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1 Introduction and results

One of the important standing goals in quantum gravity is to understand the microstructure
of black holes. As a microscopic theory of quantum gravity, different attempts were made
to employ string theory to study the microscopic properties of black holes (for reviews
see for example [1, 2]). One such path is the “correspondence principle” [3, 4]. The basic
observation is that when one adiabatically shrinks a black hole horizon to the string scale, its
thermodynamic properties are qualitatively the same as a generic string state with the same
energy [5, 6]. A canonical version of the correspondence principle was offered in [7] in terms
of the thermal string theory partition function on (asymptotically) Rd×S1 (see also [8–14]).
For near-Hagedorn temperatures β − βH � ls, the first string winding mode χ around the
thermal circle is parametrically lighter than the string scale. Upon compactifying the
thermal circle, the authors found a (d dimensional) bound state solution of the winding
scalar together with gravity. This solution seems to describe a self-gravitating bound state
of hot strings. We will call this solution a “string star”. The Euclidean Schwarzschild black
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hole is another saddle that contributes to the thermal partition function.1 The solution is
perturbative only for large horizons, when the temperature is low enough, β � ls. As a
result, at generic intermediate temperatures β ∼ ls both the black hole and the string star
descriptions fail. A naive extrapolation from the perturbative regimes to β ∼ ls surprisingly
shows a qualitative agreement on the thermodynamic properties between the two saddles.
The conclusion might be that thermodynamically, the string star and the black hole are
two continuously connected phases. Recently [14] gave an extended and modern outlook
on the string star solution, including an analysis from the worldsheet perspective. Below
we will follow their conventions.

In this work we study the thermodynamic properties of the string star solution in the
middle of thermal anti de Sitter space (AdS), termed the “AdS string star”. This solution
should be understood as a saddle that contributes to the string theory partition function on
asymptotically (Euclidean) AdS. This partition function also has a (well known) Euclidean
AdS Schwarzschild solution called the AdS black hole. We will argue below that a similar
“correspondence principle” can be qualitatively drawn between the two Euclidean AdS
saddles.2 Studying string theory on AdS has two main advantages. First, the thermal
partition function in asymptotically flat space is an ill defined concept in quantum gravity
in general, and also in string theory [23]. The AdS partition function on the other hand
is well defined, where the radius of the thermal circle is held fixed only at the conformal
boundary of space. The second advantage is that string theory on AdS is holographically
dual to a (strongly coupled) conformal field theory (CFT) in one dimension lower [24].
Instead of an ill defined thermal partition function, the AdS partition function is well
defined and equals the thermal partition function of the dual CFT.

Let us describe our construction in more details. We consider the string theory Eu-
clidean partition function on asymptotically EAdSd+1 ×X9−d with a conformal boundary
of Sd−1×S1. HereX9−d is some 9−d dimensional compact Euclidean manifold. Holograph-
ically we are calculating the thermal partition function on an Sd−1×S1 of a d dimensional
CFT. In terms of this holographic CFT, we take the Sd−1 radius to be 1, and the length
of the S1 to be (dimensionless) βCFT. For the majority of the paper the holographic in-
terpretation won’t be crucial. The bulk saddle we will consider is a stringy excitation of
d + 1 dimensional thermal AdS. Thermal AdS has a topology of Rd × S1. The length of
the thermal circle at the origin of the spatial slice is β = lads · βCFT, with lads the AdS
curvature scale. Far from the origin, the thermal circle grows exponentially with the radial
coordinate. But for β − βH � ls and close enough to the origin, the winding mode of the
string on the thermal circle is light. In this regime we can follow [7] and dimensionally
reduce on the time direction. The result is an effective d dimensional theory (on a spatial
slice of AdSd+1) for the winding mode χ and gravity. In this setting we look for bound
state solutions.3 The general properties of this construction are explained in section 2.

The main results of our analysis are drawn in figures 2 and 1. In figure 2 we schemati-
cally draw the length scale L of the AdS string star compared to the flat space solution of [7]

1For a recent discussion of winding modes in solutions with this topology see [15].
2For the Hagedorn temperature in AdS and its relation to string-size AdS black holes see [16–22].
3This is different from the setting of [25], which involves a thermal circle outside of AdS space.
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Figure 1. Schematic phase diagram of the holographic thermal partition function on Sd−1 × S1,
drawn for d = 3. β labels the asymptotic length of the S1, it is the circumference of the thermal
circle at the origin of AdS space in the thermal AdS solution with the same boundary conditions.
In black is the d + 1 dimensional AdS black hole. For temperatures ls � β � lads 10 dimensional
black hole solutions exist (in red). For high enough temperatures small AdS black holes decay into
10 dimensional black holes through the Gregory-Laflamme (GL) instability (see section 6). The
AdS string star solution (in blue) exists around the Hagedorn temperature. It reliably joins with
the thermal gas phase (in gray) at the AdS Hagedorn temperature βc. At lower temperatures it is
believed to join with the (small) AdS black hole saddle.

as a function of the temperature β. For low enough temperatures l2s/lads � β − βH � ls
the size of the two solutions is very small and, by the equivalence principle, the solutions
coincide (see section 3). At higher temperatures the flat space string star grows until
its length scale diverges at the Hagedorn temperature βH . The AdS string star size also
grows with the temperature, but its length scale is bounded by L ≤ Lc ∼

√
lslads. The

solution reaches its maximal size at a critical temperature above the flat space Hagedorn
temperature βc < βH . At βc the solution’s amplitude goes to zero and it joins with the
trivial solution χ = 0. As a result, βc is also the Hagedorn temperature in AdS space. In
section 5 we analytically find the AdS Hagedorn temperature βc at leading order of the
AdS curvature. We also find the solution’s profile close to βc.

In figure 1 we schematically plotted the phase diagram of string theory on (asymptoti-
cally) thermal AdSd+1 as a function of the temperature (see also section 2.3). The thermal
AdS saddle, or the thermal gas phase, (in gray) dominates the canonical ensemble at low
temperatures. At high temperatures β . lads AdS black holes solutions (in black) exist
in two branches, “large” and “small”. The large AdS black hole dominates the canonical
ensemble at temperatures above the Hawking-Page temperature βH.P. ∼ lads [26–28]. The
small AdS black hole is always metastable. Its size gets smaller with the temperature such
that for ls � β � lads the solution is approximately a d + 1 dimensional Schwarzschild
black hole. As we said above, an AdS string star solution (in blue) exists for β − βH � ls,
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Figure 2. Schematic picture of the string star solution’s length scale as a function of the inverse
temperature (β − βH)/βH for 3 ≤ d ≤ 5. In orange we see the flat space solution of [7]. In blue
the AdS solution. The two coincide for low temperatures. They also coincide with the small (AdS)
black hole (drawn in black) at the correspondence point. The blue vertical line is the AdS Hagedorn
temperature βc.

and is approximately the flat space solution for low temperatures in this range. Therefore
the extrapolation of the AdS string star and the small AdS black hole to β ∼ ls follows
exactly the flat space analysis of [7]. We find the same qualitative agreement here between
the two AdS phases. At higher temperatures the string star’s amplitude goes to zero and
the solution smoothly joins with the thermal gas phase at βc. Note that in this regime
of temperatures the gas, the string star and the small AdS black hole are all metastable
phases of the canonical ensemble. The small AdS black hole saddle is also known to be
thermodynamically unstable [29], and in particular suffers from a Gregory-Laflamme (GL)
instability due to the full 10 dimensional geometry [30–32]. In section 6 we give evidence
that the AdS string star is also thermodynamically unstable, and has a GL-like instability.

String stars in flat space exist only for 3 ≤ d ≤ 5 [7]. In AdS on the other hand string
star solutions exist close to βc at every d. For d ≥ 6 the solution turns unreliable as one
decreases the temperature to the flat space Hagedorn temperature βH , and it does not exist
for lower temperatures. Numerical extrapolation of its thermodynamics properties shows
a qualitative agreement with the small AdS black hole (see section 7). This is a version of
the correspondence principle that exists only in AdS.

It is useful to understand the phase diagram of figure 1 in terms of the holographic
dual CFT. The thermal gas phase in the bulk is associated with the confined phase in
the CFT, and the large AdS black hole with the deconfined phase [27, 28]. In the CFT
at zero coupling, the two phases meet at the Hagedorn temperature without any further
metastable phase, such as the small AdS black hole [33, 34]. At weak coupling there is
an intermediate phase with an eigenvalue distribution that is non-uniform but ungapped,
and higher loop computations are required to see if it is thermodynamically dominant [34].
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One can conjecture [35] that this phase is continuously connected to a string star. In any
case at strong coupling it is natural to expect the small AdS black hole phase to connect
the large AdS black hole (deconfined) phase at high temperatures to the gas (confined)
phase at low temperatures [34]. Here we follow the speculation that this phase turns into a
string star around β ∼ ls before joining the confined phase, and study the latter behavior.
In those terms, this work offers predictions on the connection of this metastable phase to
the confined phase at strong coupling. Besides the value of the critical temperature βc, we
also find that the free energy close to βc is F ∼ (β − βc)2 (see section 5). This is the same
scaling found in weak coupling [34], and it was expected on general grounds also for strong
coupling [35].

