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supersymmetric Einstein-Yang-Mills theory and obtain the supersymmetric extension of
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operator, and then summing over its SL(2,R) descendants. These Ward identities reproduce
the known Ward identities corresponding to the leading, sub-leading, and sub-sub-leading
soft graviton theorems as well as the leading and sub-leading soft gluon theorems. By
performing shadow transformations, we also obtain infinitely many shadow Ward identities,
including the stress tensor Ward identities for sub-leading soft graviton. Finally, we use
our procedure to discuss the corrections to Ward identities in effective field theory (EFT),
and reproduce the corrections to soft theorems at sub-sub-leading order for graviton and
sub-leading order for photon. For this aim, we derive general formulae for the celestial OPE
and its corresponding Ward identities arising from a cubic interaction of three spinning
massless particles. Our formalism thus provides a unified framework for understanding
the Ward identities in celestial conformal field theory, or equivalently the soft theorems in
scattering amplitude.
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1 Introduction

Symmetry is arguably one of the most important guiding principles in physics. The content
and power of symmetry have always been evolving with time. Recent studies have enriched
the content of symmetry from continuous to discrete, from ordinary symmetry to higher
form symmetry, and even from symmetry to non-invertible symmetry. In quantum field
theory, symmetry and anomaly constrain the renormalization group flows severely. While
in the swampland program, criteria regarding symmetry shed new light on quantum gravity.
Undoubtedly, a better understanding of symmetry we have, a deeper aspect of fundamental
physics we can acquire. In particular, symmetry enables us to establish Ward identities and
conservation laws.

In this paper, we will be considering the general relativity (GR) and Yang-Mills (YM)
theory as well their supersymmetrizations. Being well understood theoretically and precisely
tested experimentally, GR and YM theory are the cornerstones of modern physics. In spite,
the symmetry aspect remains not fully clear. For example, it was discovered more than
half a century ago that asymptotic flat spacetime admits, besides the Poincare symmetries,
infinite dimensional BMS symmetries [1, 2]. However, the important role of BMS symmetry
was never fully appreciated until less than a decade ago due to the pioneering work [3, 4],
where the Weinberg’s soft graviton theorem was reinterpreted as the Ward identity of BMS
symmetry. Since then, many interesting relations among soft theorem, memory effect and
asymptotic symmetry are established. See [5] for a review. Furthermore, after many years
of studies, a new holographic approach, called celestial holography, to studying quantum
gravity in flat spacetime starts to emerge [6, 7]. According to the dictionary of celestial
holography, the scattering particle in the bulk spacetime can be represented as an operator
O∆,J in celestial conformal field theory (CCFT) living at the boundary null infinity, and
the Mellin transformed scattering amplitudes, called celestial amplitudes, are just given by
the conformal correlators of these celestial operators [7, 8]. See [9, 10] for introductions to
celestial holography.

Celestial holography seems to be a very natural language in revealing the underlying
hidden symmetries of quantum theories. In this celestial approach, each non-trivial symmetry
in the bulk spacetime corresponds to some soft current in CCFT. An important virtue
is that this approach is free from ambiguities associated with gauge choices, boundary
counter-terms, and falloff conditions, which are sometimes subtle and tedious in the direct
bulk approach [11]. Another virtue is that this also makes the computations of algebra
efficient due to mature techniques in 2D CFT. In particular, the soft theorems of the
scattering amplitudes, which are consequences of asymptotic symmetries, are just equivalent
to the Ward identities of soft currents in 2D CCFT. The soft currents are special types
of celestial operators O∆,J with conformal dimension ∆ = 1, 0,−1, · · · for bosonic fields
and ∆ = 1/2,−1/2,−3/2, · · · for fermionic fields. Operators with these special values of
conformal dimension will be called soft operators, while all the rest are hard operators.
So far, the Ward identities have been established at several leading orders, ∆ = 1, 0,−1
for graviton and ∆ = 1, 0 for gluon. One main goal in this paper is to derive the Ward
identities associated with all the soft currents, namely for all values of ∆ listed above.
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Recently, an infinite tower of symmetries was discovered for Einstein-Yang-Mills (EYM)
theory in celestial holography [11, 12].1 Each symmetry is associated with a holomorphic
current, which arises from the SL(2,R) decomposition of the soft current, and their commu-
tators are also determined. As such, there seems to be an asymmetry between holomorphic
and anti-holomorphic parts which deserves explanations. For each celestial operator and
soft current, its spin J in 2D, or equivalently the helicity in 4D, can be either positive
or negative. Both positive and negative helicity soft particles generate some symmetry.
However, whenever two soft particles with opposite helicity are scattered, the resulting
amplitude is ambiguous and depends on the order of taking soft limits [16]. This can
also be observed from the operator product expansion (OPE) of celestial operators, and
ambiguities indeed arise if two operators with opposite spin are both taken soft. Therefore,
there seems to be some intrinsic incompatibility between positive and negative helicity
soft operators. To sidestep this subtlety, the authors in [11] focus on positive helicity soft
currents only and consider CCFT with only Vir⊗SL(2,R) symmetry, which is the subgroup
of the superrotation Vir⊗Vir.2 With SL(2,R) global symmetry, one can decompose every
positive helicity soft current into various chiral currents. To determine the commutators of
these chiral currents, [11] considers the OPE of two celestial operators, which arises from
the collinear limit of scattering amplitude. The important ingredient in their derivation is
that one also needs to sum over all the SL(2,R) descendants in OPEs. Taking soft limits for
both positive helicity operators, which is unambiguous in this case, and decomposing the
resulting soft currents into chiral currents, they obtain the desired algebra of these infinitely
many chiral currents. Although such a holographic symmetry algebra only involves positive
helicity soft particles, it is infinite dimensional and thus an interesting subalgebra of the full
symmetry algebra in gravity and gauge theory, which remains to uncover. To emphasize
the role of these chiral currents, we will also refer to this symmetry algebra as holographic
chiral algebra.

In this paper, we will consider the supersymmetric Einstein-Yang-Mills theory and derive
the corresponding holographic symmetry algebra by summing over the SL(2,R) descendants
of two soft currents. The resulting algebra is thus the supersymmetric extension of that
in [11]. As in the case of EYM theory, we will see that the whole algebra is actually
generated by the several leading order soft currents by successive commutators. As such,
the new symmetries actually do not impose new extra constraints on S-matrix. This is
expected from the celestial OPE as the starting point of this derivation. Indeed as shown
in [17], one can bootstrap the celestial OPEs by conformal invariance as well as the soft
theorems at the several leading orders.

With these infinitely many symmetries, it is then natural to ask how do these symmetries
act on celestial operators and celestial amplitudes in CCFT? Furthermore, what are the
corresponding Ward identities associated with these infinite symmetries? In this paper, we
will show that the answers to these questions turn out to be simple: instead of considering
the OPEs of two soft currents, we just need to start with the OPE between a soft current

1See also [13–15] for related discussions.
2Note that we will also work in the (2,2) signature of spacetime and treat z, z̄ as independent variables

(except in section 5 and appendix B).
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and a hard operator. Then after further summing over the SL(2,R) descendants similarly,
we can obtain a resummed OPE between a soft current and a hard operator, which enables
us to read off the action of soft current on the hard operator and establish the corresponding
Ward identities. Using this approach, we establish infinitely many Ward identities for the
infinite number of symmetries. In particular, we reproduce the known Ward identities
corresponding to the leading, sub-leading, and sub-sub-leading soft graviton theorems
as well as the leading and sub-leading soft gluon theorems. The Ward identities up to
these leading orders generate all the rest of Ward identities associated with the rest of
symmetries. The same method applies for fermionic symmetries associated to soft gluino and
soft gravitino. We give the very explicit formulae for all the Ward identities. Importantly,
we must emphasize that our Ward identities are also applicable to hard operators with
negative helicities, as the celestial OPE between a soft current and a hard operator is always
unambiguous, regardless of the helicities.

Furthermore, we perform the shadow transformation on the Ward identities. This
gives rise to infinitely many shadow Ward identities associated with the infinite shadow
symmetries. The shadow transformation seems to play an important role in celestial
holography. In particular, the shadow transformation of sub-leading soft graviton current
just gives the stress tensor of 2D celestial CFT, and the shadow transformation of Ward
identity associated to sub-leading soft graviton is just the standard stress tensor Ward
identity in 2D CFT. Our infinite shadow Ward identities are thus a straightforward
generalization of this idea to all the rest of symmetries. But it remains to understand what
kind of Ward identity is the most natural one in celestial holography.

Last but not least, we also make some attempts to understand how robust the holo-
graphic chiral algebra is and whether there are corrections to Ward identities. We will
try to address this question in the framework of effective field theory (EFT) by inspecting
the role of various higher dimensional effective field theory operators. The EFT approach
to studying corrections to soft theorems was already adopted in [18]. As in [18], we will
consider the cubic interactions which involve three massless particles with arbitrary helicities.
We will first derive a general formula for celestial OPE arising from such a cubic vertex.
This is possible as the three-point on-shell amplitude is uniquely fixed by their helicities, up
to the coupling constant. With this celestial OPE, we repeat our procedure as before and
obtain a general formula for Ward identities (6.5) and its shadow cousin (6.6). Applying
the general result to EFT, we especially reproduce the corrections to soft theorems at
sub-sub-leading order for graviton and sub-leading order for photon found in [18]. While for
the holographic chiral algebra itself, we show that it is robust and free from corrections in
EFT, on condition that we consider the case with only positive helicity soft particles where
our formalism applies. Beyond this range of applicability, the fate of holographic chiral
algebra is unknown, and a full understanding of soft negative helicity particles is required.

This paper is organized as follows. In section 2 we introduce some important preliminar-
ies, including the celestial OPEs in supersymmetric EYM theory, the SL(2,R)-descendant
summation formula and the mode decompositions of soft currents. In section 3, we consider
the soft-soft OPEs and derive the holographic chiral algebra in supersymmetric EYM theory.
In section 4, we consider the soft-hard OPEs and derive infinite many Ward identities. In
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section 5, we derive the shadow Ward identities. In section 6, we apply our formalism in
EFT and discuss corrections to the algebra and Ward identities. Finally, we conclude in
section 7 and discuss some open questions for future research. This paper also includes
four appendices. In appendix A, we rewrite the celestial OPEs in terms of celestial on-shell
superfields in a compact way. In appendix B, we discuss some integrals which are vital
for shadow transformation. In appendix C, we derive a general formula for celestial OPE
arising from a cubic interaction of three spinning massless particles. In appendix D, we
review the soft photon theorems with magnetic corrections.

Note added. While we were completing the paper, we learned that the new paper [19]
also obtained the celestial OPEs for arbitrary spinning operators, which is derived in our
appendix C and subsection 6.1.

2 Preliminaries

In this section, we will collect some key techniques which are very useful in the rest of
the paper. As the starting point, we will first review the celestial OPEs (2.1)–(2.10) in
supersymmetric EYM theory. As we discussed in the introduction, the key ingredient is
to sum over all the SL(2,R) descendant contributions in the OPE. Therefore for later
convenience, we will then present a general formula (2.22) realizing this goal. Finally, we
will discuss some aspects of the soft symmetry currents and particularly its decomposition
into various chiral currents (2.26) under SL(2,R).

2.1 OPEs in supersymmetric EYM theory

Let us first review the celestial OPEs in N = 1 supersymmetric EYM theory. The OPEs
can be obtained from the Mellin transformation of collinear limits of scattering ampli-
tudes [20–22]. Alternatively, they can be bootstrapped using conformal invariance and soft
theorems [17]. Especially we will be mainly focusing on the operators corresponding to pos-
itive helicity particles which are not ambiguous in the soft limit. Their explicit OPEs read:3

Oa∆1,+1(z1, z̄1)Ob∆2,+1(z2, z̄2) ∼ fabc

z12
B(∆1 − 1,∆2 − 1)Oc∆1+∆2−1,+1(z2, z̄2) , (2.1)

O∆1,+2(z1, z̄1)O∆2,+2(z2, z̄2) ∼ − z̄12
z12

B(∆1 − 1,∆2 − 1)O∆1+∆2,+2(z2, z̄2) , (2.2)

Oa∆1,+1(z1, z̄1)O∆2,+2(z2, z̄2) ∼ − z̄12
z12

B(∆1,∆2 − 1)Oa∆1+∆2,+1(z2, z̄2) , (2.3)

Oa∆1,+ 1
2
(z1, z̄1)Ob∆2,+ 1

2
(z2, z̄2) ∼ 0 , (2.4)

Oa∆1,+ 1
2
(z1, z̄1)O∆2,+ 3

2
(z2, z̄2) ∼ 0 , (2.5)

O∆1,+ 3
2
(z1, z̄1)O∆2,+ 3

2
(z2, z̄2) ∼ 0 , (2.6)

Oa∆1,+ 1
2
(z1, z̄1)Ob∆2,+1(z2, z̄2) ∼ fabc

z12
B

(
∆1 −

1
2 ,∆2 − 1

)
Oc∆1+∆2−1,+ 1

2
(z2, z̄2) , (2.7)

3We use the convention: fabchere = −ifabc [11, 17] and κ[11, 17] = 2 here. Also for simplicity we will assume
that all the particles are out-going throughout this paper.
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Oa∆1,+ 1
2
(z1, z̄1)O∆2,+2(z2, z̄2) ∼ − z̄12

z12
B

(
∆1 + 1

2 ,∆2 − 1
)
Oa∆1+∆2,+ 1

2
(z2, z̄2) , (2.8)

Oa∆1,+1(z1, z̄1)O∆2,+ 3
2
(z2, z̄2) ∼ − z̄12

z12
B

(
∆1,∆2 −

1
2

)
Oa∆1+∆2,+ 1

2
(z2, z̄2) , (2.9)

O∆1,+ 3
2
(z1, z̄1)O∆2,+2(z2, z̄2) ∼ − z̄12

z12
B

(
∆1 −

1
2 ,∆2 − 1

)
O∆1+∆2,+ 3

2
(z2, z̄2) , (2.10)

where z12 = z1 − z2 and in all the OPEs we only keep the leading singular terms, if they
exist. It is worth explaining the notation a bit here. We use O∆,J to denote the celestial
operator with dimension ∆ and spin J in celestial CFT. Note that J also coincides with
the helicity of particles in 4D bulk spacetime. We also have the standard CFT relation
∆ = h + h̄, J = h − h̄ where h and h̄ are holomorphic and anti-holomorphic conformal
weights, respectively. So O∆,+2, O∆,+3/2 correspond to celestial graviton and gravitino
operators, while Oa∆,+1, Oa∆,+1/2 are celestial gluon and gluino operators. Here a is the color
index of the gauge group and fabc is the corresponding anti-symmetric structure constant.

