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ABSTRACT: In QCD matter under an external magnetic field, the chiral magnetic effect
(CME) leads to the collective gapless mode called the chiral magnetic wave (CMW). Since
dynamic universality class generally depends on low-energy gapless modes, it is nontrivial
whether the CME and the resulting CMW change that of the second-order chiral phase
transition in QCD. To address this question, we study the critical dynamics near the
chiral phase transition in massless two-flavor QCD under an external magnetic field. By
performing the dynamic renormalization-group analysis within the e expansion, we find
that the presence of the CME changes the dynamic universality class to that of model A.
We also show that the transport coefficient of the CME is not renormalized by the critical
fluctuations of the order parameter.
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1 Introduction

The Beam Energy Scan program at Relativistic Heavy Ion Collider (RHIC) has two main
goals: one is the search for anomaly-induced transport phenomena related to quantum
anomalies [1, 2], such as the chiral magnetic effect (CME) [3-6] and the chiral vortical effect
(CVE) [7-10]. The CME and CVE represent the vector currents in relativistic matter with
a chirality imbalance along a magnetic field and vorticity, respectively. In QCD matter
under an external magnetic field (even at zero density), the CME leads to a sound-like



B=0,C=0[24] |B#0,C=0|B#0,C#0
O(4) antiferromagnet model E model A

Table 1. Summary of dynamic universality classes (massless two-flavor QCD).

density wave called the chiral magnetic wave (CMW) [11, 12]. It has been argued that
the presence of the CMW in the quark-gluon plasmas (QGP) is reflected in the electric
quadrupole observables in heavy-ion collisions [13]. An experimental signature consistent
with the presence of the CMW may have been observed [14], although an alternative
explanation and background for the signature, unrelated to the CMW, have been also
proposed [15, 16].

The other is the search for the QCD critical point(s) (see, e.g., ref. [17] for a review),
whose possible existence has been argued theoretically at high temperature T between
the hadron phase and the QGP phase [18, 19] and at high baryon chemical potential
pp between the hadron phase and the color superconducting phase [20-23]. In general,
remarkable consequences from the existence of a critical point are the universality of the
static and dynamic critical phenomena which does not depend on the microscopic details,
but only on the symmetries and low-energy gapless modes. It has been previously found
that the dynamic universality class of the second-order chiral phase transition in massless
two-flavor QCD at finite 7" and pup = 0 is equivalent to that of O(4) antiferromagnet [24],
while that of the high-T" critical point at finite up in QCD with finite quark masses is the
model H [25-28] in the Hohenberg-Halperin classification [29]." However, since QCD under
the magnetic field contains the CMW as an additional collective gapless excitation, it is
nontrivial whether such a mode changes the dynamic universality class of the second-order
chiral phase transition. One can thus ask the following question: does the CME (and the
resulting CMW) change the dynamic universality class in QCD?

In this paper, we address this question, based on the dynamic renormalization-group
(RG) analysis within the e expansion, for a well-posed setup that we will describe in
section 2.2 Our main results on the dynamic universality classes are summarized in table 1.
(Here C' is the transport coefficient of the CME defined in eq. (3.10) below.) In the presence
of the magnetic field B # 0, but without the CME, the system belongs to the dynamic
universality class of model E. On the other hand, when the CME is taken into account,
the fixed point corresponding to model E becomes unstable, and the dynamic universality
class is changed to that of model A.

On the way, we also show that the transport coefficient of the CME is not renormalized
by the critical fluctuations of the order parameter. Moreover, we find a new dynamic
critical behavior that the speed of the CMW tends to zero when the second-order chiral

1Recently, it has also been found that, unlike the high-T" critical point, the high-up critical point belongs
to a new dynamic universality class beyond the conventional Hohenberg and Halperin’s classification due
to the interplay between the chiral criticality and the presence of the superfluid phonon [30].

2To simplify our discussion, we here ignore the effects of motion of plasmas, where CVE and the resulting
gapless collective mode called the chiral vortical wave (CVW) [31] are absent, and we shall focus on the
possible modifications due to the CME. The extension of our work to include the coupling with the energy-
momentum tensor (and CVE and CVW) is deferred to future work.



phase transition is approached. This is similar to the phenomenon known as the critical
attenuation of sound waves in the liquid-gas phase transition [28, 32] and that of first sound
waves in the superfluid transition [33-35]. To the best of our knowledge, our work provides
the first study of the interplay between the anomaly-induced transport phenomena and
dynamic critical phenomena of QCD.

This paper is organized as follows. In section 2, we present the setup of our study:
symmetries and hydrodynamic variables under consideration. In section 3, we construct
the non-linear generalized Langevin equations describing the QCD critical dynamics in
the presence of the CME. In section 4, with the help of the so-called Martin-Siggia-Rose-
Janssen-de Dominicis (MSRJD) path-integral formalism [36-38], we perform the dynamic
RG analysis to study the static and dynamic critical behaviors within the e expansion at
the one-loop order. In section 5, we conclude with discussions.

In this paper, we set e = 1 for simplicity.

2 Setup

We consider two-flavor QCD with massless up and down quarks at finite temperature T’
and isospin chemical potential u; in an external magnetic field B. The effects of finite
isospin chemical potential y; and axial isospin chemical potential 5 are implemented in
the quark sector of massless two-flavor QCD Lagrangian as

Louark = 1qY"Dyuq + mdy°m3q + psqy°vs73q, (2.1)

where ¢ is the quark field, D, is the covariant derivative including gluon fields and an exter-
nal magnetic field, and 7* (a = 1,2, 3) are the generators of SU(2) with the normalization
Tr(7%7%) = §%°/2. The chemical potentials y; and pp5 are coupled to the isospin density
n1 = §y°73¢ and the axial isospin density nis = ¢y°y573q, respectively. In the following,
we will mostly consider the case with p; # 0 and up = 0 (except for section 2.1). Note
that the CMW appears even at ups = 0 due to the fluctuation of ns and ny.

Some remarks on our setup are in order here. First, we assume massless quarks such
that possible quark-mass corrections of the CME can be ignored. Second, we consider
finite pur instead of baryon chemical potential ug, because both n; and nys are conserved
in massless QCD, and so u1 and urs are well-defined. On the other hand, the conservation
of the axial baryon charge nps is violated by the QCD axial anomaly even in massless
QCD, and then the axial baryon chemical potential ups is not generically well-defined.?
Therefore, in our setup, whether the CME affects the dynamic critical phenomena in QCD
becomes a theoretically well-posed question.

It should also be remarked that, when B = 0 (where the CME is absent), the dynamic
universality class of the second-order chiral phase transition in massless QCD at finite
T and up is known to be different from that of QCD with finite quark masses, as we

30ne manifestation of this fact is that the wave equation of the CMW for the baryon charge receives
correction due to the QCD axial anomaly. However, such an issue does not occur for the isospin charge.



pr = pus =0 pr=p1s #0 | pr #0, pis =0
B =0 | SUQ2)L x SU@2)r | SUQ2)L x U(1)% | UQ)Z x UL
B+#0 U(1)3 x U1)%

Table 2. Chiral symmetry of massless two-flavor QCD with gy and pys in the presence/absence
of B.

mentioned in section 1: the former is equivalent to the O(4) antiferromagnet [24]* while
the latter is the model H [25-28] in the classification by Hohenberg and Halperin [29]. This
difference originates from the absence of the pions at low energy below the pion mass and
the presence of the mixing between the chiral condensate and the baryon number density in
QCD with finite quark masses at finite ug [27]. In this paper, we will address the question
as to whether the CME affects the dynamic universality class of massless QCD (but not
that of massive QCD).? As we already stated in section 1, we will ignore the CVE and
focus on the CME to simplify the following discussion.