Even if the string star and the black hole are two continuously connected phases, a high
order phase transition can still occur between them. In [14] it was argued, using worldsheet
methods, that in flat space type IIB a phase transition between the string star and the
black hole is necessary. It would be interesting to see if similar arguments can be used
directly in AdS as well. We can also consider these saddles in type IIB on AdS5×S5 using
the analysis of this work. The transition between the two happens in our setting when the
two phases are ignorant of the AdS geometry, and thus the argument from [14] follows.
This theory is holographic to N = 4 super Yang-Mills, in which a third order Gross-Wadia-
Witten phase transition was shown for the metastable phase in weak coupling [34]. If this
phase transition follows to strong coupling, as conjectured by [35, 36], it might be the same
phase transition advocated in [14].

More broadly, one may hope to find the states corresponding to the AdS string star in
the holographic CFT. At this point it seems very hard, first of all because the holographic
CFT is strongly coupled. Also, this phase has no clear order parameter that distinguishes
it from any other generic state at those temperatures. As a first step, further work can find
the (qualitative) expectation value of a Polyakov loop (as a function of the temperature
βCFT) in this phase compared to the other Euclidean saddles.

2 General properties of the AdS string star

2.1 The effective action

We are interested in the string theory Euclidean partition function on asymptotically
EAdSd+1 × X9−d with a conformal boundary of Sd−1 × S1, where X9−d is some 9 − d

dimensional compact Euclidean manifold. We will mostly focus on classical solutions in
which the X9−d factorizes. As a result, we will consider the low energy effective action on
(asymptotically) EAdSd+1. Specifically, we will consider a stringy excitation around the
thermal AdS geometry. It is given by the metric [27]

ds2 = β2 cosh2(ρ/lads)dt2 + dρ2 + l2ads sinh2(ρ/lads)dΩ2
d−1, (2.1)

with lads the AdS curvature scale. We identify the thermal circle by t ∼ t + 1 and use
a dimensionfull temperature β (related to the CFT dimensionless temperature by β =
lads · βCFT). The topology of the solution is Rd × S1. We denote the S1 radius at the
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origin (ρ = 0) by R0 = β/2π. Notice that in AdS units, it is also the holographic CFT
temporal radius. At any other point we have a radius R(ρ) = 1

2π
√
gtt = β

2π cosh(ρ/lads). As
ρ increases the radius diverges exponentially. At a given ρ we can consider the mass of a
string winding around the S1. At leading order in ls/lads the mass of such a mode is given
by the flat space computation on S1 × Rd, that we denote m2(R(ρ)). At the (flat space)
Hagedorn temperature RH = βH/(2π) (that depends on the string theory in question) the
winding mode becomes massless: m2(R = RH) = 0. For example if we take R0 = RH , the
winding mode is massless at the origin ρ = 0 of the thermal AdS, but exponentially massive
as we increase ρ. For high-enough temperatures we can consider the effective theory on
spatial slice of (2.1). When (R0−RH)� ls the winding mode of the string is light enough
deep inside the thermal AdS, that we can consistently add it to the effective d dimensional
theory. In this setting, we are looking for bound-state solutions for the winding mode and
their thermal properties.

The effective d dimensional action is derived in appendix A. We will consider solutions
with constant d dimensional dilaton φd = const, and allow a gravitational back-reaction
only of the gtt component. In other words, we consider the metric

ds2 = β2 cosh2(ρ/lads)e2ϕdt2 + dρ2 + sinh2(ρ/lads)dΩ2
d−1, (2.2)

where ϕ describes the U(1)-invariant fluctuations of the thermal circle. We note that the
d + 1 dimensional dilaton is given by Φ = φd + ϕ/2, and as a result not a constant (see
appendix A). This approximation is valid when derivatives are small, so we will need to
make sure our solution varies slowly enough.

We denote the string winding mode by χ(x), x being the collective d dimensional
coordinate of ρ,Ω. The resulting d dimensional action is

Id = 1
16πGN

∫
ddx

√
g(d) (2πR) e−2φd

·
(
−R+ 2Λ− 4(∇φd)2 + (∇ϕ)2 + |∇χ|2 +

(
m2(R) +R

∂m2

∂R
ϕ

)
|χ|2 +O(α′)

)
,

(2.3)

with the d+ 1 dimensional gravitational constant GN ' ld−1
s g2 (g is the d+ 1 dimensional

string constant), R(ρ) as given above, and the cosmological constant Λ = −d(d−1)/(2l2ads).
In (2.3) we took only the leading order interaction between the winding mode χ and the
metric mode ϕ. We also suppressed higher order interactions of χ with itself and with the
metric. These approximations are valid when the amplitudes of |χ|, |ϕ| � 1 are small. We
will justify it a posteriori below. Higher derivative and curvature terms are also suppressed.
This is justified as long as the solution size is larger than the string scale L� ls.

For heterotic and type II string theories the winding mode mass and the (flat space)
Hagedorn temperature are

m2
Heterotic(R) = R2

l4s
+ 1

4R2 −
R2
H

l4s
− 1

4R2
H

, RHeterotic
H /ls = 1 + 1√

2
,

m2
Type II(R) = R2 −R2

H

l4s
, RType II

H /ls =
√

2.
(2.4)

– 6 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
2

It will also be useful to define κ ≡ α′RH∂Rm
2(RH). For heterotic and type II string

theories
κHeterotic = 4

√
2, κType II = 4. (2.5)

We stress that unlike in flat space, here m2(R) and R∂Rm2(R) depend on the coordinate
ρ implicitly through R(ρ). In order to consistently include χ in the action, we assumed its
mass m2(R)� 1/l2s everywhere χ(ρ) is finite. At ρ = 0 the condition on the temperature
is (R0−RH)/RH � 1. In particular notice that temperatures around β ∼ ls are outside of
this region. For ρ ∼ lads the approximation breaks for every temperature. If the solution
length scale L� lads then the error is exponentially suppressed. We will see below that the
solution dynamically satisfies this condition, intuitively because the mass itself determines
the exponential decay of the solution.

2.2 The equation of motion

Without loss of generality we take the constant value of the dilaton to be φd = 0 (otherwise
it can be swallowed in the definition of GN ) and the metric (2.2). The equations of motion
for the remaining ϕ(x), χ(x) fields are

1
R
∇ · (R~∇ϕ)− 1

2R∂R m
2|χ|2 = 0

1
R
∇ · (R~∇χ)−m2χ−R∂Rm2 χϕ = 0

(2.6)

Here ∇·, ~∇ are covariant derivatives in terms of the spatial d dimensional slice. The first
term on both lines can be understood as the thermal AdSd+1 Laplacian acting on a t-
invariant function. We will further assume that ϕ, χ are spherically symmetric and thus
depend only on the radial coordinate ρ. The equations simplify to

ϕ′′(ρ) + v(ρ) · ϕ′(ρ)− 1
2
(
R∂Rm

2
)

(ρ) · |χ(ρ)|2 = 0,

χ′′(ρ) + v(ρ) · χ′(ρ)−m2(ρ) · χ(ρ)−
(
R∂Rm

2
)

(ρ) · χ(ρ) · ϕ(ρ) = 0,
(2.7)

with

R(ρ) = R0 cosh(ρ/lads), (2.8)

v(ρ) = 1
lads

(tanh(ρ/lads) + (d− 1) coth(ρ/lads)) , (2.9)

and m2(R) defined in (2.4). We can formally solve the first equation using an appropriate
kernel

ϕ(ρ) = lads

∫ ∞
0

dρ′ k(ρ/lads, ρ′/lads)
(

1
2R

∂m2

∂R
|χ|2

)
(ρ′). (2.10)

The function k(r, r′) is defined in (B.8). In this form, we can write a single equation for χ(ρ)

χ′′(ρ) + v(ρ) · χ′(ρ)−m2(ρ) · χ(ρ)

− lads
2
(
R∂Rm

2
)

(ρ) · χ(ρ) ·
∫ ∞

0
dρ′ k

(
ρ/lads, ρ

′/lads
)
·
(
R∂Rm

2
)

(ρ′) · |χ|2(ρ′) = 0

(2.11)
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2.3 Thermodynamics

The string star is a classical solution of the effective gravitational action. As such, has
free energy and entropy of order 1/GN , just like a black hole. In this section we will give
the formal expressions of the string star thermodynamic properties. For comparison, at
the end of the section we will describe the thermodynamic properties of other saddles that
contribute to the same string theory partition function.

