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Abstract We numerically and analytically work out the
first-order post-Newtonian (1pN) orbital effects induced on
the semimajor axis a, the eccentricity e, the inclination
I , the longitude of the ascending node �, the longitude
of perihelion � , and the mean longitude at epoch ε of a
test particle orbiting its primary, assumed static and spher-
ically symmetric, by a distant massive third body X. For
Mercury, the rates of change of the linear trends found
are İX

1pN = −4.3 microarcseconds per century
(
μas cty−1

)
,

�̇X
1pN = 18.2 μas cty−1, �̇X

1pN = 30.4 μas cty−1, ε̇X
1pN =

271.4 μas cty−1, respectively. Such values, which are due
to the added actions of the other planets from Venus to
Saturn, are essentially at the same level of, or larger by
one order of magnitude than, the latest formal errors in the
Hermean orbital precessions calculated with the EPM2017
ephemerides. The perihelion precession �̇X

1pN turns out to be
smaller than some values recently appeared in the literature
in view of a possible measurement with the ongoing Bepi-
Colombo mission. Linear combinations of the supplementary
advances of the Keplerian orbital elements for several plan-
ets, if determined experimentally by the astronomers, could
be set up in order to disentangle the 1pN N -body effects of
interest from the competing larger precessions like those due
to the Sun’s quadrupole moment J2 and angular momentum
S.

1 Introduction

In its weak-field and slow-motion approximation, general
relativity1 predicts that, in addition to the time-honored
first-order post-Newtonian (1pN) gravitoelectric and grav-

1 See, e.g., Debono & Smoot [2] and references therein for a recent
overview on its status and challenges.

a e-mail: lorenzo.iorio@libero.it (corresponding author)

itomagnetic precessions induced by the mass monopole
M (Schwarzschild) and the spin dipole S (Lense-Thirring)
moments of the central body acting as source of the gravita-
tional field, further 1pN orbital effects due to the presence of
other interacting masses arise as well [13]. Let us consider
a nonrotating primary of mass M , assumed as origin of a
locally inertial coordinate system, orbited by a test particle
located at r and moving with velocity v. If a distant, pointlike
body X of mass MX is present at rX and moves with velocity
vX with respect to M , the test particle experiences certain
1pN accelerations which, from Eq. (4) of Will [13], are

AG2 = 2G2MMX

c2r3
X

[
r̂ − 6

(
r̂ · r̂X

)
r̂X + 3

(
r̂ · r̂X

)2 r̂
]
, (1)

AG = GMXr

c2r3
X

{
4 v

[(
v · r̂) − 3

(
r̂ · r̂X

) (
v · r̂X

)]

−v2 [
r̂ − 3

(
r̂ · r̂X

)
r̂X

]}
, (2)

AvX = −GMX

c2r2
X

[
4 v × (

r̂X × vX
) − 3

(
r̂X · vX

)
v
]
. (3)

In Eqs. (1) to (3), which are a particular case of the full
1pN equations of motion for a system of N pontlike, mas-
sive bodies mutually interacting through gravitation2 ([9],
Eq. (9.127)), G is the Newton’s gravitational constant, and c
is the speed of light in vacuum.

Will [13] looked at the longitude of perihelion � of Mer-
cury finding an additional contribution to its 1pN secular
precession of about

�̇X
1pN = 0.22 milliarcseconds per century

(
mas cty−1

)

= 220 microarcseconds per century
(
μas cty−1

)
.

(4)