2.1 Symmetries

We first summarize the chiral symmetry with u; and urs in the presence or absence of B as
shown in table 2. In the presence of B, chiral symmetry SU(2)1,xSU(2)g is explicitly broken
down to its subgroup G = U(1)3, x U(1)} [39] (irrespectively of the presence of yy and/or
p15). This symmetry corresponds to the invariance under the following transformation,

q(z) — ¢(x) = emngemAT%sq(x), (2.2)

where ay and ap denote the phase-rotating angles associated with U(l)%, and U(1)3 sym-
metries, respectively. In the particular case, u; = pis # 0 with B = 0, where the chemical
potential is only coupled to right-handed quarks, chiral symmetry is broken only in the
right-handed quark sector as SU(2)g — U(1)3.

2.2 Hydrodynamic variables

While the static universality class near a critical point or second-order phase transition is
characterized only by the symmetry breaking pattern of an order parameter, the dynamic
universality class is generally affected by the presence of low-energy gapless excitations in
addition to the order parameter. Therefore, it is necessary to identify appropriate gapless
degrees of freedom called hydrodynamic variables in the system. The typical hydrody-
namic variables are the fluctuations of the conserved charge densities, the order parameter
associated with the critical phenomena, and the Nambu-Goldstone modes associated with

4More precisely, what is studied in ref. [24] is the second-order chiral phase transition at ug = 0 and
p1 = 0. The result at finite pr can be obtained by setting B = 0 in our analysis, which we will also
argue below.

5To study the possible modification of the dynamic critical phenomena in QCD with finite quark masses
due to the CME, one first needs to figure out the quark-mass corrections of the CME and CMW. We defer
this problem to future work.



spontaneous breaking of some symmetries. Here we will present all the hydrodynamic
variables in our setup.

The first hydrodynamic variable is the order parameter associated with the chiral phase
transition, ®;; ~ ¢;j(1 — v5)q; (with 4, j being the flavor indices), which can be generally
decomposed as

® = o7 +inr® + 67 + in®7?, (2.3)

where 0 = qr’q, n = Gism%q, 0* = qr%q, and 7 = Giy’7% with 7% = 1/2, and we
take a sum over repeated indices. In the absence of the magnetic field (B = 0), o and 7
become nearly massless near the second-order chiral phase transition, while  and §* acquire
finite masses due to the U(1), anomaly or the Kobayashi-Maskawa-"t Hooft interaction
c(det @ + det ®T) [40].5 When the system is put under the magnetic field (B # 0), chiral
symmetry is explicitly broken down to its subgroup G (see section 2.1), and the charged

pions 71?2

acquire a mass proportional to \/|B|. Hence, in order to study the critical
phenomena at long distance and long time scale much larger than 1/1/|B}, it is sufficient
to only focus on o and 73 among these variables. We parametrize them by using the

two-component order parameter field ¢,, (o = 1,2), where we defined ¢; = o and ¢o = 7°.

The second hydrodynamic variable is the conserved charge densities. In this paper, we
only take into account the conserved charge densities associated with the symmetry G which
are coupled to ¢, i.e., n; and ny5. Note that although the energy and momentum densities
can also couple to these hydrodynamic variables, we only focus on the above hydrody-
namic variables. In other words, we consider the situation where the motion of plasmas is
frozen and ignore the possible contributions from the dynamics of the energy-momentum
tensor TH".

In the following, ny, nis, pu1 and pps will be abbreviated as n, ns, p and ps (by sup-
pressing the index I) for notational simplicity.

3 Formulation

3.1 Generalized Langevin equations

Generalized Langevin equations for hydrodynamic variables provide the low-energy effec-
tive description of a system with dissipation. This effective theory is based on the derivative
expansions controlled by small parameters p < 1 and wf < 1 with p = |p| and w being
the strength of a characteristic momentum and frequency, respectively, and £ being the
microscopic correlation length of the order parameter. In this paper, we consider a weak
magnetic field regime, and take B = O(p). Following the standard procedure (see, e.g.,
refs. [41, 42]), one can write down the generalized Langevin equations for the hydrodynamic

SIn this paper, we assume that c is finite near and above the chiral phase transition at finite T



variables ¢, n, and ns at finite T, u, and B as

8(15&8(:,75) = F&qﬁj(};,t) - g/dr’ [Ga(r,t),ns(r',1)] c?n:(i,ﬂ + &al(r, 1), (3.1)
({M(a:’t) = szén(zf,t) - /dr/ [n(r,t),ns(r',t)] cm:(]:’,t) + ¢(r, 1), (3.2)
8n58(:’ ) - )\5V25n:(1: ol g/dr’ [n5(r,t), ¢a(r’,1)] 5%5(1;,715)

_ /dr’ [n5(7“,t),n(r,,t)] (mff/‘t) + G5(r, t), (3.3)

where [A, B] denotes a Poisson bracket describing reversible terms. Here the Ginzburg-
Landau-Wilson free energy F is given by’

r 1 1 1
F= / dr |5 (0a)” + 5(Voa) + u(¢a)*(95)” + 5o’ + 5—ni +yndy| . (34)

2 2 2x 2xs5
Summations over repeated indices are understood. Here, I', A and A5 are the kinetic co-
efficients (A and A5 denote the conductivities for the U(l)%’ A charges), g is the coupling
constant between ¢, and ns, and r,u and ~ are some functions of 7" and u. The isospin
and axial isospin susceptibilities, x and x5, are defined as the a = b = 3 components of the
generalized susceptibilities,

_ 0Ong ons q

= — = 3.5
Xab 8/J,b7 X5,ab 8#? ) ( )

where ng = nR o +n1L4, M50 = NR,a —NLas K¢ = (U +11)/2, pé = (M“R—uf)/2.8 The non-
Gaussian term yn¢>2, which is forbidden at ;1 = 0 by the charge conjugation symmetry, can
appear at 1 # 0. On the other hand, the term ns¢? is forbidden by the parity symmetry
even for p # 0 (when ps = 0). The noise terms &,, ¢, and (5 are assumed to satisfy the
fluctuation-dissipation relations:

<§a(r7 t)éﬁ(’r/? t/)> = 2F5aﬁ6d(r - T/)(S(t - t/)7
C(r, t)CE 1)) = —20V26%(r — 7)o (t — 1),
(Cs(r, )G (r', 1)) = =205 V2% (r — )6 (t — 1),

and (£,¢) = (€a(5) = (C¢5) = 0, where d is the spatial dimension.

"Note that F is a functional of charge densities n, ns at finite fixed u. One can also write down the free
energy F' which is a functional of y and is connected to F' by the Legendre transformation: F = F'— [ drun
with 7 = 6F'/6p. While F’ can involve linear terms of u, such as — [drucagB - (V¢a)ps, F does not
contain such terms, because of the cancellation due to the Legendre transformation.

80ne might naively think that, in the QGP with chiral symmetry restoration, right- and left-handed
sector are decoupled and that x = xs. In fact, this is true in the presence of SU(2)r, or SU(2)gr chiral
symmetry. However, this chiral symmetry is explicitly broken down to its subgroup G at finite ur under
the magnetic field B, and this symmetry is not sufficient to ensure x = xs; see appendix A for the detail.
Hence, we assume x # x5 and treat them as independent quantities below. Indeed, we will see that the RG
equations for x and x5 are different at finite pr under the magnetic field B.



The reversible terms in generalized Langevin equations are given by the Poisson brack-
ets between hydrodynamic variables. We here use the corresponding commutation relations
for the reversible terms,

[nS(T7 t)a %(7'/7 t)] = €a6¢65(7“ - T/), (39)
[n(r,t),ns(r',t)] = CB-Vé(r —7'). (3.10)

Here £,4 denotes the anti-symmetric tensor with €19 = 1, and C = 1/(27%) denotes the
coefficient of the CME, which is related to the anomaly coefficient away from the second-
order chiral phase transition.” Equation (3.9) can be understood as the classical limit of
the corresponding quantum commutations. The anomalous commutation relation (3.10) is
related to triangle anomalies in quantum field theories [43, 44] and the CME [45].