We start by considering the thermodynamics of the string star saddle around thermal
AdS. The free energy of the classical solution is its on-shell action (2.3) divided by β. We
will work with a scheme in which thermal AdS has zero on-shell action. We are thus left
only with the contribution from χ, ϕ:

F = 1
16πGNβ

∫
ddx

√
g(d) (2πR)

(
(∇ϕ)2 + |∇χ|2 +

(
m2 +R∂Rm

2ϕ
)
|χ|2

)
. (2.12)

It is convenient to define a normalized dimensionless free-energy f by

F ≡ ld−2
s ωd−1
16πGN

f, (2.13)

where ωd−1 the area of the unit (d − 1)-sphere. Explicitly for the radial solution, the
normalized free energy is

f = l2−ds ·
∫ ∞

0
dρV (ρ)

(
(ϕ′(ρ))2 + |χ′(ρ)|2 +

(
m2(ρ) +R(ρ)∂Rm2(ρ)ϕ(ρ)

)
|χ|2(ρ)

)
, (2.14)

with the radial volume

V (ρ) = ld−1
ads cosh(ρ/lads) sinhd−1(ρ/lads). (2.15)

The find the entropy of the classical solution, we take β∂β − 1 = R0∂R0 − 1 of the
action (2.3). Because R(ρ) is exactly linear in R0, we have

S = (β∂β − 1)Id = 1
16πGN

∫
ddx

√
g(d)(2πR)R0∂R0Ld. (2.16)

But because it is a classical action, the implicit ∂R0 is zero. We still have an explicit
dependence on R0 through m2:

S = 1
16πGN

∫
ddx

√
g(d)(2πR)

(
(R∂Rm2) + ((R∂R)2m2) ϕ

)
|χ|2. (2.17)

It is similarly convenient to defined a dimensionless normalized entropy by

S ≡ ld−1
s ωd−1
16πGN

s. (2.18)

Explicitly, the normalized entropy is given by the integral

s = l1−ds β ·
∫ ∞

0
dρV (ρ)

(
(R∂Rm2)(ρ) + ((R∂R)2m2)(ρ) ϕ(ρ)

)
|χ|2(ρ). (2.19)
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We now turn to compare the string star’s free energy to other Euclidean saddles. The
results of the analysis are drawn schematically in figure 1. In the limit we are working
with |χ|, |ϕ| � 1 and so the string star free energy (2.14) is positive. The geometry of
thermal AdS itself, also called the ‘gas phase’, was chosen to have F = 0 (at order 1/GN )
and therefore the string star is subdominant by comparison.

The AdS black hole is the d + 1 dimensional Schwarzschild solution with negative
cosmological constant Λ. Its horizon radius rh is related to the (asymptotic) temperature
β by

β = 4π l2adsrh
d r2

h + (d− 2)l2ads
. (2.20)

In terms of rh, β, the black hole free energy and entropy are

F = ωd−1
16πGN

rd−2
h

(
1− r2

h

l2ads

)
, S = ωd−1

4GN
rd−1
h . (2.21)

By (2.20), AdS black holes exist only above a temperature β < 2π/
√
d(d− 2)·lads. For each

such a temperature two possible horizon radii rh are possible (see figure 1). One branch
of solutions is called ‘large AdS black holes’. At high temperatures β � lads its horizon is
rh = (4π/d) · l2ads/β. The free energy and the entropy are (at leading order in β/lads)

FLarge = − ωd−1
16πGN

(4π
d

)d
l2d−2
ads β−d, SLarge = ωd−1

GN

(4π
d

)d−1
l2d−2
ads β1−d. (2.22)

The large AdS black hole is a valid solution also around (and above) the Hagedorn tem-
perature, as its horizon size there is huge. The free energy of the saddle is negative, and it
is the dominant phase for high enough temperatures [26, 27, 37]. In particular it is more
dominant than the string star saddle whenever the latter is well defined. The second branch
is termed the ‘small AdS black hole’. For temperatures ls � β � lads we find a horizon at
rh = (d− 2)/(4π) · β, and the solution is for small ρ approximately an asymptotically flat
Schwarzschild solution. As such, its free energy and entropy are given by

FSmall = ωd−1
16πGN

(
d− 2

4π

)d−2
βd−2, SSmall = ωd−1

4GN

(
d− 2

4π

)d−1
βd−1. (2.23)

The small AdS black hole solution can’t be trusted when rh & ls or equivalently β & ls.
The string star solution is consistent for near-Hagedorn temperatures (R0−RH)/RH � 1,
and also fails around β ∼ ls (see above). Therefore the two solutions share no regime
of validity, and both break around β ∼ ls. For flat space, it was proposed that the two
Euclidean solutions are non-perturbatively (in α′) connected [7, 14] (see also figure 2). We
will see that in this intermediate regime both solutions are similar to flat space solutions,
and so the question of connecting them in AdS is the same as in flat space.

We can also consider the full 10 dimensional geometry, which we assumed to be asymp-
totically AdSd+1×X9−d. 10 dimensional Schwarzschild solutions exist as long as their hori-
zon is small compared to the curvature scale of X9−d. As the latter is usually of the same

– 9 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
2

order as lads, to leading order these are asymptotically flat 10 dimensional Schwarzschild
solutions. The 10 dimensional gravitational constant is of order G(10)

N ∼ GN l9−dads and so

F10d = ω8

16πG(10)
N

(7β
4π

)7
∼ 1
GN

ld−9
ads β

7, S10d = ω8

4πG(10)
N

(7β
4π

)8
∼ 1
GN

ld−9
ads β

8. (2.24)

Just like the small AdS black hole, the solution is perturbative only for β & ls. In this
regime we can compare its dominance to the other black holes we found. As the free energy
is positive F10d > 0, it is subdominant to both the gas and the large AdS black hole. For
β � lads the solution has significantly lower free energy over the small AdS black holes,
and is therefore more dominant. In section 6 we expand further on the relation between
these two phases.

3 Small solutions

The lowest free energy solution of (2.7) is a real monotonic profile for χ, ϕ that decays to
zero for large enough ρ. We denote the length scale of the decay by L (it is a function of
the temperature R0). By “small solutions” we mean solutions that decay fast enough so
that the solution can be approximated by the flat space solutions found in [7]. In other
words, we would like to consistently approximate (2.7) by

R(ρ) = R0 +O(ρ2/l2ads),

v(ρ) = d− 1
ρ

(
1 +O(ρ2/l2ads)

)
,

m2(ρ) = m2(R0) +O(ρ2/l2ads).

(3.1)

The resulting equations are exactly the equations studied by Horowitz and Polchinski [7]
in the context of flat Rd × S1 (Note that we are not taking the flat space limit of AdS,
but only considering small enough profiles that doesn’t sense the curvature). They found
that such solutions exist for 3 ≤ d ≤ 5. The amplitude of the solution scales like |χ|, |ϕ| ∼
(R0 − RH)/RH . As explained above, for the winding mode mass to be below the string
scale we need (R0 − RH)/RH � 1. In this regime the amplitudes are small |χ|, |ϕ| � 1.
This is important to justify our earlier approximation of the action where we ignored higher
order terms.

The length scale of the solution L grows with the temperature and is given by (see
figure 2)

L/ls ∼
(
R0 −RH
RH

)− 1
2
. (3.2)

In the regime (R0 − RH)/RH � 1 we have L � ls, consistent with the suppression of
higher derivative terms in the effective action. When the temperature is high enough, the
solution is so large that the approximations (3.1) are no longer valid. The leading correction
is coming from the mass term, at order ∼ L2/(lslads)2. The solution is self-consistent as
long as this correction is small compared to the leading mass term m2(R0). The resulting
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condition on the length scale is L2 � lslads, and on the temperature (R0 − RH)/RH �
ls/lads. Together, we trust the flat space solution only for temperatures

ls/lads �
R0 −RH
RH

� 1. (3.3)

As we originally assumed a large gap ls/lads � 1 in order to write the effective action, this
regime is not empty. Finally, the entropy of the flat space solution was shown to be

S ∼ ld−1
s

GN
·
(
R0 −RH
RH

) 4−d
2
. (3.4)

What are the properties of the solution at the two ends of the validity region (3.3)?
At the low temperature limit (R0 −RH)/RH ∼ 1 the length scale (3.2) is L ∼ ls, and the
entropy (3.4) is S ∼ ld−1

s /GN . This is in qualitative agreement with a small AdS black
hole of horizon size rh ∼ ls, see (2.23). This qualitative agreement between the two saddles
is completely equivalent to the one already found for flat space, as both sides are much
smaller than the AdS scale. As we said, in the near-Hagedorn limit (R0−RH)/RH ∼ ls/lads
we have L ∼

√
lslads, with entropy S ∼ ld−1

s /GN · (ls/lads)2−d/2.
As in [7], the solutions described in this section exist only for 3 ≤ d ≤ 5. In [14] it was

shown that above the flat space Hagedorn temperature no such solution are expected to
exist for d ≥ 6. By similar argument, we believe no such solutions exist in the temperatures
range (3.3) on AdS with d ≥ 6. In practice, we didn’t manage to find numerical solutions
in this range (see section 7).