2 See also Brumberg & Kopeikin [1, Eq. (7.11), Eq. (7.12), Eq. (8.18)]
with the replacements Earth→Sun, Sun→Jupiter, and
satellite→Mercury.
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Eq. 4 was obtained by making some simplifying assump-
tions about the orbital geometries of both the perturbed and
the perturbing bodies, and includes the combined actions of
Venus, Earth, Mars, Jupiter and Saturn. It should be a direct
effect of the accelerations of Eqs. (1) to (3), and an indirect
consequence of the interplay between the usual Newtonian
N−body pull by the other planets and the Sun-only 1pN grav-
itoelectric acceleration. Eqs. (1) to (3) and all the standard
Newtonian and 1pN N -body dynamics is routinely modeled
in the data reduction softwares of the teams of astronomers
producing the planetary ephemerides like the Development
Ephemeris (DE) by the NASA Jet Propulsion Laboratory
(JPL) in Pasadena [3], the Intégrateur Numérique Plané-
taire de l’Observatoire de Paris (INPOP) by the Institut de
Mécanique Céleste et de Calcul des Éphémérides (IMCCE)
at the Paris Observatory [12], and the Ephemeris of Planets
and the Moon (EPM) by the Institute of Applied Astron-
omy (IAA) of the Russian Academy of Sciences (RAS) in
Saint Petersburg [7]. Will [13] claimed that Eq. (4) would
likely be detectable with the ongoing BepiColombo mission
to Mercury. According to Will [13], it would be so because
the expected � 10−6 accuracy with which the parameterized
Post-Newtonian (PPN) parameters β, γ should be measured
by such a spacecraft would correspond to an uncertainty in
the main contribution to the Mercury’s 1pN perihelion pre-
cession �̇1pN = 42.98 arcseconds per century

(′′ cty−1
)

as
little as

δ�̇1pN � 0.03 mas cty−1 = 30 μas cty−1. (5)

Iorio [4], after having pointed out that the indirect, mixed3

effects should likely be not measurable in practical planetary
data reductions, analytically worked out the direct perihelion
precessions due to Eqs. (1) to (3) for arbitrary orbital con-
figurations of both the test particle and the perturbing body
X. The total 1pN rate of change induced on the perihelion
of Mercury by all the other planets of the solar system from
Venus to Saturn would amount to ([4], Table 2)

�̇X
1pN = 0.15 mas cty−1 = 150 μas cty−1. (6)

Iorio [4] showed also that Eq. (6) would likely be over-
whelmed by the larger systematic errors due to the mismod-
eling in the competing secular precessions due to the Sun’s
oblateness J2 and angular momentum S (1pN Lense-Thirring
effect).

In this paper, we will show that the value reported in
Eq. (6) is, in fact, wrong because of an error by Iorio [4]
in the calculation of the precession due to Eq. (2). The cor-
rect size of the overall 1pN N−body perihelion precession

3 To avoid possible misunderstanding, we clarify that Eqs. (1) to (3)
are dubbed as “cross-terms” by Will [13], while here such a definition
designates the interplay among the standard Newtonian N -body and
1pN Sun’s monopole accelerations.

of Mercury will turn out to be even smaller than Eq. (6),
thus enforcing the pessimistic conclusions of Iorio [4] about
its possible measurability. As such, we will further explore
the consequences of Eqs. (1) to (3) by numerically work-
ing out the secular shifts induced by them on all the other
orbital elements, i.e. the semimajor axis a, the eccentric-
ity e, the inclination I , the longitude of the ascending node
�, and the mean longitude at epoch ε, and will compare
them with the uncertainties in the planetary orbital motions
inferred by Iorio [5] from the most recent version of the EPM
ephemerides [8]. Indeed, if and when the astronomers will
observationally produce the supplementary rates of change
�ȧobs, �ėobs, � İobs, ��̇obs, ��̇obs, and �ε̇obs of as many
planets as possible, it will be possible to generalize the
approach proposed by4 Shapiro [11] by suitably combining
them in order to disentangle the effects of Eqs. (1) to (3) in
from the other competing precessions due to, e.g., the Sun’s
J2 and S.

2 The 1pN N−body secular changes of the orbital
elements

2.1 Numerical integration of the equations of motion

We simultaneously integrate the equations of motion of Mer-
cury in Cartesian rectangular coordinates and the Gauss
equations for each orbital element with and without the
fifteen terms of the sum of Eqs. (1) to (3) calculated for
Venus, Earth, Mars, Jupiter and Saturn over a time span as
long as 1 cty in order to clearly single out the sought fea-
tures of motion: both runs share the same initial conditions
retrieved on the Internet from the WEB interface HORI-
ZONS maintained by the JPL. For consistency reasons with
the planetary data reductions available in the literature, we
use the equatorial coordinates of the International Celes-
tial Reference System (ICRS). Then, for each orbital ele-
ment, we plot in Fig. 1 the time series (blue curve) resulting
from the difference between the runs with and without the
1pN N−body accelerations. Finally, we fit a linear model
(yellow line) to its numerically produced signal, and esti-
mate its slope: the outcome is collected in the caption of
Fig. 1.