3.2 Dynamic perturbation theory
3.2.1 Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) formalism

In order to apply the RG analysis with perturbative calculations to the classical stochastic
dynamics considered in the previous section, we convert the generalized Langevin equation
into the path-integral formalism. This formulation has been originally developed by Martin-
Siggia-Rose, Janssen, and de Dominicis [36-38]. Here we briefly review their formulation
following ref. [46]. We start from generalized Langevin equations of the form:

WD)  Fsltard] + (1), (3.11)
(e D (1)) = L ()% — #)3(t — 1), (3,12

where eq. (3.11) describes the time evolution of hydrodynamic variables in the presence of
the noise variables:

wN = {¢O¢(r7t)7n(rﬂt)vnS(rvt)}v NN = {{a(r,t),((r,t),§5(r,t)}, (3'13)

in our case. Here Fy denotes all the terms which may involve a set of hydrodynamic
variables. The noise variables ny are assumed to satisfy the fluctuation-dissipation rela-
tion (3.12) with Ly being a matrix which also contains V:

Ly = diag(2l, 2T, —2AV?, —2A5V?), (3.14)

for our hydrodynamic variables. One can see that egs. (3.1)—(3.3) and (3.6)—(3.8) corre-
spond to egs. (3.11) and (3.12), respectively.

In order to translate the Langevin equation into the corresponding path-integral for-
malism, we consider following correlation functions of the hydrodynamic variables under
various configurations of the noise variables:

(O[]) :N/D[n]ow] exp [—i/dt/drnML]TanN] , (3.15)

°Note that it is a nontrivial question whether the CME coefficient is exactly fixed by the anomaly

coefficient even at the second-order chiral phase transition where o becomes massless. This is because
fluctuations of massless o can potentially renormalize the CME coefficient. In section 4.2, we will show
that the CME coefficient does not receive renormalization even at the second-order chiral phase transition.



where 1y denotes the solution of the Langevin equations, and the noises are assumed
to obey the Gaussian white noise with a normalization factor A/. Here, summation over
repeated indices M, N is implied. Then, we insert the following identity into the right
hand side of eq. (3.15) in order to carry out the path integral of the noise variables in the
presence of the noise-dependent variable O[],

1_/D HéwN UN) = /D HH‘;(MIN[WM}]UN). (3.16)

We have omitted the Jacobian det (9; — 0F/d%) in the right-hand side. This is justified
by getting rid of unnecessary graphs containing the so-called closed response loops in dia-
grammatic calculations (see appendix B for more details). Then, we can replace O[] by
O[¢] and integrate out the noise variables. Finally, we get

— N [ Dlid) [ Dl Ol exp (~S[{Dar}. () (317)

Here, we have used the Fourier representation of the delta function and introduced the pure
imaginary auxiliary field ¥, called the response field, for each hydrodynamic variable 1.
N is also another normalization factor which appears after integrating out the noises, and
S}, {¥ar}] is an MSRJID effective action given by

St o = [ [[ar i (%o = Fultoah)) — duLa(@)in] . 318
Then, based on the path-integral technique, we can calculate any correlation functions for
the hydrodynamic variables ¥ and the response fields @ZN.

Now, following the above procedure for egs. (3.1)—(3.3) and (3.6)—(3.8), we obtain the
path-integral formula with the following MSRJD effective action:

S = /dt/dr (Lo + Lo+ Low). (3.19)

The first term represents the kinetic term of the order parameters and their four-point

interaction:
= da < +T(r — VQ)) ¢ — G2 + ATudadad? , (3.20)

where we have introduced the response fields gZ)a for ¢o. The second term of eq. (3.19)
represents the bilinear part of the conserved charge densities n and ns, which are coupled
to each other due to the CME:

2AV2 9 iV2 0 ¢ B-V
5 A, X c X 0
1 T 2 0 -—B-V 0 n
En — 5(771‘7 n7ﬁ57n5) X C X 8 )\5 ~ )
0 —B-V 25 V2 22 s
c X o xn_,tX s
-~ B-V 0 —=-22v? 0
X5 ot xs
(3.21)



where 1 and 75 are the response fields of n and ns, respectively. The third term of
eq. (3.19) represents the three-point interactions between the order parameters and the
conserved charge densities:

. 9€ap
X5

Lon = (Badons + x57ia(V26a)03) + 29T Gatdan — YAR(V2GZ) +1Cis B - (V62).

(3.22)

Here we have two types of interactions: terms proportional to g that originate from the
Poisson bracket (3.9) and ones proportional to 7 that originate from the non-Gaussian
term yn¢? in the Ginzburg-Landau-Wilson free energy (3.4). The former exists even at
@ = 0 and gives the couplings between different order parameters; the latter exists as long
as pu # 0 and gives the couplings between the same order parameter components. Note also
that the last term of eq. (3.22) describes the non-linear interaction, which may potentially
generate hydrodynamic loop corrections to the anomaly coefficient C.!0

3.2.2 Feynman rules

The Feynman rules for the action (3.19) are in order here. The bare propagator of the
order parameter, Ggﬁ, is obtained by calculating the two-point correlation (¢,¢g) from
the Gaussian part of L4 in momentum space:

dap
—iw +T(r+ k2)’

Ggﬁ(k,w) = Gk, w)dap = (3.23)
which is diagonal with respect to a and 8. The bare propagator of the conserved fields,
D%, is obtained by calculating two-point correlation (n;n;) from L,, where n; = {n,ns}.
The inverse matrix of D% has the following expression,

. 1 —iw + isz ZSB -k
[D"(k,w)] " = 5 , (3.24)
Bk —iw 4 252
X X5

which has off-diagonal components with respect to ¢ and j because of the CME.

The bare noise vertex of the order parameter, 2I'd,3, is obtained by calculating two-
point correlation (¢o¢s) divided by |G°|2. The bare noise vertex of the conserved charge
densities between n; and n; is given by

22k2 0
LO(k;):< . 2A5k2>, (3.25)

0

which is related to the bare correlation function of the conserved charge densities, B;;,

through the following equation:

BY,(k,w) = Djj(k,w) L, (k) [D°(—k, —w)]i; = Dy(k,w) L (k)[D°(k,w)]},;.  (3.26)

10VWe will show below that this is not the case by the explicit computation.



Here, B?j is obtained by computing the two-point correlation (n;n;) from L,, as follows:

20k* (W + A3k /x3) + 2A5k*(CB - k/xs5)?

B (k,w) = : 3.27
k) [det[DO(k, w)] 7 20

2(A A k2C(B -k
B (k) = BY (k) = 2NN T XL KB R (3.25)

|det[DO(k, w)] 7|
2X5k?(w? + N2k /x?) + 20k%(CB - k/x)?
Bly(h,w) = 2R TR AR (OB k) (3.29)
|det[DO(k, w)] 1|
The four-point interaction vertex is obtained from Ly as

U5 = —4ulba50845, (3.30)

where the indices «; 370 are the shorthand notation of the fields qgacbggm%. Here and
below we write the index « for the response field on the left and the components 3, ~, é for
the hydrodynamic fields on the right. The three-point interaction vertices are obtained as

—29T 60 —2y k20,
Vi si = , Vi s(k.p) = , . (331
7 ( 9208/ X5 ) es(k:P) (9[(k —p)® — p?leas — 21VCB - kug (3:31)

where we explicitly write each ¢ component as a vector. In the same way as the above,
the indices «; 87 and i; a3 are the shorthand notation of czga(bﬁni and n;¢.¢3, respectively.
The vertex Vi?aﬁ(k:, p) is the function of the outgoing momentum k of n; and the ingoing
momentum p of ¢, (see also figure 2(c)).

Diagrammatically, we depict Ggﬁ by the plane line, and D% by the wavy line with
the outgoing and ingoing components ¢ and j. We omit both of the outgoing and ingoing
indices « and B in the diagram for G(Olﬁ, because Ggﬁ is diagonal with respect to «, .
Rather, we shall write v alone at the center of plane lines. Each noise vertex of the order
parameters and the conserved charge densities can be understood as the one with two
outgoing lines as represented in figure 1.

