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Abstract Jet tagging is a crucial classification task in high
energy physics. Recently the performance of jet tagging has
been significantly improved by the application of deep learn-
ing techniques. In this study, we introduce a new architec-
ture for jet tagging: the particle dual attention transformer
(P-DAT). This novel transformer architecture stands out by
concurrently capturing both global and local information,
while maintaining computational efficiency. Regarding the
self attention mechanism, we have extended the established
attention mechanism between particles to encompass the
attention mechanism between particle features. The particle
attention module computes particle level interactions across
all the particles, while the channel attention module com-
putes attention scores between particle features, which nat-
urally captures jet level interactions by taking all particles
into account. These two kinds of attention mechanisms can
complement each other. Further, we incorporate both the
pairwise particle interactions and the pairwise jet feature
interactions in the attention mechanism. We demonstrate the
effectiveness of the P-DAT architecture in classic top tagging
and quark–gluon discrimination tasks, achieving competitive
performance compared to other benchmark strategies.

1 Introduction

In high-energy physics experiments, tagging jets, which are
collimated sprays of particles produced from high-energy
collisions, is a crucial task for discovering new physics
beyond the Standard Model. Jet tagging involves distinguish-
ing boosted heavy particle jets from those of QCD initiated
quark/gluon jets. Since jets initiated by different particles
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exhibit different characteristics, two key issues arise: how to
represent a jet and how to analyze its representation. Conven-
tionally, jet tagging has been performed using hand-crafted
jet substructure variables based on physics motivation. Nev-
ertheless, these methods can often fall short in capturing intri-
cate patterns present in the raw data.

Over the past decade, deep learning approaches have been
extensively adopted to enhance the jet tagging performance
[19]. Various jet representations have been proposed, includ-
ing image-based representation using Convolutional Neural
Network (CNN) [2,8,11,17,20,21,25,32], sequence-based
representation with Recurrent Neural Network [1,10], tree-
based representation with Recursive Neural Network [7,23]
and graph-based representation with Graph Neural Network
(GNN) [3,4,14,16,24,33]. More recently, one representation
approach that has gained significant attention is to view the
set of constituent particles inside a jet as points in a point
cloud. Point clouds are used to represent a set of objects in an
unordered manner, described in a defined space. By adopting
this approach, each jet can be interpreted as a particle cloud,
which treats a jet as a permutation-invariant set of parti-
cles, allowing us to extract meaningful information with deep
learning method. Based on the particle cloud representation,
various deep learning architectures have been introduced,
such as Deep Set Framework [18], ABCNet [26], LorentzNet
[14] and ParticleNet [30]. Deep Set Framework provides a
comprehensive explanation of how to parametrize permuta-
tion invariant functions for inputs with variable lengths, tak-
ing into consideration both infrared and collinear safety. Par-
ticleNet adapts the Dynamic Graph CNN architecture [37],
while ABCNet takes advantage of attention mechanisms to
enhance the local feature extraction. The LorentzNet focused
more on incorporating inductive biases derived from physics
principles into the architecture design, utilizing an efficient
Minkowski dot product attention mechanism. All of these
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architectures realize substantial performance improvement
on top tagging and quark/gluon discrimination benchmarks.

Over the past few years, attention mechanisms have
become as a powerful tool for capturing intricate patterns in
sequential and spatial data. The transformer architecture [35],
which leverages attention mechanisms, has been highly suc-
cessful in natural language processing and computer vision
tasks such as image recognition. However, when dealing
with point cloud representation, which inherently lack a spe-
cific order, modifications to the original transformer struc-
ture are required to establish a self-attention operation that
is invariant to input permutations. To address these issues, a
recent approach known as point cloud transformer (PCT)
[15,27] was proposed, which entails passing input points
through a feature extractor to create a high-dimensional rep-
resentation of particle features. The transformed data is then
passed through a self-attention module that introduces atten-
tion coefficients for each pair of particles. Another notable
approach is the particle transformer [31], which incorporates
pairwise particle interactions within the attention mecha-
nism and obtains higher tagging performance than a plain
transformer and surpasses the previous state-of-the-art, Par-
ticleNet, by a large margin.