From Fig. 1, the secular trends of I, �, �, ε are apparent,
while a and e seem to experience long-term harmonic varia-
tions. The size of the slopes of the precessions of the angular

4 At that time, the aliasing Newtonian effect which should have been
disentangled from the Sun-only 1pN gravitoelectric perihelion preces-
sion by looking at other planets or highly eccentric asteroids was due
to the solar quadrupole mass moment J2.
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Fig. 1 Numerically integrated time series, in blue, of the shifts of the
semimajor axis a, eccentricity e, inclination I , longitude of the ascend-
ing node �, longitude of perihelion � , and mean longitude at epoch ε

of Mercury induced by the sum of all the fifteen 1pN perturbing accel-
erations of Eqs. (1) to (3) for X ranging from Venus to Saturn over a
time span 1 cty long. The units are m for a and microarcseconds (μas)
for all the other orbital elements. They were obtained for each orbital
element as differences between two time series calculated by numeri-
cally integrating the barycentric equations of motion of all the planets

from Mercury to Saturn in Cartesian rectangular coordinates with and
without the aforementioned 1pN N -body accelerations. The initial con-
ditions, referred to the Celestial Equator at the reference epoch J2000,
were retrieved from the WEB interface HORIZONS by NASA JPL; they
were the same for both the integrations. The slopes of the secular trends,
in yellow, fitted to the blue time series of �I (t), ��(t), ��(t), and
�ε(t) are İX

1pN = −4.3 μas cty−1, �̇X
1pN = 18.2 μas cty−1, �̇X

1pN =
30.4 μas cty−1, ε̇X

1pN = 271.4 μas cty−1, respectively

rates of change vary in the range � 1 − 100 μas cty−1 =
0.001 − 0.1 mas cty−1. In particular, it turns out that the sec-
ular precession of the perihelion is about five times smaller
than Eq. (6) ([4], Table 2), being as little as

�̇X
1pN = 30 μas cty−1 = 0.03 mas cty−1. (7)

Numerical tests conducted by switching off from time to time
each of Eqs. (1) to (3) for every single perturbing planet X
showed that the issue resides in the analytical calculation of
Eq. (B5) in Iorio [4] and in the consequent numerical results
of the third column from the left of Table 2 in Iorio [4].

2.2 Analytical calculation

It is also possible to analytically work out the long-term rates
of change of the Keplerian orbital elements of the test particle
with the Gauss perturbative equations applied to Eqs. (1) to
(3) by doubly averaging their right-hand-sides over the orbital
periods Pb and PX of the perturbed body and the perturber X,
respectively. The resulting expressions, especially those due
to Eqs. (1) to (2), are very cumbersome. Thus, we display
just approximate formulas for them to their leading order in
e. The shifts due to Eq. (3), which are relatively less involved,
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are displayed in full. In the next Sects., we use the shorthand
��

.= � − �X.
It turns out that there is an excellent agreement among the

numerical results of Sect. 2.1 and the analytical results shown
below.

2.2.1 The doubly averaged rates of change of the orbital
elements due to AG2

Here, we analytically calculate the doubly averaged rates of
change of the Keplerian orbital elements of the test particle,
to their leading order in e, due to Eq. (1). No further approx-
imations in the orbital configurations of both the perturbed
body and X are made. They are as follows.

The semimajor axis a stays constant since

ȧAG2 = 0. (8)

The rate of change of the eccentricity e turns out to be

ėAG2 = − 9 eμX
√

μ a

16 c2 a3
X

(
1 − e2

X

)3/2 EAG2 (I, IX, �, �X)

+O
(
e3

)
, (9)

with

EAG2

= 8 cos 2ω
(
cos I sin2 IX sin 2�� − sin I sin 2IX sin ��

)

− sin 2ω {−1 + cos 2IX [−3 + cos 2I (3 + cos 2��)]

− 6 sin2 IX cos 2�� + 4 sin 2I sin 2IX cos ��

+ 2 cos 2I sin2 ��
}
. (10)

As far as the rate of change of the inclination I is con-
cerned, we have

İAG2 = − 3 μX
√

μ a

c2 a3
X

(
1 − e2

X

)3/2 IAG2 (I, IX, �, �X)

+O
(
e2

)
, (11)

with

IAG2

.= sin IX (cos I cos IX+ sin I sin IX cos ��) sin ��.