As is shown in figure 2, each interaction vertex has one outgoing and three or two ingo-
ing lines. Ordinary Feynman rules are applied in figure 2 to obtain n-point full correlations.
Among others, the full propagators G5 and D;; are obtained using the self-energies of the
order parameter, X,g, and those of the conserved charge densities, 11;;, as

G5k, w) = [Gog(k,w)] " — Tap(k,w), (3.32)

D' (k,w) = [D(k,w)] " — i (k,w). (3.33)
The three-point vertex function V,.;(k1, k2,w1,w2) can be obtained by computing one-
particle irreducible diagrams with outgoing d;a and ingoing ¢z, n;. Here, k1 and wy denote
the ingoing momentum and frequency of ¢g, and k3 and wy denote the ingoing momentum
and frequency of n;. From the energy and momentum conservation laws, QZE/B has the
outgoing momentum ks = ki + ko and the frequency ws = wy + we. For later purpose, it

is convenient to divide V,.g; into its bare contribution VO?; Bi and the correction term Vg,
as follows:

Vasgi(ki, ko, wi,wo) = VO?;BZ‘ + Vasgi(k1, k2, wi, wo). (3.34)

~10 -



(b) LY

Figure 1. Noise vertices.

(b) Vo?;ﬁi (C) Vvi?a,@

Figure 2. Interaction vertices.

4 Renormalization-group analysis

4.1 Statics

We first discuss the static critical behavior by using the RG analysis with € expansion. The
static RG transformation consists of two steps: integrating out the degrees of freedom in
the momentum shell between A/b and A (with A being the ultraviolet cutoff and b being
some constant larger than unity) and the rescaling:

r—r =btr, (4.1)
Pa(r) = G (r") = b"¢a(r), (4.2)
Pa(r) = o (r') = boa(r), (4.3)

n(r) — n'(r') = v°n(r), (4.4)
A(r) — 7/ (r') = b°a(r), (4.5)
ns(r) = ns(r') = b%ns(r), (4.6)
fi5(r) — 7k (') = b= 7s(r). (4.7)

Here a, a, c, ¢, c5, and ¢5 are some constants, among which a, ¢, and c5 will be computed
below. Hereafter, we work with the spatial dimension d = 4 — € with small ¢, and perform
the calculations to leading orders in the expansion of e.

At the [th stage of the renormalization procedure, the static parameters r;, u;, x; and
71 satisfy the same recursion relation as those in model C, i.e., eqs. (4.5)—(4.8) of ref. [47].1!
Since there is no non-Gaussian terms for ns in eq. (3.4), (x5); is affected only by the trivial

"'The susceptibility x is denoted as C' in ref. [47].
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scale transformation, and so (s); is finite at the fixed point. The recursion relations for
the static parameters in the leading-order of € are

i1 = b472 4+ 84 [A%(1 — b72) — 21y Inb]}, (4.8)
Ty = b3, (1 — 404 1nb) | (4.9)
Xith = b2 (1= 4o Inb), (4.10)
(xs)ith = 072 (xs), (4.11)
Y41 = by [1 — (161 + 4v;) Inb] . (4.12)

Here, we introduced the following quantities,

,.YZXA—e . ulN—€
82 8m2 '

(4.13)

where the factor 1/(872) is the phase-space volume element in d = 4 dimensions.'?

Let us now compute a, c5, and ¢, among which a and ¢5 can be found immediately. To
the order of ¢, the exponent a is solely determined by the condition that the kinetic term
of ¢o in eq. (3.4) is scale invariant:

o=tz (4.14)

Recalling the condition that (x5); remains finite at the fixed point, we also find from
eq. (4.11) that

d
=73 (4.15)

We then turn to the computation of ¢. Combining egs. (4.10) and (4.12), we obtain the
recursion relation for vy,

V41 = by [1 — (32’1][ + 41][) In b] . (4.16)

The RG equations corresponding to eqs. (4.9) and (4.16) become®?

du;

d
% = (6 — 32u; — 4’01)7)1. (4.18)

12This factor is denoted as B in ref. [47] and Ky in ref. [48].
13In general, for the following form of the recursion relation for parameters 4; and B,

Al+1 = bCAAl(l + Bl In b),

with some constant c4, one can derive the RG equation for A; by setting b = e! and taking the limit
[ —0as

dA,

W = (CA + BZ)AZ.
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Then, eqs. (4.17)-(4.18) tell us the fixed-point values of #; and v; as [47]'

€ €
oo = — - 41
Yoo = 1gr YT (4.19)

By returning back to eq. (4.10), we arrive at

(4.20)

The static physical parameters near the transition temperature 7T, are solely given
by the loop-correction terms proportional to Inb in the static recursion relations [49]. In
particular, the renormalized charge susceptibility x(7') is obtained by using eq. (4.10),

X(T) = Xo[l + 4vee In(AE)] ~ €77, (4.21)

where x( is the susceptibility at the cutoff scale A, and we used the relation 1+ xIn A¢ +
O(2?) = (A&)? for x < 1, by regarding z = 4vs as a small parameter when € < 1. Defining
the critical exponents v and « in the standard manner,

E~17Y x~TTY (4.22)
with 7 = (T — T,)/T. being the reduced temperature, we obtain
E—— (4.23)

The recursion relations at © = 0 can easily be obtained by setting v = v = 0 in
egs. (4.10)—(4.12). In this case, one finds ¢ = ¢5 = d/2, so that critical behaviors do not
appear in x and ys.

4.2 Dynamics

4.2.1 Dynamic RG equations and fixed point solutions

We now discuss the dynamic critical behavior. Similarly to the static RG procedure pre-
sented in the previous section, the dynamic RG transformation also consists of two steps:
integrating out the intermediate momentum shell, as well as the intermediate frequency w
from —oo to oo and its rescaling:

w—w =bw, (4.24)

where z is the so-called dynamic critical exponent.
In order to obtain the recursion relations of the dynamic parameters I';, \;, A5, and
Cy in the MSRJD effective action, we compute the full inverse propagators at the (I + 1)th

MFollowing the notation of ref. [48], we use fico, Voo, etc., for the fixed-point values of @, vi, etc., rather
than @, v« as in ref. [47].
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renormalization step. For instance, we calculate the full inverse propagator for the order
parameter as

) —+ Fl’l"l — Zaa(070)
w—0
2
( L 9S00 (k. 0) >k+} b=, (4.25)
k—0

r—-=
Here we used eq. (3.32) and expanded the diagonal component of the self energy ¥ with

2 Ok?

respect to the frequency w and wave number k. By regarding the term proportional to k?
on the right-hand side as T';;1k? and including the overall factor b**? that originates from
rescaling the measure of the action, we obtain the recursion relation for I';,

1 0?Yaa(k,0)

T =0 (1- —
I+1 l< ST, k2

) bd+Z*(~17a72. (426)
k—0

Furthermore, we regard the term proportional to —iw as —iw’ and include the overall
factor, which leads to

_ . 0%4a(0,w)
1= (1 Pl

) pi-a-a, (4.27)
w—0

In the similar way, we can derive the following recursion relations by computing the
inverse propagator for conserved charge densities, [D;;(k’, w )]l_+1’ and three-point vertex

[Va ﬂl(kh k?v w1, w2 H—l

2 _
)‘H-l . )\l (1 Xl 0 H11(2k 0) ) bcl-|—z—c—c—27 (4.28)
Xi+1 X 2\ ok k—0
()\S)H-l ()\5)l ( . (X5) a21_122("3 0) )bd+z—55—65—2 (4.29)
(X5 I+1 (X5)l ()\5) Ok? k—0 ’
Curp_ (G Aabl)] Y pprecisen (430)
Xl+1 X1 ok k—0
Cl—i—l ( 8H12(k 0) ) bd+z7576571 (431)
X5 l+1 Ok k—0 7
gi+1 (x5)1 ) d+z—a—a—c
EaB = €ap T Vaip2(k1, k2, w1, w w b 7, (4.32
()i 0 (X5)l ( A 2k 12l 20, 10 32

with the following constraints,

1= (1 _; 9Mu0,w) ) pi—e—e, (4.33)
Ow w—0

1= (1 _; M2(0,w) ) pi—Gs—cs (4.34)
Ow w—0

Therefore, once we can evaluate the self-energy and vertex function corrections, we obtain
the recursion relations for the dynamic parameters in the MSRJD action, which results in
the dynamic RG equations.
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We then perturbatively compute the self-energies, ¥, (k,w) and II;;(k,w), and the
vertex function Vi.g2(k1, k2, w1, w2) via diagrammatic expansions. For later convenience,
we define the following quantities:

g~ we X . =Ixs __CB (4.35)
Y B0 AL U W _\/A)\A '