These OPEs are consistent with supersymmetry. As shown in appendix A, one can
make supersymmetry manifest by introducing on-shell celestial superfields for each multiplet
and then write down the corresponding super-OPEs. The supersymmetry transformation
rules can be obtained easily. In particular, the supersymmetry acts on the gravity multiplet
as (α, α̇ = 1, 2)

Qα · O∆,+ 3
2
(z, z̄) = zα−1O∆+ 1

2 ,+2(z, z̄) , Qα · O∆,+2(z, z̄) = 0 , (2.11)

Q̃α̇ · O∆,+2(z, z̄) = z̄α̇−1O∆+ 1
2 ,+

3
2
(z, z̄) , Q̃α̇ · O∆,+ 3

2
(z, z̄) = 0 , (2.12)

and similarly for the vector multiplet. One can check that the OPEs above indeed transform
consistently under the supersymmetry actions (2.11) and (2.12).4

For OPEs involving graviton minimally coupled matter, they actually take the following
universal form with the same couplings due to the equivalence principle:5

O∆1,J1(z1, z̄1)O∆2,+2(z2, z̄2) ∼ − z̄12
z12

B(∆1 − J1 + 1,∆2 − 1)O∆1+∆2,J1(z2, z̄2) , J1 > 0 .
(2.13)

Applying the supersymmetric transformation to (2.13), we get the general formula of OPE
involving gravitino:6

O∆1,J1(z1, z̄1)O∆2,+ 3
2
(z2, z̄2)∼− z̄12

z12
B

(
∆1−J1+1,∆2−

1
2

)
O∆1+∆2,J1− 1

2
(z2, z̄2) , J1 ∈Z+ ,

(2.14)
where O∆1,+J1 should be a bosonic operator, otherwise the OPE is regular in supersymmetric
EYM theory. And O∆′1,J1− 1

2
is the supersymmetric partner of O∆1,J1 .

4Since we are considering the leading term in the OPE, it turns out to be sufficient to just consider
the case α, α̇ = 1 as z1 ≈ z2 to leading order. Besides, a useful identity to show SUSY invariance is
B(x, y) = B(x, y + 1) +B(x+ 1, y).

5Actually this is valid even for non-positive helicity particle with J1 ≤ 0 except that there may be also
an extra piece which is singular in the limit z̄12 → 0.

6Again, one can consider the case J1 ≤ 0 but with more complications. See [21] for explicit formulae.
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Before closing this subsection, let us quote some very useful formulae for Beta and
Gamma functions which come from the following integral:

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt = Γ(x)Γ(y)

Γ(x+ y) . (2.15)

In particular, B(x, y) and Γ(x) have simple poles at non-positive integral argument. More
specifically, we have

lim
x→k

Γ(x+m) = 1
x−k

(−1)−m−k
(−m−k)! , k+m= 0,−1, · · · , (2.16)

lim
x→k

B(x+m,y) = 1
x−k

(−1)−m−k
(−m−k)!

Γ(y)
Γ(k+m+y) , k+m= 0,−1, · · · 6= y, (2.17)

lim
x→k,y→l

B(x+m,y+l) = x+y−k−l
(x−k)(y−l)

(
−m−n−k−l
−m−k

)
, k+m, l+n= 0,−1, · · · , (2.18)

where the binomial
(
n

m

)
= n!

m!(n−m)! and 0! = 1.

2.2 Summing over SL(2,R) descendants

One of the key ingredient in this paper is the summation of descendants in OPE which
leads to OPE block. Generally the OPE of two primary operators is given by

O∆1,J1(z1, z̄1)O∆2,J2(z2, z̄2)∼
∑
OP

COPO1O2

O∆P ,JP (z2, z̄2)

(z12z̄12)
∆1+∆2−∆P

2 (z12/z̄12)
J1+J2−JP

2

+· · · , (2.19)

where O∆P ,JP are primary operators and dots represent all the descendants. We would
like to include the contributions of all the SL(2,R) descendants. This is can be nicely
realized by replacing each primary operator (together with the kinematic factors) with its
corresponding OPE block. More specifically, the SL(2,R) OPE block is given by [23]

SL(2,R) OPE block =
∫ z̄1

z̄2
dz̄3 Oh̄P (z̄3)〈Oh̄1

(z̄1)Oh̄2
(z̄2)Õ1−h̄P (z̄3)〉 (2.20)

=
∫ z̄1

z̄2

dz̄3 Oh̄P (z̄3)

z̄h̄1+h̄2+h̄P−1
12 z̄h̄2−h̄1−h̄P+1

32 z̄h̄1−h̄2−h̄P+1
13

, (2.21)

where Õ1−h̄P = Õh̄P is the shadow of Oh̄P and has weight 1− h̄P .
After summing over the SL(2,R) descendants in (2.19), we then arrive at [11]

O∆1,J1(z1, z̄1)O∆2,J2(z2, z̄2) (2.22)

∼
∑
OP

NOPO1O2

z̄N−M12
zM+N

12

∫ 1

0
dt O∆P ,JP (z2, z̄2 + tz̄12) t∆1−J1−M+N−1(1− t)∆2−J2−M+N−1 ,

where
M = ∆1 + ∆2 −∆P

2 , N = J1 + J2 − JP
2 , (2.23)
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and the coefficient NOPO1O2
can be fixed by comparing the leading term in (2.22) with (2.19):

NOPO1O2
=

COPO1O2

B(∆1 − J1 −M +N, ∆2 − J2 −M +N) . (2.24)

This formula (2.22) is the key ingredient in the rest of paper.

2.3 Mode decomposition of soft currents

Following the dictionary of celestial holography, the Mellin transformed scattering amplitude
can be regarded as the correlator of celestial operators O∆,J in CCFT. In order to form a
complete basis, the dimension should reside in the principal continuous series of the unitary
representations of SL(2,C): ∆ ∈ 1 + iR [8]. However, we can also analytic continue ∆ in the
complex plane. In particular, for special values of ∆, they actually generate large gauge trans-
formations at null infinity, and are thus the symmetry generators. Operators with these spe-
cial values of dimension are called soft operators, while the rest of are called hard operators.

More specifically, for positive spin-J operator, the soft symmetry currents are defined as7

Rk,J(z, z̄) = lim
∆→k

(∆− k)O∆,+J(z, z̄), k = J, J − 1, J − 2, · · · . (2.25)

It has weights (h, h̄) = (k+J
2 , k−J2 ).

These soft symmetry currents admit mode expansions under SL(2,R) [11]:

Rk,J(z, z̄) =
J−k

2∑
n= k−J

2

Rk,Jn (z)
z̄n+ k−J

2
= z̄J−kRk,Jk−J

2
(z)+z̄J−k−1Rk,Jk−J+2

2
(z)+· · ·+Rk,JJ−k

2
(z) . (2.26)

This gives rise to J − k + 1 holomorphic currents Rk,Jn (z) which will be referred to as chiral
currents. They all have the same holomorphic weight h = (k + J)/2 and transform in the
(J − k + 1)-dimensional representational of SL(2,R).

As we will see, it turns out to be more convenient to rescale each mode and redefine
the chiral currents as follows [12]:

Ri,Jn = (i− 1− n)!(i− 1 + n)!RJ+2−2i,J
n , (2.27)

where
n = 1− i, 2− i, · · · i− 1, i = J − k

2 + 1 = 1, 3
2 , 2, · · · . (2.28)

Physically, (2.27) corresponds to a light-transformation [12]. In general, the light
transformations along two null directions for operator with weights (h, h̄) in 2D CFT are
given by [24]

L[O](w, z̄) =
∫
dz (w − z)2h−2O(z, z̄) , L̄[O](z, w̄) =

∫
dz̄ (w̄ − z̄)2h̄−2O(z, z̄) . (2.29)

7Actually, we should exclude k = 2 for graviton and k = 3/2 for gravitino as soft currents. As we will see,
they are the central terms in the algebra, and do not act on hard operators. So the honest dimension of soft
currents takes values in k = 1, 0,−1, · · · for bosonic fields, and k = 1/2,−1/2,−3/2, · · · for fermionic fields.
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Applying the second light transformation to our soft operator yields8

εL̄[Ok+ε,J ](z, w̄) = L̄[Rk,J ](z, w̄) (2.30)

=
J−k

2∑
n= k−J

2

Rk,Jn (z)
∫
dz̄ (w̄−z̄)k+ε−J−2z̄−n+J−k−ε

2 (2.31)

=
J−k

2∑
n= k−J

2

Rk,Jn (z)(−2πi)w−1−n+ k+ε−J
2

Γ(n+1− k+ε−J
2 )Γ(1−n− k+ε−J

2 )
Γ(2+J−k−ε)

sin
(
π(n+ k+ε−J

2 )
)

π
.

(2.32)

Note in the above equations, we need to deform the dimension k by ε before applying the light
transformation, but finally we need to take the limit ε→ 0. It is easy to see that in (2.32)
we can just set ε to 0 everywhere except for sin

(
π(n + k+ε−J

2 )
)

= (−)n+(k−J)/2 sin πε
2 ≈

πε
2 (−)n+ k−J

2 . This ε just cancels with ε = ∆− k in the definition of soft currents. After a
change of variable using (2.28), the equation (2.32) gets simplified

L̄[OJ+2−2i,J ](z, z̄) = −iπ
i−1∑

n=1−i
(−)n+1−iz̄−i−n

Γ(i+ n)Γ(i− n)
Γ(2i) RJ+2−2i,J

n (z) (2.33)

= πi (−)2i

Γ(2i)

i−1∑
n=1−i

Ri,Jn
(−z̄)i+n , (2.34)

where Ri,Jn is precisely the same as that defined in (2.27). Therefore (2.27) is indeed
equivalent to a light transformation, and Ri,Jn is exactly the mode expansion of light-
transformed soft operator, up to a mode-dependent sign and an overall constant.9

In order to extract each chiral currents Rkn(z) from soft symmetry currents Rk(z, z̄)
in (2.26), we can take derivatives for multiple times:

∂̄pRk,J(z, z̄) =
J−k

2∑
n= k−J

2

(
−n− k − J

2 − p+ 1
)
p
z̄−n−

k−J
2 −pRk,Jn (z) = p!Rk,J− k−J2 −p

(z) + O(z̄) ,

(2.35)
where O(z̄) are terms which have anti-holomorphic dependence on z̄. Therefore, by
considering holomorphic terms on the left hand side, we unambiguously select the specific
chiral current Rk,J− k−J2 −p

(z).