(12)

The precession of the node � is

�̇AG2 = 3 μX
√

μ a

4 c2 a3
X

(
1 − e2

X

)3/2 NAG2 (I, IX, �, �X)

+O
(
e2

)
, (13)

with

NAG2 − 2 cos 2I csc I sin 2IX cos ��+
+ cos I

[
cos 2IX (3 + cos 2��) + 2 sin2 ��

]
. (14)

The precession of � due to Eq. (1) was correctly worked
out, to the zero order in e, in Eq. (B2) of Iorio [4]; thus, we
do not display it here.

The rate of change of the mean longitude at epoch ε is

ε̇AG2 = μX
√

μ a

4 c2 a3
X

(
1 − e2

X

)3/2 LAG2 (I, IX, �, �X)

+O
(
e2

)
, (15)

where

LAG2 = −1 + 3 cos I − 3 cos 2IX + 9 cos I cos 2IX

+ 12 sin2
(
I

2

)
sin2 IX cos 2��

+ 6 (1 + 2 cos I ) tan

(
I

2

)
sin 2IX cos ��. (16)

2.2.2 The doubly averaged rates of change of the orbital
elements due to AG

Here, we analytically work out the doubly averaged rates of
change of the Keplerian orbital elements of the test particle,
to their leading order in e, induced by Eq. (2). No further
approximations in the orbital configurations of both the per-
turbed body and X are made. We list them below.

For the semimajor axis a, we have

ȧAG = 3 μX a3/2 √
μ

2 c2 a3
X

(
1 − e2

X

)3/2 AAG (I, IX, �, �X)

+O
(
e2

)
, (17)

with

AAG = sin IX (− sin I cos IX)

+ cos I sin IX cos �� sin ��. (18)

The rate of change of the eccentricity e is

ėAG = − 3 eμX
√

μ a

2 c2 a3
X

(
1 − e2

X

)3/2 EAG (I, IX, �, �X)

+O
(
e3

)
, (19)

with

EAG = sin IX (− sin I cos IX)

+ cos I sin IX cos �� sin ��. (20)

The rate of change of the inclination I turns out to be

İAG = 3 μX
√

μ a

4 c2 a3
X

(
1 − e2

X

)3/2 IAG (I, IX, �, �X)

+O
(
e2

)
, (21)
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with

IAG

.= sin IX (cos I cos IX + sin I sin IX cos ��) sin ��.

(22)

The precession of the node � is

�̇AG = − 3 μX
√

μ a

16 c2 a3
X

(
1 − e2

X

)3/2 NAG (I, IX, �, �X)

+O
(
e2

)
, (23)

with

NAG

.= −2 cos 2I csc I sin 2IX cos ��

+ cos I
[
cos 2IX (3 + cos 2��) + 2 sin2 ��

]
.

(24)

For the precession of the longitude of perihelion � , we
have

�̇AG = − μX
√

μ a csc I

8 c2 a3
X

(
1 − e2

X

)3/2 W (I, IX, �, �X)

+O
(
e2

)
, (25)

with

W .= 9

2
sin3 I

[
−2 + sin2 IX (3 + cos 2��)

]

+ sin I {2 + 6 cos I + 6 cos 2IX−
− 3 sin2 IX [3 cos I + (−3 + cos I ) cos 2��]

}

− 6 sin2
(
I

2

)
sin 2IX cos ��

+ 3 (2 + 3 cos I ) sin2 I sin 2IX cos ��. (26)

Eq. (25)-eq. (26), which correct Eq. (B5) of Iorio [4], allow
to calculate the same values for Mercury which are obtained
with our numerical integrations of Sect. 2.1, limited to Eq. (2)
only, for each of the perturbing planets at a time.

The rate of change of the mean longitude at epoch ε is
given by

ε̇AG = − μX
√

μ a

32 c2 a3
X

(
1 − e2

X

)3/2 LAG (I, IX, �, �X)

+O
(
e2

)
, (27)

with

LAG = (−1 + 6 cos I + 3 cos 2I ) (1 + 3 cos 2IX)

+ 24 (2 + cos I ) sin2
(
I

2

)
sin2 IX cos 2� cos 2�X

+ 6 sec

(
I

2

) [
3 sin

(
3
I

2

)
+ sin

(
5
I

2

)]

sin 2IX cos � cos �X

+ 6 sec

(
I

2

) [
3 sin

(
3
I

2

)
+ sin

(
5
I

2

)]

sin 2IX sin � sin �X

+ 24 (2 + cos I ) sin2
(
I

2

)
sin2 IX sin 2� sin 2�X.