2 1 1
X Sy = 2T (g 36)
VA +w)(l+ws) +h2+ /(1 +w)(l+ws) V 1+ws 14w

where we introduced B = |B|. According to the detailed analysis in appendix C, the recur-
sion relations for the dynamic parameters I';, \;, A5, C; and ¢; at the one-loop level read

Tppr =0T [1 — (dow X[ — fiX;) Inb], (4.37)
A1 = b2y, (4.38)
(As)ig1 = b2 72 (\5), <1 + gln b) ; (4.39)
Cp = b*Hetes—d-1oy (4.40)
gip1 = b g (4.41)

Among others, eq. (4.40) shows that the CME coefficient C' is not renormalized by the
critical fluctuations of the order parameter in this order. This may be viewed as an exten-
sion of the non-renormalization theorem for the CME coeflicient at the second-order chiral
phase transition where o becomes massless.

The recursion relations for the dynamic parameters (4.37)—(4.41), together with the
ones for static parameters (4.10)-(4.12), enable us to obtain the recursion relations for
parameters defined in eq. (4.35) as

1
fir1 =01 {1 + <4vllel/ — (X, — 2fl> In b] , (4.42)
1
(w5)1+1 = (w5)l [1 — (41}[le{ — lel =+ 2fl> 1nb:| s (4.43)
w1 =wy [1 = (duwX] — fiX; — 4v) Inb], (4.44)
his1 = bly (1 - ﬁl b) (4.45)

Then, the dynamic RG equations corresponding to eqs. (4.42)—(4.45) can be derived in a
way similar to eqs. (4.17)—(4.18) as

dd—J;l = <e + dvw X; — fiX; - 1fz> i, (4.46)
d(;U;)l = < dvw X] + f1 X — fz) (ws)r (4.47)
% = (—dvpw X[ + fiX; + dv)) w, (4.48)
e _ <1 - ) e, (4.49)
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from which we find four possible nontrivial fixed-point values of f, ws, w, h:™

(1) fo=¢€6 (W5)oo=1 Woo = hoo=0; (4.50)
(iil) foo=¢€¢,  (W5)oo = 7> Woo = heo = 00; (4.52)
(iv)  foo =26, (W5)oo =0, Woo = hoo = 00. (4.53)

Some remarks on the fixed points above are in order here. Since the magnetic field
is external (B # 0), the fixed points (i) and (ii) with ho = 0 should be interpreted as
corresponding to C' = 0. We should note that the fixed points (iii) and (iv) are not usual
in that the factors X and wX’ in the RG equations (4.46)—(4.48) are non-uniform in the
limits w — oo and h? — oo: if one takes w — oo first for fixed h?, the fixed point (iii) is
obtained; if one takes h? — oo first for fixed w, the fixed point (iv) is obtained. In other
words, the fixed point (iii) corresponds to the case ws, > h2 > 1, and the fixed point (iv)
corresponds to the case h2, > ws > 1. The competition between w — oo and h? — oo in
eq. (4.36) can be characterized by introducing a dimensionless parameter,

h? C?B?
R (4.54)

Then, we can see which parameters among C, A and A5 become dominant for a finite
kinetic coefficient of the order parameter, I', and finite static susceptibilities, x and xs.
(Indeed, one can confirm that I', x, and x5 are finite by putting back the fixed-point values
of v, f,ws,w, and h with egs. (4.15) and (4.20) to the recursion relations (4.10), (4.11),
and (4.37).) By looking at fs, (W5)o, and the fixed-point value of (4.54), one can see the
fixed point (iii) corresponds to C' — 0 and A — 0 with finite A5 (where the CME can be
neglected compared to the diffusion effect), and the fixed point (iv) to C' — oo, A — 0,
and A5 — oo with C?/\5 — oo (where the diffusion effect can be neglected compared to
the CME). In short, we can regard the competition between the two limits w — oo and
h?> — oo as the competition between CME and diffusion.

4.2.2 Stability of fixed points

We first study the stabilities of the fixed points (i) and (ii). For this purpose, we consider
the linear perturbations around the fixed points,

fi=fo+4df, (w5)l = (w5)oo + dws, w; = dw, h;=dh. (4.55)

15 The trivial fixed point, foo = (W5)oo = Weo = hoo = 0, is stable only for € < 0, and is not considered here.
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Substituting these expressions into eqs. (4.46)—(4.49) and setting v; = voo = €/20 from
eq. (4.19),'6 the linearized equations with respect to 0 f, dws, dws, and §h read

1

5f _foo (000+21) %920 4Uoofoo 0 5f

d | dws [ | (ws)c (000—5) foo [900—5—(11)5)00920 —4voo(ws)oe 0 ows

dl dw 0 0 fooeoo+4voo 0 ow

oh 0 0 0o 1-t= ) \0oh

4
(4.56)
where we have defined

o 1 % for the case (i), L5
AR 0

1 for the case (ii).

Because of (w5)so (foo — 1/2) = 0 for both cases (i) and (ii), the 4 x 4 matrix in eq. (4.56)
is reduced to an upper triangular matrix. Then, the eigenvalues of the matrix are given
just by its diagonal components for each fixed point:

(i) (—e, —i, 1106, 1— i) and (i) (—e, % 1—26, 1— g) . (4.58)
From this result, we find that the fixed point (ii) is unstable in the ws direction, and that
the RG flow runs to the fixed point (i) (see also figure 3 showing the RG flows in the (f, ws)
plane at w = h = 0). We also find that both fixed points are unstable in the directions of
w and h, showing that A\ and C are relevant, so that small but nonzero values of w and h
grow around the fixed point (i).

We shall first qualitatively discuss the RG flows by using flow diagrams. For this
purpose, we here forcibly fix w and h to some finite values and investigate the RG flows in
the (f,ws) plane. As we noted in the previous subsection, f and ws; flow to the fixed point
(iii) when w > h? > 1 while they flow to the fixed point (iv) when h? > w > 1 (see the
RG flows in figures 4(a) and 4(b), respectively). On the other hand, when w ~ h?, they
flow to the intermediate values between the fixed-point values of (iii) and (iv), as shown in
figure 4(c). We then vary w and h following the RG equations for fixed f and ws close to
the fixed point (i) or (ii). As one can see in figure 5, unless w > h, the points in the (w, h)
plane flow in the direction along the h axis. Therefore, for most of the parameter region
around the fixed point (i) or (ii), the system eventually flows to the fixed point (iv).

Next, we consider the RG flows in all the parameter space (f, ws,w, h). Here, we first
set the initial parameters near the fixed point (i) and consider the flow equations at a fixed
flow time. Similarly to the RG flows in the previous paragraph, when the initial values of
w and h are varied, all the parameters move between the fixed-point values of (iii) and (iv).
The initial parameter region that flows to the fixed point (iii) is much broader than the
region that flows to the fixed point (iv) in the (w, h) plane, as is shown analytically within
the linear-stability analysis around the fixed point (i) in appendix D (where a crossover

5Here we can ignore the fluctuation of v;, because all of v; are multiplied by O(dw) in eqgs. (4.46)—(4.49).
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Figure 3. RG flow of the parameters f and ws for fixed w and h (e = 1), which shows the fixed
points (i) and (ii).

between the dynamic universality classes corresponding to the fixed points (iii) and (iv) is
also discussed). Therefore, in the almost whole region of the (w, h) plane near the fixed
point (i), the fixed point (iii) is unstable while the fixed point (iv) becomes stable.