In recent studies, the dual attention vision transformer
(DaViT) [12] has exhibited promising results for image clas-
sification. The DaViT introduces the dual attention mecha-
nism, comprising spatial window attention and channel group
attention, enabling the effective capture of both global and
local features in images. In this paper, we utilize the dual
attention mechanism for jet tagging based on point cloud
representation. We expanded the particle self-attention estab-
lished by existing works by introducing the channel self-
attention. In the particle self-attention, the particle num-
ber defines the scope, and the dimension of particle feature
defines the feature dimension. While in the channel self-
attention, the channel dimension defines the scope, and the
particle number defines the feature dimension. Thus each
channel contains an abstract representation of the entire jet.
By performing self-attention on these channels, we capture
the global interaction by considering all the particles when
computing attention scores between each pair of channels.
Compared to existing particle self-attention, the channel self-
attention is naturally imposed from a global jet perspective
rather than a particle one. To achieve the dual attention mech-
anism, we introduce the channel attention module. By alter-
nately applying the particle attention module and the chan-
nel attention module to combine both the local information
of the particle representation and the global information of
the jet representation for jet tagging, we build a new network
structure, called particle dual attention transformer (P-DAT).
Furthermore, inspired by Ref. [31], we design the pairwise jet
feature interaction. We incorporate both the pairwise particle
interaction and the pairwise jet feature interaction to increase

the expressiveness of the attention mechanism. We evaluate
the performance of P-DAT on top tagging and quark/gluon
discrimination tasks and compare its performance against
other baseline models. Our analysis demonstrates the effec-
tiveness of P-DAT in jet tagging and highlights its potential
for future applications in high-energy physics experiments.

This article is organized as follows. In Sect. 2, we intro-
duce the particle dual attention transformer for jet tagging,
providing a detailed description of model implementation. In
Sect. 3, we present the performance of P-DAT and the exist-
ing algorithms obtained for top tagging task and quark/gluon
discrimination task, utilizing several evaluation metrics and
provide an extensive discussion of these results. In Sect. 4,
we conduct a comprehensive comparison of computational
resource requirements for evaluating each model, including
the number of trainable weights and the number of floating-
point operations (FLOPs). Finally, our conclusions are pre-
sented in Sect. 5.

2 Model architecture

The focus of this paper is to introduce the particle dual atten-
tion transformer (P-DAT), which is designed to capture both
the local particle-level information and the global jet level
information. In this section, we first introduce overall struc-
ture of the model architecture. Then we delve into the details
of the channel attention module and its combination with
the particle attention module. Finally, we present the model
implementation.

2.1 Overall structure

The whole model architecture is illustrated in Fig. 1. It con-
tains three key components, namely the feature extractor, the
particle attention module and the channel attention module.

First of all, we employ the same feature extractor as in
Ref. [27] to transform the inputs from P × 7 to a higher
dimensional representation P × N , where P represents the
number of particles within the jet, and N denotes the dimen-
sion of the embedding features for each particle. As shown in
Fig. 2(left), the feature extractor block incorporates an Edge
Convolution (EdgeConv) operation [36] followed by 3 two-
dimensional convolutional (Conv2D) layers and an average
pooling operation across all neighbors of each particle. The
EdgeConv operation adopts a k-nearest neighbors approach
with k = 20 to extract local information for each particle
based on the proximity in the η −φ space. All convolutional
layers are implemented with stride and kernel size of 1 and
are followed by a batch normalization operation and GELU
activation function. Same as in Ref. [27], we employed two
feature extractors with N = 128 and N = 64, respectively.
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Fig. 1 Illustration of the whole model architecture