(28)

2.2.3 The doubly averaged rates of change of the orbital
elements due to AvX

Here, we analytically calculate the doubly averaged rates of
change of the Keplerian orbital elements of the test particle
caused by Eq. (3). No approximations in the orbital config-
urations of both the perturbed body and X are made; the
following expressions are exact.

The semimajor axis a and the eccentricity e are constant
since

ȧAvX
= 0, (29)

ėAvX
= 0. (30)

The rate of change of the inclination I is

İAvX
= −2 μX

√
μ sin IX sin ��

c2 a5/2
X

(
1 − e2

X

) . (31)

For the precession of the node � we have

�̇AvX
= 2 μX

√
μ (cos IX − cot I sin IX cos ��)

c2 a5/2
X

(
1 − e2

X

) . (32)

The precession of � due to Eq. (3) was correctly calcu-
lated in Eq. (B8) of Iorio [4]; as such, it is not shown here.

The rate of change of the mean longitude at epoch ε does
depend on e. It turns out to be

ε̇AvX
= 2 μX

√
μ

c2 a5/2
X

(
1 − e2

X

)LvX (I, �, IX, �X) , (33)

where

LvX =
(

1 + 3
√

1 − e2 cos I
)

cos IX

+
(

1 + 3
√

1 − e2 + 3
√

1 − e2 cos I
)

tan

(
I

2

)

sin IX cos ��. (34)

3 Confrontation with the observations

Iorio [5] attempted to calculate the formal uncertainties
in the secular rates of change of a, e, I, �, and � of
the planets of the solar system from the recently released
formal errors in a and the nonsingular orbital elements

123



  338 Page 6 of 7 Eur. Phys. J. C           (2020) 80:338 

e sin �, e cos �, sin I sin �, and sin I cos � estimated for
the same bodies with the EPM2017 ephemerides by Pit-
jeva & Pitjev [8]. Since, among other things, the 1pN N -
body equations of motion are routinely included in the
EPM software dynamics, such errors should be overall
regarded as representative of the current level of model-
ing the solar system dynamics along with measurement
errors. As such, they may be viewed as the uncertainties
that would affect a putative measurement of the effects
worked out in Sect. 2 if they were explicitly measured in
some dedicated data analysis. From the column dedicated
to Mercury in Table 1 of Iorio [5], it can be noted that the
1 − σ error in ȧ amounts to δȧobs = 0.003 m cty−1, while
for the other Keplerian orbital elements we have δėobs =
0.6 μas cty−1, δ İobs = 3 μas cty−1, δ�̇obs = 24 μas cty−1,

and δ�̇obs = 8 μas cty−1. From a comparison with the
expected 1pN rates of change of Fig. 1, it turns out that, with
the possible exception of the perihelion, they are about of the
same order of magnitude of the aforementioned uncertainties.
Moreover, as discussed in Pitjeva & Pitjev [8] and Iorio [5],
the latter ones may be optimistic. Thus, it is difficult to deem
the predicted 1pN N -body precession �̇X

1pN = 30 μas cty−1

as realistically measurable compared to a merely formal
uncertainty δ�̇obs = 8 μas cty−1. It is worth noticing that
such a tiny error would correspond to current bounds in the
PPN parameters β, γ as little as � 10−7, which are better
than the expected accuracy from the ongoing BepiColombo
mission quoted by Will [13]; see the discussion in Iorio [5]
about the reliability of such an evaluation. The mean longi-
tude at epoch ε seem, at first sight, more interesting since
its 1pN N -body rate is as large as ε̇X

1pN = 270 μas cty−1 =
0.27 mas cty−1. Iorio [5] did not calculate the uncertainty
in ε̇. In their Table 3, Pitjeva & Pitjev [8] released the for-
mal uncertainty in the planetary mean longitudes, dubbed
there as λ; for Mercury, it is as little as δλobs = 3.3 μas.
This implies that, in order to retrieve the uncertainty in ε̇, the
errors in the mean motion nb due to the mismodeling of the
Sun’s gravitational parameter μ and of the planet’s semima-
jor axis are required as well. Since δμobs = 1 × 1010 m3 s−2

[6], the resulting error in the Hermean mean motion is as
large as δnobs

b = 20 mas cty−1. It vanishes the possibility
of measuring the 1pN N -body effect on ε. As such, only a
dramatic improvement in the determination of the Hermean
orbit, which might be obtained when all the data from Bepi-
Colombo will be collected and processed, may bring the 1pN
N -body precessions due to the direct effect of Eqs. (1) to (3)
in the measurability domain.