4 At the flat space Hagedorn temperature

We couldn’t find a full analytical treatment for the solution at temperatures higher than
the flat space regime (3.3). As we review in section 7 below, numerically we find that
solutions exist also around RH . The solutions always have a length scale L ∼

√
lslads, and

they merge with the (trivial) thermal AdS saddle for some Rc < RH . Here and in the
next section we will describe analytical results that support this picture. In this section we
study the solution exactly at the flat space Hagedorn temperature R0 = RH . At R0 = RH ,
the leading correction to the winding mode mass around ρ ≈ 0 is

m2(R0 = RH) = κ

2
ρ2

l2adsl
2
s

+O(ρ4/l4ads). (4.1)

Assuming the length scale of the solution is small enough (L� lads) for the higher orders
above to be subleading, we can approximate (2.7) by

ϕ′′(ρ) + d− 1
ρ

ϕ′(ρ)− κ

2α′ · |χ(ρ)|2 = 0,

χ′′(ρ) + d− 1
ρ

χ′(ρ)− κ

2
ρ2

l2adsl
2
s

χ(ρ)− κ

α′
χ(ρ)ϕ(ρ) = 0.

(4.2)
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Following [14], we can find a normalization in which the equations are parameter-indepen-
dent. Taking

ϕ(ρ) = α′

κL2
H

ϕ̂(ρ/LH), χ(ρ) = α′

κL2
H

χ̂(ρ/LH), (4.3)

with
L2
H = 1√

κ
lslads (4.4)

gives the following parameter-independent equations for ϕ̂(x), χ̂(x)

ϕ̂′′(x) + d− 1
x

ϕ̂′(x)− 1
2 · |χ̂(x)|2 = 0,

χ̂′′(x) + d− 1
x

χ̂′(x)− x2

2 χ̂(x)− χ̂(x)ϕ̂(x) = 0.
(4.5)

The solution for these equations are some O(1) normalizable functions (notice that unlike
flat space, here we have an x2 term that serve as a potential). Therefore the amplitudes of
the original variables are of order |χ|, |ϕ| ∼ ls/lads � 1, which justifies our approximation
to ignore higher order terms in the effective action. We also learn that the length scale of
the R0 = RH solution is LH ∼

√
lslads (4.4). This is the same scale we got at the high

temperature end of where we trusted the flat space solutions (3.2). Notice that LH � lads
and so the approximation of (4.2) is also justified. We can also approximate the entropy
using (2.19) to be

S |R0=RH≈
ζ

16πGN
2πRH ld−2

s

κ
d
4

(
ls
lads

) 4−d
2
. (4.6)

Here ζ is an O(1) dimensionless number, defined as the Rd norm of the solution to (4.5):

ζ =
∫
ddx|χ̂(x)|2. (4.7)

This is of the same order as the entropy we got at the high temperature end in which we
trust the flat space entropy (3.4). It thus seems like nothing drastic is happening close
to RH for 3 ≤ d ≤ 5, and the solution is qualitatively similar to the solutions around
(R0 −RH)/RH ∼ ls/lads (see figure 2).

5 Evaporation to gas

We now turn to study the solutions for R0 < RH . For these temperatures the mass squared
at the origin ρ = 0, which we denote by m2

0 ≡ m2(R0), is negative. Close enough to ρ = 0,
the solution of (2.7) with m2

0 < 0 will oscillate. For large enough ρ the mass squared turns
positive, and grows exponentially with ρ. At large ρ � lads we have an exploding and a
decaying mode. We therefore expect that a discrete set of normalizable solutions exists,
one for each number of oscillations in the small ρ region. Of those solutions only the first
one is in our interest, as it is connected continuously to the solutions we found for higher
R0. The others are highly unstable solutions that won’t concern us. We further expect
that above some critical temperature R0 = Rc < RH this solution will cease to exist. We
will assume the simplest scenario: that at the critical temperature R0 = Rc the solution
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merges with the trivial χ(ρ) = ϕ(ρ) = 0 solution (see figure 1). This assumption is justified
by the numerical evidence, see section 7. As a result we will be able to find Rc and estimate
the thermodynamic behavior at that point.

If the solution coincides with the trivial solution ϕ = χ = 0 at R0 = Rc, it means
that at that point the trivial solution has a zero mode. In other words, the linearized
equations around the trivial solution should have a normalizable solution at R0 = Rc. This
is analogous to the flat space case, where at the Hagedorn temperature RH the condensate
is massless. If we define the Hagedorn temperature as the temperature above which the
string gas phase becomes tachyonic, then Rc is also the “AdS Hagedorn temperature”. Rc
should be understood as a correction of the flat space Hagedorn temperature RH due to
the AdS curvature. We stress that the calculation of AdS Hagedorn temperature Rc is
logically independent from the rest of the work.

Expanding (2.7) to linear order around the trivial solution χ = 0 + δχ, ϕ = 0 + δϕ

gives the linearized (decoupled) equations

δϕ′′(ρ) + v(ρ) · δϕ′(ρ) = 0,
δχ′′(ρ) + v(ρ) · δχ′(ρ)−m2(ρ)δχ(ρ) = 0.

(5.1)

The equation for ϕ is nothing but the free massless field in thermal AdS. There are no
non-singular normalizable solutions, as the boundary conditions δϕ′(0) = δϕ(∞) = 0 leave
only the trivial solution δϕ = 0. We will assume that δχ has a solution at R0 = Rc with
length scale Lc that decays fast enough (and justify it at the end). We can approximate the
linear equation for δχ up to sub-leading corrections in ρ/lads. By derivatives suppression,
the first non-trivial term is coming solely from the mass term. In other words, we substitute
in (5.1)

v(ρ) = d− 1
ρ

+O
(
ρ/l2ads

)
,

m2(ρ) = m2
c + κc

2
ρ2

l2s l
2
ads

+O
(
ρ4/(l4adsl2s)

)
.

(5.2)

Here we mean m2
c = m2(Rc) and κc = α′(R∂Rm2)(Rc).4 The resulting differential equation

can be solved analytically. To have a non-singular solution at ρ = 0 we demand δχ′(0) = 0,
and arbitrarily choose δχ(0). The solution is

δχ(ρ) = e−
ρ2

2L2 · L( d−2
2 )

−ν

(
ρ2/L2

)
,

L2 =
√

2
κc
lslads,

ν = 1
4
(
d+ L2 m2

c

)
.

(5.3)

4The approximation for the mass (and as a result also the profile δχ) is similar to winding mode mass
on a cone (or analytically continued Rindler space) studied in [38].
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L
(α)
−ν (x) is the generalized Laguerre function. L(α)

−ν (x) is analytic around x = 0 and generi-
cally exponentially diverges for large x� 1,

L
(α)
−ν (x) ∼ exxν−1

Γ(ν) . (5.4)

As a result, the large ρ behavior of the solution (5.3) is diverging with

δχ(ρ) ∼ (ρ/L)2ν−2

Γ(ν) e
ρ2

2L2 . (5.5)

The solution is non-normalizable as long as 1/Γ(ν) 6= 0. We learn that there exist normal-
izable solutions for non-negative integer ν ∈ Z0.

Substituting (5.2) in (5.1) gives a Hamiltonian-like equation for δχ(ρ). In this analogy
the energy of the solution is parametrized by the temperature Rc as E = −m2

c . The poten-
tial is quadratic at this order and so we expect a discrete set of eigenfunctions for δχ(ρ).
These are exactly the solutions we get by demanding (as a function of the temperature
R0) ν ∈ Z0. We are interested in the “ground-state wave-function” that corresponds to
the ν = 0 solution. This is the zero mode associated with the merging of the full solution
of (2.7) to the trivial solution. Expanding the equation ν = 0 to leading order in ls/lads
gives the solution for the AdS Hagedorn temperature Rc. At leading order in ls/lads (in
which we can take κc ≈ κ) we get

Rc/RH = 1− d√
2κ
· ls
lads

+O

(
l2s
l2ads

)
. (5.6)

As we explained above, Rc is the AdS Hagedorn temperature above which the thermal gas
becomes tachyonic. By the holographic dictionary it is related to the holographic CFT’s
Hagedorn temperature by TCFT

c = lads/βc. For type IIB on AdS5 × S5 we can write
the result in terms of the dual N = 4 super Yang-Mills theory by (lads/ls)4 = λ, where
λ ≡ g2

YMN is the CFT ’t Hooft coupling, to get (using (2.4), (2.5))