Subsequently, we alternately stack two particle attention
modules and two channel attention modules to combine both
the local information of the particle representation and the
global information of the jet representation. A dropout rate
of 0.1 is applied to all particle attention blocks and chan-
nel attention blocks. Furthermore, inspired by Ref. [31], we
designed a channel interaction matrix based on physics prin-
ciples. Then we incorporate the particle interaction matrix
to the particle attention module and incorporate the chan-
nel interaction matrix to the channel attention module. For
the particle interaction matrix, we utilize a 3-layer two-
dimensional convolution with (32,16,8) channels with stride
and kernel size of 1 to map the particle interaction matrix
to a new embedding P × P × Nh , where Nh is the num-
ber of heads in the particle self attention module. As for the
channel interaction matrix, we utilize an upsampling opera-
tion and a 3-layer two-dimensional convolution to map the
channel interaction matrix to a higher dimensional represen-
tation N × N , with N the input particle embedding dimen-
sion. Therefore, to process a jet of P particles, the P-DAT
requires three inputs: the jet dataset, the particle interaction
matrix and the jet feature interaction matrix derived from the
kinetic information of each particle inside the jet.

Next, the outputs of the particle attention blocks and
channel attention blocks are concatenated, followed by an
1 dimensional Convolutional Neural Network (CNN) layer
with 256 nodes and an average pooling operation across all
particles. This output is then directly fed into a 3-layer MLP
with (256, 128, 2) nodes, as shown in Fig. 2(right). In addi-
tion, a batch normalization operation, a dropout rate of 0.5
and the GELU activation function are applied to the second
layer. Finally, the last layer employs a softmax operation to
produce the final classification scores. It is worth noting that

Fig. 2 Illustration of the feature extractor block and the MLP block

the inclusion of class attention blocks, as described in Ref.
[31], did not lead to an improvement in performance of P-
DAT, as observed in our experiments.

2.2 Particle attention module

The particle self-attention block, which is already estab-
lished in the existing papers, aims to establish the relation-
ship between all particles within the jet using an attention
mechanism. As presented in Fig. 3, three matrices, which are
called query (Q), key (K), and value (V), are built from linear
transformations of the original inputs. Attention weights are
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Fig. 3 Illustration of the particle multi-head attention block

computed by matrix multiplication between Q and K, rep-
resenting the matching between them. Same as the particle
transformer work [31], we incorporate the particle interaction
matrix U1 as a bias term to enhance the scaled dot-product
attention. This incorporation of particle interaction features,
designed from physics principles, modifies the dot-product
attention weights, thereby enhancing the expressiveness of
the attention mechanism. The same U1 is shared across
the two particle attention blocks. After normalization, these
attention weights reflect the weighted importance between
each pair of particles. The self-attention is then obtained by
the weighted elements of V, which results from multiplying
the attention weights and the value matrix. It is important to
note that P represents the number of particles, and N denotes
the total number of features. The attention weights are com-
puted as:

A(Q,K,V) = Concat(head1, . . . , headNh )

where headi = Attention(Qi ,Ki ,Vi )

= softmax

[
Qi (Ki )

T

√
Ch

+ U1

]
Vi (1)

where Qi = XiW
Q
i , Ki = XiWK

i , and Vi = XiWV
i

are R
P×Nh dimensional visual features with Nh heads, Xi

denotes the ith head of the input feature and Wi denotes
the projection weights of the ith head for Q,K,V, and
N = Ch ∗ Nh . The particle attention block incorporates a
LayerNorm layer both before and after the multi-head atten-
tion module. A two-layer MLP, with LayerNorm preceding
each linear layer and GELU nonlinearity in between, fol-
lows the multi-head attention module. Residual connections
are applied after the multi-head attention module and the
two-layer MLP. In our study, we set Nh = 8 and N = 64.

Fig. 4 Illustration of the channel attention block

2.3 Channel attention module

The main contribution of this paper is to explore the self-
attention mechanism from another perspective and propose
the channel-wise attention mechanism for jet tagging. Unlike
the previous particle self-attention mechanism which com-
putes the attention weights between each pair of particles,
we apply attention mechanisms on the transpose of particle-
level inputs and compute the attention weights between each
pair of particle features. In this way, the channel-wise atten-
tion mechanism naturally capture the global interaction of
each pair of particle features by taking all the particles into
account, which can be viewed as the interaction of each pair
of jet features. Additionally, taking inspiration from Ref.
[31], we have devised a jet feature interaction matrix based
on physics principles, which can be added to enhance the
expressiveness of the channel attention mechanism.