When we consider the RG flow from the initial values near the fixed point (iii), all
the parameters will eventually take the fixed-point values of (iv).!” This is because h
grows much more rapidly than w due to the additional scaling factor b in the recursion
relation (4.45) for h, compared to the relation (4.44) for w. From the above discussion,
it follows that the fixed point (iv) is stable in the almost whole region at finite w and h,
while generally at a finite flow time there is a small parameter region that flows to the
fixed point (iii).

4.3 Physical consequences
4.3.1 Dynamic universality class

The dynamic critical exponents are found by returning back to the recursion relation (4.37)
for T'; in each case of the fixed-point values (i)—(iv). The fixed points (i) and (iii) have the
dynamic critical exponent of model E, z = d/2. This dynamic universality class is generally
determined only by two-component order parameter and one conserved density that are
coupled thorough the Poisson brackets. In our case, the order parameter field ¢, and the
axial isospin density ns are essential, whereas the isospin density n does not affect the
dynamic universality class.'®

On the other hand, the fixed point (iv) has the dynamic critical exponent z = 2. This
exponent is the same as that of model A up to O(e), which is the dynamic universality

'"This is not the case of the RG evolution starting from the parameters exactly at the fixed point (iii).
8There is a nonzero Poisson bracket among ns and ¢, in eq. (3.9), whereas there are no nontrivial
Poisson brackets among n and ¢q.
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Figure 4. RG flows of the parameters f and ws (€ = 1) with fixed values of w and h? in the cases
(a) w> h% > 1, (b) k2 > w > 1, and (c) w ~ h?. These figures show the existence of the fixed

points (iii) and (iv), and the flow to their intermediate values.
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Figure 5. RG flow of the parameters w and h with fixed values of f and ws (e = 1).

class determined only by non-conserved order parameters. Here, the internal-momentum
loop dominated by the CMW (the wavy lines in figure 7) is suppressed near the fixed point
(iv), so that not only n but also ns do not affect the dynamic universality class. Actually,
one can confirm that the factors X and wX’ stemming from figure 7 vanish.

In summary, we find that the dynamic universality class in the presence of the CME;,
corresponding to the stable fixed point (iv), is that of model A (see table 1). Strictly
speaking, there is a small parameter region that leads to model E, even B # 0 and C # 0.
Nevertheless, such a region is small compared to the region that leads to model A. We note
that the dynamic universality class in table 1 remains unchanged even when the isospin
chemical potential y is absent.!?

4.3.2 Critical attenuation

As a result of the static critical behavior, eq. (4.22), we find the critical attenuation of
the CMW: when the second-order chiral phase transition is approached, the speed of the
CMW tends to zero as

C?B? N

2 _ _a

v = ~ &Y, (4.59)
CMW X5

where vemw is the speed of the CMW [11] and the ratio a/v is given by (4.23). This
phenomenon is analogous to the critical attenuation of the speed of (first) sounds near
the critical point associated with the liquid-gas phase transition [32] and the superfluid
transition of liquid *He [33-35].

190ne can easily confirm the dynamic universality class at u = 0 from the recursion relations which are
obtained by setting v = 0 in eqs. (4.46)—(4.49).

—90 —



5 Conclusion and discussion

In this paper, we have studied the critical dynamics near the second-order chiral phase
transition in massless two-flavor QCD under an external magnetic field. Our main results
are summarized in table 1. We also found the critical attenuation of the CMW analogous to
that of the (first) sound waves in the liquid-gas phase transition and superfluid transition.

We now discuss the similarity of the critical attenuation between the CMW and the
sound wave of the compressive fluids near the liquid-gas critical point. Let us first recall
the critical attenuation of sounds near the critical point associated with the liquid-gas
phase transition where the order parameter v is a linear combination of the energy density
¢ and the mass density p. In this case, the speed of sound, cs, is attenuated with the
correlation-length dependence [32],

ng(ap) = T(gi)i ~E (5.1)

- E I
8,0 S 2 B CV
p*Cv (1 Cr

where P and S are the pressure and total entropy per unit mass of the fluids, respectively.
We used thermodynamic relations and the fact that the specific heat with constant volume
Cy = T(05/0T),, and that with constant pressure Cp = T(05/0T)p, diverge near the
critical point as Cy ~ & v and Cp ~ & %, respectively. Here, the critical exponents v, o, and
~v defined by eq. (4.22) and ¢ ~ 77 are determined by the static universality class of the 3D
Ising model, o = 0.1, v ~ 0.6, v ~ 1.2. To obtain the last expression of eq. (5.1), we used
the approximation Cy /Cp < 1 near the critical point. Remarkably, eq. (5.1) takes exactly
the same form as that of CMW which we obtained in eq. (4.59), although the values of o
and v themselves are different.

Although we have ignored the energy-momentum tensor in this paper, it is crucial to
include the motion of plasmas to investigate whether the CVE affects the dynamic critical
phenomena in QCD. In this context, it is interesting to clarify whether the CVE coefficient
does receive renormalization or not at the second-order chiral phase transition.?’ Moreover,
it would be interesting to study the case with dynamical electromagnetic fields, where the
so-called chiral plasma instability [51] might affect the critical dynamics of QCD.

To make our analysis more realistic, one needs to extend it to the case with finite
quark masses where the QCD critical point is expected to appear in the T-up plane.
Since non-linear fluctuations are suppressed in the presence of the CME, the CMW carried
by the isospin densities can possibly affect the critical dynamics in realistic heavy-ion
collisions, where 7¥ as well as the Poisson bracket (3.9) needs to be taken into account.
Furthermore, if the critical attenuation of the CMW persists even in QCD with finite quark
masses, it would provide another possible signature of the QCD critical point in heavy-ion
collision experiments.

20At the second-order chiral phase transition, the conventional proof of the non-renormalization theorem
for the CVE coefficient is known to break down [50].

- 21 —



Acknowledgments

We thank Y. Hidaka for useful discussions, and Y. Fujitani, Y. Minami, and M.A. Stephanov
for useful conversations. We also thank the anonymous referee for pointing out a crucial
error in the previous version of the paper and for feedback that improved the presentation.
M. H. is supported by the Special Postdoctoral Researchers Program and iTHES/iTHEMS
Project (iTHEMS STAMP working group) at RIKEN. N. S. is supported by JSPS KAK-
ENHI Grant No. 17J04047. N. Y. is supported by JSPS KAKENHI Grant No. 16K17703
and MEXT-Supported Program for the Strategic Research Foundation at Private Univer-
sities, “Topological Science” (Grant No. S1511006).

A Chiral symmetry and susceptibilities x and x5

The isospin and axial isospin susceptibilities defined in eq. (3.5) can be decomposed as

OnrRa Onpe  Onre  Onpg

8/1% 8/1% aug Oy ’

8nR 6nL 8nR 8nL
Xob = 0 + o — e — - (A.2)
Oug oug, oy, Ok

Xab = (Al)

Hence, when the chirality-mixing terms vanish, Ong ./0u? = Ony,o/0p% = 0, it follows
that Xab = X5,ab-

Let us first consider the case with B = 0. When u = pus = 0 (as considered
in ref. [24]) or p = ps # 0, the system respects chiral symmetry SU(2);, x SU(2)gr or
SU(2)L x U(1){, 5, respectively (see table 2). Because both OnR.a/Ou? = (nRanyp) and
ony,q/ 8u% = (n,qnRp) are not invariant under these non-Abelian chiral transformations,
such mixing terms vanish, and, as a result, we have x4, = X5.4. On the other hand, when
B # 0, the system respects the Abelian symmetry G alone (see table 2). As (ngranip)
and (np,,nRrp) are invariant under the subgroup G, the symmetry provides no constraint
on Ing q/ Oulfl and Ony,q/ O,u%, and hence, we have generally x4, # X5,a- This justifies the
reason why we set x and x5 as independent parameters in eq. (3.4).

