψ,0 + J̃ 3
0 + J 3

bc,0 , (3.15)

Ltot
0 ≡ {Q, 1

k−3

∑
n

(J a
n + J a

ψ,n − J̃ a
n )b−n,a} (3.16)

commute with Q, so we can take eigenfunctions of these operators in the Q-cohomology. 
Moreover, from the arguments around (3.12), we can conclude that non-trivial elements of 
Q-cohomology only come from the sector with zero eigenvalues. Since γ -dependence (and γ̄ -
dependence) is removed, the vertex operators take the form

V = γ̃ m ¯̃γ m̄
e2bjφe2i(sYL+s̄Y R)e2b̃j̃ φ̃ . (3.17)

The conditions of zero eigenvalues for the operators (3.15) and (3.16) become2

−j − m + s − j̃ + 1 = 0 , − (j − s)(j − s − 1)

k − 3
+ j̃ (j̃ − 1)

k − 3
= 0 (3.18)

and that with m, s replaced by m̄, ̄s. From these conditions, the vertex operators can be put into 
the form

V = e2bjφe2isY e2b̃(1−j+s)φ̃ . (3.19)

Since there is no γ̃ -dependence here, we can neglect β̃ in the action as well.
We may rotate the fields as

bφ + iY + b′φ′ , −iφ + bY = b′Y ′ , b′ =
√

3 − k

k − 2
, (3.20)

then the vertex operators become

V = e2((b′+1/b′)j−1/b′s)φ′−2ib̃(j−s)Y ′+2b̃(1−j+s)φ̃ . (3.21)

The background charges for Y ′, φ̃ are QY ′ = −ib̃, Qφ̃ = b̃, respectively, and moreover there is 

no interaction terms for Y ′, φ̃. Therefore, after performing reflection relations, contributions from 
Y ′, φ̃ to the correlation functions cancel out with each other. In summary, the N -point function 
of primary operators in the coset (1.3) can be evaluated as〈

N∏
ν=1

Vν(zν)

〉
, Vν(zν) = e2((b′+1/b′)jν−1/b′sν)φ′(zν ) (3.22)

2 There is a term +1 in the left hand side of the first equation. This term can be explained by the definition of vacuum 
for the BRST ghosts, see [31,5].
9
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with the action

S = 1

2π

∫
d2w

[
∂φ′∂φ′ +

√
gR
4

(b′ + 1/b′)φ′ + λe2b′φ′
]

. (3.23)

This is nothing but an N -point function of Liouville field theory.
Here we compare the analysis to that of [25,26]. As they proposed, β, γ from the numerator 

are canceled with β̃, γ̃ from the denominator. Moreover, the free boson corresponding to Cartan 
direction is taken to be orthogonal to φ̃ from the denominator via the rotation (3.20). However, 
from their analysis, it is not clear how the interaction term of Liouville field theory arises. In our 
formulation, this comes from the replacement (3.14), which may be the most important point in 
our approach. In the succeeding sections, we apply this analysis to more involved examples.

4. FZZ-triality

Applying the method reviewed in the previous section, we examine correlation functions of 
primary operators in the coset (1.4). We derive correlator correspondences between the coset 
(1.4) and sine-Liouville theory in the next subsection and those between the cosets (1.4) and 
(1.1) in subsection 4.2. For the two cases, we use different first order formulations of SL(2|1)k
in the numerator of (1.4). In subsection 4.3, we extend the analysis by introducing N = 2 super-
conformal symmetry.

4.1. A realization of the coset

In order to apply our method to the coset (1.4), we first need a first order formulation of 
SL(2|1) WZNW model. In this subsection, we use the action obtained in [9,10]. We express the 
element of Lie supergroup SL(2|1) as

g = g−1g− 1
2
g0g 1

2
g1 (4.1)

with

g−1 = eγE+
, g− 1

2
= eθ1F

++θ2G
+

, g0 = e2φ1H+2φ2I ,

g 1
2

= eθ̄2F
−+θ̄1G

−
, g1 = eγ̄E−

.

(4.2)

We use the notation for generators of sl(2|1) given in appendix A.1. The grading is made by H . 
With the help of Polyakov-Wiegmann identity, we then obtain

S = k

2π

∫
d2z
[
∂̄φ1∂φ1 − ∂̄φ2∂φ2 − e−φ1−φ2 ∂̄θ1∂θ̄1 + e−φ1+φ2 ∂̄θ2∂θ̄2

+ e−2φ1
(
∂γ̄ − 1

2 (θ̄2∂θ̄1 + θ̄1∂θ̄2)
) (

∂̄γ − 1
2 (θ2∂̄θ1 + θ1∂̄θ2)

)]
.

(4.3)

Introducing auxiliary fields, we can rewrite the action as
10
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S = 1

2π

∫
d2z

[
k∂̄φ1∂φ1 − k∂̄φ2∂φ2 + β∂̄γ + β̄∂γ̄ +

2∑
a=1

(pa∂̄θa + p̄a∂θ̄a) − 1

k
e2φ1ββ̄

]

+ 1

2kπ

∫
d2z
[
eφ1+φ2(p1 + 1

2βθ2)(p̄1 + 1
2 β̄θ̄2) − eφ1−φ2(p2 + 1

2βθ1)(p̄2 + 1
2 β̄θ̄1)

]
.

(4.4)

The equations of motion lead to

β = ke−2φ1(∂γ̄ − 1
2 (θ̄2∂θ̄1 + θ̄1∂θ̄2)) ,

p1 + 1
2βθ2 = ke−φ1−φ2∂θ̄1 , p2 + 1

2βθ1 = −ke−φ1+φ2∂θ̄2 ,

β̄ = ke−2φ1(∂̄γ − 1
2 (θ2∂̄θ1 + θ1∂̄θ2)) ,

p̄1 + 1
2 β̄θ̄2 = −ke−φ1−φ2 ∂̄θ1 , p̄2 + 1

2 β̄θ̄1 = ke−φ1+φ2 ∂̄θ2 .

(4.5)

Taking into account quantum corrections due to the change of variables (see, e.g., (2.8) and (2.9) 
of [9]), we have

S = 1

2π

∫
d2z

[
∂̄φ1∂φ1 − ∂̄φ2∂φ2 + β∂̄γ + β̄∂γ̄ +

2∑
a=1

(pa∂̄θa + p̄a∂θ̄a) − 1

k
e2bφ1ββ̄

]

+ 1

2kπ

∫
d2z
[
eb(φ1+φ2)(p1 + 1

2βθ2)(p̄1 + 1
2 β̄θ̄2)

− eb(φ1−φ2)(p2 + 1
2βθ1)(p̄2 + 1

2 β̄θ̄1)
]

(4.6)

with b = 1/
√

k − 1. Since the interaction term with e2bφββ̄ can be induced from the rest two, 
we simply neglect the term.

The symmetry of SL(2|1) WZNW model is the sl(2|1) current algebra. In the first order 
formulation, the generators are written in terms of fields and commute with interaction terms. 
We find that they are given by

F+ = p1 − 1

2
βθ2 , G+ = −p2 + 1

2
βθ1 , E+ = β ,

H = b−1∂φ1 + γβ + 1

2
(p1θ1 + p2θ2) , I = −b−1∂φ2 + 1

2
(p1θ1 − p2θ2) ,

F− = −b−1∂φ1θ2 + b−1∂φ2θ2 − 1

2
γβθ2 − 1

2
p1θ1θ2 −

(
1

2
− k

)
∂θ2 + γp1 , (4.7)

G− = b−1∂φ1θ1 + b−1∂φ2θ1 + 1
γβθ1 − 1

p2θ1θ2 +
(

1 − k

)
∂θ1 − γp2 ,
2 2 2

11
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E− = −γ γβ − γp1θ1 − γp2θ2 − 2b−1∂φ1γ + b−1∂φ2θ1θ2

− 1

2
(1 − k)(θ1∂θ2 − ∂θ1θ2) + k∂γ .

Here the normal ordering prescription is assumed for the products of fields. It will be convenient 
to bosonize the fermionic systems (pa, θa) as

pa = eiXL
a , θa = e−iXL

a , XL
a (z)XL

b (0) ∼ −δa,b ln z . (4.8)

We also define XR
a analogously from (p̄a, θ̄a) and consider linear combinations Xa = XL

a +XR
a . 

With these bosons, the Cartan generators are expressed as

H = b−1∂φ1 + γβ + i

2
(∂X1 + ∂X2) , I = −b−1∂φ2 + i

2
(∂X1 − ∂X2) (4.9)

in particular.
Now that we have the first order formulation of SL(2|1) WZNW model, we can apply the 

procedure of [5] reviewed in the previous section. Firstly, two new bosons φ̂1, φ̂2 are introduced 
by

H = √
k − 2∂φ̂1 + βγ , I = √

k∂φ̂2 . (4.10)

Then the field space of the coset model (1.4) is spanned by the fields φ1, φ2, X1, X2 but orthog-
onal to the new bosons φ̂1, φ̂2. The (β, γ )-system for the free filed realization of sl(2|1) are 
removed as explained above. In other words, the orthogonal space can be generated by φ, χ , 
where we have defined as

√
k − 2φ = −iφ1 + 1

2b
(X1 + X2) ,

√
kχ = −iφ2 + 1

2b
(X1 − X2) . (4.11)

With the new variables, the correlation functions are written as〈
N∏

ν=1

�ν(zν)

〉
, �ν(zν) = e

2b̂jφ+i 2√
κ
(mχL+m̄χR)

(4.12)

with

κ = k

k − 1
. (4.13)

The correlation function is evaluated with the action3

S = 1

2π

∫
d2z

[
∂̄φ∂φ + ∂̄χ∂χ + b̂

4
√

gRφ + 2λeφ/b̂ cos
(√

κχ
)]

, (4.14)

where we set b̂ = 1/
√

κ − 2. The background charge for φ arises from those for X1 and X2. This 
is nothing but the action of sine-Liouville theory. In this way, we can write down the N -point 
function of the coset (1.4) in terms of sine-Liouville theory as a direct consequence of the first 
order formulation reviewed in the previous section.

3 The coefficients in front of interaction terms are modified by shifting fields. The same procedure will be performed 
in later analysis as well.
12
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4.2. Another realization of the coset

In the previous subsection, we have shown that correlation functions of the coset (1.4) directly 
reduce to those of sine-Liouville theory. Combined with the FZZ-duality proven in [1], we can 
derive the correlator correspondences between the two cosets (1.4) and (1.1). Instead of doing 
so, we directly relate the correlation functions of these two cosets by choosing a different first 
order formulation of SL(2|1) WZNW model in this subsection.