As depicted in Fig. 4, the channel self-attention block
applies attention mechanisms to the jet features, enabling
interactions among the channels. To capture global informa-
tion in the particle dimension, we set the number of heads to
1, where each channel represents a global jet feature. Conse-
quently, all the channels interact with each other. This global
channel attention mechanism is defined as follows:

A(Qi ,Ki ,Vi ) = softmax

[
QT

i Ki√
C

+ U2

]
VT
i (2)

where Qi ,Ki ,Vi ∈ R
C×P are channel-wise jet-level

queries, keys, and values. Note that although we perform the
transpose in the channel attention block, the projection layers
W and the scaling factor 1√

C
are computed along the chan-

nel dimension, rather than the particle dimension. Similar as
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the particle self-attention block, we incorporate the designed
channel interaction matrix U2 as a bias term to enhance the
scaled dot-product attention. The same U2 matrix is shared
across the two channel attention blocks. After normaliza-
tion, the attention weights indicate the weighted importance
of each pair of global features. The self-attention mechanism
produces the weighted elements of V, obtained by multiply-
ing the attention weights and the value matrix. Addition-
ally, the channel attention block includes a LayerNorm layer
before and after the attention module, followed by a two-layer
MLP. Each linear layer is preceded by a LayerNorm layer,
and a GELU nonlinearity is applied between them. Residual
connections are added after the channel attention module and
the two-layer MLP.

2.4 Combination of particle attention module and channel
attention module

Throughout the whole architecture, all the particle attention
modules and the channel attention modules are stacked while
maintaining a consistent feature dimension of N = 64. The
channel attention module captures global information and
interactions, while the particle attention module extracts local
information and interactions. In the context of the channel
self-attention mechanism, a C × C-dimensional attention
map is computed, involving all the particles, resulting in a
computation of the form (C×P)·(P×C). This global atten-
tion map enables the channel attention module to dynam-
ically fuse multiple global perspectives of the jet. Subse-
quently, a transpose operation is performed, yielding outputs
with new channel information, which are then passed to the
subsequent particle attention module. Conversely, in the par-
ticle self-attention mechanism, a P × P-dimensional atten-
tion map is computed by considering all particle features,
resulting in a computation of the form (P×C)·(C×P). This
local attention map empowers the particle attention module
to dynamically fuse multiple local views of the jet, generat-
ing new particle features and passing the information to the
following channel attention module. By alternatively apply-
ing these two types of modules, the local information and
global information can complement each other.

2.5 Model implementation

The PYTORCH [29] deep learning framework is utilized
to implement the model architecture with the CUDA plat-
form. The training and evaluation steps are accelerated using
a NVIDIA GeForce RTX 3070 GPU for acceleration. We
adopt the binary cross-entropy as the loss function. To opti-
mize the model parameters, we employ the AdamW opti-
mizer [22] with an initial learning rate of 0.0005, which is
determined based on the gradients calculated on a mini-batch
of 64 training examples. The network is trained up to 100

epochs, with the learning rate decreasing by a factor of 2
every 10 epochs to a minimal of 10−6. In addition, we employ
the early-stopping technique to prevent over-fitting.

Furthermore, as mentioned in Ref. [31], the introduction
of the pairwise interaction matrix based on physics principle
significantly increases the computational time and memory
consumption, therefore limiting the number of pairwise inter-
action matrix which is the prior knowledge based on physics
principle. In this paper, in order to address the memory issue
caused by huge input data, we implemented the Chunk Load-
ing strategy, a commonly used technique in the field of deep
learning for data loading. This approach entails continuously
importing and deleting data during the training, validation
and test process, enabling us to train our model on a large
dataset while mitigating the memory load. We give a detailed
description of this approach in the following:

Within a loop, input data batches are dynamically loaded
for training, validation, and test. Each batch contains 1280
events. Regardless of whether it’s for training, validation,
or testing, the data loading process remains consistent.
This uniformity ensures that the iteration counts for train-
ing, validation, and testing may vary, but the data-handling
approach remains the same. During each iteration, we employ
NumPy’s memory-mapped file access to efficiently retrieve
training data, corresponding labels, particle interaction matri-
ces, and jet interaction matrices. Once this batch is pro-
cessed for training/validation/testing, the loaded data is sub-
sequently removed to free up memory resources. Subse-
quently, we proceed to load the next batch of data for next
iteration. This method significantly reduces memory con-
sumption by allowing us to access the necessary data without
the need to load the entire dataset into memory all at once.
This strategic approach not only optimizes memory utiliza-
tion but also effectively mitigates the challenges associated
with handling substantial input data. It allows us to train our
model efficiently while preventing memory exhaustion.

3 Results of jet classification

The P-DAT architecture is designed to process input data con-
sisting of particles inside the jets. Based on the point cloud
representation, we regard each constituent particle as a point
in the η−φ space and the whole jet as a point cloud. To ensure
consistency and facilitate meaningful comparisons, we first
sorted the particles inside the jets by transverse momentum
and a maximum of 100 particles per jet are employed. The
input jet is truncated if the particle number inside the jet is
more than 100 and the input jet is zero-padded up to the 100
if fewer than 100 particles are present. In this process, the
zero-padded constituent particles were directly introduced
as zeros into the model, without the utilization of any addi-
tional masking. This selection of 100 particles is sufficient to
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Table 1 The jet feature pairwise interaction matrix used as the inputs for the P-DAT. Here PID represents the particle identification

I E pT
∑

pT f
∑

E f Δη Δφ ΔR PID

E 1 pT
E 0 1 0 0 0 EPI D

E

pT
pT
E 1 1 0 0 0 0 pT P I D

pT∑
pT f 0 1 1 0 0 0 0 pT f P I D∑
E f 1 0 0 1 0 0 0 E f P I D

Δη 0 0 0 0 1 0 Δη

ΔR
ΔηP I D

Δφ 0 0 0 0 0 1 Δφ

ΔR
ΔφP I D

ΔR 0 0 0 0 Δη

ΔR
Δφ

ΔR
1 ΔRPI D

PID EPI D
E

pT P I D
pT

pT f P I D E f P I D ΔηP I D ΔφP I D ΔRPI D 1

cover the vast majority of jets contained within all datasets,
ensuring comprehensive coverage. Each jet is characterized
by the 4-momentum of its constituent particles. Based on this
information, we reconstructed 7 features for each particle.
Additionally, for the quark–gluon dataset, we included the
Particle Identification (PID) information as the 8-th feature.
These features are as follows:{

log E, log pT,
pT

pTJ
,

E

EJ
, Δη Δφ, ΔR, PID

}
. (3)

For the pairwise particle interaction matrix, we adopt the
same four features as employed in Refs. [13,31]. Addition-
ally, we include the difference in transverse momentum as
an additional feature. To summarize, we calculated the fol-
lowing 5 features for any pair of particles a and b with four-
momentum pa and pb, respectively:

ΔR =
√

(ya − yb)2 + (φa − φb)2,

kT = min(pT,a, pT,b)Δ,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2 − ‖pa + pb‖2,

ΔpT = |pT,a − pT,b| (4)

where yi represents the rapidity, φi denotes the azimuthal
angle, pT,i = (p2

x,i + p2
y,i )

1/2 denotes the transverse
momentum, pi = (px,i , py,i , pz,i ) represents the momen-
tum 3-vector and ‖ · ‖ is the norm, for i = a, b. As
mentioned in Ref. [31], we take the logarithm and use
(ln Δ, ln kT, ln z, lnm2, ln ΔpT) as the interaction features
for each particle pair to avoid the long tail problem. More-
over, apart from the 5 interaction features, we design one
more feature for the quark–gluon benchmark dataset, defined
as δi, j , where i and j are the Particle Identification of the par-
ticles a and b.