8Here we use the following formula to evaluate the integral∫ ∞
−∞

dz̄ (w̄ − z̄)−az̄−b = −2πi w̄
−a−b+1Γ(a+ b− 1)

Γ(a)Γ(b) = −2i sin(πb) w̄
−a−b+1Γ(a+ b− 1)Γ(1− b)

Γ(a) ,

where we evaluate the integral using Mathematica for Re a < 1, Re b < 1, Re(a+ b) > 1 and then perform
analytic continuation. In the second equality, we use the identity Γ(x)Γ(1− x) = π

sin(πx) .
9Using this relation, one can infer the OPEs between hard operators and light-transformed soft op-

erators from the OPEs between hard operators and chiral currents, which we will compute in section 4.
Alternatively, [19] directly computed the OPEs between hard operators and light-transformed soft operators.
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For redefined chiral currents in (2.27), we similarly have

∂̄pRk,J(z, z̄) = p!Rk,J− k−J2 −p
(z) + O(z̄) = 1

(i− 1 + n)!R
i,J
n (z) + O(z̄) , (2.36)

where

k = J + 2− 2i , p = i− 1− n , n = J − k
2 − p , i = J − k

2 + 1 . (2.37)

Finally, we will use different symbols H, I,K,L to label the soft currents for graviton,
gravitino, gluon and gluino. As a consequence, we have the following notation:

Hk = Rk,+2 , Ik = Rk,+3/2 , Kk,a = Rk,+1,a , Lk,a = Rk,+1/2,a , (2.38)
Hin = Ri,+2

n , Iin = Ri,+3/2
n , Ki,an = Ri,+1,a

n , Li,an = Ri,+1/2,a
n . (2.39)

3 Holographic chiral algebra from soft-soft OPEs

In this section, we will derive the holographic symmetry algebra in supersymmetric EYM
theory. This is realized by considering the celestial OPEs (2.1)–(2.10) where both oper-
ators are taken soft. After summing over all the SL(2,R) descendants using (2.22) and
decomposing each soft current into chiral currents with (2.26), we arrive at the OPEs of
chiral currents. This just yields the holographic symmetry algebra, or more precisely the
holographic chiral algebra, of the chiral currents. Such an infinite-dimensional algebra
is thus the underlying hidden symmetry of scattering amplitude. As we will see, these
symmetries are not all independent. Instead, they are generated by several leading soft
currents. Our discussion in this section is the supersymmetric generalization of [11].

We will first discuss the holographic chiral algebra in the pure SYM case which contains
only gluons and gluinos. Then we will include gravitons and gravitinos and derive the full
holographic chiral algebra.

3.1 Pure SYM theory

Let us first discuss the pure SYM theory involving gluons and gluinos only. In such a case,
the OPE can be generally written as

Oa∆1,+J1(z1, z̄1)Ob∆2,+J2(z2, z̄2) ∼ fabc

z12
B(∆1 − J1,∆2 − J2)Oc∆1+∆2−1,+(J1+J2−1)(z2, z̄2) ,

(3.1)
where J1, J2 = 1, 1

2 and J1 + J2 = 2, 3
2 . Note that the OPE between two gluino operators is

regular.
As described many times before, the key ingredient here is to sum over all the SL(2,R)

descendants in the OPE [11]. Using the general formula (2.22), we get

Oa∆1,J1(z1, z̄1)Ob∆2,J2(z2, z̄2)

∼ fabc

z12

∫ 1

0
dt Oc∆1+∆2−1,+(J1+J2−1)(z2, z̄2 + tz̄12) t∆1−J1−1(1− t)∆2−J2−1 . (3.2)
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Since the goal in this section is to derive the algebra of chiral currents, we thus need
to separate different contributions in (2.26) for each soft symmetry current. This can be
realized by taking derivatives with respect to the anti-holomorphic coordinates. Applying
such derivatives to (3.2) yields

∂̄pOa∆1,J1(z1, z̄1)∂̄qOb∆2,J2(z2, z̄2) (3.3)

∼ f
abc

z12

∫ 1

0
dt ∂̄p+qOc∆1+∆2−1,+(J1+J2−1)(z2, z̄2+tz̄12) t∆1−J1−1+p(1−t)∆2−J2−1+q

∼ f
abc

z12

∞∑
s=0

z̄s12
s! ∂̄

p+q+sOc∆1+∆2−1,+(J1+J2−1)(z2, z̄2)B(∆1−J1+p+s,∆2−J2+q) . (3.4)

To further discuss the case of soft symmetry currents defined in (2.25), we just need
to focus on special values of conformal dimension ∆1 → k,∆2 → l where k − J1, l − J2 =
0,−1,−2, · · · . As one can see from (2.36), the leading term in ∂̄pO is a purely holomorphic
current. Therefore, in order to extract the contribution from chiral currents in (3.3), we
just need to keep s = 0 term in (3.4) which is independent of anti-holomorphic coordinates
z̄1, z̄2. As a consequence, we find

∂̄pRk,J1,a(z1, z̄1)∂̄qRl,J2,b(z2, z̄2)

∼ fabc

z12

(
−k − l + J1 + J2 − p− q

−k + J1 − p

)
∂̄p+qRk+l−1,J1+J2−1,c(z2, z̄2) + O(z̄1, z̄2) , (3.5)

where we used the residue formula (2.18). Further using (2.35), we get

Rk,J1,a
J1−k

2 −p
(z1)Rl,J2,b

J2−l
2 −q

(z2) ∼ fabc

z12

(
−k − l + J1 + J2 − p− q

−k + J1 − p

)(
p+ q

p

)
Rk+l−1,J1+J2−1,c
J1+J2−k−l

2 −p−q
(z2) .

(3.6)
Alternatively, we can use the rescaled chiral currents defined in (2.27), which simpli-

fies (3.6) to

Ri,J1,a
n (z1)Rj,J2,b

m (z2) ∼ fabc

z12
Ri+j−1,J1+J2−1,c
n+m (z2) . (3.7)

Such a dramatic simplification was one of the motivation for introducing the rescaled chiral
currents in (2.27).

Spelling out the case J1, J2 = 1, 1/2 explicitly and using the notation (2.39), we finally
obtain

Ki,an (z)Kj,bm (0) ∼ fabc

z
Ki+j−1,c
n+m (0) , (3.8)

Ki,an (z)Lj,bm (0) ∼ fabc

z
Li+j−1,c
n+m (0) , (3.9)

Li,an (z)Lj,bm (0) ∼ 0 . (3.10)

3.2 Supersymmetric EYM theory

Now we want to include gravity. As we show in (2.13), there is a universal OPE between
graviton operator and matter operator which are minimally coupled. Just like the case of
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the SYM theory discussed above, we need to use (2.22) to sum over SL(2,R) descendants
in the OPE (2.13). This then gives

O∆1,J1(z1, z̄1)O∆2,+2(z2, z̄2) ∼ − z̄12
z12

∫ 1

0
dt O∆1+∆2,J1(z2, z̄2 + tz̄12) t∆1−J1(1− t)∆2−2 .

(3.11)
Taking derivatives yields

∂̄pO∆1,J1(z1, z̄1)∂̄qO∆2,+2(z2, z̄2) (3.12)

∼− z̄12
z12

∞∑
s=0

(z̄12)s
s! ∂̄p+q+sO∆1+∆2,J1(z2, z̄2)B(∆1−J1 +p+s+1,∆2−1+q)

− p

z12

∞∑
s=0

(z̄12)s
s! ∂̄p+q+s−1O∆1+∆2,J1(z2, z̄2)B(∆1−J1 +p+s,∆2−1+q) (3.13)

+ q

z12

∞∑
s=0

(z̄12)s
s! ∂̄p+q+s−1O∆1+∆2,J1(z2, z̄2)B(∆1−J1 +p+s+1,∆2−2+q) . (3.14)

Next we want to find the OPE between soft symmetry currents defined in (2.25). Just
as in the case of SYM, we need to take the limit ∆1 → k,∆2 → l, and only keep the s = 0
terms in (3.13) and (3.14) which are independent of z̄1 and z̄2. As a result, we arrive at

∂̄pRk,J1(z1, z̄1)∂̄qRl,+2(z2, z̄2) (3.15)

∼− 1
z12

(−k−l+J1−p−q+1)!
(−k+J1−p)!(−l+2−q)!

(
p(2−l−q)−q(J1−k−p)

)
∂̄p+q−1Rk+l,J1(z2, z̄2)+O(z̄1, z̄2) ,

where we used the equation (2.18) and the following formula to simplify the result[
p

(
−k − l + J1 − p− q + 1

−k + J1 − p

)
− q

(
−k − l + J1 − p− q + 1
−k + J1 − p− 1

)]

= (−k − l + J1 − p− q + 1)!
(−k + J1 − p)!(−l + 2− q)!

(
p(2− l − q)− q(J1 − k − p)

)
. (3.16)

Using (2.36), the OPE between (redefined) chiral currents then can be straightforwardly
obtained:

Ri,J1
n (z1)Rj,+2

m (z2) ∼ − 2
z12

(
m(i− 1)− n(j − 1)

)
Ri+j−2,J1
n+m (z2) . (3.17)

Writing out the above formula explicitly for J1 = 2, 3/2, 1, 1/2 with notation (2.39), we
get the OPE between chiral graviton current and the chiral current for graviton, gravitino,
gluon and gluino:

Hin(z)Hjm(0) ∼ −2
z

(
m(i− 1)− n(j − 1)

)
Hi+j−2
n+m (0) , (3.18)

Iin(z)Hjm(0) ∼ −2
z

(
m(i− 1)− n(j − 1)

)
Ii+j−2
n+m (0) , (3.19)

Ki,an (z)Hjm(0) ∼ −2
z

(
m(i− 1)− n(j − 1)

)
Ki+j−2,a
n+m (0) , (3.20)

Li,an (z)Hjm(0) ∼ −2
z

(
m(i− 1)− n(j − 1)

)
Li+j−2,a
n+m (0) . (3.21)
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The final non-trivial OPE we need to consider is the one between gluon and grav-
itino (2.9). Instead of focusing on this special OPE, we can again consider the OPE between
gravitino and arbitrary bosonic operator,10 which is described in the general formula (2.14).
We can then repeat the same steps for SYM and graviton to find the OPE between chiral
currents. Without spelling out any details, we just write down the final result:

Ri,J1
n (z1)Rj,+

3
2

m (z2) ∼ − 2
z12

(
m(i− 1)− n(j − 1)

)
Ri+j−2,J1− 1

2
n+m (z2) . (3.22)

For graviton J1 = 2, this agrees with (3.19). And the OPE between chiral gluon current
and chiral gravitino current is given by:

Iin(z)Kj,am (0) ∼ −2
z

(
m(i− 1)− n(j − 1)

)
Li+j−2,a
n+m (0) . (3.23)

Finally we have two fermionic OPEs which are regular:

Iin(z)Ijm(0) ∼ 0 , (3.24)
Lin(z)Ijm(0) ∼ 0 . (3.25)

Now we obtain all the OPEs between chiral currents (3.8), (3.9), (3.10), (3.18), (3.19),
(3.20), (3.21), (3.23), (3.24), (3.25). They all have at most simple poles. These OPEs can
be rewritten as commutators by employing the following formula [25]:

[A,B](z) =
∮
z

dw

2πiA(w)B(z) . (3.26)

Applying this formula to all the OPEs, we get the commutators between all the chiral fields.
This gives rise to the holographic symmetry algebra [11]. Since all the symmetries are
generated by chiral currents, we will also refer to such algebra as holographic chiral algebra.
In particular, applying the formula to graviton case (3.18), we get the commutator between
chiral graviton currents

[Hin, Hjm] = −2
(
m(i− 1)− n(j − 1)

)
Hi+j−2
n+m . (3.27)

This turns out be just the w1+∞ algebra as observed in [12].11 Note that H1
0 commutes with

all Hin and is thus a central term. Also it is easy to see that H3/2
n ,H2

n,H
5/2
n generate all the

rest of Hin by successive commutators. Physically, this means that the algebra is actually
generated by the leading, sub-leading, and sub-sub-leading soft gravitons. Similarly, in the
case of gluon, the corresponding algebra is generated by the leading and sub-leading soft
gluons. These are not surprising, as we start with OPEs which can actually be bootstrapped
from these soft theorems [17].

The commutators for the rest of chiral currents can be obtained similarly in an obvious
way as all OPEs involved have only simple poles. Furthermore, we can also consider
Einstein-Maxwell theory and its supersymmetrization. The resulting algebra is almost
identical except that we need to remove the color index and set fabc to zero because Maxwell
theory has no self-interaction.

10Note that the OPE between two fermionic operators is regular.
11To compare with [12], we need to redefine win = 1

2H
i
n.
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3.3 Structures in holography chiral algebra

Supersymmetry. So far, we obtained the OPEs between all chiral currents. Since we
are considering the supersymmetric theory, these OPEs should be invariant under the
supersymmetry transformations. Indeed, applying (2.11) (2.12) to (2.26) (2.27), one can
easily derive the following supersymmetry transformation rules acting on chiral currents:

Qα ·Ri,Jn (z) = zα−1Ri,J+ 1
2

n (z) , Qα ·Ri,J+ 1
2

n (z) = 0 , J = 3
2 ,

1
2 , (3.28)

Q̃α̇ ·Ri,Jn (z) =
(
i−1−n(2α̇−3)

)
Ri−

1
2 ,J−

1
2

n− 3
2 +α̇ (z) , Q̃α̇ ·Ri,J+ 1

2
n (z) = 0 , J = 2,1 . (3.29)

Then one can explicitly check that all the chiral OPEs and thus the holographic chiral
algebra are indeed invariant under these SUSY transformation rules.

Generalized Sugawara construction. In the OPE of two chiral gluon current (3.8),
we see that the structure is very similar to the Kac-Moody algebra at level zero, if we only
keep the color indices. Furthermore, given a Kac-Moody algebra, one can then naturally
construct the Sugawara stress tensor.