It is known that there are several different free field realizations of the same affine Lie algebra. 
In terms of WZNW model, this corresponds to the fact that there are several ways to parameterize 
group elements. In [9,10] or (4.1), we use the grading corresponding to the Cartan subalgebra 
generated by H . This is a natural choice, but here we adopt a different one with the grading of 
linear combination H + I . Then the element of Lie supergroup SL(2|1) can be expressed as

g = g+g0g− (4.15)

with

g+ = eγE+
eθ1F

+
, g0 = eθ2F

−
e2φ1H+2φ2I eθ̄2G

+
, g− = eθ̄1G

−
eγ̄E−

. (4.16)

Note that g+ (g−) is put on the left (right) side of g but a factor including G+ (F−) is put on the 
right (left) side inside g0. Otherwise, the expression of Lie superalgebra becomes identical to the 
one in the previous subsection. Using the Polyakov-Wiegmann identity again, we obtain

S = k

2π

∫
d2z
[
∂̄φ1∂φ1 − ∂̄φ2∂φ2 + e−2φ1∂γ̄ ∂̄γ

− e−φ1−φ2(∂̄θ1 + θ2∂̄γ )(∂θ̄1 + θ̄2∂γ̄ ) − eφ1−φ2 ∂̄θ2∂θ̄2

]
.

(4.17)

Introducing auxiliary fields, we rewrite the action as

S = 1

2π

∫
d2z

[
∂̄φ1∂φ1 − ∂̄φ2∂φ2 + b

4
√

gR(φ1 − φ2) + β∂̄γ + β̄∂γ̄

+
2∑

a=1

(pa∂̄θa + p̄a∂θ̄a)

]

− 1

2kπ

∫
d2z
[
e2bφ1(β − p1θ2)(β̄ − p̄1θ̄2) − eb(φ1+φ2)p1p̄1 − eb(−φ1+φ2)p2p̄2

]
(4.18)

with b = 1/
√

k − 1 as above. Here we have already included quantum corrections. We will ne-
glect the interaction term eb(φ1+φ2)p1p̄1 since it can be generated by the rest two.

As mentioned above, a different parameterization of group element in WZNW model corre-
sponds to a different free field realization of the symmetry algebra. The corresponding free field 
realization of affine Lie superalgebra sl(2|1) is given by fields in the kinetic terms and generators 
made of the free fields should commute with the interaction terms. We find these generators as
13
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F+ = p1 , G+ = βθ1 − b−1∂φ1θ2 + b−1∂φ2θ2 + (1 − k)∂θ2 , E+ = β ,

H = b−1∂φ1 + γβ + 1

2
(p1θ1 − p2θ2) , I = −b−1∂φ2 + 1

2
(p1θ1 + p2θ2) ,

F− = −p2 + γp1 , G− = b−1∂φ1θ1 + b−1∂φ2θ1 + γβθ1 + p2θ1θ2 − k∂θ1

− b−1∂φ1γ θ2 + b−1∂φ2γ θ2 − (k − 1)γ ∂θ2 ,

E− = −γ γβ − γp1θ1 + γp2θ2 − 2b−1∂φ1γ + p2θ1 + k∂γ .

(4.19)

The Cartan generators can be expressed as

H = b−1∂φ1 + γβ + i

2
(∂X1 − ∂X2) , I = −b−1∂φ2 + i

2
(∂X1 + ∂X2) (4.20)

in terms of Xa introduced in (4.8).
Let us apply the first order formulation reviewed in the previous section to this case. As before 

we define new bosons φ̂1, φ̂2 by

H = √
k − 2∂φ̂1 + βγ , I = √

k∂φ̂2 . (4.21)

The field space for the numerator is generated by φ1, φ2, X1, X2 if β, γ are neglected, and the 
field space orthogonal to φ̂1, φ̂2 may be spanned by φ, χ with

√
k − 2φ = −iφ1 + 1

2b
(X1 − X2) ,

√
kχ = −iφ2 + 1

2b
(X1 + X2) . (4.22)

The correlation functions are of the form as (4.12) but now the action is

S = 1

2π

∫
d2z

[
∂̄φ∂φ + ∂̄χ∂χ + 1

4
√

gR(Qφφ + Qχχ) − 1

k
(e2φ/b̂ − e−φ/b̂+i

√
κχ )

]
.

(4.23)

Here we set

Qφ = b̂ + 1

b̂
, Qχ = −i

√
κ (4.24)

with κ given in (4.13) and b̂ = 1/
√

κ − 2. The action coincides with (3.14) of [1], which di-
rectly arises from the reduction of SL(2) ⊗ U(1) (⊗BRST ghosts) description for the coset 
SL(2)/U(1). The first term of the interaction comes from (the dual of) the interaction term 
in the first order formulation of SL(2) WZNW model and the second one stems from the extra 
insertions of degenerate operators in the Ribault-Teschner relation [6–8].

4.3. Fermionic dualities

In this subsection, we extend the analysis by introducing N = 2 supersymmetry. The 
fermionic version of the coset is given by

SL(2|1)k ⊗ SO(2)1

SL(2)k ⊗ U(1)
. (4.25)
14
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The factor SO(2)1 can be generated by a complex fermion ψ± with conformal weight 1/2, and 
the bosonization formula

ψ± = e±iYL

, YL(z)YL(0) ∼ − ln z (4.26)

is used. We define YR in a similar way and introduce Y = YL + YR . Notice that the Cartan 
directions of the denominator algebra are generated by

H , I + 1
2ψ+ψ− = I + i

2
∂Y . (4.27)

We first use the free field realization of affine Lie superalgebra sl(2|1) in subsection 4.1. In 
this case, the orthogonal space is generated by Ŷ as well as φ, χ defined in (4.11). Here Ŷ may 
be given by√

k(1 + 2k)

2
Ŷ = ib−1φ2 + 1

2
(X1 − X2) − kY . (4.28)

We further rotate the fields as√
k

k − 1
χ →

√
2 − k

k − 1
χ + Ŷ ,

√
k

k − 1
Ŷ → −2χ +

√
2 − k

k − 1
Ŷ . (4.29)

The correlation functions are of the form as〈
N∏

ν=1

�ν(zν)

〉
, �ν(zν) = e

2b̂jφ+i(sYL+s̄Y R)+i 2√
κ
(mχL+m̄χR)

(4.30)

and the action is

S = 1

2π

∫
d2z

[
∂̄φ∂φ + ∂̄χ∂χ + ψ+∂̄ψ− + ψ̄+∂ψ̄− + b̂

4
√

gRφ

]

+ λ

2π

∫
d2z
[
ψ+ψ̄+eb̂−1(φ+iχ) + ψ−ψ̄−eb̂−1(φ−iχ)

]
.

(4.31)

Here we have introduced new complex fermions ψ± using (4.26) but with Y replaced by Ŷ . 
This is nothing but the action of N = 2 super Liouville theory. In this way, we have shown that 
N -point functions of the super coset (4.25) can be reduced to those of N = 2 super Liouville 
theory.

We next use another free field realization of affine Lie superalgebra sl(2|1) in subsection 4.2. 
The field space orthogonal to the denominator algebra with Cartan directions (4.27) is generated 
by φ, χ in (4.22) and Ŷ defined via√

k(1 + 2k)

2
Ŷ = ib−1φ2 + 1

2
(X1 + X2) − kY . (4.32)

We also perform the rotation of fields in (4.29). The correlation functions are of the form as 
(4.30) and the action is now

S = 1

2π

∫
d2z

[
∂̄φ∂φ + ∂̄χ∂χ + 1

2
∂̄ Ŷ ∂Ŷ + 1

4
√

gR
(
Qφφ + Qχχ + QY Ŷ

)]

− 1

2πk

∫
d2z
[
e2b̂−1φ − e−b̂−1(φ−iχ)+iŶ

]
.

(4.33)
15
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The background charges are

Qφ = b̂ + b̂−1 , Qχ = −ib̂ , QY = −i . (4.34)

This kinetic terms of the action are the same as those in (3.11) and the interaction terms are (3.12) 
in [2].4 Applying the analysis of the paper, we can thus map the correlation functions of (4.25)
to those of the super cigar model described by

SL(2)κ ⊗ SO(2)1

U(1)
. (4.35)

In the BRST formulation, the coset can be described by SL(2)κ ⊗ SO(2)1 ⊗ U(1) (⊗BRST
ghosts). The first term of the interaction directly comes from bosonic SL(2)κ WZNW model 
and the second one stems from an interpretation of extra insertions of degenerate operators in the 
Ribault-Teschner relation as in the bosonic case.

5. Theory with a d(2, 1; −ψ)-structure from a coset

A main purpose of this paper is to express the large N = 4 super Liouville theory in terms of 
a coset model (1.7). Before going to it, we would like to consider a related but different problem. 
Namely, we study N -point functions of the coset (1.6) and reduce them to those of a theory with 
a d(2, 1; −ψ)-structure. The relation between the two models was examined in [35].

In the examples analyzed in the previous section, we actually needed only the first order 
formulation of the coset proposed in [25,26]. However, in the example with coset (1.6), we have 
to use the first order formulation elaborated in [5] and also the reduction methods utilized in the 
proof of original FZZ-duality in [1]. We begin by describing the coset theory (1.6) in the BRST 
formulation [28–31]. The effective action is given by

S =
3∑

i=1

SWZNW
ki

[φi,βi, γi] + Sbc[ba, ca] (5.1)

with k3 = −k1 − k2 − 2cSL(2) = −k1 − k2 + 4. For the action of SL(2) WZNW model, we use 
the first order formulation given in (3.2). We denote the sl(2) currents at level ki by J a

i with 
a = ±, 3. In particular, we have J+

i = βi . The other action Sbc[ba, ca] is for the BRST ghosts 
given in (3.7) and sl(2) currents at level 2cSL(2) = −4 are denoted by J a

bc with a = ±, 3 as before. 
The BRST charge is

Q =
∮

dz

2πi

[
ca(z)

(
3∑

i=1

J a
i (z) + 1

2
J a

bc(z)

)]
, (5.2)

and physical states are given by elements of the Q-cohomology in the BRST formulation.
As explained in section 3, we can remove one of pairs of (βi, γi), say, (β1, γ1). Namely, we 

replace β1 by

β1(w) −
∮

dz

2πi
b+(z)Q(w) = −β2(w) − β3(w) − J+

bc(w) . (5.3)

4 The notation of Y is different from h̃ in [2] by factor −√
2.
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Furthermore, we decompose the BRST-charge by Nβ1γ1 = ∑m β1,−mγ1,m and pick up non-
trivial elements of Q1-cohomology.

In this way, we can put the vertex operators of the form

V = γ
m2
2 γ̄

m̄2
2 γ

m3
3 γ̄

m̄3
3 e2(b1j1φ1+b2j2φ2+b3j3φ3) (5.4)

with bi = 1/
√

ki − 2. The conditions corresponding to zero eigenvalues of (3.15) and (3.16) are 
now given by

− j1 − j2 − m2 − j3 − m3 + 1 = 0 ,

− (j1 + j2 + m)(j1 + j2 + m − 1)

k1 + k2 − 2
+ j3(j3 − 1)

k1 + k2 − 2
= 0

(5.5)

with some integer m. There is also a similar condition with m2, m3, m replaced by m̄2, m̄3, m̄. 
We have shown that a map can be constructed between elements of Q1-cohomology and Q-
cohomology for our restricted form of vertex operators. Thus, we can pick up an element of 
Q1-cohomology with our preferred choice of m2, m3, m as long as they satisfy (5.5). Our choice 
here is

m2 = −j1 − j2 − j3 + 1 , m3 = 0 , m = m2 . (5.6)

It is convenient to perform a reflection relation to φ3-direction as

V = γ
m2
2 γ̄

m̄2
2 e2(b1j1φ1+b2j2φ2+b3(1−j3)φ3) (5.7)

with

m2 = m̄2 = −j1 − j2 − j3 + 1 . (5.8)

This choice is useful since vertex operators do not depend on γ3 so we can neglect β3 in the 
action as well.