Furthermore, as mentioned in Sect. 2, we have designed
a pairwise jet feature interaction matrix, drawing inspiration
from the work Ref. [31]. The list of all jet features used in

this study is presented below. Note that all the jet features are
calculated based on the four-momentum of all the constituent
particles within the jet. The interaction matrix is constructed
based on a straightforward yet effective ratio relationship, as
illustrated in Table 1.
{

E, pT,
∑

pT f ,
∑

E f , Δη, Δφ, ΔR, PID

}
. (5)

To provide a clearer explanation of the concept of the
jet feature pairwise interaction matrix, we will now present
a detailed description. The first variable E represents the
energy of the input jet. pT denotes the transverse momen-
tum of the input jet, while

∑
pT f and

∑
E f represent the

sum of the transverse momentum fractions and the energy
fractions of all the constituent particles inside the input jet,
respectively. Additionally, Δη, Δφ and ΔR correspond to the
transverse momentum weighted sum of the Δη, Δφ, ΔR of
all the constituent particles inside the input jet, respectively.
Here Δη, Δφ and ΔR refer to the distances in the η − φ

space between each constituent particle and the input jet.
Furthermore, for the quark–gluon dataset, we incorporated
the 8th feature based on the particle identification informa-
tion. It represents the particle identification associated with
the specific particle type whose sum of transverse momentum
accounts for the largest proportion of the entire jet transverse
momentum. The entire jet feature pairwise interaction matrix
is defined as a symmetric block matrix with diagonal ones.
For convenience, we named {E, pT,

∑
pT f ,

∑
E f } as vari-

able set 1 and {Δη, Δφ, ΔR} as variable set 2. We build
the pairwise interactions among variable set 1 and variable
set 2, respectively. Firstly, we employ a ratio relationship to
define the interaction between E and pT}. Additionally, we
establish that the interaction between

∑
E f and E is 1, while

no interactions exist between
∑

E f and any other variables,
except for E and particle identification. Similarly, we define
the interaction between

∑
pT f and pT as 1, with no inter-

actions between
∑

pT f and any other variables, except for
pT and particle identification.
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Table 2 Comparison between
the performance reported for
P-DAT and existing
classification algorithms on the
quark–gluon discrimination
dataset. The uncertainty is
calculated by taking the
standard deviation of 5 training
runs with different random
weight initialization

Accuracy AUC Rej50% Rej30%

ResNeXt-50 [30] 0.821 0.9060 30.9 80.8

P-CNN [30] 0.827 0.9002 34.7 91.0

PFN [18] – 0.9005 34.7 ± 0.4 –

ParticleNet-Lite [30] 0.835 0.9079 37.1 94.5

ParticleNet [30] 0.840 0.9116 39.8 ± 0.2 98.6 ± 1.3

ABCNet [26] 0.840 0.9126 42.6 ± 0.4 118.4 ± 1.5

SPCT [27] 0.815 0.8910 31.6 ± 0.3 93.0 ± 1.2

PCT [27] 0.841 0.9140 43.2 ± 0.7 118.0 ± 2.2

LorentzNet [14] 0.844 0.9156 42.4 ± 0.4 110.2 ± 1.3

ParT [31] 0.849 0.9203 47.9 ± 0.5 129.5 ± 0.9

P-DAT 0.839 0.9092 39.2 ± 0.6 95.1 ± 1.3

Secondly, we apply a ratio relationship to define the inter-
action between ΔR and {Δη,Δφ}, while no interaction is
specified between Δη and Δφ. Finally, we determine the
interactions between particle identification and all other vari-
ables as the ratio of the sum of the corresponding variables
of the particles associated with the particle identification to
the variable of the jet.