B Jacobian

In this appendix, we show that, if one keeps the Jacobian J = det (0, — §F /o) in
eq. (3.16), it cancels the diagrams with the so-called closed response loops [46] that arise
by the contractions of internal &M and Ypy. Since we are considering Gaussian white
noises, non-linear interactions can be derived only from the term proportional to YnFy in
eq. (3.18). This term produces the same diagrams containing closed response loops as the
diagrams produced by the following effective interaction,

~ OFN OFN
— (dwibr), S 0O (B.1)

This is obtained by writing —nFn = —@Nq/)Mcs}"N/cwM and replacing ¥ntas by the
closed response loop between 1n and ). To obtain the right-hand side of eq. (B.1),

- 29 —



we have also used <1§N(t)¢M(t’)>f x 6(t —t'). On the other hand, one can write the
ree

Jacobian into the following form:

o\ 6FN “Lsrn ] SFN
Indet [1— = —t — = —0(0)——| .
J xexplnde [ <8t> (WM] exp{ rz [(875) Y exp (0)5@&]\1
(B.2)
Here, we have omitted a factor independent of the fields and used 960(t—t") /0t = 6(t—t') to
obtain the inverse operator of time derivative. It can be readily checked that contributions

for n > 2 in the summation vanish. Then, one finds that the effective action stemming
from the functional determinant (B.2) cancels the effective interaction (B.1).

C Calculation of the self-energies and the vertex function

In this appendix, we evaluate the self-energies of the order parameter, ¥,5(k,w), and those
of the conserved charge densities, II;;(k,w), to the first order of €, namely at the one-loop
level. From these expressions, we compute their derivatives with respect to w, k or k? that
are used in egs. (4.26)—(4.31), (4.33), and (4.34). Then we derive eqs. (4.37)—(4.40). We
also evaluate the three-point vertex function used in eq. (4.32) at the one-loop level, and
derive eq. (4.41).

C.1 Self-energy II

Let us begin with II;;(k,w), whose diagram is given by figure 6,

d
My (k.w) = [ 5 /(1dmﬁkm@® pow— )| C(p. ) P2V,
_/ Fy
2m)d{—iw +Tr + (k—p)?| + T(r + p?)}(r + p?)’

where we defined Fj; as the components of the following matrix:

2 )\kQ
E<,&F 0 ). ©2)

(C.1)

8iv*CTB - k —2¢%[(k — p)* — p?]/xs

From this expression, we obtain,

O (K, 0) ) dip [ 1 v2CBA~€

e — =—4 — =——7—1 .

= - 2 CB/ o) \ + O(e) 5.2 nb, (C.3)
1 0°T0,(k,0) ) ddp (1 2NN

where we carried out the integral over p in the shell A/b < |p| < A using the standard
formula in the dimensional regularization:

d%p 1 A€
/(2 ot = g b (C.5)
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Figure 6. Diagram for II;; at one-loop level.

k-p j_kwp

Figure 7. Diagrams for ¥, at one-loop level.

We also have

1 62]__[22(’6, 0)
2 Ok?

2 d 2\ —¢€
g d%p [ cos26 g°A
k—0 Xs51' / (27T)d ( p4 * O(€)> 167T2X5F n (C 6)

where we parameterized p in the limit of d — 4 by
p1 =pcosl, ps =psinfcosp, ps=psinfsingpcosy, ps=psinfsingsing (C.7)
with k = (1,0,0,0) and used

d —€
/(dp cos20 A b, (C.8)

om)d pt T 1672
Because I1;;(0,w) = 0, egs. (4.33) and (4.34) reduce to
5:d—c, 55:(1—65. (Cg)

Furthermore, by using egs. (C.3), (C.4), (C.6), and (C.9), eqs. (4.28)—(4.31) provide the
following recursion relations:

A1 _ bz—Qﬁ (1 —4v;1nb), (C.10)
Xi+1 Xi
(As)i+1 _ bz—z(/\5)l <1 + ﬁln b> ’ (C.11)
(X5)141 (xs) 2
Crnt _ pptes—e1 Gl (1 —4v;Inb), (C.12)
Xi+1 Xi
Cry1 —es—1 G
el bz-{—c cs . C.13
(x5)1+1 (x5)1 ( :

Then, we can derive egs. (4.38)—(4.40) by using egs. (4.10), (4.11), and (C.10)—(C.12).
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C.2 Self-energy X

Next, let us evaluate the self-energy ¥,3(k,w), whose diagrams are shown in figure 7,
Sap(k,w) = 8 (k,w) + 50) (k,w), (C.14)

where %(® and X®) correspond to figures 7(a) and 7(b), respectively. Their diagonal
components used in egs. (4.26) and (4.27) are given by

dd
2o = [ 52 [ V8D o par— G P2V, . —p)

_4 2p/ d’p A(k—p)Q[—iW+F(T+p)2+A5(k—p)2/><5]+02[B-(k—p)]2/><5
] @ (r+p?) det[DO(k—p,w+iL (r+p2))] !
gj d’p (P*—k*)[—iw+T(r+p)*+A(k—p)*/x]

+ (2m)e (r+p?)det[DO(k—p,w+il(r+p2))|-1’ (6.15)
d
k:w / / L )d a’yzGO (k—p,w— w)B?j(p,w/)Vwaj
212 p?(w?+k5p?)+A5(CB-p)? /X3
=87 F/ / 12 Tdet Do(pw)] TP{—i(w—w') 4T+ (k—p)2]}
/ / Asp? (w2 +rp?) + NCB-p)*/x* (C.16)
)¢ [det[DO(p, )] {—i(w—w)+T[r+(k—p)2}

Note that we do not take a sum over « here.
The integral over w’ in eq. (C.16) can be performed by closing contour below and
picking up the poles on a lower half plane,

det[D%(p,w")] ! = [~ + kp® +iQ(p)] [—iw' + kyp® —iQ(p)] =0, (C.17)

where we defined

D)2
Qp) = (CB-p) _ k2pt, ki = 1 <>\ + AE’) . (C.18)
XX5 2\X X5

The result of the contour integral is given by

di [ —Xk_p*+ (CB-p)?
Eg’&(k,w)z—%QW/( P < P+ (0B p) /X5K(p,k)—/\p2K+(p,k)>

2m)? iQ(p)
g [ d% (Xsk_p'+(CB-p)*/x
+27§ (27r)d< iQ(p) K_(p k‘>—A5p2K+(p,k:)>, (C.19)

where we introduced

B 1
Belp k) = o ) i 1 s (. F) + ()]
1
e )i 1 Ay (p R — )] (C-20)
Ay (p,k) =T[r + (k = p)’] + rip®. (C.21)
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Using an identity,
det[D%(p,w +iT[r + (k — p)*])] ™" = [~iw + Ay (p, k)]* + Q(p)%, (C.22)
together with some straightforward calculations, we obtain

) (k. w) — d%p  —iw + Asp?/xs + T[r + (k — P)Q]
k) = 0 [ 0 e T+ O P
WV S eSS

x5 ) (2m)4det[DO(p,w +il[r + (k — p)?])] 1

(C.23)

Combining egs. (C.15) and (C.23), we find
_ 2 ddp ®(pa k? 0)@5(177 k)"‘)) + [CB : (k B p)]Q/(XXS))
Eaa(k’w) - 47 XF/ (27r)d (T + p2)[@(p7 ka W)@5(p, k7w) + (CB : p)Q/(XXS)]
_ 92/ d’p (r+k%)O(p, k,w)
x5 (2m)? (r+p?)[O(p, k,w)O5(p, k,w) + (CB - p)?/(xx5)]’

where O(p, k,w) and O5(p, k,w) are defined by

(C.24)

O(p, k,w) = —iw +T'(r +p*) + XAk —p)?/x, (C.25)
O5(p, k,w) = —iw +T(r + p?) + As(k — p)*/xs5. (C.26)

Note that ¥1; = Y99 and the first term on the right-hand side of eq. (C.24) is independent
of k when w = 0. From the expression (C.24), we obtain

1 9*Saa(k,0) _ ¢ [ d% O(p,0,0)
s |, " v ) o (TreeeTe T eEaEm F00)
(C.27)
. 0%0a(0,w) _ d’p O5(p,0,0)
T o ’wo T / (@7 (r+p*){0(p,0,0)05(p,0,0) + (CB-p)?/ (xx)}
L8[ A% r[6?(p.0.0)~(CB p)*/(xxs)’] (C.28)

xs | (2m)? (r+p?)[©(p,0,0)05(p,0,0)+(CB-p)?/(xx5)%]?"