TCFT
c = 1√

8π2
λ

1
4 + 1

2π +O
(
λ−

1
4
)
. (5.7)

This result was independently found by [39]. In [40], the CFT Hagedorn temperature
in N = 4 was found using integrability methods numerically for every value of λ. A
linear fit to the large λ behavior gave the λ0 coefficient c1 ≈ 0.159, which agrees with our
1/(2π) = 0.15915 . . ..5 In AdS3 with NS-NS flux the Hagedorn temperature was exactly
computed in [19], with a first correction to Rc/RH of order l2s/l2ads. This contradiction
with (5.6) is explained by the fact that the NS-NS flux affects the mass of the winding
mode and modifies our computation. This does not happen for R-R flux.6

Because L(α)
0 (x) = 1, the solution at this value is simply δχ(ρ) = e

− ρ2

2L2
c . The critical

length scale of the solution is

L2
c =

√
2
κ
lslads. (5.8)

5We thank J. Maldacena for mentioning the connection to [40].
6We thank D. Kutasov for mentioning the connection to [19].
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Notice that the flat space limit lads = ∞ gives an infinitely large solution, as we expect
in flat space at the massless limit Rc = RH . Also notice that Lc � lads thus justifying
our approximation (5.2). One can wonder whether higher curvature terms in the effective
action can change (5.6) at the same order. The leading (in orders of 1/lads) possible term is
R|χ|2 which shifts the condensate mass by order 1/l2ads. As a result the definition of RH is
shifted by order l3s/l2ads. This in turn gives a subleading change to the value of Rc (5.6), and
so we can ignore it. Higher derivative corrections start at the same subleading order: the
first α′∂4|χ|2 term also scales like l2s/L4

c ∼ 1/l2ads. We see that to find the next order in (5.6)
it is not enough to take higher orders in (5.2), but also to consider higher interaction terms.

The results can be intuitively understood as follow. Expanding the mass (5.2) around
Rc ≈ RH and small ρ� lads gives

α′m2(ρ) ≈ κRc −RH
RH

+ κ

2
ρ2

l2ads
. (5.9)

Around ρ = 0 the mass is negative and we can define −k2
c ≡ m2

c = κ/l2s
Rc−RH
RH

. As a
result we expect χ(ρ) to oscillate with frequency k for small enough ρ. In order for the
solution to stop oscillating after one turn, at the scale ρ ∼ 1/kc the mass needs to vanish
m2(ρ ∼ 1/kc) ∼ 0. Using (5.9) we can solve the constraint and get k2

c ∼ 1/(lslads) which
agrees with (5.8). Using the relation between kc and the temperature, we also get an
agreement with (5.6).

The linear equation for δχ can’t fix its value at the origin δχ(0). To find it, we need
to go to the first non-linear order. For now we set δχ(ρ) = A · δχ̂(ρ/Lc) with δχ̂(x) =
exp(−x2/2), and assume A� 1 (close to R0 = Rc). Our goal is to find A close to R0 = Rc
using the expansion of (2.7) in orders of (R0 − Rc). At leading order in A, the equation
for δϕ is

δϕ′′(ρ) + v(ρ) · δϕ′(ρ) = κc
2l2s
|δχ|2. (5.10)

The solution is unique and proportional to A2κc(Lc/ls)2. So we define δϕ(ρ)=A2κc(Lc/ls)2·
δϕ̂(ρ/Lc). For the next order we define χ(ρ) = δχ(ρ) +χ(2)(ρ) + . . ., where we assume that
χ(2) is subleading in A. To find the equation for χ(2) we need to expand the equations (2.7)
to the next order in R0 −Rc. The result is

χ′′(2)(ρ) + v(ρ) ·χ′(2)(ρ)−
(
m2
c + κc

2
ρ2

l2s l
2
ads

)
χ(2)(ρ) = κc

l2s

(
R0 −Rc
Rc

+ δϕ(ρ)
)
δχ(ρ). (5.11)

The l.h.s. is the same linear equation we had for δχ above. The first term on the r.h.s. is
coming from the leading correction to the mass, and the second from the interaction term
at leading order. The two terms have different scaling with A and opposite signs (by (2.10)
and (B.8) δϕ̂ is negative). For χ(2) to be normalizable, we need to tune the source and
in this way find A. We didn’t do it here, but by comparing the two terms the result is of
order A2 ∼ (ls/lads) · (R0 −Rc)/Rc. In other words, close to R0 ≈ Rc we expect

|χ| ∼
(1
κ

ls
lads

R0 −Rc
Rc

) 1
2
, |ϕ| ∼ R0 −Rc

Rc
. (5.12)
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Note that the R0 −Rc scaling of the ϕ|χ|2 interaction term is the same as that of the |χ|4
term [23, 41, 42], which we ignored in the effective action above. But due to the ls/lads
scaling we have |χ|4 � ϕ|χ|2, and the approximation is still consistent.

In the previous section we saw that at R0 = RH the length scale of the solution was
also LH ∼

√
lslads (4.4). The amplitudes we found (5.12) also coincide with the results at

R0 = RH . Setting the value of Rc (5.6) inside (5.12), gives |χ|, |ϕ| ∼ ls/lads at R0 = RH .
It seems like for 3 ≤ d ≤ 5 no surprises happen between RH and Rc (see also section 7).
As a result of (5.12), the scaling of the free energy and the entropy close to Rc are (up to
order 1 factors)

F ∼ ld−2
s

GN

(
ls
lads

) 2−d
2
(
R0 −Rc
Rc

)2
, S ∼ ld−1

s

GN

(
ls
lads

) 2−d
2 R0 −Rc

Rc
(5.13)

The numerical evidence (see figure 4 below) seems to agree with this prediction. Note that
the scaling of (5.12) and (5.13) with R0 − Rc has a simple argument. For any R0, denote
the amplitude of the normalizable eigenmode (of the quadratic theory) that will be the
zero mode at Rc by A. Close to Rc its amplitude is small. The effective action for A would
be at leading order

Ieff(A) = a(R0 −Rc)A2 + bA4 +O(A6), (5.14)

for some a > 0 and b < 0 (because δϕ < 0). Minimizing the action immediately gives (5.12)
and (5.13). In terms of the hologrpahic CFT, these scalings agree with the predictions at
weak coupling [34], where such an EFT was derived for the trace of the S1 holonomy of
the gauge field. The scaling (5.13) was also advocated for the small AdS black hole phase
in [35, 36].

The results of this section are valid for any spatial dimension d. It may come as a
surprise, after all in flat space [7] and in AdS at lower temperatures (sections 3 and 4)
solutions were found only for 3 ≤ d ≤ 5. Nevertheless the conclusion of this section is
that the AdS string star exists for every d as a reliable solution close enough to the AdS
Hagedorn temperature (R0−Rc)/Rc � 1 with (5.13). For 3 ≤ d ≤ 5 the string star persists
as a solution to lower temperature until (R0 − RH)/R0 . 1. For higher dimensions d ≥ 6
we believe the solution becomes unreliable (as L ∼ ls and |χ|, |ϕ| ∼ 1) somewhere between
Rc < R0 ≤ RH . As we show numerically in section 7, the length scale and the normalized
entropy are O(1) at the low temperature end of the validity region, just like a string sized
black hole. We found that in AdS a correspondence principle with the small AdS black
hole is plausible also for d ≥ 6, except that there the string star phase becomes reliable
only above the flat space Hagedorn temperature RH . In this context, [12] argued that
for large enough d, string-size black hole solutions persist above the flat space Hagedorn
temperature, which fits nicely with our proposed picture.

Finally, we note that too close to R0 = Rc we no longer trust the tree level calculation
to represent the free energy of the phase. In this limit the tree level result vanishes and a
normalizable mode turn massless. The 1-loop result thus becomes the leading contribution
close enough to Rc. This an avatar of the string gas instability at the AdS Hagedorn tem-
perature Rc. One way to get the condition on the temperature is to require the Euclidean
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action close to Rc to be large Id � 1. The result is

R0 −Rc
Rc

�
(
ls
lads

) d−2
4
g, (5.15)

where g is the d+ 1 dimensional string coupling.

6 Thermodynamic instabilities

In this section we will study the thermodynamic stability of the solutions we found. As
we reviewed in section 2.3 above (and plotted in figure 1), the free energy of the string
star is positive, and thus larger than both the gas (thermal AdS) and the large black
hole saddles. This phase is therefore canonically unstable. As these phases are different
Euclidean saddles for small GN , this instability is non-perturbative in GN .