The action and vertex operators still depend on (β2, γ2)-system. We deal with them by apply-
ing the reduction method of [8,1]. We rewrite the vertex operators as

�ν(zν) =
∫

d2μν

|μν |2 Vν(zν) , (5.9)

Vν(zν) = |μν |2j1+2j2+2j3−2eμνγ2−μ̄ν γ̄2e2(b1j
ν
1 φ1+b2j

ν
2 φ2+b3(1−jν

3 )φ3) . (5.10)

We may insert an identity operator in the coset theory as in, e.g., [1,5]. Now we perform s spectral 
flow operations to SL(2)k1, SL(2)k2 in the numerator of (1.6) and the operation is undone in the 
coset theory by performing s spectral flow to SL(2)k1+k2 in the denominator. In the current first 
order formulation, the identity operator is expressed as

1= v(s)(ξ)es(φ1/b1−φ3/b3)(ξ) , (5.11)

where the spectral flow operator v(s)(ξ) restricts the domain of integral over β2 such as to have a 
zero of order s and effectively inserts esφ2/b2 at w = ξ . We then compute the correlation function 
of the coset model (1.6),
17
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〈
v(s)(ξ)es(φ1/b1−φ3/b3)(ξ)

N∏
ν=1

Vν(zν)

〉

=
∫
s

[
3∏

i=1

Dφi

]
Dγ2Dβ2e

−S

N∏
ν=1

Vν(zν)e
s(φ1/b1+φ2/b2−φ3/b3)(ξ) .

(5.12)

Here the effective action is

S = 1

2π

∫
d2w

[
3∑

i=1

∂φi ∂̄φi + β2∂̄γ2 + β̄2∂γ̄2 +
√

gR
4

(
3∑

i=1

biφi

)

+ λβ2β̄2

(
e2b1φ1 + e2b2φ2

)]
. (5.13)

Notice that β1 in the interaction term is replaced by (5.3) and the terms except for β2 are ne-
glected. The subscript s in the integral symbol represents the restriction of integral domain for 
β2. Integrating γ2 out, we obtain delta functions for μν and a delta functional for β2 as explained 
in [8,1]. After further integrating β2 out, it is replaced by a function as

−β2(w) =
N∑

ν=1

μν

w − zν

= u
(w − ξ)s

∏N−2−s
i=1 (w − yi)∏N

ν=1(w − zν)
= uB(w; zν, yi) . (5.14)

The second equality defines a map of variables from μν to yi , which is possible only when the 
conditions coming from the delta functions,

N∑
ν=1

μν

(w − ξ)a
= 0 (5.15)

are satisfied for a = 0, 1, . . . , s. For more details, see, e.g., [1].
In order to remove the functions in the interaction terms, we shift φi as

φ1 + 1

2b1
ln |uB|2 → φ1 , φ2 + 1

2b2
ln |uB|2 → φ2 , φ3 − 1

2b3
ln |uB|2 → φ3 . (5.16)

The third one is chosen such that there would be no extra factor with μν in the vertex operator of 
the form (5.10). Now the correlation function becomes〈

N∏
ν=1

Vν(zν)

〉
=
〈

N∏
ν=1

Ṽν(zν)

N−2−s∏
i=1

Ṽb(yi)

〉
(5.17)

with the vertex operators

Ṽν(zν) = e2(b1(j
ν
1 +1/2b2

1)φν
1 +b2(j

ν
2 +1/2b2

2)φ2+b3(1−jν
3 −1/2b2

3)φ3) , (5.18)

Ṽb(yi) = e−φ1/b1−φ2/b2+φ3/b3 . (5.19)

Notice that the insertion at w = ξ is canceled out. The right hand side is evaluated with the action
18
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S = 1

2π

∫
d2w

[
3∑

i=1

∂φi ∂̄φi +
√

gR
4

(
3∑

i=1

Qiφi

)
− λ

2∑
i=1

Vi

]
(5.20)

with

Q1 = b1 + 1/b1 , Q2 = b2 + 1/b2 , Q3 = b3 − 1/b3 (5.21)

and

Vi = e2βi ·φ , β1 = (b1,0,0) , β2 = (0, b2,0) . (5.22)

The relation between the correlation functions in (5.17) is up to a factor that is a function of 
zν, yi .

We then move to correlation functions of vertex operators of the form (5.9). As in [8], the 
μν -integration in (5.9) can be mapped to the yi -integration, and the extra insertions of vertex 
operators at yi can be interpreted as an interaction term. Thus we can write〈

N∏
ν=1

�ν(zν)

〉
=
〈

N∏
ν=1

Ṽν(zν)

〉
. (5.23)

The relative factor is canceled with the Jacobian due to the change of variables from μν to yi , see 
[6,7,1]. The action for the right hand side is given by (5.20) but now there are three interaction 
terms as

Vi = e2βi ·φ , β1 =
(

1

b1
,0,0

)
, β2 =

(
0,

1

b2
,0

)
, β3 =

(
− 1

2b1
,− 1

2b2
,

1

2b3

)
.

(5.24)

For V1, V2, we have performed the self-duality of Liouville field theory. As explained in [1], we 
may perform reflection relations to V1, V2 with respect to V3, which lead to

β1 =
(

k1 − 1/2

b1
,
k1 − 3/2

b2
,

3/2 − k1

b3

)
, β2 =

(
k2 − 3/2

b1
,
k2 − 1/2

b2
,

3/2 − k2

b3

)
.

(5.25)

Computing the Gram matrix, we find

−2βiβj =
⎛⎝ 1 k1 + k2 − 3 −k1 + 1

k1 + k2 − 3 1 −k2 + 1
−k1 + 1 −k2 + 1 1

⎞⎠ , (5.26)

which reproduces (2.11)-(2.14) in [35].5 This means that the theory with the action (5.20) cor-
responds to the free field realization for the coset (1.6) given in [35]. In this way, we have 
shown that the N -point functions of the coset (1.6) can be reduced to those of the theory with a 
d(2, 1, −ψ)-structure.

5 In order to match the convention, we need to replace ki by −ki and set n = −1.
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6. Large N = 4 Liouville from a coset

In this section, we examine the correlation functions of primary operators in the coset (1.7)
and relate them to those of the large N = 4 super Liouville theory, see [16]. The factor Y(k1, k2)

in the numerator is made of two d(2, 1; −ψ) with ψ = 1 − k1, 1 − k2 at level one. The large 
N = 4 superconformal algebra has two sl(2) current algebras with levels k′

1, k
′
2 satisfying the 

relations like (1.5). This duality structure is hidden in d(2, 1; −ψ)1 as explained in section 2, see 
[39] for more details. In the next subsection, we find out a description of D(2, 1; −ψ)1. Since 
the action in the WZNW model should be quite complicated, we use a description as a coset of 
SL(2|1) and free bosons [39]. In subsection 6.2, we examine the N -point functions of primary 
operators in the coset (1.7) and relate them to those of a different theory. In subsection 6.3, we 
identify the theory as the large N = 4 super Liouville theory, which corresponds to the free 
field realization of large N = 4 superconformal algebra in [58]. In subsection 6.4, we further 
gauge SU(2)k′

1+k′
2

subsector and reproduce the theory with a d(2, 1; −ψ)-structure obtained in 
section 5.

6.1. D(2, 1; k − 1)1 from SL(2|1)k

The factor Y(k1, k2) in the numerator of the coset (1.7) is made of two D(2, 1| − ψ) at level 
one. As a simple description of D(2, 1| − ψ) at level one, we consider the coset

D(2,1; k − 1)1 � SL(2|1)k ⊗ U(1)∂Y ⊗ U(1)∂Z

U(1)J
(6.1)

as in [39]. Here we set ψ = 1 − k. We introduce free bosons Y, Z with OPEs as

Y(z)Y (0) ∼ −1

2
ln |z|2 , Z(z)Z(0) ∼ 1

2
ln |z|2 . (6.2)

We will later determine the action of U(1)-generator J in the denominator of (6.1). We have 
already examined the SL(2|1) WZNW model to some extend in section 4. It will be convenient 
to adopt the first order formulation of SL(2|1) WZNW model at the level k given in (4.6) as

SWZNW
k [g] = 1

2π

∫
d2z
[
∂̄φ∂φ − ∂̄ϕ∂ϕ + β∂̄γ + β̄∂γ̄ + p∂̄θ + p̄∂θ̄ + q∂̄η + q̄∂η̄

]
+ λ

2π

∫
d2z
[
eb(φ+ϕ)(p + 1

2βη)(p̄ + 1
2 β̄η̄) + eb(φ−ϕ)(q + 1

2βθ)(q̄ + 1
2 β̄θ̄ )

]
(6.3)

with b = 1/
√

k − 1. We have slightly changed the notation such as

φ1 → φ , φ2 → ϕ, p1 → p , θ1 → θ , p2 → q , θ2 → η (6.4)

and similarly for (p̄i, θ̄i ). Here we use a bosonization formulation as

p = eigL

, θ = e−igL

, q = eihL

, θ = e−ihL

(6.5)

with OPEs

gL(z)gL(0) ∼ − ln z , hL(z)hL(0) ∼ − ln z . (6.6)

We bosonize p̄, θ̄ , q̄, η̄ in terms of gR, hR in a similar way and define g = gL +gR, h = hL +hR .
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The affine Lie superalgebra sl(2|1)k has obvious subalgebra sl(2)k generated by E±
1 ≡ ±E±

and H1 ≡ H . There is actually hidden sl(2)k′ as shown in [38,39]. The relation of levels is given 
in (1.5). Generators of the hidden sl(2)k′ may be expressed as

E+
2 = e2Y F+F− , E−

2 = −e−2Y G+G− , H2 =
(

k

1 − k

)(
∂Y + 1

k
I

)
. (6.7)

With the additional free boson Z, the fermionic generators of d(2, 1; k − 1) can be expressed as

F+eY±Z , F−eY±Z , G+e−Y±Z , G−e−Y±Z . (6.8)

These generators should survive under the gauging of U(1)J . This determines the action of J as

J = I + ∂Y = −b−1∂ϕ + i

2
(∂g − ∂h) + ∂Y . (6.9)

In order to cancel the contribution, we may introduce a boson W with OPE W(z)W(0) ∼
− 1

2 ln |z|2 and use the vertex operators of the form

V = e− i
2 (g+h)γ mγ̄ m̄ē2bjφ+2blϕ+2tY+2uZ+2b(l+t)W . (6.10)

It will be convenient in working on the Ramond sector indicated by the first factor. Moreover, it 
will be enough to deal with t = 0 sector for our purpose.