3.1 Quark/gluon discrimination

The quark–gluon benchmark dataset [18] was produced
using Pythia8 [34] without detector simulation. It includes
quark-initiated samples qq → Z → νν + (u, d, s) as signal
and gluon-initiated data qq → Z → νν + g as background.
Jet clustering was performed using the anti-kT algorithm
with R = 0.4. Only jets with transverse momentum pT ∈
[500, 550] GeV and rapidity |y| < 1.7 were selected for
further analysis. Each particle within the dataset comprises
not only the four-momentum, but also the particle identifi-
cation information, which classifies the particle type as elec-
tron, muon, charged hadron, neutral hadron, or photon. The
official dataset compromises of 1.6M training events, 200k
validation events and 200k test events, respectively. In this
paper, we focused on the leading 100 constituents within
each jet, utilizing their four-momenta and particle identifi-
cation information for training purposes. For jets with fewer
than 100 constituents, zero-padding was applied. For each
particle, a set of 8 input features was used, based solely on
the four-momenta and identification information of the par-
ticles clustered within the jet. The accuracy, area under the
curve (AUC), and background rejection results are presented
in Table 2.

From Table 2, we can see that in the context of the
quark/gluon discrimination task, P-DAT exhibits powerful
classification performance, surpassing the majority of mod-
els while falling slightly behind other two transformer-based
models, PCT and ParT. The superior results of ParT can

be attributed to its significantly more complex architecture
with a total of L = 8 particle attention blocks and 2 class
attention blocks. The model complexity of ParT exceeds
the P-DAT model by a substantial margin. As for the PCT
model, all self-attention layers employ query, key, and value
matrices obtained through one-dimensional convolutional
layers, resulting in a larger number of FLOPs compared
to our model. P-DAT strikes a favorable balance between
performance and model complexity. Additionally, our P-
DAT model incorporates the channel attention module, offer-
ing greater flexibility in leveraging abundant jet information
compared to the other two methods.

3.2 Top tagging

The benchmark dataset [5] used for top tagging comprises
hadronic tops as the signal and QCD di-jets as the back-
ground. Pythia8 [34] was employed for event generation,
while Delphes [9] was utilized for detector simulation. All
the particle-flow constituents were clustered into jets using
the anti-kT algorithm [6] with a radius parameter of R =
0.8. Only jets with transverse momentum pT ∈ [550, 650]
GeV and rapidity |y| < 2 were included in the analysis.
The official dataset contains 1.2M training events, 400k val-
idation events and 400k test events, respectively. Only the
energy-momentum 4-vectors for each particles inside the
jets are provided. In this paper, the leading 100 constituent
four-momenta of each jet were utilized for training purposes.
For jets with fewer than 100 constituents, zero-padding was
applied. For each particle, a set of 7 input features based
solely on the four-momenta of the particles clustered inside
the jet was utilized. The accuracy, area under the curve
(AUC), and background rejection results can be found in
Table 3.

From Table 3, a similar pattern emerges when analyz-
ing the performance of models in the top tagging task. P-
DAT exhibits competitive classification performance. While
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Table 3 Comparison between
the performance reported for
P-DAT and existing
classification algorithms on the
top tagging dataset. The
uncertainty is calculated by
taking the standard deviation of
5 training runs with different
random weight initialization

Accuracy AUC Rej50% Rej30%

ResNeXt-50 [30] 0.936 0.9837 302 ± 5 1147 ± 58

P-CNN [30] 0.930 0.9803 201 ± 4 759 ± 24

PFN [18] – 0.9819 247 ± 3 888 ± 17

ParticleNet-Lite [30] 0.937 0.9844 325 ± 5 1262 ± 49

ParticleNet [30] 0.940 0.9858 397 ± 7 1615 ± 93

JEDI-net [28] 0.9263 0.9786 – 590.4

SPCT [27] 0.928 0.9799 201 ± 9 725 ± 54

PCT [27] 0.940 0.9855 392 ± 7 1533 ± 101

LorentzNet [14] 0.942 0.9868 498 ± 18 2195 ± 173

ParT [31] 0.940 0.9858 413 ± 16 1602 ± 81

P-DAT 0.932 0.9768 228 ± 8 876 ± 39

other two transformer-based models, PCT and ParT, achieve
modestly enhanced performance, especially in terms of back-
ground rejection rates, which reach nearly twice that of our
P-DAT model, this advantage comes at the cost of increased
model complexity and resource demands.