At higher temperatures we hope the string star is continuously connected to the Eu-
clidean saddle of a small AdS black hole. The latter is a well defined Euclidean saddle only
for temperatures ls � R0. Just like the string star solution, this phase is also subdominant
compared to the large AdS black hole and the gas phases. But apart from these non-
perturbative instabilities, the small AdS black hole also has a perturbative instability: the
quadratic variation matrix of the solution’s Euclidean action has a normalizable negative
eigenmode [29]. The negative mode is related to the fact this phase also has negative spe-
cific heat. Negative specific heat is yet another sort of thermodynamic instability. But for
black holes one can show it is actually related to the negative eigenmode [43]. Intuitively
the specific heat is related to the (quadratic) decrease of the free energy when changing
the size of the black hole. The negative mode of [29] exactly changes (off-shell) the size of
the black hole on the spatial metric components. The decrease of the free-energy at second
order by the temperature (due to negative specific heat) is then mapped to the second
variation of this normalizable mode.

Does the string star have such a negative mode as well? For the flat space string star it
was shown in [7, 14] that such a mode exists. As a result, such a mode exists also in AdS,
whenever we trust the flat space approximation (3.3). We believe that such a negative
mode exists also for higher temperatures, although we couldn’t find a general argument.
Somewhat similar to the black hole saddle, close to the AdS Hagedorn temperature Rc we
can use the specific heat to argue for the existence of such a negative mode. The string
star solution to (2.7) implicitly depends on R0 through the equations’ dependence on R0.
For each R0 the asymptotic behavior of both ϕ(ρ), χ(ρ) remains the same: they decays
exponentially (or faster than that) to zero. Our ansatz for a negative mode is the R0
derivative of the solution itself:7

δϕ(ρ) = R0∂R0ϕ(ρ), δχ(ρ) = R0∂R0χ(ρ). (6.1)
7We stress that both here and in the black hole case there is a mode that changes the asymptotic

(holographic) temperature. The free-energy second variation of this mode is exactly the specific heat, but
this mode is not a normalizable one, as it changes the boundary conditions of the metric. As such, this
mode is not a valid perturbation, and not the one we describe.
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These modes are clearly normalizable. Taking the temperature derivative of (2.7), we can
find an explicit expression for the second variation of the free energy (2.14) with (6.1):

δ2f = −l2−ds ·
∫ ∞

0
dρV (ρ)

(
(R∂R)2m2

(1
2 |χ|

2δϕ+ ϕχδχ

)
+R∂Rm

2 χδχ

)
. (6.2)

From this expression it is yet unclear if the variation is negative or not. At R0 = Rc the
second variation vanishes δ2f = 0, as at that temperature the solution is trivial χ = ϕ = 0.
Analogously, at R0 = Rc the mode (6.1) is exactly the zero mode (5.3). Therefore at
R0 = Rc the ansatz is not a negative mode but a zero mode.

Taking the full (R0∂R0)2 operator on the normalized free energy (2.14), we can relate
the variation above (which corresponds to deriving only the solution) to the entropy and
the specific heat:

δ2f = l2−ds

2

∫ ∞
0

dρV (ρ)
{(
R∂R + (R∂R)2

)
m2 + ϕ(ρ) ·

(
(R∂R)2 + (R∂R)3

)
m2
}
|χ|2(ρ)

− ls
2 ∂βs. (6.3)

In the second line s is the normalized entropy (2.19). The first term is due to the explicit
dependence on R0 inside the action, and has no dependence on the variation. To good
approximation, one can consider only the first term inside the curly bracket, and get that
this term is positive. The second term on the r.h.s. is positively proportional to the specific
heat C = dS

dT = −β2∂βS. In order to show δ2f is negative, we need the specific heat term
to be negative ‘enough’. Close to Rc we found the entropy scales like S ∼ (R0−Rc)1 (5.13).
As a result the specific heat is negative and of order (R0 − Rc)0. The integral in (6.3) on
the other hand scales like (R0−Rc)1. Therefore close enough to Rc (6.1) is indeed negative.

What happens to this mode at lower temperatures? For d = 3 and in the flat space
regime the specific heat is still negative. In that case the integral in (6.3) is of order
(R0 − RH)1/2. The specific heat on the other hand scales like −(R0 − RH)−1/2. As we
have (R0 − RH)/RH � 1, the specific heat controls (6.3) and the mode is still negative
δ2f < 0. For d = 4, 5 we don’t expect (6.1) to be negative for lower temperatures as the
specific heat is non negative. Nevertheless, we believe the negative mode we found close
to Rc is continuously connected (as a function of the temperature) to the negative mode
found in [7, 14]. The existence of a negative mode at the two ends of the temperature range
seems to suggest the string star saddle does have a negative mode in the entire range (for
all 3 ≤ d ≤ 5).

The last type of instability we will consider has to do with the full ten dimensional
geometry. We assumed our full geometry is (asymptotically EAdSd+1) ×X9−d, where X9−d
is compact with the characteristic size ∼ lads (the AdS curvature scale). Before explaining
the instability of the string star phase, we turn again to the small AdS black hole saddle.
This time, we start by considering the Lorentzian solution. In terms of the 9+1 dimensional
geometry, this solution is homogeneous along theX9−d directions. When the AdS black hole
horizon is much smaller than the size of the compact direction rh � lads there’s a classical
mode of the spatial d dimensional metric, modulated around the X9−d coordinates, that
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grows exponentially with time [31, 32, 44]. This is a classical (or dynamical) instability,
that breaks the homogeneity of the solution. It is known as the Gregory-Laflamme (GL)
instability [30, 45, 46]. In this way small AdS black holes turn into 10 dimensional black
holes [47]. In other words, this is the dynamical manifestation of the 10 dimensional black
hole being thermodynamically favored over a small AdS black hole (see section 2.3 and
figure 1) [48–50]. The relation between the two instabilities however is so far indirect,
as we just described a Lorentzian and classical instability, and in thermodynamics we
consider Euclidean saddles and the off-shell modes around them. Nevertheless the relation
can be shown more rigorously. The dynamical modes are eventually equivalent to 10
dimensional Euclidean negative modes, and both are related to the same negative mode of
the (d + 1 dimensional) small AdS black hole that we mentioned at the beginning of the
section [31, 43, 45, 50–52]. The basic idea is that for high enough frequency along X9−d
the time exponent turns to zero. At that point we have a stationary solution that can be
trivially Wick-rotated to a zero mode of the Euclidean 10 dimensional solution. Thinking of
the kinetic energy on X9−d as a linear source, this mode also describes a negative (off-shell)
mode in d+ 1 Euclidean dimensions.

As a solution in 9 dimensions (after compactifying time), the string star saddle we
considered in this work is homogeneous along the X9−d directions. We would like to ask
whether, as in the small AdS black hole phase, the solution has a GL-like instabilities. As
we need to compactify Euclidean time to describe this phase, it is unclear how to look for
Lorentzian GL instabilities. In the Euclidean setting however, we can still ask whether
there are negative 9 dimensional modes of the solution. Similar to the small AdS black
hole saddle, these modes are related to the d dimensional negative mode discussed at the
beginning of the section, as we will show now.

First, and following the arguments above, we will assume a negative eigenmode of the
d dimensional solution exists. Denote this variation of the solution by δϕ(ρ) and δχ(ρ).
We also denote the variation’s eigenvalue with respect to the action’s second variation by
λ < 0. The variation thus satisfies

δϕ′′ + v(ρ)δϕ′ −R∂Rm2 χδχ = −λ δϕ,
δχ′′ + v(ρ)δχ′ −m2 δχ−R∂Rm2(χδϕ+ ϕδχ) = −λ δχ.

(6.4)

Next, we turn to describe the higher dimensional instability. For simplicity, we add a single
non-compact direction to the metric (2.1):

ds2 = β2 cosh2(ρ/lads)dt2 + dρ2 + l2ads sinh2(ρ/lads)dΩ2
d−1 + dz2. (6.5)

This is a good approximation assuming the wavelength of the mode (along X9−d) we will
consider is much smaller than the radius of X9−d (of order lads). The z-independent solution
we described in the previous sections is of course still a solution. We can consider quadratic
off-shell variations of this solutions that depend also on the z coordinate which we denote
δϕ(ρ, z), δχ(ρ, z). An eigenstate of the higher dimensional action’s second variation will
satisfy

∂2
zδϕ+ δϕ′′ + v(ρ)δϕ′ −R∂Rm2 χδχ = −Λ δϕ,

∂2
zχ+ δχ′′ + v(ρ)δχ′ −m2 δχ−R∂Rm2(χδϕ+ ϕδχ) = −Λ δχ,

(6.6)
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where Λ is the eigenvalue of the higher dimensional action, and by (. . .)′ we still mean ρ
derivatives. Comparing to (6.5) we learn that δϕ(ρ, z) = eikzδϕ(ρ) and δχ(ρ, z) = eikzδχ(ρ)
are a solution for

Λ = λ+ k2. (6.7)

As λ < 0, this higher dimensional mode is also negative for k <
√
−λ, and it becomes a

solution for k =
√
−λ. The minimal possible wavelength is therefore 1/

√
−λ.