6.2. Reduction of a coset

According to [16], the factor Y(k1, k2) is given by a sum of two d(2, 1| − ψ) at level one in 
the coset description (1.7) but removing Z-fields. In the BRST formulation of the coset (1.7), we 
use the sum of actions as

S = S1
k1

+ S2
k2

+ S
sl(2)
−k1−k2+4[φ3, γ3, β3] + Sbc[ba, ca] . (6.11)

For the action S1
k1

, we use

S1
k1

= 1

2π

∫
d2z
[
∂̄φ1∂φ1 − ∂̄ϕ1∂ϕ1 + ∂̄W1∂W1 + β1∂̄γ1 + β̄1∂γ̄1

]
+ 1

2π

∫
d2z
[
p1∂̄θ1 + p̄1∂θ̄1 + q1∂̄η1 + q̄1∂η̄1

]
(6.12)

+ λ

2π

∫
d2z
[
eb1(φ1+ϕ1)(p1 + 1

2β1η1)(p̄1 + 1
2 β̄1η̄1)

+ eb1(φ1−ϕ1)(q1 + 1
2β1θ1)(q̄1 + 1

2 β̄1θ̄1)
]
,

where b1 = 1/
√

k1 − 1. Now that we are interested in the correlation functions among primary 
operators of the form (6.10) with t = 0, we have neglected a free boson Y1. For S2

k2
, we replace 

the subscript 1 by 2. The action Ssl(2)
−k1−k2+4[φ3, γ3, β3] is for the sl(2) WZNW model as in (3.2)

and Sbc[ba, ca] is for the BRST ghosts as in (3.7).
The coset can be now analyzed in a way similar to (1.6). We neglect β1, γ1 and β1 in the 

action is replaced by (5.3). The vertex operators are considered of the form
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V = γ
m2
2 γ̄

m̄2
2 γ

m3
3 γ̄

m̄3
3

[
2∏

i=1

e− i
2 (gi+hi)+2bi (jiφi+liϕi+liWi)

]
e2b3j3φ3 . (6.13)

Here we set b3 = 1/
√

k3 − 2 with k3 = −k1 − k2 + 4. The conditions corresponding to (5.5) are

− j1 − 1/2 − j2 − 1/2 − m2 − j3 − m3 + 1 = 0 ,

(−j1 − j2 − 1 + m)(2 + j1 + j2 − m)

k1 + k2 − 2
− j3(1 − j3)

k1 + k2 − 2
= 0

(6.14)

with some integer m. There are also similar conditions with m̄2, m̄3, m̄. We may set

m2 = −j1 − j2 − j3 , m3 = 0 , m = m2 + 1 (6.15)

such that β3, γ3 can be neglected. We thus consider the vertex operators of the form

�ν(zν) =
∫

dμ2
ν

|μμ|2 Vν(zν) , (6.16)

Vν(zν) = eμνγ2−μ̄ν γ̄2

[
2∏

i=1

|μν |2ji+1e− i
2 (gi+hi)+2bi (j

ν
i φi+lνi ϕ+lνi Wi)

]
|μν |2jν

3 −2e2b3(1−jν
3 )φ3 .

(6.17)

We have performed a reflection relation to φ3-direction. An identity operator can be inserted as 
in the previous case. Here, it is given by

1= v(s)(ξ)es( i
2 (g1+h1)+φ1/b1−φ3/b3)(ξ) , (6.18)

where the spectral flow operator v(s)(ξ) restricts the domain of integral over β2 such as to have 
a zero of order s and effectively inserts es( i

2 (g2+h2)+φ2/b2) at w = ξ as before.
We first examine the correlation functions of the form〈

v(s)(ξ)es( i
2 (g1+h1)+φ1/b1−φ3/b3)(ξ)

N∏
ν=1

Vν(zν)

〉

=
∫
s

Dge−S
N∏

ν=1

Vν(zν)e
s(
∑2

j=1
i
2 (gj +hj )+φ1/b1+φ2/b2−φ3/b3)(ξ) .

(6.19)

The path integral measure is

Dg =
[

3∏
i=1

Dφi

][
2∏

i=1

DϕiDpiDθiDqiDηiDWi

]
Dγ2Dβ2 (6.20)

and the effective action is

S = 1

2π

∫
d2z

[
3∑

∂̄φi∂φi + 1

4
√

gRb3φ3 +
2∑(−∂̄ϕi∂ϕi + ∂̄Wi∂Wi

)]
(6.21)
i=1 i=1
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+ 1

2π

∫
d2z

[
2∑

i=1

(pi ∂̄θi + p̄i∂θ̄i + qi ∂̄ηi + q̄i∂η̄i ) + β2∂̄γ2 + β̄2∂γ̄2 + λ

4∑
i=1

Vi

]
.

Here the interaction terms are

V1 = eb1(φ1+ϕ1)(p1 + 1
2β1η1)(p̄1 + 1

2 β̄1η̄1) , V2 = eb1(φ1−ϕ1)(q1 + 1
2β1θ1)(q̄1 + 1

2 β̄1θ̄1) ,

V3 = eb2(φ2+ϕ2)(p2 + 1
2β2η2)(p̄1 + 1

2 β̄2η̄2) , V4 = eb2(φ2−ϕ2)(q2 + 1
2β2θ2)(q̄2 + 1

2 β̄2θ̄2) .

(6.22)

As before, integration over zero mode of γ2 gives delta functions for μν and integration over 
non-zero modes of γ2 leads to a delta functional for β2. After integrating β2 out, β2 is replaced 
by a function

−β2(w) =
N∑

ν=1

μν

w − zν

= u
(w − ξ)s

∏N−2−s
i=1 (w − yi)∏N

ν=1(w − zν)
= uB(w; zν, yi) . (6.23)

The restrictions coming from delta functions are

N∑
ν=1

μν

(w − ξ)a
= 0 (6.24)

for a = 0, 1, . . . , s.
In order to remove the function appearing in the action, we shift the fields as

φ1 + 1

2b1
ln |uB|2 → φ1 , φ2 + 1

2b2
ln |uB|2 → φ2 , φ3 − 1

2b3
ln |uB|2 → φ3 ,

gi + i

2
ln |uB|2 → gi , hi + i

2
ln |uB|2 → hi .

(6.25)

The correlation function becomes〈
N∏

ν=1

Vν(zν)

〉
=
〈

N∏
ν=1

Ṽν(zν)

N−2−s∏
i=1

Ṽb(yi)

〉
(6.26)

up to a factor that is a function of zν, yi . The vertex operators are

Vν(zν) =
[

2∏
i=1

e2bi ((j
ν
i +1/2b2

i )φi+lνi ϕi+lνi Wi)

]
e2b3(1−jν

3 −1/2b2
3)φ3 (6.27)

and

Ṽb(yi) = e− i
2 (g1+h1+g2+h2)−φ1/b1−φ2/b2+φ3/b3 . (6.28)

If we consider �ν(zν) in (6.16) instead of Vν(zν) in (6.17), then the vertex operators Ṽb(yi) can 
be regarded as an interaction term as above. The correlation functions are now written as〈

N∏
ν=1

�ν(zν)

〉
=
〈

N∏
ν=1

Ṽν(zν)

〉
, (6.29)
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where the factor is canceled by the Jacobian due to the change of variables μν to yi . The action 
for the right hand side becomes

S = 1

2π

∫
d2z

[
3∑

i=1

∂̄φi∂φi + 1

4
√

gR
(∑

Qφi
φi

)
+

2∑
i=1

(−∂̄ϕi∂ϕi + ∂̄Wi∂Wi

)]

+ 1

2π

∫
d2z

[
2∑

i=1

(pi ∂̄θi + p̄i∂θ̄i + qi ∂̄ηi + q̄i∂η̄i ) + λ

5∑
i=1

Vi

]
,

(6.30)

where the interaction terms are

V1 = eb1(φ1+ϕ1)(p1 − 1
2η1)(p̄1 + 1

2 η̄1) , V2 = eb1(φ1−ϕ1)(q1 − 1
2θ1)(q̄1 + 1

2 θ̄1) ,

V3 = eb2(φ2+ϕ2)(p2 − 1
2η2)(p̄1 + 1

2 η̄2) , V4 = eb2(φ2−ϕ2)(q2 − 1
2θ2)(q̄2 + 1

2 θ̄2) ,

V5 = e− i
2 (g1+h1+g2+h2)−φ1/b1−φ2/b2+φ3/b3 .

(6.31)

The background charges are

Qφ1 = 1

b1
, Qφ2 = 1

b2
, Qφ3 = b3 − 1

b3
(6.32)

and the conformal weights of pi, θi, qi, ηi are 1/2 and similarly for p̄i , θ̄i , q̄i , η̄i .

6.3. Large N = 4 super Liouville theory

In the previous subsection, we have rewritten the correlation functions of the coset (1.7) in 
terms of a different theory with the action (6.30). In this subsection, we identify the theory as the 
N = 4 super Liouville theory. Let us first observe that if we change the fermionic variables as

1
2θi + qi → θi , pi + 1

2ηi → pi ,
1
2ηi − pi → ηi , qi − 1

2θi → qi , (6.33)

then the theory with interaction terms V1, V2 (or V3, V4) can be identified with those of the N = 2
super Liouville theory. Therefore, treating an interaction term V5 perturbatively, the theory can 
be regarded as a sum of two N = 2 super Liouville theories with parameters ki − 1.

It is known that N = 2 super Liouville theory is dual to a super cigar model [20,2]

SL(2)k′
i+1 ⊗ SO(2)1

U(1)
, (6.34)

where k′
i − 1 = 1/(ki − 1) as in (1.5). We apply the fermionic FZZ-duality to the two N = 2

super Liouville theories. Then the correlation functions of the coset (1.7) become〈
N∏

ν=1

�ν(zν)

〉
=
〈

N∏
ν=1

�̃ν(zν)

〉
, (6.35)

where the right hand side is evaluated with the action
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S = 1

2π

∫
d2z

[
3∑

i=1

∂̄φi∂φi + 1

4
√

gR
(∑

Qφi
φi

)
+

2∑
i=1

(−∂̄ϕi∂ϕi + ∂̄Wi∂Wi

)]

+ 1

2π

∫
d2z

[
2∑

i=1

(pi ∂̄θi + p̄i∂θ̄i + qi ∂̄ηi + q̄i∂η̄i + βi ∂̄γi + β̄i∂γ̄i ) + λ

3∑
i=1

Vi

]
.

(6.36)

The interaction terms are

V1 = e2φ1/b1β1β̄1 , V2 = e2φ2/b2β2β̄2 (6.37)

and V3 obtained by the duality map from V5 as analyzed later. The background charges are the 
same as those in (6.32). The vertex operators are now

�̃ν(zν) =
[

2∏
i=1

|γi |−2b2
i (jν

i +1/2b2
i +lνi )e2bi ((j

ν
i +1/2b2

i )φi+lνi ϕi+lνi Wi)

]
e2b3(1−jν

3 −1/2b2
3)φ3 .