On the other hand, even should this finally be the case,
the concerns raised by Iorio [4] about the systematic errors
caused by the competing Sun’s quadrupole and Lense-
Thirring rates of change are even reinforced by the present
analysis since the actual size of the 1pN N -body perihelion

precession of Mercury turned out to be smaller than the incor-
rect value of Eq. (6). Thus, it is hopeful that the astronomers
will finally provide the community with the supplementary
advances of all the other Keplerian orbital elements in addi-
tion to the perihelion. Indeed, if and when it will happen,
it would, then, be possible to set up linear combinations of
them suitably designed to cancel out, by construction, the
other unwanted precessions. An analogous approach, origi-
nally limited just to the perihelia of other planets and aster-
oids in order to separate the disturbing Sun’s J2 action from
the Schwarzschild-type rates of changes was proposed by
Shapiro [11]. It is also widely used in ongoing relativistic
tests with geodetic satellites in the Earth’s field; see, e.g.,
Renzetti [10], and references therein for an overview.

4 Summary and conclusions

Recently, Will [13] calculated a new general relativistic con-
tribution to the Mercury’s perihelion advance as large as
�̇X

1pN = 220 μas cty−1 arising from an approximated form
of the 1pN N -body equations of motion restricted to a hier-
archical three body system. He claimed that it may be mea-
sured in the next future by the ongoing BepiColombo mis-
sion to Mercury if it will reach a � 10−6 accuracy level
in constraining the PPN parameters β, γ . Later, the present
author first remarked in Iorio [4] that the indirect precession
due to the interplay of the Newtonian N -body and the 1pN
Sun’s Schwarzschild-like accelerations in the equations of
motion is likely undetectable in actual data reductions since
it cannot be expressed in terms of a dedicated, solve-for
parameter scaling an acceleration different from the afore-
mentioned ones which are routinely modeled. Then, he cal-
culated analytically the individual contributions to the peri-
helion advance induced directly by each of the approximated
1pN N -body accelerations put forth by Will [13] by finding
an overall precession of �̇X

1pN = 150 μas cty−1. Iorio [4] dis-
cussed also the impact of the systematic aliasing due to the
competing perihelion rates induced by the Sun’s quadrupole
mass moment J2 and angular momentum A via the Lense-
Thirring effect by noting that their mismodeling would likely
compromise a clean recovery of the 1pN effect of interest.

Here, the secular rates of change of all the other Kep-
lerian orbital elements a, e, I, �, � , and ε caused by
the same approximated 1pN N -body accelerations by Will
[13] were analytically worked out. A numerical integra-
tion of the equations of motion confirmed such findings in
the case of Mercury acted upon by the other planets from
Venus to Saturn. The resulting rates of change amount to
İX
1pN = −4.3 μas cty−1, �̇X

1pN = 18.2 μas cty−1, �̇X
1pN =

30.4 μas cty−1, ε̇X
1pN = 271.4 μas cty−1. As a result, the

Hermean 1pN N -body perihelion precession turned out to
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be smaller than the previously reported values because of
an error explicitly disclosed, at least in the calculation by
Iorio [4]. This makes even more difficult than before its pos-
sible present and future measurement. A comparison with
the merely formal uncertainties in some of the orbital sec-
ular rates of Mercury, recently obtained by Iorio [5] from
the EPM2017 ephemerides, showed that the sizes of the pre-
dicted 1pN N -body precessions are just at the same level or
even below them if, more realistically, they are rescaled by a
factor of � 10 − 50 [5]. If our future knowledge of the orbit
of the closest planet to the Sun will be adequately improved,
the systematic bias caused by other competing precessions
could be removed by suitably designing linear combinations
of the other Keplerian orbital elements of Mercury, provided
that the astronomers will determine also their supplementary
advances in addition to the perihelion’s one.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Because it is a
theoretical study.]
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