More specifically, we can consider the leading soft current K1,a
0 , which is also a chiral

current. It has weights (h, h̄) = (1, 0) and the OPE between K1,a
0 with itself just gives the

Kac-Moody algebra at level zero. Therefore we can naturally the following Sugawara stress
tensor:

T (z) = γ : K1,a
0 K

1,a
0 : (z) ≡ γ

∮
z

dw

2πi
1

w − z
K1,a

0 (w)K1,a
0 (z) , (3.30)

where the sum over color index a should be understood, γ is a constant to be fixed below
and : · · · : is the normal order product that we defined above. Then we find

T (z)Ki,an (0) ∼ K
i,a
n (0)
z2 + ∂Ki,an (0)

z
, T (z)T (0) ∼ 2T (0)

z2 + ∂T (0)
z

, (3.31)

if we choose γ such that
− γfabcf bcd = δad . (3.32)

Hence γ is inversely proportional to the dual Coxeter number of gauge group. Therefore
T indeed behaves as a stress tensor in this soft sector. This Sugawara construction was
considered before in [26].12

More generally, we also find13

γ : Kj1,bm1 K
j2,b
m2 : (z)Ki,an (0) ∼

Ki+j1+j2−2,a
n+m1+m2 (0)

z2 +
∂Ki+j1+j2−2,a

n+m1+m2 (0)
z

, (3.33)

γ : Kj1,bm1 K
j2,b
m2 : (z)Li,an (0) ∼

Li+j1+j2−2,a
n+m1+m2 (0)

z2 +
∂Li+j1+j2−2,a

n+m1+m2 (0)
z

. (3.34)

So it also holds if we replace K with L in (3.31). This is the generalized Sugawara
construction whose physical implications remain to be understood.

12In [26], they also discussed OPE between T and hard operator, and found that T constructed in this
way does not behave properly anymore.

13Here we need to use the property : Ki,an Kj,bm :=: Kj,am Ki,bn : which follows from the mode expansion of
: Oa∆1,+1Ob∆2,+1 :=: Oa∆2,+1Ob∆1,+1 :, which is an operator with dimension ∆1 + ∆2. Similarly, we also have
: Ki,an Lj,bm :=: Kj,am Li,bn :. An extra identity is needed in the fermionic case: ∂Li+j−1,c

n+m = −2γfabc : Ki,an Lj,bm :,
which is just a null state relation.
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4 Ward identities from soft-hard OPEs

In the last section, we obtained the holographic chiral algebra in supersymmetric EYM
theory. They are the hidden symmetry of scattering amplitude. A natural question to ask
is how do these symmetries act on amplitude? And what are the physical consequences of
these symmetries?

In this section, we will show that the infinite number of soft symmetry currents just
lead to an infinite number of Ward identities. Each Ward identity just relates celestial
amplitudes with and without the insertion of soft current. The way to derive these Ward
identities is almost identical to the derivation of symmetry algebra in the last section, except
that we need to use the soft-hard OPE now. More specifically, we will pick the celestial
OPEs (2.1)–(2.10) and take one of them to be soft. After summing over all the SL(2,R)
descendants, we will arrive at the OPE between soft currents and hard operators. It turns
out that this just yields the Ward identity of the corresponding soft current. If we further
decompose the soft current into chiral currents using (2.26), we arrive at the chiral Ward
identities for the chiral currents.

These Ward identities reproduce the known Ward identities corresponding to the
leading, sub-leading and sub-sub-leading soft graviton theorems as well as the leading and
sub-leading soft gluon theorems. Since the whole tower of soft currents is generated by these
several leading soft currents, the resulting tower of Ward identities is thus also generated by
the Ward identities of these several leading order soft currents. Nevertheless, our formulae
for all the Ward identities are explicit and may shed new light on the structure of holographic
chiral algebra. This method also works for fermionic symmetry current, but we will not
discuss their corresponding Ward identities explicitly in this section. Instead, we will present
a general OPE formula (6.1) from which a general formula for Ward identities (6.5) is
derived. Specializing the general formula (6.5) to soft gluino or soft gravitino, one easily
obtains their corresponding Ward identities.

4.1 Graviton Ward identity

As we discussed, our basic strategy is to consider the OPE with all SL(2,R) descendants
included, and then specialize to the case of soft-hard OPE. Let us first discuss the case of
graviton. The general OPE involving graviton after summing over SL(2,R) descendants is
given in (3.11):

O∆1,+2(z1, z̄1)O∆2,J2(z2, z̄2) ∼ − z̄12
z12

∫ 1

0
dt O∆1+∆2,J2(z2, z̄2 + tz̄12) t∆1−2(1− t)∆2−J2 .

(4.1)
After performing the integral on the right hand side, we get

O∆1,+2(z1, z̄1)O∆2,J2(z2, z̄2) (4.2)

∼ − z̄12
z12

∞∑
s=0

(z̄12)s
s! ∂sO∆1+∆2,+J2(z2, z̄2) B(∆1 + s− 1,∆2 − J2 + 1) . (4.3)
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We need to consider the soft graviton for O∆1,+2, so we set ∆1 → k. Then the above
OPE simplified as follows:

Hk(z1, z̄1)O∆2,J2(z2, z̄2)

∼ − z̄12
z12

1−k∑
s=0

(z̄12)s
s! ∂̄sO∆2+k,+J2(z2, z̄2) (−1)−s+1−k

(−s+ 1− k)!
Γ(∆2 − J2 + 1)

Γ(∆2 − J2 + k + s) , (4.4)

where we used the formula (2.17) and the infinite sum of s truncates because we need a
pole from Γ(∆1 + s− 1). This is the OPE between the soft graviton current and a hard
operator.

We also want to find the OPE between chiral currents and the hard operators. For this
purpose, we expand (z̄1 − z̄2)s+1:

Hk(z1, z̄1)O∆2,J2(z2, z̄2)

∼− 1
z12

1−k∑
s=0

s+1∑
n=0

(
s+1
n

)
z̄n1 (−z̄2)s+1−n

s! ∂̄sO∆2+k,+J2(z2, z̄2) (−1)−s+1−k

(−s+1−k)!
Γ(∆2−J2+1)

Γ(∆2−J2+k+s) (4.5)

∼− 1
z12

2−k∑
n=0

1−k∑
s=max(0,n−1)

(
s+1
n

)
z̄n1 z̄

s+1−n
2 ∂̄sO∆2+k,+J2(z2, z̄2) (−1)−n−k

s!(−s+1−k)!
Γ(∆2−J2+1)

Γ(∆2−J2+k+s) .

(4.6)

Note the non-trivial exchange of sums over s and n. On the other hand, the soft current
can also be expanded in terms of chiral currents using (2.26) and (2.27). Inserting the
expansion into (4.5) and comparing the left and right hand sides, we find the following OPE

Hin(z1)O∆2,J2(z2, z̄2) ∼ (−1)n+i

z12

n+i−1∑
r=max(0,n−i+2)

(
i+ n− 1

r

)
(r − n+ i− 1)Γ(∆2 − J2 + 1)

Γ(∆2 − J2 + r − n− i+ 2)

× z̄r2 ∂̄r−n+i−2O∆2−2i+4,J2(z2, z̄2) . (4.7)

Spelling out the OPE explicitly at several leading orders, we get14

• leading soft graviton (∆H = 1):

H3/2
1/2(z1)O∆,,J(z2, z̄2) ∼ z̄2

z12
O∆+1,J(z2, z̄2) , (4.8)

H3/2
−1/2(z1)O∆,J(z2, z̄2) ∼ −1

z12
O∆+1,J(z2, z̄2) , (4.9)

• sub-leading soft graviton (∆H = 0):

1
2H

2
1(z1)O∆,J(z2, z̄2) ∼ − z̄

2
2∂z̄2 + 2h̄z̄2

z12
O∆,J(z2, z̄2), (4.10)

H2
0(z1)O∆,J(z2, z̄2) ∼ 2 z̄2∂z̄2 + h̄

z12
O∆,J(z2, z̄2) , (4.11)

1
2H

2
−1(z1)O∆,J(z2, z̄2) ∼ −∂z̄2

z12
O∆,J(z2, z̄2) , (4.12)

14Note 2h̄ = ∆−J . Also H1
0 is a central term and acts on hard operators trivially as one can see from (4.4)

by setting k → 2.
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• sub-sub-leading soft graviton (∆H = −1):

1
6H

5
2
3
2
(w)O∆,J(z, z̄) ∼ z̄3∂2

z̄ + 4h̄z̄2∂z̄ + 2h̄(2h̄− 1)z̄
2(w − z) O∆−1,J(z, z̄) , (4.13)

1
2H

5
2
1
2
(w)O∆,J(z, z̄) ∼ −3z̄2∂2

z̄ + 8h̄z̄∂z̄ + 2h̄(2h̄− 1)
2(w − z) O∆−1,J(z, z̄) , (4.14)

1
2H

5
2
− 1

2
(w)O∆,J(z, z̄) ∼ 3z̄∂2

z̄ + 4h̄∂z̄
2(w − z) O∆−1,J(z, z̄) , (4.15)

1
6H

5
2
− 3

2
(w)O∆,J(z, z̄) ∼ − ∂2

z̄

2(w − z)O∆−1,J(z, z̄) , (4.16)

where the coefficients on the left hand side of OPE is just the rescaling factor in (2.27).
The OPEs (4.5), (4.7) as well as the explicit forms in the several leading orders just

give the transformation rules of hard operators under the action soft symmetry current and
chiral current. Up to sub-sub-leading order, it turns out the structures here are identical to
that in [13, 17, 27].

Using the OPEs (4.5), (4.7) in correlators, we claim that we have the following Ward
identities for soft symmetry currents

〈H l(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

1−l∑
s=0

(z̄ − z̄k)s+1

z − zk
(−1)−s−l

s!(−s+ 1− l)!
Γ(2h̄k + 1)

Γ(2h̄k + l + s)

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 , (4.17)

and furthermore the chiral Ward identities for chiral currents:

〈Hin(z)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

(−1)n+i

z − zk

n+i−1∑
r=max(0,n−i+2)

(
i+ n− 1

r

)
(r − n+ i− 1)Γ(2h̄k + 1)

Γ(2h̄k + r − n− i+ 2)

× z̄rk ∂̄r−n+i−2
k 〈O∆1,J1(z1, z̄1) · · · O∆k−2i+4,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 , (4.18)

where ∂̄k = ∂
∂z̄k

.
This is not surprising: in the standard stress tensor Ward identity we essentially also

replace every pair of primary operator and stress tensor with their corresponding singular
OPEs. This seems to be a general feature for all Ward identities arising from symmetry in
CFT. Since here all the currents also correspond to some symmetries, similar tricks should
also work. Actually, in the present case, these Ward identities can be further justified as
follows. Note that in OPEs (4.5), (4.7), all the SL(2,R) descendants have been summed over,
implying that the anti-holomorphic dependence is supposed to be exact in the above Ward
identities. Therefore, we only need to worry about the holomorphic dependence because
we have not considered the SL(2,R) descendants. However, there is a big simplification
in the present case: all the OPEs (4.5), (4.7) have only simple poles in the holomorphic
coordinates. If we denote the correlator on the left-hand side of Ward identity as F (z), then
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we know that such a function can only be singular when z hits other operator insertions
zi, and the singular behavior in the coincident limit is dictated by OPEs. Since all the
OPEs here have only simple poles, we thus learn that F (z) is a meromorphic function with
only simples poles (note the F (z) should be finite at infinity). Following the Mittag-Leffler
theorem, such a meromorphic function is uniquely determined by its poles and the residues
there, up to a constant. Our Ward identities have exactly the expected behavior as a
meromorphic function and the undetermined constant can be argued to be zero by cluster
decomposition. This thus establishes our Ward identities.

One can check explicitly that up to sub-sub-leading order, our Ward identities reproduce
all the known Ward identities corresponding to leading, sub-leading and sub-sub-leading
soft theorems [27–29]:

〈H1(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= −
m∑
k=1

z̄ − z̄k
z − zk

〈O∆1,J1(z1, z̄1) · · · O∆k+1,+Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 , (4.19)

and

〈H0(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

(z̄ − z̄k)2

z − zk

[
2h̄k
z̄ − z̄k

− ∂̄k

]
〈O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉 , (4.20)

and

〈H−1(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= −1
2

m∑
k=1

(z̄ − z̄k)3

z − zk

[
2h̄k(2h̄k − 1)

(z̄ − z̄k)2 − 4h̄k∂̄k
z̄ − z̄k

+ ∂̄2
k

]
× 〈O∆1,J1(z1, z̄1) · · · O∆k−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (4.21)

The rest of Ward identities are supposed to be guaranteed by the associativity of the
holographic chiral algebra that we discussed in the previous section.