(6.38)

Notice that ϕi plays the role of U(1)-factor in the denominator of (6.34).
Since ϕ1, ϕ2 (and W1, W2) do not appear in the interaction terms (6.37) anymore (see also V5

in (6.31)), we can integrate them out. Due to the form of vertex operators (6.38), the contributions 
cancel out with each other. Thus we can use the vertex operators

�̃ν(zν) =
[

2∏
i=1

|γi |−2b2
i (jν

i +1/2b2
i +lνi )e2bi (j

ν
i +1/2b2

i )φi

]
e2b3(1−jν

3 −1/2b2
3)φ3 (6.39)

and the effective action

S = 1

2π

∫
d2z

[
3∑

i=1

∂̄φi∂φi + 1

4
√

gR
(∑

Qφi
φi

)]

+ 1

2π

∫
d2z

[
2∑

i=1

(pi ∂̄θi + p̄i∂θ̄i + qi ∂̄ηi + q̄i∂η̄i + βi ∂̄γi + β̄i∂γ̄i ) + λ

3∑
i=1

Vi

]
,

(6.40)

where interaction terms and background charges are the same as before.
It is time to think about V3, which involves a spin field. It would be useful to move to another 

description of fermions as

ψε1ε2ε3ε4 = e
i
2 (ε1g1+ε2h1+ε3g2+ε4h2) (6.41)

by utilizing the triality relation of SO(8) representations. Here εi = ± and the mutually locality 
requires that 

∏4
i=1 εi = +1. We may decouple the half of fermions furthermore and left

ψε1ε2 ≡ ψε1ε1ε2ε2 , ψ++(z)ψ−−(0) ∼ 1

z
, ψ+−(z)ψ−+(0) ∼ 1

z
. (6.42)

Before decoupling the half of fermions, the interaction term V3 is neutral under the sl(2)ki−1
currents, which are the diagonal sum of sl(2)ki+1 and sl(2)−2 made of fermions. The sl(2)ki+1
currents may be expressed as
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J+
b,i = βi , J 3

b,i = bi∂φi + βiγi , J−
b,i = βiγiγi + 2biγi∂φi − (k′

i + 1)∂γi . (6.43)

After decoupling the half of fermions, the currents made of fermions are modified as sl(2)−1. 
We may express them as

J 3
f,1 = 1

2 (ψ++ψ−− + ψ+−ψ−+) , J+
f,1 = ψ+−ψ++ , J−

f,1 = ψ−+ψ−− ,

J 3
f,2 = 1

2 (ψ++ψ−− − ψ+−ψ−+) , J+
f,2 = ψ−+ψ++ , J−

f,3 = ψ+−ψ−− .

(6.44)

The interaction term V3 can be fixed up to overall factor by the singlet condition with respect to 
the symmetry of sl(2)k1 and sl(2)k2 , which are the diagonal sum of sl(2)ki+1 and sl(2)−1 made 
of fermions. The singlet is then given by

V3 = |γ1γ2ψ
++ − γ1ψ

+− − γ2ψ
−+ − ψ−−|2e−φ1/b1−φ2/b2+φ3/b3 , (6.45)

which is the same as the one in (27) of [58].
The energy momentum tensor of the theory is given by

T = −
3∑

i=1

[
∂φi∂φi + Qφi

∂2φi

]
+ 1

2

∑
ε=±

(∂ψ+,εψ−,−ε − ψ+,ε∂ψ−,−ε) −
2∑

i=1

βi∂γi ,

(6.46)

whose central charge is

c = 9 + 6

(
3∑

i=1

Q2
i

)
= −3 − 6

k1 + k2 − 2
. (6.47)

We except that the theory has the symmetry of the large N = 4 superconformal algebra including 
sl(2)k′

1
and sl(2)k′

2
subalgebras with (1.5). Indeed we can rewrite as

c = 3(k′
1 + k′

2) − 6k′
1k

′
2

k′
1 + k′

2 − 2
, (6.48)

which is the expected value of central charge, see, e.g., eq. (B.37) of [50] (up to k′
i → −k̂±

i ). 
Fermionic currents are constructed such as to commute with interaction terms as well. From this 
condition, we find

b−1
3 G++ = b−1

2 ∂φ2ψ
++ + b−1

1 ∂φ1ψ
++ − b−1

3 ∂φ3ψ
++ + (1 − k1)β1ψ

−+

+ (k1 − 1)γ1β1ψ
++ + (k2 − 1)γ2β2ψ

++ + (1 − k2)β2ψ
+−

+ (k2 − k1)ψ
+−ψ++ψ−+ + (k1 + k2 − 1)∂ψ++ ,

b−1
3 G−+ = b−1

2 ∂φ2ψ
−+ − b−1

1 ∂φ1ψ
−+ + 2b−1

1 ∂φ1γ1ψ
++ − b−1

3 ∂φ3ψ
−+

+ (1 − k1)γ1β1ψ
−+ + (k2 − 1)γ2β2ψ

−+ + (k2 − 1)β2ψ
−−

+ (k1 − 1)γ1γ1β1ψ
++ + (1 − 2k1)∂γ1ψ

++
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+ (k1 − k2)ψ
++ψ−+ψ−− + (k1 + k2 − 1)∂ψ−+ ,

b−1
3 G+− = 2b−1

2 ∂φ2γ2ψ
++ − b−1

2 ∂φ2ψ
+− + b−1

1 ∂φ1ψ
+− − b−1

3 ∂φ3ψ
+− (6.49)

+ (k1 − 1)β1ψ
−− + (k1 − 1)γ1β1ψ

+− + (1 − k2)γ2β2ψ
+−

+ (k2 − 1)γ2γ2β2ψ
++ + (1 − 2k2)∂γ2ψ

++

+ (k1 − k2)ψ
+−ψ++ψ−− + (k1 + k2 − 1)∂ψ+− ,

b−1
3 G−− = 2b−1

2 ∂φ2γ2ψ
−+ + b−1

2 ∂φ2ψ
−− + b−1

1 ∂φ1ψ
−− + 2b−1

1 ∂φ1γ1ψ
+−

+ b−1
3 ∂φ3ψ

−− + (k1 − 1)γ1β1ψ
−− + (k2 − 1)γ2β2ψ

−−

+ (k2 − 1)γ2γ2β2ψ
−+ + (1 − 2k2)∂γ2ψ

−+ + (k1 − 1)γ1γ1β1ψ
+−

+ (1 − 2k1)∂γ1ψ
+− + (k1 − k2)ψ

+−ψ−+ψ−− − (k1 + k2 − 1)∂ψ−− .

The OPEs among the generators of large N = 4 superconformal algebra are summarized in 
appendix B.

6.4. Further reduction of the coset

In [16], it was also shown that the coset algebra of (1.6) can be reproduced from a further 
coset of (1.7) given by

Y(k1, k2)

SU(2)k′
1
⊗ SU(2)k′

2
⊗ SU(2)k1+k2

. (6.50)

We describe it as a SU(2)k′
1
⊗ SU(2)k′

2
coset of the large N = 4 super Liouville theory obtained 

above. Here we derive correlator correspondences for the duality. In the BRST formulation, the 
action for the coset is given by

S = SN=4
k′

1k
′
2

+
2∑

i=1

S
sl(2)

−k′
i−4[φ̃i , β̃i , γ̃i] + Sbc[ba, ca] . (6.51)

The first action is for the large N = 4 super Liouville theory given by (6.40) with (6.37) and 
(6.45). We bosonize the fermions as

ψ++ = eiYL
1 , ψ−− = e−iYL

1 , ψ+− = eiYL
2 , ψ−+ = e−iYL

2 (6.52)

with YL
i (z)YL

j (0) ∼ −δi,j ln z and similarly for ψ̄ε1,ε2 with YR
i . We further define Yi = YL

i +YR
i . 

The second and third actions are for sl(2) WZNW models with levels k′
1.k

′
2, respectively, given 

in (3.2). The fourth action is for the BRST ghosts, which can be found in (3.7).
We apply the first order formulation of the coset as usual. Namely, in the action of large N = 4

super Liouville theory, we remove γ1, γ2 and replace β1, β2 in the interaction terms V1, V2 in 
(6.37) by J+ , J+ given in (6.44), see, e.g., (3.14). Now the interaction terms becomes
f,1 f,2
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V1 = e2φ1/b1ei(Y1+Y2) , V2 = e2φ1/b2ei(Y1−Y2) , V3 = e−φ1/b1−φ2/b2+φ3/b3e−iY1 . (6.53)

In order to express the field space orthogonal to that of denominator of the coset (6.50), we may 
redefine

2φ1/b1 + i(Y1 + Y2) → 2φ1/b
′
1 , 2φ1/b2 + i(Y1 − Y2) → 2φ2/b

′
2 (6.54)

with b′
1 = 1/

√
k1 − 2 and b′

2 = 1/
√

k2 − 2. The interaction terms are now

V1 = e2φ1/b
′
1 , V2 = e2φ1/b

′
2 , V3 = e−φ1/b

′
1−φ2/b

′
2+φ3/b3 , (6.55)

where reproduces (5.24). In this way, we have shown that the coset (6.50) reduces to the theory 
with a d(2, 1; −ψ)-structure dual to another coset (1.6).

7. Boundary FZZ-triality

Up to now, we have examined correlation functions on a worldsheet of sphere topology. In 
this section, we examine the FZZ-triality in the presence of boundary, i.e., D-branes. D-branes 
in cigar model are classified in [68], and it was shown that there are D1-branes and D2-branes 
(and somehow degenerate D0-branes). Boundary actions for D2-branes in sine-Liouville theory 
can be derived from those for D1-branes in cigar model as in [2]. However, boundary actions for 
D2-branes in cigar model have not been obtained yet, and due to this fact, boundary actions for 
D1-branes in sine-Liouville theory cannot be obtained in the way. In appendix C, we construct 
boundary actions in SL(2|1) WZNW model by following the analysis for branes in OSP(1|2)

WZNW model in [55]. From them, we can obtain boundary actions in sine-Liouville theory both 
for D2-branes and D1-branes. We repeat the same analysis for supersymmetric setup, and our 
results reproduce boundary actions for B-branes and A-branes in N = 2 super Liouville theory 
found in [69].

In appendix C, we obtain boundary actions in SL(2|1) WZNW model at the classical level, 
and it is straightforward to include quantum corrections in the first order formulation. Applying 
the first order formulation to the coset (1.4), we can read off boundary actions in sine-Liouville 
theory. However, the classical relations for parameters μi receive quantum corrections and hence 
the values of parameters μi should be modified. We do not try to determine the parameters μi in 
this paper, but in principal it could be done by repeating the analysis of [69].