The existence of a d dimensional negative mode λ thus guarantees the existence of
GL-type 9 dimensional negative modes, as long as 1/

√
−λ . lads. Because the solutions

we found all have a length scale with L � lads, we expect this condition to hold at least
far enough from Rc. At Rc the negative mode seems to turn into a zero mode, and so close
enough to Rc no harmonic of X9−d could be excited.

It is interesting to go back and compare this result to the small AdS black hole saddle.
As we mentioned above, the GL instability is believed to describe the dynamical decay of
the small AdS black hole to 10 dimensional black holes (see figure 1). We interpret the
modes we just found as the avatar of the GL instability in the string star phase. What is
than the analog of the 10 dimensional black holes around R0 ∼ RH? In other words, what
does the string star thermodynamically decay to? At these temperatures the 10 dimensional
black hole solution can’t be trusted, just like the small AdS black hole. One might naively
expect a 10 dimensional (flat space) string star as the answer, but such saddles don’t seem
to exist. We mention again the results of [12], that large D = d+ 1 string size black holes
might exist also close to and above the Hagedorn temperature. Perhaps D = 10 is large
enough, and the solution decays to string-size 10 dimensional black holes?

7 Numerical results

In order to study the string saddle beyond the analytical approximations, we used numerical
simulations to find the behavior of the saddles as a function of R0. We assumed a real and
spherical solution for χ, ϕ and set to solve the coupled equations (2.7). Mathematically,
the boundary conditions are ϕ′(0) = χ′(0) = 0, for smoothness at ρ = 0, and ϕ(∞) =
χ(∞) = 0. The simulation ran in string units ls = 1, which we will use below. In order
to regularize the calculation, we arbitrarily chose ρmin = 0.01 and ρmax (which will be
determined shortly), and defined the regularized boundary conditions

ϕ′(ρmin) = χ′(ρmin) = 0, ϕ(ρmax) = χ(ρmax) = 0. (7.1)

To find the solution of (2.7) under the regularized boundary conditions, we used the shoot-
ing method: we trade the boundary condition at ρmax by a condition on the values of
ϕ0 = ϕ(ρmin) and χ0 = χ(ρmin). For a given ρmax, we optimize the values of ϕ0, χ0 to
solve (7.1). We would like to take ρmax to be as large as possible. We searched for the
largest ρmax for which we could still find ϕ0, χ0 sufficiently well. In practice, ρmax is of the
same order of magnitude as the solution’s length scale L.

An example of a typical profile is given in figure 3. Figures 4 and 5 plot the normalized
entropy and the length scale of the numerical solutions as a function of (R0 − RH)/RH .
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Figure 3. An example of typical ϕ(ρ), χ(ρ) profiles as a function of ρ (in string units). The
numerical calculation was done for the d = 3 heterotic string with lads/ls = 600 at the (flat space)
Hagedorn temperature RH =

(
1 + 1/

√
2
)
ls. The gray vertical line is ρ = LH , found in section 4.

Both figures include also the flat space simulations for comparison. Both are done for
d = 3 spatial dimensions and lads = 600 (in string units). The normalized entropy s

was calculated by numerical integration of (2.19). The length scale was defined as the
coordinate ρ = L at which χ(L) loses 1/

√
e of its original amplitude χ0. Figure 6 shows

the power-law behavior of the free energy and the amplitude χ0 close to Rc. Figures 7 and 8
also plot the normalized entropy and the length scale, this time for the d = 6 Heterotic
string on AdS.

Broadly speaking, the numerical results continuously interpolate between the different
predictions of the previous sections without adding any noticeable features. For complete-
ness, we list these results below:

• For 3 ≤ d ≤ 5 and in the temperature range ls/lads � (R0 − RH)/RH � 1 the
AdS and the flat space solutions coincide. As we show in section 3, the two start to
disagree around (R0 −RH)/RH ∼ ls/lads.

• The length scale of the AdS solution L grows with the temperature, and is bounded
by Lc (see section 5). In figures 4, 8 the critical length scale Lc is drawn as a green
horizontal line.

• The solution joins with the trivial solution at R0 = Rc. In figures 4, 5, 7, 8 R0 = Rc
is drawn with a blue vertical line.

• The power-law behavior of the amplitude χ0 and the normalized entropy s around
R0 = Rc are shown in figure 6. The linear fit (in black) gives an amplitude pro-
portional to (R0 − Rc)1/2, and an entropy proportional to (R0 − Rc)1. Both are in
agreement with the results of section 5.
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Figure 4. Numerical estimation of the string star normalized entropy s as a function of (R0 −
RH)/RH . The numerical calculation was done for the d = 3 heterotic string. In blue is the AdS
solution with lads/ls = 600, and in orange the flat space solution. The gray vertical line is the
temperature scale around which the AdS solutions significantly deviate from flat space. The orange
vertical line is the flat space Hagedorn temperature RH , and the blue vertical line is the AdS
Hagedorn temperature Rc.

Figure 5. Numerical estimation of the string star length scale L (in string units) as a function
of (R0 − RH)/RH . The length scale is defined as the coordinate ρ at which χ(ρ) loses 1/

√
e of its

amplitude at ρ = 0. The numerical calculation was done for the d = 3 heterotic string. In blue is
the AdS solution with lads/ls = 600, and in orange the flat space solution. The gray vertical line
is the temperature scale around which the AdS solutions significantly deviate from flat space. The
orange vertical line is the flat space Hagedorn temperature RH , and the blue vertical line is the
AdS Hagedorn temperature Rc. The horizontal green line is the critical length scale Lc.
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Figure 6. Loglog plots of the amplitude χ0 (left) and the normalized entropy (right), close to the
critical temperature Rc as a function of (R0 −Rc)/Rc. The numerical results (in blue) are for the
d = 3 heterotic string and lads/ls = 600. In black, we draw a linear fit of the results. The same
power-law exponent was found for other values of lads as well.

Figure 7. Numerical estimation of the AdS string star length scale L (in string units) as a function
of (R0 − RH)/RH . The numerical calculation was done for the d = 6 heterotic string. The blue
vertical line is the AdS Hagedorn temperature Rc. The horizontal green line is the critical length
scale Lc.

• Below the flat space Hagedorn temperature R0 > RH we found solutions only for
3 ≤ d ≤ 5 spatial dimensions, consistent with the flat space result [7, 14]. Close
to the AdS Hagedorn temperature Rc, however, we found solutions for d ≥ 6 as
well. Figures 7, 8 show the normalized entropy and the length scale of the string
star solution for d = 6. We can see in figure 7 that close enough to Rc the solutions
are reliable (L � ls). The solution is unreliable close to RH , as its size is around
the string scale and its amplitude is O(1). In figure 8 we see that the normalized
entropy there is expected to be ∼ O(1). Therefore around R0 ∼ RH the solution size
is L ∼ ls and its entropy is S ∼ ld−1

s /GN , qualitatively agreeing with a string-sized
(small) AdS black hole.
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Figure 8. Numerical estimation of the AdS string star normalized entropy s as a function of
(R0 − RH)/RH . The numerical calculation was done for the d = 6 heterotic string. The blue
vertical line is the AdS Hagedorn temperature Rc.

8 Holographic entanglement entropy of a string star

In this work we only considered the thermodynamic properties of the string star, without
discussing the corresponding stringy microstates. Yet it is still possible to describe its
thermal mixed state using the Euclidean saddle we found. The density matrix is formally
given by ρ̂ = 1

Z exp(−βHSS), where HSS is the Hamiltonian projected to the string star
states and Z an appropriate normalization. We stress that we are not offering here any
way to identify this mixed state in the holographic CFT. Notice that the explicit solutions
for χ can be used as a bulk expression for the mixed state only after taking a trace and
dimensionally reducing on the thermal circle. In this section we will use this description
to find the holographic entanglement entropy of the string star thermal mixed state.

We separate the CFT spatial Sd−1 into a region A and its complement Ā. Following [53]
we employ the CFT replica trick in order to compute the entanglement entropy S(A):

S(A) = −Tr(ρ̂A log ρ̂A) = lim
n→1

Sn(ρ̂A),

Sn(ρ̂A) = 1
1− n logTrρ̂nA = 1

n− 1(In − n · I1).
(8.1)

In the first line ρ̂A = TrĀρ̂ is the reduced density matrix. In the second line we defined the
Rényi entropy Sn. On the r.h.s. we define In = − logZn, where Zn is the CFT n-replica
path integral [54]. Using the holographic dictionary, we can compute Zn using a saddle
point approximation. The calculation is entirely Euclidean, albeit over a complicated
manifold. We assume that our definition of ρ̂ instruct us to look (at least when n ≈ 1) for
an Euclidean string star solution in (almost) thermal AdS space.