Furthermore, given that our P-DAT model includes the
channel attention module and considering the distinct jet
substructure characteristics observed in boosted top jets and
boosted QCD jets, we have the opportunity to formulate a set
of jet substructure variables and develop an additional self-
attention module to calculate attention weights for every pair
of these jet substructure variables. The resulting attention
weight matrix can be employed as a bias term to augment
channel scaled dot-product attention. This can be an inter-
esting research direction in the future to enhance the per-
formance of top tagging. While we acknowledge that Parti-
cleNet Lite achieves higher background rejection rates with
smaller model complexity regarding top tagging task, we
believe that the adaptability and innovation inherent in the P-
DAT model, combining the global jet information and local
particle information, pave the way for exciting possibilities
in this field.

4 Computational complexity

In addition to evaluating the algorithm’s performance, it’s
crucial to consider the computational cost involved. To
gauge the computational resources needed for assessing each
model, we calculate both the number of trainable parameters
and the number of floating-point operations (FLOPs). Table 4
presents a comparative analysis of these factors across vari-
ous algorithms.

In the context of computational complexity comparison
among various models, our P-DAT model emerges as a
notable candidate. While the number of P-DAT trainable
parameters is increased by more than 2.6 times compared

Table 4 Comparison between the number of trainable weights and
floating point operations (FLOPs) reported for P-DAT and existing clas-
sification algorithms

Parameters FLOPs

ResNeXt-50 [30] 1.46M –

P-CNN [30] 354k 15.5M

PFN [18] 86.1k 4.62M

ParticleNet-Lite [30] 26k –

ParticleNet [30] 370k 540M

ABCNet [26] 230k –

SPCT [27] 7k 2.4M

PCT [27] 193.3k 266M

LorentzNet [14] 224k –

ParT [31] 2.13M 260M

P-DAT 498k 144M

to PCT, the number of floating point operations (FLOPs) is
actually 45% lower. Notably, when compared to ParticleNet,
PCT, and ParT, P-DAT features the smallest FLOPs. P-DAT
distinguishes itself by maintaining a comparatively modest
parameter count at 498k while offering a reasonable level of
computational efficiency with 144 M FLOPs. This balance
between model complexity and computational demands posi-
tions P-DAT as an attractive choice for practical applications,
where it can potentially deliver competitive performance with
fewer computational resources, making it a promising option
for deployment and further research.

5 Conclusion

In this study, we introduced the particle dual attention trans-
former (P-DAT) as an innovative model architecture for jet
tagging. We designed the channel attention module and alter-
nately employed the particle attention module and the chan-
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nel attention module to capture both jet-level global informa-
tion and particle-level local information, while maintaining
computational efficiency. Additionally, we incorporate both
the pairwise particle interactions and the pairwise jet fea-
ture interactions in the attention mechanism. We evaluate
the P-DAT architecture on the classic top tagging task and
the quark–gluon discrimination task and achieve competi-
tive results compared to other benchmark strategies. Notably,
our P-DAT maintains a relatively modest parameter count
498k while simultaneously delivering a reasonable level of
computational efficiency with 144 M FLOPs, which strikes
a balance between computational complexity and model
performance. Besides, given the substantial computational
demands posed by introducing a pairwise interaction matrix
based on physics principles, which can impact both time and
memory resources, we have introduced the Chunk loading
strategy which involves dynamic data import and deletion
throughout the training, validation, and testing phases, effec-
tively addressing memory usage constraints.

Finally, channel attention module opens up more possi-
bilities for future exploration. For instance, in this study we
proposed the channel attention module and designed the jet
feature interaction matrix as our primary contributions. As an
alternative approach to utilizing simple ratio-based interac-
tion matrix, we could explore the possibility of constructing
a dedicated attention module for jet features. By incorpo-
rating the resulting attention weight matrix into the channel
attention module, we may potentially enhance performance.
This strategy offers the advantage of incorporating valuable
supplementary jet information and leveraging the intrinsic
patterns within jet features revealed by the jet feature atten-
tion mechanism.
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