In section 4, we obtained the bulk action of sine-Liouville theory from the coset (1.4) as in 
(4.14). For D2-branes, the boundary actions can be read off as

Sboundary = 1

2π

∫
du
[
b̂Kφ + (μ1σ

+ + μ2σ
−)eφL/b̂+i

√
κχL

+ (μ3σ+ + μ4σ
−)eφL/b̂−i

√
κχL
] (7.1)

from those for B-branes in SL(2|1) WZNW model in (C.13).6 Here we have decomposed φ =
φL(z) + φR(z̄) and χ = χL(z) + χR(z̄). Moreover, K represents the curvature of boundary and 
the Neumann boundary conditions are assigned both for φ and χ . The boundary fermions η, η̄
are replaced by 2 × 2 matrices

6 In a quantum treatment, the boundary interaction term βeφ1 can be neglected since it can be generated by the other 
boundary interaction terms. Similar arguments hold also for the other cases below.
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σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
(7.2)

due to the Grassmann even property of exponential type potentials. The boundary actions (7.1)
reproduces (2.54) in [2]. For D1-branes, the boundary actions are

Sboundary = 1

2π

∫
du
[
b̂Kφ + μ1σ

+eφL/b̂+i
√

κχL + μ2σ
−eφL/b̂−i

√
κχL
]

, (7.3)

which is obtained from those for A-branes in SL(2|1) WZNW model in (C.23). Here we assign 
the Neumann boundary condition for φ and the Dirichlet boundary condition for χ . The form 
was already anticipated as in (E.2) of [2].

We can consider the coset (4.25) with an additional complex fermion. In this case, we have 
obtained N = 2 super Liouville theory with the bulk action (4.31). The boundary actions for 
B-branes are

Sboundary =
∫

du

[
η(∂ + ∂̄)η̄ + b̂

2π
Kφ

]
(7.4)

+ 1

2π

∫
du
[
(μ1η + μ2η̄)eb̂−1(φL+iχL)+iYL + (μ3η + μ4η̄)eb̂−1(φL−iχL)−iYL

]
,

which come from those for B-branes in SL(2|1) WZNW model in (C.13). They reproduce (5.8) 
in [69] and (3.28) in [2]. Here we assign the Neumann boundary conditions for φ, χ and Y . The 
boundary actions for A-brane are

Sboundary =
∫

du

[
η(∂ + ∂̄)η̄ + b̂

2π
Kφ

]

+ 1

2π

∫
du
[
μ1ηeb̂−1(φL+iχL)+iYL + μ2η̄eb̂−1(φL−iχL)−iYL

]
,

(7.5)

which come from those for A-branes in SL(2|1) WZNW model in (C.23). They reproduce (5.28) 
of [69]. Here we assign the Neumann boundary condition for φ and the Dirichlet boundary 
conditions for χ and Y .
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Appendix A. Convention for Lie superalgebras

In this appendix, we introduce generators of Lie superalgebras, which may be expressed in 
terms of supermatrix of the form
29
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M =
(

A B

C D

)
. (A.1)

Here A, B, C and D are n × n, n × m, m × n and m × m matrices, respectively. We call it as 
n|m-dimensional representation of corresponding Lie superalgebra. The supertrace is defined by

strM = trA − trD (A.2)

and the norm is fixed by 〈X, Y 〉 = str (XY). See, e.g., [70] for more details of Lie superalgebras.

A.1. Lie superalgebra sl(2|1)

The Lie superalgebra is generated by four bosonic generators E±, H, I and four fermionic 
ones F±, G±. In the 2|1-dimensional representation, they are expressed by

H =
⎛⎝ 1

2 0 0
0 − 1

2 0
0 0 0

⎞⎠ , I =
⎛⎝ 1

2 0 0
0 1

2 0
0 0 1

⎞⎠ ,

E+ =
⎛⎝0 1 0

0 0 0
0 0 0

⎞⎠ , E− =
⎛⎝0 0 0

1 0 0
0 0 0

⎞⎠ ,

F+ =
⎛⎝0 0 0

0 0 0
0 1 0

⎞⎠ , F− =
⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠ ,

G+ =
⎛⎝0 0 0

0 0 0
1 0 0

⎞⎠ , G− =
⎛⎝0 0 0

0 0 −1
0 0 0

⎞⎠ .

(A.3)

Non-trivial (anti-)commutation relations are given by

[H,E±] = ±E± , [H,F±] = ±1

2
F± , [H,G±] = ±1

2
G± , [I,F±] = 1

2
F± ,

[I,G±] = −1

2
G± , [E+,E−] = 2H , [E±,F∓] = −F± , [E±,G∓] = −G± ,

{F±,G∓} = ∓I + H , {F±,G±} = ±E± .

(A.4)

Their norms are

〈H,H 〉 = 1

2
, 〈I, I 〉 = −1

2
, 〈E+,E−〉 = 〈E−,E+〉 = 1 ,

〈F+,G−〉 = 〈F−,G+〉 = −1 , 〈G−,F+〉 = 〈G+,F−〉 = 1

(A.5)

and others are zero.
30



T. Creutzig and Y. Hikida Nuclear Physics B 977 (2022) 115734
A.2. Lie superalgebra sl(n|1)

The Lie superalgebra sl(n|1) is generated by the Cartan directions Hi, I with i = 1, 2, . . . , n −
1 and bosonic generators Ji,j with i �= j and i, j = 1, 2, . . . , n. Moreover, there are fermionic 
generators Fi, Gi with i = 1, 2, . . . n. The generators may be expressed by matrices in the n|1-
dimensional representation. We introduce elementary matrices (eI,J )K,L = δI,KδJ,L. The Cartan 
generators may be expressed as

Hi = ei,i − ei+1,i+1 , I = 1

n − 1

(
n∑

i=1

ei,i + nen+1,n+1

)
(A.6)

with i = 1, 2, . . . , n − 1. Other bosonic generators are

Ji,j = ei,j (i �= j) . (A.7)

The non-trivial commutation relations among them are

[Hi,Jk,l] = (δi,k − δi+1,k − δi,l + δi+1,l)Jk,l ,

[Jij , Jk,l] = δj,kJi,l − δi,lJk,j .

(A.8)

The fermionic generators are

Fi = en+1,i , Gi = ei,n+1 (A.9)

and the commutation relations

[Hi,Fj ] = −δi,jFj + δi+1,jFj , [Hi,Gj ] = δi,jGj − δi+1,jGj ,

[I,Fj ] = Fj , [I,Gj ] = −Gj , [Ji,j ,Gk] = δj,kGi , [Ji,j ,Fk] = −δi,kFj

(A.10)

might be useful. With this definition, non-trivial norms are given by

〈Hi,Hj 〉 = G
(n)
ij , 〈I, I 〉 = − n

n − 1
,

〈Ji,j , Jk,l〉 = δi,lδj,k , 〈Gi,Fj 〉 = −〈Fi,Gj 〉 = δi,j .

(A.11)

Here G(n)
ij is the Cartan matrix of sl(n).

Appendix B. Large N = 4 superconformal algebra

The large N = 4 superconformal algebra is generated by the energy momentum tensor T , 
four spin 3/2 generators G±± and two set of affine sl(2) currents J a

i with a = ±, 3 and i = 1, 2
[36,37]. We may denote the two levels of sl(2) current algebras by k′

1 and k′
2, then the central 

charge is given by

c = 3(k′
1 + k′

2) − 6k′
1k

′
2

k′
1 + k′

2 − 2
(B.1)

as in (6.47). A free field realization of the algebra is given in subsection 6.3. In this appendix, we 
summarize the OPEs among the generators.
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We can check that the energy momentum tensor (6.46) satisfies the usual OPE with the central 
charge (6.47). Moreover, we can show that the other generators are primary with respect to the 
energy momentum tensor. The spin one generators satisfy two affine sl(2) current algebras with 
levels k′

1 and k′
2 almost by construction. With our convention, the spin 3/2 generators transform 

under the action of sl(2) currents as

J 3
1 (z)G±ε(0) ∼ ± 1

2G±ε(0)

z
, J∓

1 (z)G±ε(0) ∼ ±G∓ε(0)

z
,

J 3
2 (z)Gε±(0) ∼ ± 1

2Gε±(0)

z
, J∓

2 (z)Gε±(0) ∼ ±Gε∓(0)

z

(B.2)

with ε = ±.
The most non-trivial OPEs are among spin 3/2 fermionic generators, which produce compos-

ite operators consisting of two sl(2) currents. We find that

G++(z)G++(0) ∼
− 2

k′
1+k′

2−2J+
1 J+

2 (0)

z
,

G++(z)G−+(0) ∼
2k′

1
k′

1+k′
2−2J+

2 (0)

z2 +
k′

2
k′

1+k′
2−2∂J+

1 (0) − 2
k′

1+k′
2−2J 3

1 J+
2 (0)

z
,

G++(z)G+−(0) ∼
2k′

2
k′

1+k′
2−2J+

1 (0)

z2 +
k′

2
k′

1+k′
2−2∂J+

1 (0) − 2
k′

1+k′
2−2J+

1 J 3
2 (0)

z
,

G++(z)G−−(0) ∼
2k′

2
k′

1+k′
2−2J 3

1 (0) + 2k′
1

k′
1+k′

2−2J 3
1 (0)

z2

+
k′

2
k′

1+k′
2−2∂J 3

1 (0) + k′
2

k′
1+k′

2−2∂J 3
2 (0) + T (0)

z

+
1

k′
1+k′

2−2 (J 3
1 J 3

1 (0) − 1
2J+

1 J−
1 (0) − 1

2J−
1 J+

1 (0))

z

+
1

k′
1+k′

2−2 (J 3
2 J 3

2 (0) − 1
2J+

2 J−
2 (0) − 1

2J−
2 J+

2 (0)) − 2
k′

1+k′
2−2J 3

1 J 3
2 (0)

z
,

G−+(z)G−+(0) ∼
− 2

k′
1+k′

2−2J−
1 J+

2 (0)

z
, (B.3)

G−+(z)G+−(0) ∼
2k′

2
k′

1+k′
2−2J 3

1 (0) − 2k′
1

k′
1+k′

2−2J 3
1 (0)

2
z
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+
k′

2
k′

1+k′
2−2∂J 3

1 (0) − k′
1

k′
1+k′

2−2∂J 3
2 (0) − T (0)

z

+
− 1

k′
1+k′

2−2 (J 3
1 J 3

1 (0) − 1
2J+

1 J−
1 (0) − 1

2J−
1 J+

1 (0))

z

+
− 1

k′
1+k′

2−2 (J 3
2 J 3

2 (0) − 1
2J+

2 J−
2 (0) − 1

2J−
2 J+

2 (0)) − 2
k′

1+k′
2−2J 3

1 J 3
2 (0)

z
,

G+−(z)G+−(0) ∼
− 2

k′
1+k′

2−2J+
1 J−

2 (0)

z
,

G−+(z)G−−(0) ∼
2k′

2
k′

1+k′
2−2J−

1 (0)

z2 +
k′

2
k′

1+k′
2−2∂J−

1 (0) − 2
k′

1+k′
2−2J−

1 J 3
2 (0)

z
,

G+−(z)G−−(0) ∼
2k′

1
k′

1+k′
2−2J−

2 (0)

z2 +
k′

1
k′

1+k′
2−2∂J−

2 (0) − 2
k′

1+k′
2−2J 3

1 J−
2 (0)

z
,

G−−(z)G−−(0) ∼
− 2

k′
1+k′

2−2J−
1 J−

2 (0)

z
.