Solving Einstein equations with the replicated boundary conditions of Zn gives a bulk
geometry (close to n = 1) of n replicated d + 1 dimensional thermal AdS spaces. The

– 24 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
2

Figure 9. The string theory n replicas construction in thermal AdS, for near-horizon temperatures.
In blue, the bulk replica surface a. The winding string in a winds through all the n replicas. As
a result, the first winding mode has a mass m2(n · R). For each replica, the first winding mode in
the complement ā has a mass m2(R).

geometry is depicted in figure 9. We call the replicated d dimensional submanifold a, and
its complement ā. The boundary of a in the bulk is called X, while the conformal boundary
of a is A. In this replicated Euclidean geometry we can take the dimensional reduction of
the thermal circle. In each of the n replicas, the region ā have a string winding mode with
mass m2(R) (2.4). Because of the replicated submanifold, the combined a region can be
understood as a spatial slice of thermal AdS with temperature n ·β. Alternatively, winding
strings on a extend through all the n replicas and has a mass m2(n ·R) (see figure 9). For
n ≈ 1 and β−βH � ls these modes are all light close enough to the origin. The resulting d
dimensional effective theory admits a bound state of the different winding modes (together
with gravity). As we take the limit n = 1 the classical solution merges with the solution
we studied in this work.

We conclude that close enough to n ≈ 1 the on-shell Euclidean action of the n-replicas
string star solution is given by

In = n · I(ā, β) + I(a, n · β), (8.2)

where I(a, β) is the on-shell integral (2.3) with its domain restricted to a and temperature β.
This expression can be analytically continued in n. Substituting inside (8.1) and following
the arguments of section 2.3 we find the final result

S(A) = Area(X)
4GN

+ 1
16πGN

∫
a
ddx

√
g(d)(2πR)

(
(R∂Rm2) + ((R∂R)2m2)ϕ

)
|χ|2 +O(G0

N ).
(8.3)

Here χ and ϕ are the original (n = 1) solution of the string star. The surface X should
extremize the entire functional, and thus slightly affected by the matter term [55].

There’s a simple explanation for this formula. For a general matter (mixed or pure)
state in AdS, the entanglement entropy is (at leading order in α′) [56]

S(A) = Area(X)
4GN

+ Sbulk(a), (8.4)

where X is the appropriate extremal surface, and Sbulk(a) is the bulk matter entanglement
entropy in a. As χ(x) supposedly stands for a (ls sized) thermal stringy state around the
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point x, our state is a local mixed thermal state. The integrand of (2.19) should thus
be understood as a thermal entropy density. As a result the formula (8.4) immediately
gives (8.3). The area term doesn’t share a thermodynamic bulk interpretation and is
not directly related to the string star solution, but describes (as usual in AdS/CFT) the
underlying entanglement of the AdS geometry itself. Note that this effective description
requires L� ls (see also [57–59]), as we made sure in the previous sections.

In light of the correspondence principle, we would like to compare the entanglement
entropy of the string star (8.3) to that of a small AdS black hole, given by [60, 61]

SBH = Area(XBH)
4GN

+O(G0
N ), (8.5)

where XBH is the extremal surface in the background of a small Euclidean AdS black
hole. For the comparison we take the CFT region A to be a polar-cap of the boundary
Sd−1 covering angles from 0 to θA, parametrized by θA ∈ [0, π]. For small AdS black holes
Area(XBH) ≈ Area(Xvac)+δA, Xvac is the standard thermal AdS extremal surface [54]. δA
increase monotonically as a function of θA from zero at θA = 0 to the horizon area ∼ βd−1

at θA = π. Due to the small size of the black hole, the majority of the increase happens
around |θA − π

2 | ∼ β/lads. Considering the string star, the area term in (8.3) is X ≈ Xvac
to leading order, with a correction at the order of the matter term. The matter term itself
is also monotonic in θA, from zero at θA = 0 to its full value (8.1) at θA = π. For low
temperatures and 3 ≤ d ≤ 5 (see section 3) the maximal value is ∼ ld−1

s
GN
·((β − βH)/βH)

4−d
2 .

The majority of the increase happens around |θA− π
2 | ∼ L/lads, with the (low temperature)

length scale L/ls ∼ ((β − βH)/βH)−
1
2 . We learn that the extrapolations of S(A) of the

small AdS black hole and the AdS string star to β − βH ∼ ls agree qualitatively, by the
same reasoning as in section 3.

It is interesting to see that in terms of the CFT entanglement entropy, the area term
appears both for the string star (8.3) and for the black hole (8.5). The string star en-
tropy (8.3) includes another term that should be understood as both the “matter contri-
bution”, in terms of (8.4), but also as a correction of the “tree level” area term. If the
transition from the string star to the black hole is indeed continuous, this term continuously
joins with the black hole area term. Finding the generalization of (8.4) to finite α′ (but at
leading 1/GN order) might help in understanding the relation between (8.3) and (8.5).
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A The effective field theory

Considering only the (string frame) metric G and the dilaton Φ (which are universal), the
D = d+ 1 dimensional low energy (Euclidean) action of string theory is [62]

ID = 1
16πGN

∫
dDx
√
Ge−2Φ (−R− 4∂µΦ∂µΦ) . (A.1)

We would like to compactify the time direction and find the effective d dimensional
action. We will assume all the higher KK modes (including the massless vector) vanish
and substitute a U(1) invariant metric

ds2 = gij(x)dxidxj +Gtt(x)dt2. (A.2)

with t ∼ t + 1. The only non-zero components of the Christofell tensor are Γijk and
Γitt = −1

2∂
jGtt. As a result the Ricci scalar is

RD = Rd −
1
2G

tt∇2Gtt, (A.3)

with ∇2 the d dimensional Laplacian. Substituting Gtt = gtte
2ϕ and assuming the D

dimensional metric g satisfies the Einstein equations (terms linear in ϕ vanish), gives

RD = RD |ϕ=0 −2∂iϕ∂iϕ. (A.4)

Substituting, the d dimensional action is

Id = 1
16πGN

∫
ddx
√
g
√
gtte
−2Φ+ϕ

(
−R |ϕ=0 +2(∇ϕ)2 − 4(∇Φ)2

)
. (A.5)

When it is light enough, we can consistently add the first winding mode χ(x) to get

Id = 1
16πGN

∫
ddx
√
g
√
gtte
−2Φ+ϕ

(
−R |ϕ=0 +2(∇ϕ)2 − 4(∇Φ)2 + |∇χ|2 +m2(x)|χ|2

)
.

(A.6)
Here m2(R) is defined in (2.4), with R = 1

2π
√
gtt.

To get the standard string-metric normalization we redefine φd = Φ− ϕ
2 , which finally

gives

Id = 1
16πGN

∫
ddx
√
g
√
gtte
−2φd

(
−R |ϕ=0 +(∇ϕ)2 − 4(∇φd)2 + |∇χ|2 +m2(x)|χ|2

)
.

(A.7)
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B The radial Green’s function

B.1 Flat space

The flat space radial Green’s function g(r, r′) satisfies

∂2
rg(r, r′) + d− 1

r
∂rg(r, r′) = δ(r − r′) (B.1)

The general solution is (for d > 2)

g(r, r′) =


a1(r′)
rd−2 + a2(r′), r < r′

b1(r′)
rd−2 + b2(r′), r > r′ .

(B.2)

Continuity of g at r = r′ and discontinuity in ∂rg at r = r′ gives

a1(r)− b1(r)
rd−2 + a2(r)− b2(r) = 0,

d− 2
rd−1 (a1(r)− b1(r)) = 1 .

(B.3)

It defines g(r, r′) up to a homogeneous solution of r. The boundary conditions g(r →
∞, r′) = 0 and ∂rg(r = 0, r′) = 0 fix the residual freedom, and give

g(r, r′) = (r′)d−1 ·


(r′)2−d

2−d , r < r′

r2−d

2−d , r > r′ .
(B.4)

B.2 ads

We work with lads = 1 and a radial coordinate r. The radial Green’s function k(r, r′) satisfy

k′′(r) + v(r)k′(r) = δ(r − r′),
v(r) = tanh(r) + (d− 1) coth(r).

(B.5)

The general solution is

k(r, r′) =


a1(r′) + a2(r′)B

(
sech2(r); d2 , 1−

d
2

)
, r < r′

b1(r′) + b2(r′)B
(
sech2(r); d2 , 1−

d
2

)
, r > r′ ,

(B.6)

with B(x; a, b) the incomplete beta function. The boundary conditions are

∂rk(r = 0, r′) = 0, k(r →∞, r′) = 0, (B.7)

and continuity of k at r = r′ and discontinuity in ∂rk at r = r′ give the solution

k(r, r′) = −1
2 sinhd−1(r′) cosh(r′) ·


B
(
sech2(r′); d2 , 1−

d
2

)
, r < r′

B
(
sech2(r); d2 , 1−

d
2

)
, r > r′ .

(B.8)
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