One important remark is that our Ward identities (4.17)(4.18) hold for both positive
and negative helicity hard operators, although we only considered the positive helicity
soft operators in the discussion of holographic chiral algebra in the previous section. For
example, the OPE of two gravitons with opposite helicity is [17]

O∆1,+2(z1, z̄1)O∆2,−2(z2, z̄2) ∼ − z̄12
z12

B(∆1 − 1,∆2 + 3)O∆1+∆2,−2(z2, z̄2)

− z12
z̄12

B(∆1 + 3,∆2 − 1)O∆1+∆2,+2(z2, z̄2) . (4.22)

The first term has been considered in (4.1), so we only need to worry about the second term.
The second term has a zero, instead of a pole, in the holomorphic coincident limit z1 → z2.
Even at sub-sub-leading order ∆1 → k = 1, 0,−1, the second term has no contribution in
soft-hard OPE because (∆1− k)B(∆1 + 3,∆2− 1) vanishes at these orders. As a result, the
Ward identities can not be modified up to these orders. Since we know soft gravitons up to
sub-sub-leading order generate the whole tower of symmetry, the second term is supposed
to have no effect either for the rest of Ward identities.
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4.2 Gluon Ward identity

Now we switch to the gluon case. We start with the following gluon OPE (3.2) where all
the SL(2,R) descendants have been included:

Oa∆1,+1(z1, z̄1)Ob∆2,J2(z2, z̄2) ∼ fabc

z12

∫ 1

0
dt O∆1+∆2−1,J2(z2, z̄2 + tz̄12) t∆1−2(1− t)∆2−J2−1 .

(4.23)
Doing the integral on the right hand side gives:

Oa∆1,+1(z1, z̄1)Ob∆2,J2(z2, z̄2) ∼ fabc

z12

∞∑
s=0

(z̄12)s
s! ∂̄sO∆1+∆2−1,J2(z2, z̄2) B(∆1 +s−1,∆2−J2) .

(4.24)
We then take Oa∆1,+1 soft by setting ∆1 → k. Then the above OPE reduces to

Kk,a(z1, z̄1)Ob∆2,J2(z2, z̄2)

∼ fabc

z12

1−k∑
s=0

(z̄12)s
s! ∂̄sO∆2+k−1,J2(z2, z̄2) (−1)−s+1−k

(−s+ 1− k)!
Γ(∆2 − J2)

Γ(∆2 − J2 + k + s− 1) , (4.25)

where we used (2.17) and the infinite sum of s truncates because we need a pole from
Γ(∆1 + s− 1).

To find the OPE between chiral gluon currents and the hard operators, we expand
(z̄1 − z̄2)s:

Kk,a(z1, z̄1)Ob∆2,J2(z2, z̄2) (4.26)

∼ f
abc

z12

1−k∑
s=0

s∑
n=0

(
s

n

)
z̄n1 (−z̄2)s−n

s! ∂̄sO∆2+k−1,J2(z2, z̄2) (−1)−s+1−k

(−s+1−k)!
Γ(∆2−J2)

Γ(∆2−J2+k+s−1)
(4.27)

∼ f
abc

z12

1−k∑
n=0

1−k∑
s=n

(
s

n

)
z̄n1 (−z̄2)s−n

s! ∂̄sO∆2+k−1,J2(z2, z̄2) (−1)−s+1−k

(−s+1−k)!
Γ(∆2−J2)

Γ(∆2−J2+k+s−1) ,

(4.28)

where we exchange the sum of s and n.
Further inserting the mode expansion into the above OPE and comparing the left and

right hand sides, we find the following OPE between chiral current and hard operator

Ki,an (z1)Ob∆2,J2(z2, z̄2)

∼ f
abc

z12

i−1+n∑
r=0

(−1)i−1+n
(
i−1+n

r

)
z̄r2∂̄

r+i−1−nO∆2+2−2i,J2(z2, z̄2) Γ(∆2−J2)
Γ(∆2−J2+1−i−n+r) .

(4.29)

At first two leading orders, the OPE explicitly reads:

• leading soft gluon (∆K = 1):

K1,a
0 (z)Ob∆,J(w, w̄) ∼ fabc

z − w
Oc∆,J(w, w̄) , (4.30)
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• sub-leading soft gluon (∆K = 0):

K
3
2 ,a
1
2

(z)Ob∆,J(w, w̄) ∼ − fabc

z − w

(
(2h̄− 1) + w̄∂̄

)
Oc∆−1,J(w, w̄) , (4.31)

K
3
2 ,a

− 1
2
(z)Ob∆,J(w, w̄) ∼ fabc

z − w
∂̄Oc∆−1,J(w, w̄) . (4.32)

The structure here are again identical to that in [14, 16, 17, 30].
As in the graviton case, we can now propose the following Ward identities for soft gluon

currents

〈K l,a(z, z̄)Ob1∆1,J1
(z1, z̄1) · · · Obm∆m,Jm

(zm, z̄m)〉

=
m∑
k=1

fabkck
1−l∑
s=0

(z̄ − z̄k)s
z − zk

(−1)−s+1−l

s!(−s+ 1− l)!
Γ(2h̄k)

Γ(2h̄k + l + s− 1)

× ∂̄sk〈O
b1
∆1,J1

(z1, z̄1) · · · Ock∆k+l−1,Jk(zk, z̄k) · · · Obm∆m,Jm
(z1, z̄m)〉 , (4.33)

and the chiral Ward identities for chiral gluon currents

〈Ki,an (z)Ob1∆1,J1
(z1, z̄1) · · · Obm∆m,Jm

(zm, z̄m)〉

=
m∑
k=1

fabkck

z − zk

i−1+n∑
r=0

(−1)i−1+n
(
i− 1 + n

r

)
Γ(2h̄k)

Γ(2h̄k + 1− i− n+ r)

× z̄rk∂̄r+i−1−n
k 〈Ob1∆1,J1

(z1, z̄1) · · · Ock∆k+l−1,Jk(zk, z̄k) · · · Obm∆m,Jm
(z1, z̄m)〉 , (4.34)

where the hard operators in the vector multiplet have helicity Jk = ±1
2 ,±1.15 The arguments

for the validity of these Ward identities are similar to that in the graviton case we discussed
before. And it is easy to check that they are in perfect agreement with the Ward identities
for leading and sub-leading soft gluon theorems [20, 30, 31]:

〈K1,a(z, z̄)Ob1∆1,J1
(z1, z̄1) · · · Obm∆m,Jm

(zm, z̄m)〉

=
m∑
k=1

fabkck

z − zk
〈Ob1∆1,J1

(z1, z̄1) · · · Ock∆k,Jk
(zk, z̄k) · · · Obm∆m,Jm

(zm, z̄m)〉 , (4.35)

and

〈K0,a(z, z̄)Ob1∆1,J1
(z1, z̄1) · · ·Obm∆m,Jm

(zm, z̄m)〉 (4.36)

=
m∑
k=1

fabkck

z−zk

[
−(2h̄k−1)+(z̄−z̄k)∂̄k

]
〈Ob1∆1,J1

(z1, z̄1) · · ·Ock∆k−1,Jk(zk, z̄k) · · ·Obm∆m,Jm
(zm, z̄m)〉 .

4.3 Photon Ward identity

For Maxwell-matter coupled system, like QED, the scattering amplitudes also factorize
when the photon is taken soft. This gives rise to soft photon theorems which are universal
at leading and sub-leading orders. We review it in appendix D.

15More generally, a similar type of Ward identity is supposed to hold even for hard operators belonging to
the chiral multiplets which have helicities J = 0,±1/2 and transform in some representation R of the gauge
group, but one needs to replace fabc with some representation matrix (T aR)IJ .
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Now we want to derive the Ward identities associated to soft photons. We start with
the following OPE between photon and matter fields which are minimally coupled:

O∆,+1(z1, z̄1)O∆′,J ′(z2, z̄2) ∼ e

z12
B(∆− 1,∆′ − J)O∆+∆′−1,J ′(z2, z̄2) . (4.37)

This is very similar to the gluon case in (3.1) except that now we need to strip off the color
index and use O∆,+1. Also O∆′,J ′ is a matter operator with electric charge e under U(1)
Maxwell field.

Repeating the same procedure, we obtain the Ward identities

〈K l(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

ek

1−l∑
s=0

(z̄ − z̄k)s
z − zk

(−1)−s+1−l

s!(−s+ 1− l)!
Γ(2h̄k)

Γ(2h̄k + l + s− 1)

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 , (4.38)

which has similar structure as in the gluon case (4.33). The difference is that Maxwell
theory itself is free and we need extra matter fields to interact.

For l = 1, 0, these Ward identities exactly coincide with the leading and sub-leading
soft photon theorem in (D.8) after performing Mellin transformation.

We can also obtain the chiral Ward identities. For leading soft photon, we find

〈K1
0(z)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉 (4.39)

=
m∑
k=1

ek
z − zk

〈O∆1,J1(z1, z̄1) · · ·O∆k−1,Jk(zk, z̄k) · · · O∆m,Jm(z1, z̄m)〉 ,

which was also previously obtained in [32] by different means.
For sub-leading soft photon, we have two chiral Ward identities

〈K
3
2
1
2
(z)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉 (4.40)

=
m∑
k=1

−ek
z − zk

[
(2h̄k − 1) + z̄k∂̄k

]
〈O∆1,J1(z1, z̄1) · · ·O∆k−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 ,

and

〈K
3
2
− 1

2
(z)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉 (4.41)

=
m∑
k=1

ek
z − zk

∂̄k〈O∆1,J1(z1, z̄1) · · ·O∆k−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 .

In (4.41), if we take a further derivative with respect to z and thus consider the Ward
identity associated with ∂K

3
2
− 1

2
, then we rediscover the Ward identity found in [33], which

was shown to arise from the sub-leading soft photon theorem.
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Magnetic corrections. In the above discussions, we considered the matter particles
which are electrically charged under U(1) Maxwell field. It is known that there are magnetic
corrections to the soft photon theorem as we review in appendix D. Such corrections have
also be understood from the perspective of asymptotic symmetry [34]. It is then natural
to ask can we also include the magnetic corrections in our formalism? This turns out
to be very easy: we just need to complexify the couplings by replacing ek → ek + igk
where ek, gk are the electric and magnetic charges of particles.16 Indeed, in the three-
point amplitude between photon and charged matter particle, nothing prevents us from
considering a complexified coupling for this three-point amplitude. A complexified coupling
just means that the charged particle is a dyon with both electric and magnetic charge. This
can be easily understood from electromagnetic duality17 which rotates the phase of the
wave function of photon with definite helicity; as a result, the three-point coupling also
acquires a phase. This simple modification does not affect our derivation above at all except
that we need to consider complexified coupling ek → ek + igk in OPE (4.37) and (4.38).
The resulting Ward identities with magnetic corrections are thus similarly derived purely
from 2D CCFT and are equivalent to the soft photon theorems.

5 Shadow Ward identities

In the last section, we derived the infinitely many Ward identities associated to the infinite
dimensional soft currents. In this section, we would like to use shadow transformation to
derive the infinitely many shadow Ward identities.

Generally, the shadow transformation of operator O with weights (h, h̄) is defined
as [35]18

Õ(w, w̄) ≡ S[O](w, w̄) =
∫
d2z (z − w)2h−2(z̄ − w̄)2h̄−2O(z, z̄) . (5.1)

As such, the shadow operator Õ has holomorphic and anti-holomorphic weights (1−h, 1− h̄),
or equivalently conformal dimension 2−∆ and spin −J .

Compared to Ward identities themselves, the shadow Ward identities play an equally
important role in celestial holography. For example, by performing the shadow trans-
formation on the subleading soft graviton current, one gets the stress tensor in celestial
CFT [6, 36]; and the shadow Ward identity at subleading order just coincides with the
standard stress tensor Ward identity. We will generalize this construction and derive the
shadow Ward identity associated with all the soft currents for graviton, gluon and photon.
Furthermore, a general formula of shadow Ward identities will be derived in (6.5), which is
also applicable to soft gravitino and soft gluino.

16The replacing ek → ek + igk is for positive helicity photon; for negative helicity photon, we should
replace ek → ek − igk.

17See [32] for some discussions about electromagnetic duality in this context.
18In this section and appendix B, for computational convenience we will treat z, z̄ as complex conjugate

of each other.
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5.1 Shadow graviton Ward identity

The graviton Ward identities are derived in (4.17). Let us write down again:

〈H l(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

1−l∑
s=0

(z̄ − z̄k)s+1

z − zk
(−1)−s−l

s!(−s+ 1− l)!
Γ(2h̄k + 1)

Γ(2h̄k + l + s)

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l,Jk(z2, z̄2) · · · O∆m,Jm(zm, z̄m)〉 . (5.2)

Note that soft graviton current H l has weight (h, h̄) = ( l+2
2 , l−2

2 ). Its shadow current is
given by (5.1):

H̃ l(w, w̄) =
∫
d2z (z − w)l(z̄ − w̄)l−4H l(z, z̄) . (5.3)

To derive the shadow Ward identities, we need to perform a similar integral on the
right hand side of original Ward identities (5.2).

The integral has been computed in appendix B. In particular, specializing (B.17) to
the present case, we have∫

d2z(z − w)l(z̄ − w̄)l−4 (z̄ − z̄′)s+1

z − z′
= (−1)sπ(s+ 1)!

(l − 3)(l − 2) · · · (l + s− 2)(z′ − w)l(z̄′ − w̄)l+s−2 .