The O(e) terms in eq. (C.27) proportional to r are irrelevant for the following discussion.
Let us carry out the integral over p in the shell A/b < |p| < A. Setting B = (1,0,0,0) and
using the parameterization (C.7), we obtain

_ 2f N ERCR)
koo VI +w)(d+ws) +h2+ /I +w) (I +ws)V I+ws

(C.29)

1 9°Saa(k,0)
2I' ok?

where w, ws, h, f are defined in eq. (4.35). Here, we have carried out the integral over 6
by using the following formula (with a being a real constant):

T sin? 0 7r
do = . C.30
/0 a? +cos?0  a(va2 +1+ a?) (C-30)

— 96 —



Figure 8. Diagrams for V.3, at one-loop level.

To the leading order of €, we can ignore the term proportional to r on the right-hand side
of (C.28). Then, by comparing egs. (C.27) and (C.28), we can rewrite eq. (C.28) as

by 1
j PaalO0)) Sow JEE (031
Ow  luso VA Fw) (I +ws) +h2 4 /1T w)(1+ws) V1w
where v is defined in eq. (4.13). Using egs. (C.29) and (C.31), egs. (4.26) and (4.27) become

L1 =Ty (1+ fiX;Inb) pta—a-0"2, (C.32)
1= (1+4vwX] Inb) b?=072, (C.33)

respectively, where X and X' are defined in eq. (4.36). By substituting eq. (C.33) into
eq. (C.32), we finally arrive at eq. (4.37).

C.3 Vertex function V

The lowest-order diagrams for V,.3; are depicted in figure 8. We find that these diagrams
with o # 8 and ¢ = 2 satisfy the following identity in the limit ki, ko — 0 and wy,ws — 0:

_;9cap 0%1+(0,w)

Va:52(0,0,0,0) =

(C.34)

w—0
Note that the contribution from figure 8(d) vanishes as long as a # . By substituting
egs. (C.34), (4.11), and (4.27) into eq. (4.32), we obtain eq. (4.41).

We can derive eq. (C.34) as a consequence of the Ward-Takahashi identity as fol-
lows. Our derivation is similar to that of ref. [52] (see its section III.A), where the
Ward-Takahashi identity for O(NN) symmetric systems is derived. We shall begin with
the following generating functional,

217, J, fus, pis) = <6Xp/dt/d7° (joc(z;oc + Ja®a + 55 + M5n5>> : (C.35)
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Here, ja, ja, jft5, and us are the external fields of &a, oa, N5 and ns, respectively. We define

~ 1 - 1
b, (5h~1Z’ o, (5r.12, N5E(51r~1Z’ N555HZ,
6]0 5.7(1 5/1/5 5,“5

(C.36)

which reduce to the expectation values of qga, da, N5 and ns, respectively, when the exter-
nal fields are set to zero. We also define the following effective actions by the Legendre
transformations of eq. (C.36):

W, s, o] =~ Z[7. g s ] + [ dt [ ar (o -+ Guhs). (C.37)
F[(i), P, Ngn N5] = W[‘i), P, ﬂ5,ﬂ5] + /dt/d’!‘ (ﬂ5N5 + ,U,5N5> . (038)

One can show the following identities which will be used later (see, e.g., section4.4 of
ref. [46] for the derivations):

sWwooer 5T
2
T
9 = Gk, —w), (C.40)
5 (I, 00D 5 (6, )
5°r 5°r
50,005  6PLONs 0, (C.41)
3
0Ty (C.42)
SNydBadDy O

Here, note that V.52 in eq. (C.42) satisfies eq. (3.34).

We use the condition that W[®, ®, fi5, u5] is invariant under the U(1)3} transformation.
Note that W[‘i), ®, fi5, us] is a functional of ps, and changing s corresponds to the U(l)i
transformation, because nj is its generator. Suppose we turn on a variation of s at ¢t = 0,
dps = Yus with 9 being a small parameter, so that the following contribution is added to
the free energy (3.4):

0F = /dr n50 5. (C.43)
Then, by using eq. (3.1), an infinitesimal U(l)i transformation can be written as
¢
0P, = g/ dt'eqs®sdus = Ygeas®ppust. (C.44)
0

By applying eq. (C.44) to W[®, ®, jis, j15], we obtain its variation as

oW = ﬁ/dt/drm [ +gsa5t§§/¢5] (C.45)
or
= /dt/dr |:N5 +g€a5t6q) (I)B:| , (C.46)
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where we have used eq. (C.39). Therefore, invariance of W[@, D, [i5, 15) leads to

or or
2N 2 s =0, A
5A%[ 5-+g€mﬂ5¢a B] 0 (C.47)

By taking a variation of this equation with respect to ®,, and ® 45, we obtain

5T 5°T 5°T
N = gt s — Gy |, C.48
ONsob o0, © 0 (” 758,00, J”5N55q>a> (©48)

where we have used egs. (C.39) and (C.41). Then, we take the functional derivative of
eq. (C.48) with respect to ps and set all the external fields to zero, yielding the following
result in the frequency space,

53T __Z,g&:%gi 5°r
SN33D, 0 X5 0w 50,60,

_ 9648 . 0%a~(0,w)
X5 Ow

wo) . (C.49)

Here, we have used x5 = 0N5/dus and egs. (C.40) and (3.32). By using egs. (C.42), (3.31)
and (3.34), we finally arrive at eq. (C.34) when o # 3. Note here that one can write
ev8Yay = €ap2i1 (for a # B) by using 311 = ¥a2, which can be shown from eq. (C.24).

w—0

D Crossover phenomena between different dynamic universality classes

In this appendix, we discuss the crossover phenomena, of the critical behaviors as functions
of the relevant parameters between the fixed points (iii) and (iv) (or (i) and (iv)) considered
in section 4.2.2.

We first show that the parameter region that leads to the fixed point (iv) under RG
is much larger than (iii) within the linear-stability analysis around the fixed point (i). Let
us look at the full propagator of the conserved fields, D;; = Dij (w, h) as a function of two
relevant parameters w and h, which is transformed under the rescaling as

Dij(w, h) ~ Dij(lyww, [Yn h) (D.l)

Here, we assume that w and h are scaled by the eigenvalues y,, = 7¢/10, y, = 1 — €/4
obtained in eq. (4.58), and we omit the overall factor. When the RG flow approaches
[~ h=/un, Dij becomes a function of wh™% with ¢ = y,,/yp being the crossover exponent,
and it behaves differently depending on whether wh™% > 1 or wh™¥ <« 1: in the former
region, we see the behavior of the fixed point (iii); in the latter region, we see the behavior of
the fixed point (iv). Since ¢ = O(€) and w < 1 near the fixed point (i), the latter parameter
region is much larger than the former. These two regions should be continuously connected,
because the right-hand side of the original RG equations (4.46)—(4.49) are smooth functions
of all the parameters, unless w and h are simultaneously infinity.

In addition, by considering the initial parameter region with w < 1, we also find the
crossover between the fixed points (i) and (iv) depending on the magnitude of the magnetic
field B and the reduced temperature 7 as follows. We recall that r» =~ 7 is also a relevant
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parameter. Similarly to the discussion in the previous paragraph, RG transformation from
the fixed point (i) by [ ~ 771/7 yields the propagator as a function of 7h=¢". Here,
v defined by eq. (4.22) is the critical exponent of 7, and ¢’ = (vy,)~! is the crossover
exponent. Therefore, the dynamic universality class belongs to that of model A governed
by the fixed point (iv) in the regime 7 < h?" and to that of model E governed by the fixed
point (i) in the regime 7> h¥' for a fixed magnetic field.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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