Appendix C. Boundary SL(2|1) WZNW model

In this appendix, we find boundary actions for branes in the SL(2|1) WZNW model. For this, 
we follow the strategy taken for the OSP(1|2) WZNW model in [55]. Assigning two different 
gluing conditions for sl(2|1) currents at the boundary, we can construct two types of branes, 
which will be called as B-branes and A-branes by following usual convention.

As in the case of OSP(1|2) WZNW model, it is convenient to start from the first order 
formulation only for the bosonic fields. This means that we use the classical action

S = k

2π

∫
d2z
[
∂̄φ1∂φ1 − ∂̄φ2∂φ2 − e−φ1−φ2 ∂̄θ1∂θ̄1 + e−φ1+φ2 ∂̄θ2∂θ̄2

]
+ 1

2π

∫
d2z
[
β
(
∂̄γ − 1

2 (θ2∂̄θ1 + θ1∂̄θ2)
)+ β̄

(
∂γ̄ − 1

2 (θ̄2∂θ̄1 + θ̄1∂θ̄2)
)]

− 1

2πk

∫
d2zββ̄e2φ1 .

(C.1)

The equations of motion lead to

β = ke−2φ1(∂γ̄ − 1
2 (θ̄2∂θ̄1 + θ̄1∂θ̄2)) , β̄ = ke−2φ1(∂̄γ − 1

2 (θ2∂̄θ1 + θ1∂̄θ2)) . (C.2)

We express the sl(2|1) currents by
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J̄ (z̄) = kg−1∂̄g (C.3)

= J̄ F+
F+ − J̄ G+

G+ + J̄ E+
E+ + 2J̄ H H − 2J I I + J̄ F−

F− − J̄ G−
G− + J̄ E−

E− .

With the help of equations of motion in (C.2), we find

J̄ F+ = ke−φ1−φ2 ∂̄θ1 − θ̄2β̄ ,

J̄ G+ = −ke−φ1+φ2 ∂̄θ2 + θ̄1β̄ ,

J̄ E+ = β̄ ,

J̄ H = k∂̄φ1 + γ̄ β̄ − k
2e−φ1−φ2 θ̄1∂̄θ1 − k

2e−φ1+φ2 θ̄2∂̄θ2 ,

J̄ I = −k∂̄φ2 − k
2e−φ1−φ2 θ̄1∂̄θ1 + k

2e−φ1+φ2 θ̄2∂̄θ2 + 1
2 θ̄1θ̄2β̄ ,

J̄ F− = k∂̄θ̄2 − kθ̄2(∂̄φ1 − ∂̄φ2) − θ̄2γ̄ β̄ + ke−φ1−φ2 γ̄ ∂̄θ1 − k
2e−φ1−φ2 θ̄1θ̄2∂̄θ1 ,

J̄ G− = −k∂̄θ̄1 + kθ̄1(∂̄φ1 + ∂̄φ2) + θ̄1γ̄ β̄ − ke−φ1+φ2 γ̄ ∂̄θ2 − k
2e−φ1+φ2 θ̄1θ̄2∂̄θ2 ,

J̄ E− = k
2 (θ̄1∂̄ θ̄2 + θ̄2∂̄ θ̄1) + k∂̄γ̄ − 2kγ̄ ∂̄φ1 − γ̄ γ̄ β̄

+ ke−φ1−φ2 γ̄ θ̄1∂̄θ1 + ke−φ1+φ2 γ̄ θ̄2∂̄θ2 + kθ̄1θ̄2∂̄φ2 .

(C.4)

We define J a in an analogous way but with replacing ∂̄θi by −∂θ̄i , see (4.5).

C.1. Boundary actions for B-branes

We examine a B-brane corresponding to the gluing conditions

J a = J̄ a (C.5)

at the boundary in the current convention. The conditions can be reproduced from the fields 
satisfying

β = β̄ , γ̄ − γ = ceφ1 + 1
2 (θ1θ̄2 + θ2θ̄1) ,

ke−φ1−φ2(∂̄θ1 + ∂θ̄1) = β(θ̄2 − θ2) , ke−φ1+φ2(∂̄θ2 + ∂θ̄2) = β(θ̄1 − θ1) ,

k(∂̄ − ∂)φ1 + cβeφ1 − k

4

[
e−φ1−φ2(θ̄1 − θ1)(∂̄θ1 − ∂θ̄1) + e−φ1+φ2(θ̄2 − θ2)(∂̄θ2 − ∂θ̄2)

]
= 0 ,

(∂̄ − ∂)φ2 + 1

4

[
e−φ1−φ2(θ̄1 − θ1)(∂̄θ1 − ∂θ̄1) − e−φ1+φ2(θ̄2 − θ2)(∂̄θ2 − ∂θ̄2)

]= 0 ,

(C.6)
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2(∂̄ θ̄2 − ∂θ2) − (θ̄2 − θ2)(∂̄ + ∂)(φ1 − φ2) − ce−φ2(∂θ̄1 − ∂̄θ1) = 0 ,

2(∂̄ θ̄1 − ∂θ1) − (θ̄1 − θ1)(∂̄ + ∂)(φ1 + φ2) − ceφ2(∂θ̄2 − ∂̄θ2) = 0

at the boundary.
We would like to construct boundary action which leads to the above conditions. Using the 

last two equations, we obtain

4 − c2

4
(θ̄1 − θ1)(∂̄θ1 − ∂θ̄1) = −(θ̄1 − θ1)(∂̄ + ∂)(θ̄1 − θ1)

+ c

2
eφ2(θ̄1 − θ1)(∂̄ + ∂)(θ̄2 − θ2) − c

4
eφ2(θ̄1 − θ1)(θ̄2 − θ2)(∂̄ + ∂)(φ1 − φ2) ,

4 − c2

4
(θ̄2 − θ2)(∂̄θ2 − ∂θ̄2) = −(θ̄2 − θ2)(∂̄ + ∂)(θ̄2 − θ2)

+ c

2
e−φ2(θ̄2 − θ2)(∂̄ + ∂)(θ̄1 − θ1) + c

4
e−φ2(θ̄1 − θ1)(θ̄2 − θ2)(∂̄ + ∂)(φ1 + φ2) .

(C.7)

This implies that the boundary action is given by

Sboundary = 1

2πi

∫
duβ(γ̄ − γ − ceφ1 − 1

2
(θ1θ̄2 + θ2θ̄1))

+ k

2πi

1

4 − c2

∫
due−φ1−φ2(θ̄1 − θ1)(∂ + ∂̄)(θ̄1 − θ1)

+ k

2πi

1

4 − c2

∫
due−φ1+φ2(θ̄2 − θ2)(∂ + ∂̄)(θ̄2 − θ2)

− k

2πi

1

4 − c2

c

2

∫
due−(φ1+φ2)/2(θ̄1 − θ1)(∂ + ∂̄)

[
e−(φ1−φ2)/2(θ̄2 − θ2)

]
.

(C.8)

We move to the first order formulation both for the bosonic and fermionic fields by introducing 
boundary fermions. The bulk action is given by (4.4) and the boundary action is

Sboundary = 1

2πi

∫
du
[
β(γ̄ − γ − ceφ1) − (θ̄1 − θ1)p1 − (θ̄2 − θ2)p2

]
+ k

2πi

∫
duη(∂ + ∂̄)η̄ + 1

2πi

∫
du(μ1η + μ2η̄)e(φ1+φ2)/2( 1

4β(θ2 + θ̄2) + p1) (C.9)

+ 1

2πi

∫
du(μ3η + μ4η̄)e(φ1−φ2)/2( 1

4β(θ1 + θ̄1) + p2) .

Here the parameters μ1, μ2, μ3, μ4 should satisfy

μ3μ2 − μ1μ4 = 2(4 − c2)

kc
, μ3μ4 = μ1μ2 = 4(c2 − 4)

kc2 . (C.10)
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At the boundary we assign

β = β̄ , p1 = p̄1 , p2 = p̄2 . (C.11)

The first line of (C.9) may be included in the bulk action as

S = 1

2π

∫
d2z

[
k∂̄φ1∂φ1 − k∂̄φ2∂φ2 − γ ∂̄β − γ̄ ∂β̄ +

2∑
a=1

(θa∂̄pa + θ̄a∂p̄a) − 1

k
e2φ1ββ̄

]

+ 1

2kπ

∫
d2z
[
eφ1+φ2(p1 + 1

2βθ2)(p̄1 + 1
2 β̄θ̄2) − eφ1−φ2(p2 + 1

2βθ1)(p̄2 + 1
2 β̄θ̄1)

]
,

(C.12)

see, e.g., [71,56] as well. Then the boundary action becomes

Sboundary = k

2πi

∫
duη(∂ + ∂̄)η̄ − c

2πi

∫
duβeφ1

+ 1

2πi

∫
du(μ1η + μ2η̄)e(φ1+φ2)/2( 1

4β(θ2 + θ̄2) + p1)

+ 1

2πi

∫
du(μ3η + μ4η̄)e(φ1−φ2)/2( 1

4β(θ1 + θ̄1) + p2) .

(C.13)

C.2. Boundary actions for A-branes

In this subsection, we examine an A-brane corresponding to the gluing conditions

JH = J̄ H , J I = −J̄ I , J F+ = −J̄ G+
, JG+ = −J̄ F+

,

J F− = −J̄ G−
, JG− = −J̄ F−

, JE+ = J̄ E+
, JE− = J̄ E−

(C.14)

at the boundary. The conditions can be reproduced from the fields satisfying

β = β̄ , γ̄ − γ = ceφ1 + 1
2 (θ1θ̄1 + θ2θ̄2) ,

ke−φ1(eφ2∂θ̄2 + e−φ2 ∂̄θ1) = β(θ̄2 − θ1) , ke−φ1(e−φ2∂θ̄1 + eφ2 ∂̄θ2) = β(θ̄1 − θ2) ,

k(∂̄ − ∂)φ1 + cβeφ1

− k

4
e−φ1

[
(θ2 − θ̄1)(e

φ2∂θ̄2 − e−φ2 ∂̄θ1) + (θ1 − θ̄2)(e
−φ2∂θ̄1 − eφ2 ∂̄θ2)

]= 0 ,

k(∂̄ + ∂)φ2 + k

4
e−φ1

[
(θ2 − θ̄1)(e

φ2∂θ̄2 − e−φ2 ∂̄θ1) − (θ1 − θ̄2)(e
−φ2∂θ̄1 − eφ2 ∂̄θ2)