(5.4)
Plugging this integral into (5.2) and doing some algebra yields the following shadow

Ward identities:19

〈H̃ l(w, w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= (−1)lπ
(3− l)!

m∑
k=1

1−l∑
s=0

(s+ 1)Γ(2h̄k + 1)
Γ(2h̄k + l + s)

× (w − zk)l(w̄ − z̄k)l+s−2

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (5.5)

Let us write down the identities at several leading orders explicitly.
For leading soft graviton l = 1, we have

〈H̃1(w, w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= −π2

m∑
k=1

w − zk
w̄ − z̄k

〈O∆1,J1(z1, z̄1) · · · O∆k+1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (5.6)

This coincides with the Ward identity associated with the leading soft (negative helicity)
graviton theorem.

For sub-leading soft graviton l = 0, we have

〈 3
π
H̃0(w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

[
h̄k

(w̄ − z̄k)2 + ∂̄k
w̄ − z̄k

]
〈O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉 . (5.7)

19It is interesting to note that the holomorphic dependence on shadow current is simply (w − zk)l. So for
l ≤ −1, we may integrate w and reduce (w − zk)l to 1/(w − zk). This simplifies the equation a little bit but
the physical meaning is not clear.

– 22 –



J
H
E
P
0
1
(
2
0
2
2
)
1
1
3

This becomes the standard Ward identity of anti-holomorphic stress tensor in CFT once
we identify T̄ (w̄) = 3

π H̃
0(w̄). This stress tensor Ward identity was previously discussed

in [6, 36, 37].20

For sub-sub-leading soft graviton l = −1, we find

〈H̃−1(w, w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= − π4!

m∑
k=1

1
w − zk

[
2h̄k(2h̄k − 1)

(w̄ − z̄k)3 + 4h̄k∂̄k
(w̄ − z̄k)2 + 3∂̄2

k

w̄ − z̄k

]
× 〈O∆1,J1(z1, z̄1) · · · O∆k−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (5.8)

5.2 Shadow photon and gluon Ward identity

Now we switch to shadow Ward identities for soft photons. The soft photon Ward identities
are given in (4.38):

〈K l(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

ek

1−l∑
s=0

(z̄ − z̄k)s
z − zk

(−1)−s+1−l

s!(−s+ 1− l)!
Γ(2h̄k)

Γ(2h̄k + l + s− 1)

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (5.9)

The soft photon current K l has weight (h, h̄) = ( l+1
2 , l−1

2 ). Thus the soft photon shadow
current is given by (5.1):

K̃ l(w, w̄) =
∫
d2z (z − w)l−1(z̄ − w̄)l−3K l(z, z̄) . (5.10)

To proceed, we need to use the following integral which has been derived in (B.17):∫
d2z(z−w)l−1(z̄−w̄)l−3 (z̄ − z̄′)s

z − z′
= (−1)s(−π)s!

(l − 2)(l − 2) · · · (l + s− 2)(z′−w)l−1(z̄′−w̄)l+s−2 .

(5.11)
Plugging this integral into (5.9) gives the following shadow Ward identities:

〈K̃ l(w, w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= (−1)−lπ
(2− l)!

m∑
k=1

ek

1−l∑
s=0

Γ(2h̄k)
Γ(2h̄k + l + s− 1)

(w − zk)l−1(w̄ − z̄k)l+s−2

× ∂̄s〈O∆1,J1(z1, z̄1) · · · O∆k+l−1,Jk(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (5.12)

More explicitly for leading soft photon l = 1, we have

〈K̃1(w, w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= −π
m∑
k=1

ek
w̄ − z̄k

〈O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉 , (5.13)

which is the same as the Ward identity associated with the leading soft photon with negative
helicity.

20Note that the coefficient 3/π also matches with previous literature, see e.g. eq. 3.1 of [37] and eq. 4.28
of [10].
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While for sub-leading soft photon l = 0, we have

〈K̃0(w,w̄)O∆1,J1(z1, z̄1) · · ·O∆m,Jm(zm, z̄m)〉 (5.14)

= π

2

m∑
k=1

ek
w−zk

[
2h̄k−1

(w̄−z̄k)2 + ∂̄k
w̄−z̄k

]
〈O∆1,J1(z1, z̄1) · · ·O∆k−1,Jk(zk, z̄k) · · ·O∆m,Jm(zm, z̄m)〉 .

For gluon, their corresponding shadow Ward identities are similarly given by:

〈K̃ l,a(w, w̄)Ob1∆1,J1
(z1, z̄1) · · · Obm∆m,Jm

(zm, z̄m)〉

= (−1)−lπ
(2− l)!

m∑
k=1

fabkck
1−l∑
s=0

Γ(2h̄k)
Γ(2h̄k + l + s− 1)

(w − zk)l−1(w̄ − z̄k)l+s−2

× ∂̄s〈Ob1∆1,J1
(z1, z̄1) · · · Ock∆k+l−1,Jk(zk, z̄k) · · · Obm∆m,Jm

(zm, z̄m)〉 . (5.15)

6 EFT corrections

In the previous sections, we proposed a method for deriving Ward identities from celestial
OPE. With this procedure, we discussed the Ward identities associated with the soft
symmetry currents in supersymmetric EYM theory. Although we were considering this
specific theory, the Ward identities are supposed to hold more generally as they capture
the universal feature of quantum fields. However, they are not always universal; there are
various types of correction to the soft theorems due to quantum loops or higher derivative
interactions. More specifically, it has been shown in [18] that there are cubic vertices which
can modify the sub-sub-leading soft graviton theorem and sub-leading soft photon theorem.
These claims are derived in [18] by considering local unitary effective field theory and
analyzing all possible local operators. Therefore, the leading and sub-leading soft graviton
theorems, as well as the leading soft photon theorem are indeed universal at tree level in
EFT as guaranteed by locality and unitarity.21

We will reformulate their results in the language of celestial holography. More specifically,
we will consider the EFT corrections to our previous Ward identities. The procedure is the
same as that in the previous sections. We will first derive a general celestial OPE (6.1)
arising from the cubic interaction of three massless spinning particles. Based on this general
OPE, we establish the general Ward identities (6.5) and its shadow cousin (6.6). Applying
the general results to EFT, we find that the corrections to Ward identities indeed start to
appear at sub-sub-leading order for soft graviton and sub-leading order for soft photon.

6.1 General celestial OPE and Ward identity

As we derived in appendix C, the leading tree level celestial OPEs arising from cubic vertices
of three spinning massless particles take the following general form:

O∆1,J1(z1, z̄1)O∆2,J2(z2, z̄2)

∼ κJ1J2J3
z̄J1+J2+J3−1

12
z12

B
(
∆1 + J2 + J3 − 1,∆2 + J1 + J3 − 1

)
O∆3,−J3(z2, z̄2) , (6.1)

21The Weinberg’s leading soft graviton theorem is even robust against quantum loops, while the rest of
soft theorems may suffer from quantum corrections.
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where ∆3 = ∆1 + ∆2 + J1 + J2 + J3 − 2 and κJ1J2J3 is the coupling constant of the cubic
vertex. This is derived in condition J ≡ J1 + J2 + J3 ≥ 0.22 One can check that this OPE
agrees with all known celestial OPEs, including those in (2.1)–(2.10).

As before, we also want to sum over all the SL(2,R) descendants. Using (2.22), we get

O∆1,J1(z1, z̄1)O∆2,J2(z2, z̄2)

∼κJ1J2J3
z̄J1+J2+J3−1

12
z12

∫ 1

0
dtO∆3,−J3(z2, z̄2+tz̄12) t∆1+J2+J3−2(1−t)∆2+J1+J3−2 . (6.2)

Doing the integral thus gives the OPE where all the SL(2,R) descendant contributions are
included:

O∆1,J1(z1, z̄1)O∆2,J2(z2, z̄2)

∼ κJ1J2J3

z12

∞∑
s=0

(z̄12)J+s−1

s! ∂̄sO∆3,−J3(z2, z̄2) B(∆1 + s+ J2 + J3 − 1,∆2 + J1 + J3 − 1) .

(6.3)

Setting ∆1 → k where k ∈ Z for bosonic soft current or k ∈ Z + 1
2 for fermionic soft

current, we obtain the OPE between soft currents and hard operators

Rk,J1(z1, z̄1)O∆2,J2(z2, z̄2)∼ κJ1J2J3

z12

1−k−J2−J3∑
s=0

(z̄12)J+s−1

s! ∂̄sO∆3,−J3(z2, z̄2)

× (−1)(1−k−s−J2−J3)

(1−k−s−J2−J3)!
Γ(∆2+J1+J3−1)

Γ(∆2+J1+J2+2J3+k+s−2) , (6.4)

where we used (2.17). The Ward identity can then be easily established by replacing each
pair of soft current and hard operator with their OPEs above.

Explicitly, the general formula of Ward identities is given by

〈Rl,J(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

κJJkJ ′k(−1)ν(ν1+···+νk−1)
1−l−Jk−J ′k∑

s=0

(z̄ − z̄k)J+Jk+J ′k+s−1

z − zk

× (−1)(1−l−s−Jk−J ′k)

s!(1− l − s− Jk − J ′k)!
Γ(∆k + J + J ′k − 1)

Γ(∆k + J + Jk + 2J ′k + l + s− 2)
× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l+J+Jk+J ′

k
−2,−J ′

k
(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 , (6.5)

and its corresponding shadow cousin is

〈R̃l,J(w, w̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

= π(−1)J+l+1

(1 + J − l)!

m∑
k=1

κJJkJ ′k(−1)ν(ν1+···+νk−1)
1−l−Jk−J ′k∑

s=0
(w − zk)l+J−2(w̄ − z̄k)Jk+J ′k+l+s−2

× (J + Jk + J ′k + s− 1)!
s!

Γ(∆k + J + J ′k − 1)
Γ(∆k + J + Jk + 2J ′k + l + s− 2)

× ∂̄sk 〈O∆1,J1(z1, z̄1) · · · O∆k+l+J+Jk+J ′
k
−2,−J ′

k
(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (6.6)

22In case J ≤ 0, a similar OPE can be obtained by flipping the spin Ji → −Ji and exchanging zi ↔ z̄i.
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where to take into account the statistics we introduce νi = (2Ji) mod 2 = 0, 1 for bosonic
and fermionic operators, respectively. The chiral Ward identities can also be easily obtained
by performing mode expansion using (2.26) and (2.27).

This establishes the general celestial OPEs and Ward identities. Our discussions in
the previous sections just correspond to the special case of the above formulae. For soft
graviton, we have J = 2, Jk = −J ′k; for soft gluon/photon, we have J = 1, Jk = −J ′k. These
formulae are also applicable to fermionic soft current. In the case of minimal coupling, we
have J = 3/2, Jk − 1/2 = −J ′k for soft gravitino, and J = 1/2, Jk − 1/2 = −J ′k for soft
gluino/photino. Inserting these values to the above formulae, we get infinitely many Ward
identities corresponding to the fermionic symmetries.

In the next two subsections, we will use the general results here to discuss the corrections
to Ward identities for sub-leading soft photon and sub-sub-leading soft graviton based on [18].

6.2 EFT correction to photon Ward identity

Let us first discuss the case of photon J1 = 1. Following [18], the EFT corrections appear
at J2 + J3 = 1. The corresponding celestial OPE reads (6.1):

O∆1,+1(z1, z̄1)O∆2,J2(z2, z̄2) ∼ z̄12
z12

B(∆1,∆2 − J2 + 1)O∆1+∆2,J2−1 , (6.7)

where we suppress the coupling constant for simplicity. Specializing (6.4) to the present
case, we get the OPE between soft photon current and hard operator

Kk(z1, z̄1)O∆2,J2(z2, z̄2)∼ z̄12

z12

−k∑
s=0

(z̄12)s

s! ∂̄sO∆2+k,J2−1(z2, z̄2) (−1)−k−s

(−k−s)!
Γ(∆2−J2 +1)

Γ(∆2−J2 +k+s+1) .

(6.8)
The resulting Ward identity is

〈K l(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

−l∑
s=0

(z̄ − z̄k)s+1

z − zk
(−1)−l−s
s!(−l − s)!