]= 0 ,

2(∂̄ θ̄1 − ∂θ2) − (θ̄1 − θ2)
[
(∂̄ + ∂)φ1 + (∂̄ − ∂)φ2

]− c(eφ2 ∂̄θ2 − e−φ2∂θ̄1) = 0 ,

2(∂̄ θ̄2 − ∂θ1) − (θ̄2 − θ1)
[
(∂̄ + ∂)φ1 − (∂̄ − ∂)φ2

]− c(e−φ2 ∂̄θ1 − eφ2∂θ̄2) = 0 (C.15)
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at the boundary.
We would like to realize these equations from a theory consisting with free kinetic terms and 

interaction terms. For free parts, we should assign Dirichlet boundary condition for φ2. In order 
to realize this, we may set

φ2 = φL
2 (z) + φR

2 (z̄) = 0 (C.16)

at the boundary. We further introduce a dual variable φ̃2 = φL
2 (z) − φR

2 (z̄). The above equations 
are now given by

β = β̄ , γ̄ − γ = ceφ1 + 1
2 (θ1θ̄1 + θ2θ̄2) ,

ke−φ1(∂θ̄2 + ∂̄θ1) = β(θ̄2 − θ1) , ke−φ1(∂θ̄1 + ∂̄θ2) = β(θ̄1 − θ2) ,

k(∂̄ − ∂)φ1 + cβeφ1 − k

4
e−φ1

[
(θ2 − θ̄1)(∂θ̄2 − ∂̄θ1) + (θ1 − θ̄2)(∂θ̄1 − ∂̄θ2)

]= 0 ,

k(∂̄ − ∂)φ̃2 − k

4
e−φ1

[
(θ2 − θ̄1)(∂θ̄2 − ∂̄θ1) − (θ1 − θ̄2)(∂θ̄1 − ∂̄θ2)

]= 0 ,

2(∂̄ θ̄1 − ∂θ2) − (θ̄1 − θ2)(∂̄ + ∂)(φ1 − φ̃2) − c(∂̄θ2 − ∂θ̄1) = 0 ,

2(∂̄ θ̄2 − ∂θ1) − (θ̄2 − θ1)(∂̄ + ∂)(φ1 + φ̃2) − c(∂̄θ1 − ∂θ̄2) = 0 .

(C.17)

From the last two equations we find

2(θ2 − θ̄1)(∂̄ + ∂)(θ̄2 − θ1) − (θ2 − θ̄1)(θ̄2 − θ1)(∂̄ + ∂)(φ1 + φ̃2)

− (c − 2)(θ2 − θ̄1)(∂̄θ1 − ∂θ̄2) = 0 ,

2(θ1 − θ̄2)(∂̄ + ∂)(θ̄1 − θ2) − (θ1 − θ̄2)(θ̄1 − θ2)(∂̄ + ∂)(φ1 − φ̃2)

− (c − 2)(θ1 − θ̄2)(∂̄θ2 − ∂θ̄1) = 0 .

(C.18)

This implies that the boundary action is

Sboundary = 1

2πi

∫
duβ(γ̄ − γ − ceφ − 1

2
(θ1θ̄1 + θ2θ̄2))

+ k

2πi

1

c − 2

∫
due−(φ1+φ̃2)/2(θ̄1 − θ2)(∂ + ∂̄)

[
e−(φ1−φ̃2)/2(θ1 − θ̄2)

]
.

(C.19)

We move to the first order formulation also for the fermionic fields. With the bulk action (4.4), 
the boundary action is

Sboundary = 1

2πi

∫
du
[
β(γ̄ − γ − ceφ1) − (θ̄2 − θ1)p1 − (θ̄1 − θ2)p2

]
+ k

∫
duη(∂ + ∂̄)η̄ + μ1

∫
duηe(φ1+φ̃2)/2( 1

4β(θ2 + θ̄1) + p1) (C.20)

2πi 2πi
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+ μ2

2πi

∫
duη̄e(φ1−φ̃2)/2( 1

4β(θ1 + θ̄2) + p2) .

Here the parameters should satisfy

μ1μ2 = 1

c − 2
. (C.21)

The boundary conditions are now assigned as

β = β̄ , φ2 = 0 , p1 = p̄2 , p2 = p̄1 . (C.22)

In terms of the bulk action (C.12), the boundary action is

Sboundary = k

2πi

∫
duη(∂ + ∂̄)η̄ − c

2πi

∫
duβeφ1 (C.23)

+ μ1

2πi

∫
duηe(φ1+φ̃2)/2( 1

4β(θ2 + θ̄1) + p1)

+ μ2

2πi

∫
duη̄e(φ1−φ̃2)/2( 1

4β(θ1 + θ̄2) + p2) .

Appendix D. Generalized FZZ-triality

In section 4, the coset (1.4) has been examined and its correlation functions of primary oper-
ators have been shown to match with those of sine-Liouville theory or cigar model described by 
(1.1). In succeeding sections, it was shown how the properties are useful to derive other duali-
ties, such as the one between the coset (1.7) and large N = 4 super Liouville theory. Recall that 
many trialities were conjectured by Gaiotto-Rapčák [13] and in particular a series of generalized 
FZZ-dualities were derived in [4]. In this appendix we examine its relation to a coset of the type 
(1.8), whose symmetry algebra is Yn,1,0-algebra in the notation of [13]. We name the relation as 
generalized FZZ-triality and expect it to be useful for other dualities as in the case of the original 
FZZ-triality.

D.1. Bosonic triality

We start from a free field realization of affine Lie algebra sl(n), see, e.g., [26]. We introduce 
n free bosons φa and n(n − 1)/2 pairs of (βi,j , γi,j )-systems with i > j , where the weights of 
(βi,j , γi,j ) are (1, 0). A linear combination of n free bosons φa decouples from the rest. The 
non-trivial OPEs are

φa(z)φb(0) ∼ −δa,b ln z , γi,j (z)βk,l(0) ∼ δi,kδj,l

z
. (D.1)

The currents J sl(n)
i,j with i < j are given by

J
sl(n)
i,j = βj,i −

n∑
l=j+1

γl,j βl,i (D.2)

and the Cartan subalgebra is generated by
38



T. Creutzig and Y. Hikida Nuclear Physics B 977 (2022) 115734
H sl(n)
a = Ĥ sl(n)

a − Ĥ
sl(n)
a+1 (D.3)

with

Ĥ sl(n)
a = √

k − n∂φa −
a−1∑
l=1

γa,lβa,l +
n∑

l=a+1

γl,aβl,a . (D.4)

The other generators J sl(n)
i,j (i > j) can be fixed through the OPEs with these currents.

We then construct a free field realization of affine Lie superalgebra sl(n|1). We prepare an 
additional free boson ϕ and n pairs of free fermions (pj , θj ) with j = 1, 2, . . . , n such that

ϕ(z)ϕ(0) ∼ ln z , pi(z)θj (0) ∼ δi,j

z
. (D.5)

The weights of (pj , θj ) are (1, 0), respectively. We look for a free field realization such that 
Ji,j = J

sl(n)
i,j for i < j . From the consistency with Ji,j = J

sl(n)
i,j , we find

Fi = pi +
n∑

l=i

γl,ipl . (D.6)

The Cartan generators are similarly obtained as

Ha = Ĥa − Ĥa+1 , Ĥa = √
k − n + 1∂φa −

a−1∑
l=1

γa,lβa,l +
n∑

l=a+1

γl,aβl,a − paθa (D.7)

and

I =
√

k − n + 1

n − 1

(
n∂ϕ +

n∑
a=1

∂φa

)
+

n∑
j=1

pjθj . (D.8)

From the conditions to commute with these currents, we find out screening operators as

Qi =
∫

dzVi(z) (D.9)

with

Vl =
⎛⎝βl+1,l −

l−1∑
j=1

βl+1,j γl,j − pl+1θl

⎞⎠ e
1√

k−n+1
(φl−φl+1) (D.10)

for l = 1, 2, . . . , n − 1 and

V0 = p1e
− 1√

k−n+1
(ϕ+φ1)

. (D.11)

We then move to find a free field realization of the symmetry algebra of the coset (1.8) by 
applying the method reviewed in section 3. It is convenient to bosonize the free fermions as

pi = eiXi , θi = e−iXi , Xi(z)Xj (0) ∼ − ln z . (D.12)

We then introduce new bosons by

Ĥ a = √
k − n∂φ̂a −

a−1∑
l=1

γa,lβa,l +
n∑

l=a+1

γl,aβk,a , I =
√

nk

n − 1
∂ϕ̂ . (D.13)
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The field space of the coset (1.8) should be orthogonal to φ̂a − φ̂a+1 and η̂. Furthermore, 
(βi,j , γi,j ) with all i > j are ignored. We define new bosons by

√
k − n + 1Xa + iφa = −√

k − nX̂a , ϕ + i

√
k − n

n

n∑
a=1

X̂a = −i

√
k

n
χ̂ . (D.14)

The combinations x̂a = X̂a − X̂a+1 with a = 1, 2, . . . , n − 1 and χ̂ are regular with respect to 
φ̂a − φ̂a+1 and ϕ̂. The screening operators are now written as

Vl = −e
i

√
k−n

k−n+1 (X̂l−X̂l+1) , V0 = e
−i

√
k−n

k−n+1 (X̂1− 1
n

∑n
a=1 X̂a)+i

√
k

n(k−n+1)
χ̂

. (D.15)

Note that

X̂1 − 1

n

n∑
a=1

X̂a =
n∑

l=1

G(n)1l x̂l . (D.16)

Moreover, G(n)
ij is the Cartan matrix of sl(n) and G(n)ij is the inverse matrix of G(n)

ij . These are 
the same as those for Y1,0,n-algebra obtained in appendix B of [4] once the level k is identified 
with that of [4] (denoted κ here) as

n − k

k − n + 1
= κ − n . (D.17)

D.2. Fermionic triality

In this subsection, we examine the coset

SL(n|1)k ⊗ SO(2)1

SL(n)k ⊗ U(1)
, (D.18)

where SO(2)1 represents a complex fermion ψ± with weight 1/2. We may bosonize the 
fermions as

ψ± = e±iY , Y (z)Y (0) ∼ − ln z . (D.19)

The generators of sl(n)k in the denominator is the same as before. However, the generator of 
u(1) is shifted as

Ĩ = I + ψ+ψ− = I + i∂Y . (D.20)

In order to generate the orthogonal space, we need another field Ŷ in addition to X̂a, χ̂ . We may 
choose the field as

i

√
kn

n − 1

(
1 + kn

n − 1

)
Ŷ =

√
k − n + 1

n − 1

(
nϕ +

n∑
a=1

φa

)
+ i

n∑
i=1

Xa − i
kn

n − 1
Y . (D.21)

Further rotating the fields as√
k

n(k − n + 1)
χ̂ →

√
k

n(k − n + 1)
− 1χ̂ − Ŷ , (D.22)

√
k

n(k − n + 1)
Ŷ → χ̂ +

√
k

n(k − n + 1)
− 1Ŷ , (D.23)
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the screening operators become

Vl = −e
i

√
k−n

k−n+1 (X̂l+1−X̂l ) , V0 = e
−i

√
k−n

k−n+1 (X̂1− 1
n

∑n
a=1 X̂a)+i

√
k

n(k−n+1)
−1χ̂−iŶ

. (D.24)

They reproduce (4.20) with (4.19) in [4].
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