Γ(∆k − Jk + 1)
Γ(∆k − Jk + l + s+ 1)

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l,Jk−1(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (6.9)

Note that in practice we need to combine the Ward identities for all the interactions together.
Let us look at (6.9) in more detail. At leading order l = 1, we see it has no effect. At

sub-leading order l = 0, it become non-trivial

〈K0(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

z̄ − z̄k
z − zk

〈O∆1,J1(z1, z̄1) · · · O∆k,Jk−1(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 , (6.10)

which indeed agree with corrections to soft theorem found in [18] after a Mellin trans-
formation.
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In terms of chiral soft photon currents, the corresponding chiral Ward identities are:

〈Kin(z)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

1
z − zk

n+i−1∑
r=max(0,n+2−i)

(
i+ n− 1

r

)
(−1)i+n−1(r + i− n− 1)Γ(∆k − Jk + 1)

Γ(∆k − Jk + r − i− n+ 2)

× z̄rk∂̄r+i−n−2
k 〈O∆1,J1(z1, z̄1) · · · O∆k−2i+3,Jk−1(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (6.11)

6.3 EFT correction to graviton Ward identity

Now we switch to the case of graviton J1 = 2. Following [18], the EFT corrections appear
at J2 + J3 = 2. The corresponding celestial OPE reads (6.1):

O∆1,+2(z1, z̄1)O∆2,J2(z2, z̄2) ∼ z̄3
12
z12

B(∆1 + 1,∆2 − J2 + 3)O∆1+∆2+2,J2−2(z2, z̄2) , (6.12)

where the EFT coupling is again suppressed.
Now the soft graviton current has OPE (6.4)

Hk(z1, z̄1)O∆2,J2(z2, z̄2)

∼ z̄3
12
z12

−k−1∑
s=0

(z̄12)s
s! ∂̄sO∆2+k+2,J2−2(z2, z̄2) (−1)−k−s−1

(−k − s− 1)!
Γ(∆2 − J2 + 3)

Γ(∆2 − J2 + k + s+ 4) . (6.13)

The resulting Ward identity is

〈H l(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

−l−1∑
s=0

(z̄ − z̄k)s+3

z − zk
(−1)−l−s−1

s!(−l − s− 1)!
Γ(∆k − Jk + 3)

Γ(∆k − Jk + l + s+ 4)

× ∂̄sk〈O∆1,J1(z1, z̄1) · · · O∆k+l+2,Jk−2(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (6.14)

At leading and sub-leading order l = 1, 0, it has no effect. At sub-sub-leading order
l = −1, we find

〈H−1(z, z̄)O∆1,J1(z1, z̄1) · · · O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

(z̄ − z̄k)3

z − zk
〈O∆1,J1(z1, z̄1) · · · O∆k+1,Jk−2(zk, z̄k) · · · O∆m,Jm(zm, z̄m)〉 . (6.15)

One can show that this is consistent with the corrections to soft graviton theorem found
in [18] after doing a Mellin transformation.

As before we can also establish chiral Ward identities:

〈Hin(z)O∆1,J1(z1, z̄1) · · ·O∆m,Jm(zm, z̄m)〉

=
m∑
k=1

1
z−zk

n+i−1∑
r=max(0,n+4−i)

(−1)i+n+1
(
i+n−1

r

)
(r+i−n−1)(r+i−n−2)(r+i−n−3)Γ(∆2−J2+3)

Γ(∆2−J2+r−i−n+4)

×z̄rk∂̄r+i−n−4
k 〈O∆1,J1(z1, z̄1) · · ·O∆k−2i+6,Jk−2(zk, z̄k) · · ·O∆m,Jm(zm, z̄m)〉 . (6.16)
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6.4 Absence of EFT correction to holographic chiral algebra

Finally, we want to understand whether there are corrections to holographic chiral algebra
based on the EFT framework and especially the result in [18].

In [18], the authors considered cubic vertices involving three massless particles, and take
one of them soft, which we will label as particle 1. Then they define β = J1 − J2 − J3 + 1.
Note the mass dimension of the coupling constant for this vertex is given by β−2J1 = 1−J .
Obviously, we have β,J ∈ Z in order to have a bosonic effective operator.

In [18] it was argued that in local unitary EFT, any cubic vertex should satisfy β < 4.
What’s more, if the vertex involves photons, a stronger condition is β ≤ 2. This immediately
implies that no local cubic interactions involving photons, gravitinos, or gravitons are
allowed if the sum of their helicities vanishes. This means that in our OPE (6.1), the pole
of the form 1/(z12z̄12) is forbidden in gravitational or Maxwell-matter theory.23

When the soft particle 1 is graviton, namely J1 = 2, the condition β < 4 gives
β = 3, 2, 1, · · · . For β = 3, we have J2 + J3 = 0. This just corresponds to the universal
gravitational coupling between graviton and matter fields, whose celestial OPE is given
in (2.13). For β = 2 and thus J2 + J3 = 1, it was argued in [18] that no effective operator
satisfying this condition is allowed. For β = 1 and thus J2 + J3 = 2, the full list of EFT
operators is given by [18]

φRµνρσR
µνρσ , RµνρσF

µνF ρσ , Rµνρσψ̄ργµν∂σχ . (6.17)

They can modify the sub-sub-leading soft graviton theorem and the Ward identities as we
discussed before.

When the soft particle 1 is photon, namely J1 = 1, the allowed values for β are
β = 2, 1, · · · . For β = 2 and thus J2 + J3 = 0, this is just the minimal coupling between
photon and charged matter, whose celestial OPE is described in (4.37). For β = 1 and thus
J2 + J3 = 1, the full list of allowed effective field theory operators is [18]

χ̄γµνFµνχ , φFµνF
µν , φFµνF̃

µν , ψ̄µFνργ
µνρχ , hµν

(
FµρF νρ −

1
4η

µνFρσF
ρσ
)
.

(6.18)
This type of vertex can modify the sub-leading soft photon theorem and Ward identity as
we discussed already.

Now we want to see whether there are corrections to the holographic chiral algebra
from the effective field theory operators we listed above. Since our formalism can only deal
with positive helicity soft particles, we need to restrict to J1, J2,−J3 > 0 in (6.1). It is easy
to see that this is possible only for the last two effective operators in (6.18), which have
J2 = 3/2, J3 = −1/2 and J2 = 2, J3 = −1, respectively. But these are just the gravitational
coupling between gravity and photon, which we have considered already. Therefore, all the
EFT operators up to this order have no effects on holographic chiral algebra.

One might still worry about even higher derivative operators at smaller β which we
did not consider above; they may modify the Ward identities at even less leading orders.

23It would be very interesting to translate the principles of locality, unitarity and causality into some
principles in celestial CFT. Then we may use the principles in 2D to establish these claims.
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However, the holographic chiral algebra is generated by the soft graviton currents up to
sub-sub-leading order and soft photon currents up to sub-leading order.24 Now that there
are no EFT corrections at these several leading orders, the higher orders should also not be
affected. To conclude, in case we can apply our formalism, any effective operators can not
modify the holographic chiral algebra.

7 Conclusion

To summarize, in this paper, we studied many aspects of symmetry in celestial holography
by deriving the holographic chiral algebra and the associated Ward identities. These
symmetries are hidden in the traditional framework of S-matrix, but play important roles
in governing the consistency of quantum fields. Inspired by [11], we established a general
and systematic framework to reveal these hidden symmetries by making full use of the
techniques in conformal field theory. The input of this formalism is the celestial OPEs, while
the output is an infinite-dimensional chiral symmetry algebra as well as their corresponding
Ward identities. Moreover, we also derived a general formula for tree-level leading order
celestial OPE arising from cubic interactions of three spinning massless particles. As a
result, we found a general formula of Ward identities (6.5) and (6.6).

In spite of various results in this paper, many interesting questions remain to be further
explored. Maybe the most important question is to understand the role of soft particles
with negative helicity. Solving this question may finally enable us to discover the full
symmetry algebra.

It would be also useful to understand the infinite Ward identities from the traditional
momentum space perspective. In [38, 39], an infinite set of soft theorems was found for
photon and graviton. And in the MHV sector of gravity, [29] also found infinitely many
conformally soft theorems. These soft theorems are likely to be equivalent to our Ward
identities, but it remains to check the equivalence explicitly.

Furthermore, the Ward identities we established in this paper have a single current
insertion and correspond to the single soft theorems. However, there are also many types
of double and multiple soft theorems in gauge theory and gravity. It is natural to ask
whether we can also establish the Ward identities with multiple current insertions which
are equivalent to the multiple soft theorems.

Another interesting direction is to generalize our framework here to higher dimensions.
Although the soft theorems and collinear factorizations of amplitudes are also well studied
in higher dimensions, the celestial holography in higher dimensions is largely unexplored.
Many results in 4D should be generalizable to higher dimensions. In particular, the
equivalence between sub-leading soft graviton theorem and stress tensor Ward identity has
been established in [40]. This may be a good starting point for a systematic exploration of
symmetry and Ward identity in higher dimensions.

Finally, it is vital to fully understand the corrections to the holographic chiral algebra
and Ward identities from quantum loops and higher derivative interactions. We attempted

24This comes from the fact that celestial OPEs are fully determined by soft theorems up to these orders [17].
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to address this question in EFT, but our analysis is restricted to the tree level case with
positive soft particles only. We still need to understand the negative soft particles. On
the other hand, although the sub-leading soft graviton theorem is not corrected in EFT, it
nevertheless suffers quantum correction which has been shown to be one-loop exact [41].25

In [42], this one-loop exact soft theorem was further translated into the loop-corrected
stress tensor Ward identity. Since in this paper we have established a systematic framework
for Ward identities, it is thus very interesting to incorporate quantum corrections into our
formalism and then re-derive the loop-corrected stress tensor Ward identity. This would
also allow us to derive the deformation of the holographic chiral algebra. In particular, in
the graviton case, the classical w1+∞ algebra is supposed to be deformed to some type of
W1+∞ algebra at quantum level.
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A Celestial super-OPEs in terms of celestial superfields

In (2.1)–(2.10), we wrote down explicitly the celestial OPEs for all the component fields in su-
persymmetric EYM theory. In this appendix we would like to rewrite all the OPEs in a man-
ifest supersymmetric way by introducing the following celestial on-shell superfields [21, 22]:

Ua∆(z, z̄, η) = Oa∆,+1(z, z̄) + ηOa∆,+ 1
2
(z, z̄) , (A.1)

W∆(z, z̄, η) = O∆,+2(z, z̄) + ηO∆,+ 3
2
(z, z̄) , (A.2)

where η is the anti-commuting Grassmann variable.
As in the case of N = 4 SYM theory [22], it is natural to write down the following

super-OPEs:

Ua∆1(z1, z̄1,η1)U b∆2(z2, z̄2,η2)∼ f
abc

z12
U c∆1+∆2−1

(
z2, z̄2,η1e

1
2∂∆1 +η2e

1
2∂∆2

)
B(∆1−1,∆2−1) ,

(A.3)

W∆1(z1, z̄1,η1)W∆2(z2, z̄2,η2)∼− z̄12
z12

W∆1+∆2

(
z2, z̄2,η1e

1
2∂∆1 +η2e

1
2∂∆2

)
B(∆1−1,∆2−1) ,

(A.4)

Ua∆1(z1, z̄1,η1)W∆2(z2, z̄2,η2)∼− z̄12
z12

Ua∆1+∆2

(
z2, z̄2,η1e

1
2∂∆1 +η2e

1
2∂∆2

)
B(∆1,∆2−1) .

(A.5)
25More precisely, the IR divergent part is proved to be one-loop exact, while the IR finite part has only

been shown to be one-loop exact in some explicit examples. We thank Congkao Wen for discussion on
this point.
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By expanding the Grassmann parameter, it is easy to verify that the three super-OPEs
above agree exactly with the component OPE in (2.1)–(2.10).

The supersymmetry generators acting on these celestial on-shell superfields are given
by [21, 22]:

Qα =
(

1
z

)α
e

1
2∂∆η , Q̃α̇ =

(
1
z̄

)α̇
e

1
2∂∆∂η , (A.6)

which satisfy the standard commutation relation of supersymmetry algebra

{Qα, Q̃α̇} = Pαα̇ , Pαα̇ ≡ Pµσαα̇µ =
(

1
z

)α(1
z̄

)α̇
e∂∆ , (A.7)

where α, α̇ = 1, 2. Applying (A.6) to superfields (A.1) and (A.2), we obtain the susy
transformation rules of all the component operators, as shown in (2.11) and (2.12).

B Useful integrals

In this appendix we derive some useful integrals which are crucial for shadow transformation.

B.1 Seed formula

We first want to compute26

I(z1, z2) =
∫
d2z

1
(z − z1)(z̄ − z̄2) =

∫
d2z

(z̄ − z̄1)(z − z2)
|z − z1|2|z̄ − z̄2|2

. (B.1)

Using Feynman parametrization,27 we can rewrite the integral as

I(z1, z2) =
∫ 1

0
du

∫
d2z

(z̄ − z̄1)(z − z2)
(u|z − z1|2 + (1− u)|z̄ − z̄2|2)2 (B.2)

=
∫ 1

0
du

∫
d2w

(w̄ − (1− u)z̄12)(w + uz12)
(|w|2 + u(1− u)|z12|2)2 (B.3)

=
∫ 1

0
du

∫
d2w
|w|2 − u(1− u)|z̄12|2 + uw̄z12 − (1− u)wz̄12

(|w|2 + u(1− u)|z12|2)2 , (B.4)

where we change variable to w = z + uz1 + (1− u)z2. In the last expression, the last two
terms in the numerator is supposed to have no contribution because they are odd function
of w, w̄. The resulting integral is divergent, so we need to regularize it. We analytically

26Note that z, z̄ are complex conjugate of each other in this appendix.
27Namely:

1
AB

=
∫ 1

0
du

1
(uA+ (1− u)B)2 .
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continue the dimension from 2 to d = 2 + ε, then the integral becomes

I(z1, z2) =
∫ 1

0
du

∫
dρρd−1Vd−1

ρ2 − u(1− u)|z̄12|2

(ρ2 + u(1− u)|z12|2)2 (B.5)

= 2πd/2
Γ(d/2)

∫ 1

0
du

(d− 1)π
(
u(1− u)|z̄12|2

) d
2−1

2 sin dπ
2

(for d < 2) (B.6)

= 22−dπ
d+3

2 |z12|d−1

Γ(d−1
2 ) sin dπ

2
(B.7)

ε→0−−→ − π
(2
ε

+ ln π + γE + ln |z12|2 +O(ε)
)
, (B.8)

where Vd−1 is the area of d− 1-dimensional sphere Sd−1. We can regard it as a seed formula
and generate many other integrals by taking derivative with respect to z1, z2.

B.2 General formula

The integrals relevant for shadow transformation generally take the following form

I(A,B)
s (w, z′) =

∫
d2z (z − w)A(z̄ − w̄)B (z̄ − z̄′)s

z − z′
. (B.9)

Taking derivative with respect to z̄′, we get28

∂z̄′I
(A,B)
s (w, z′) = −sI(A,B)

s−1 (w, z′), s > 0 . (B.10)

Using this formula iteratively, we get

∂sz̄′I
(A,B)
s (w, z′) = (−1)ss!I(A,B)

0 (w, z′), s ∈ N . (B.11)

Furthermore, we have

∂z̄′I
(A,B)
0 (w, z′) =

∫
d2z (z − w)A(z̄ − w̄)B∂z̄′

1
z − z′

(B.12)

=
∫
d2z (z − w)A(z̄ − w̄)B(−π)δ(2)(z − z′) (B.13)

= (−π)(z′ − w)A(z̄′ − w̄)B , (B.14)

where we used the formulae

∂z̄
1
z

=πδ(2)(z), δ(2)(z) = δ(x)δ(y), d2z= dxdy, z=x+iy,
∫
d2z f(z)δ(2)(z) = f(0) .

(B.15)
Making use of translational invariance and SL(2,C) invariance, the integral (B.9) is

supposed to have the following structure29

I(A,B)
s (w, z′) = c(A,B)

s × (z′ − w)A(z̄′ − w̄)B+s+1 , (B.16)
28Note that ∂z̄′ can hit 1/(z − z′) and generates delta-function δ(2)(z − z′), but this has vanishing

contribution because of (z̄ − z̄′)s as long as s > 0.
29This might fail if the exponent is zero. More specifically, if A = 0, we may have log(z′ − w) instead of

(z′ − w)0. And similarily for anti-holomorphic part z̄′ − w̄. Besides, there may be also some contact-terms
in the form ∂#δ(z′ − w), but this can only contribute in the coincident limit. They have no contribution in
our discussion of Ward-identities as long as all the points are distinct, so we ignore this type of contribution.
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where c(A,B)
s is a constant. We can use relations (B.11) and (B.14) to determine the constant.

As a consequence, we find

I(A,B)
s (w, z′) =

∫
d2z (z − w)A(z̄ − w̄)B (z̄ − z̄′)s

z − z′

= (−1)s(−π)s!
(B + 1)(B + 2) · · · (B + s+ 1)(z′ − w)A(z̄′ − w̄)B+s+1 . (B.17)

B.3 Some examples

In this subsection we would like to evaluate some integrals explicitly which are relevant for
the discussion in the main body. We will use the techniques established in the previous
two subsections which are independent. The agreement of different approaches justify our
prescription in computing the integral.

We first would like to compute the following integral:

I
(0,−4)
1 (w,z′) =

∫
d2z

1
(z̄−w̄)4

z̄−z̄′

z−z′
=
∫
d2z

1
(z̄−w̄)3(z−z′) +(w̄−z̄′)

∫
d2z

1
(z̄−w̄)4(z−z′)

=
(1

2∂
2
w̄+ 1

6(w̄−z̄′)∂3
w̄

)∫
d2z

1
(z̄−w̄)(z−z′)

= π

6
1

(w̄−z̄′)2 , (B.18)

where in the last equality we used (B.8). This agrees with the general formula (B.17).
The second integral of our interest is

I
(0,−4)
2 (w, z′) =

∫
d2z

1
(z̄ − w̄)4

(z̄ − z̄′)2

z − z′
= 1

6∂
3
w̄

∫
d2z

1
(z̄ − w̄)

(z̄ − z̄′)2

z − z′
(B.19)

= 1
6∂

3
w̄

∫
d2z

(z̄ − η̄)2

(z − η)z̄ , η = z′ − w (B.20)

= 1
6∂

3
w̄

∫
d2z

[
z̄

z − η
− 2η
z − η

+ η̄2 1
z̄(z − η)

]
(B.21)

= −1
6∂

3
η̄

∫
d2z

[
z̄ + η̄

z
− 2η

z
+ η̄2 1

z̄(z − η)

]
(B.22)

= π

3
1

z̄′ − w̄
, (B.23)

where we used the translational invariance several times and (B.8) in the last equality.
This is again consistent with the general formula (B.17). One can also verify the relation
∂z̄′I

(0,−4)
2 (w, z′) = −2I(0,−4)

1 (w, z′) as expected. These two examples I(0,−4)
1 , I

(0,−4)
2 are

directly related to the derivation of stress tensor Ward identity in (5.7).
Therefore we have checked our general formula (B.17) in various examples.

C General celestial OPEs in EFT

We will consider the collinear limit in effective field theory. In particular, we consider
the collinear limit arising from the cubic vertex involving massless particles with helicity
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s1, s2, s3. In this limit, the amplitude satisfies

An(1s1 , 2s2 , · · · ) p1//p2−−−−→
∑
s3

Split(1s1 + 2s2 → P−s3)An−1(P−s3 , · · · ) , (C.1)

where P = p1 + p2 and the dots represent the rest of n− 2 particles which are not relevant
here. In the collinear limit, the scattering amplitude is also supposed to factorize as follows:

An(1s1 , 2s2 , · · · ) p1//p2−−−−→
∑
s3

A3(1s1 + 2s2 ,−P s3) 1
P 2An−1(P−s3 , · · · ) . (C.2)

Therefore we have

Split(1s1 + 2s2 → P−s3) = A3(1s1 , 2s2 ,−P s3) 1
P 2 ∝

1
〈12〉[12] [12]s−2s3 [1P ]s−2s2 [P2]s−2s1 ,

(C.3)
where we use the property that the three-point amplitude A3 is uniquely fixed by the
symmetry and locality [43]. Also we assume that s ≡ s1 + s2 + s3 ≥ 0, so locality guarantees
that only square brackets appear in the three-point amplitude. And P 2 = (p1 + p2)2 =
2p1 · p2 ∝ 〈12〉[12]. Note that we will not keep track of any overall constant as they can be
absorbed into the effective coupling which we also don’t write down explicitly.

Because of momentum conversation P = p1 + p2, we actually have (for s ≥ 0)30

〈ij〉 = 0 → λP = α1λ1 = α2λ2 , (C.4)
P = p1 + p2 → λP λ̃P = λ1λ̃1 + λ2λ̃2 . (C.5)

This gives
λ̃P = 1

α1
λ̃1 + 1

α2
λ̃2 , (C.6)

and thus
[1P ] = 1

α2
[12] , [P2] = 1

α1
[12] . (C.7)

Furthermore for physical momentum λ̃ = λ∗, we thus have 1/α2
1 + 1/α2

2 = 1 which
enables us to set 1/α1 =

√
x, 1/α2 =

√
1− x. As a consequence, p1 = xP, p2 = (1− x)P

and ω1 = xωP , ω2 = (1− x)ωP .31

With these relation, the split factor can be evaluated explicitly

Split(1s1 + 2s2 → P−s3) ∝ [12]s−1

〈12〉

(
[1P ]
[12]

)s−2s2( [P2]
[12]

)s−2s1

(C.8)

= [12]s−1

〈12〉 (
√
x)s−2s2(

√
1− x)s−2s1 (C.9)

∝ z̄s−1
12
z12

ωs2+s3−1
1 ωs1+s3−1

2 ω−s3P , (C.10)

30To be more rigorous, one needs to deviate from the strict collinear limit a little bit. Since we are only
interested in the leading singular term, this infinitesimal deviation is not important.

31Here ω is the energy along the null direction such that pµi = ηiωiq
µ
i and q =

(
1+zz̄, z+z̄,−i(z−z̄), 1−zz̄

)
.

In the collinear limit, qi’s are approximately the same.

– 34 –



J
H
E
P
0
1
(
2
0
2
2
)
1
1
3

where we used 〈ij〉 = −2√ωiωj zij , [ij] = 2ηiηj
√
ωiωj z̄ij , zij = zi − zj , z̄ij = z̄i − z̄j and

ηi = ±1 distinguishes outgoing/incoming particles.
We are however interested in the celestial amplitude which is defined as

Mn(∆i, Ji, zi, z̄i) =

 n∏
j=1

∫ ∞
0

dωj ω
∆j−1
j

An(Ji, pµi ) , (C.11)

where Ji is the spin of the operator in 2d, while in 4d it is the helicity of the particle, namely
Ji = si. The celestial amplitude can be regarded as a conformal correlator on the celestial
sphere

Mn(∆i, Ji, zi, z̄i) = 〈Oη1
∆1,J1

(z1, z̄1) · · · Oηn∆n,Jn
(zn, z̄n)〉 . (C.12)

To finally obtain the OPE, we just need to perform the Mellin transformation for (C.10).
In particular, we have the Mellin transformation of ωα1 ω

β
2 (ω1 + ω2)γ in the split factor:∫ ∞

0
dω2 ω

∆2−1
2

∫ ∞
0
dω1 ω

∆1−1
1 ωα1 ω

β
2 (ω1+ω2)γ f(ω1+ω2) =B

(
∆1+α,∆2+β

)∫ ∞
0

dω ω∆P−1 f(ω) ,
(C.13)

where we used (2.15) and ∆P = ∆1 + ∆2 + α+ β + γ.
With this formula, we finally obtain tree level leading order celestial OPE arsing from

cubic vertex in EFT:

O∆1,J1(z1, z̄1)O∆2,J2(z2, z̄2)∼ z̄
J1+J2+J3−1
12

z12
B
(
∆1+J2+J3−1,∆2+J1+J3−1

)
O∆3,−J3(z2, z̄2) ,

(C.14)
where ∆3 = ∆1 + ∆2 + J1 + J2 + J3 − 2.

D Soft photon theorems with magnetic corrections

The leading and sub-leading soft photon theorems state that

lim
p→0

Mn+1(ps, p1, p2, · · · , pn) =
(
S(0)
s + S(1)

s + · · ·
)
Mn(p1, p2, · · · pn) , (D.1)

with soft factors

S(0)
s =

n∑
k=1

ηk
(ekεs + gk ε̃s) · pk

p · pk
, S(1)

s =
n∑
k=1

iηk
(ekεµs + gk ε̃

µ
s )pνJkµν

p · pk
, (D.2)

where ηk = ±1 for out-going/in-coming particle, s is the helicity of the soft photon, ek, gk
are the electric and magnetic charges of k-th matter particle, while qµk , Jkµν represent
momentum and angular momentum. In the absence of magnetic charge, these are the
Weinberg’s soft photon theorem and Low’s sub-leading soft photon theorem. The role of
magnetic charges can be incorporated through the electro-magnetic duality transformation,
which can be regarded as a phase rotation of couplings. The invariance of soft factors under
the gauge transformation εµs → εµs + pµ, ε̃µs → ε̃µs + pµ is equivalent to the conservation of
electric and magnetic charges.
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It is convenient to parametrize the momentum in terms of celestial coordinates as
follows:

pµ = ωqµ, qµ =
(
1 + zz̄, z + z̄, −i(z − z̄), 1− zz̄

)
. (D.3)

Then the (electric) polarization vectors can be chosen as:

εµ+(p) = 1√
2
∂zq

µ = (z̄, 1, −i, −z̄) , εµ−(p) = 1√
2
∂z̄q

µ = (z, 1, i, −z) , (D.4)

satisfying
ε+ · p = ε− · p = 0 , ε+ · ε+ = ε− · ε− = 0 , ε+ · ε− = 1 . (D.5)

We also need the magnetic polarization vectors which are defined as follows [44]

ε̃±µ(p) = εµνρσn
νpρεσ±(p)
p · n

, (D.6)

where nρ is an arbitrary reference vector. Explicit computations show that

ε̃µ+(p) = iεµ+(p) + r pµ , ε̃µ−(p) = −iεµ−(p) + r̄ pµ , (D.7)

where r is function of nµ and pµ. Since rpµ, r̄pµ just correspond to gauge transformations,
they can be dropped out in the polarizations. As a result, the on-shell amplitudes do not
depend on the reference vector nµ. The magnetic polarizations satisfy the same relation as
the electric ones in (D.5).

Using celestial coordinates, the soft factors for positive soft photon are given by

S
(0)
+ =

n∑
k=1

ηk
Qk

ω(z − zk)
, S

(1)
+ =

n∑
k=1

ηk
Qk

z − zk

(
Jk
ωk

+ ∂ωk + z̄ − z̄k
ωk

∂̄k

)
, Qk = ek + igk .

(D.8)
For negative soft photon, the soft factors are given by its complex conjugate.
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any medium, provided the original author(s) and source are credited.
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