
Eur. Phys. J. C (2023) 83:636
https://doi.org/10.1140/epjc/s10052-023-11787-2

Regular Article - Theoretical Physics

Functional directed acyclical graphs for scattering amplitudes in
perturbation theory

Thorsten Ohla

Institute of Theoretical Physics and Astrophysics, University of Würzburg, Emil-Hilb-Weg 22, 97074 Würzburg, Germany

Received: 6 June 2023 / Accepted: 30 June 2023 / Published online: 18 July 2023
© The Author(s) 2023

Abstract I describe a mathematical framework for the effi-
cient processing of the very large sets of Feynman diagrams
contributing to the scattering of many particles. I reexpress
the established numerical methods for the recursive construc-
tion of scattering elements as operations on compact abstract
data types. This allows efficient perturbative computations
in arbitrary models, as long as they can be described by an
effective, not necessarily local, Lagrangian.

1 Introduction

The efficient and reliable computation of scattering ampli-
tudes for many particles in a large class of models, both on
tree level and including higher order corrections, is a central
element of all efforts for analyzing the physics at LHC and
possible future colliders.

Since the first release of Madgraph [1] about 30 years
ago, there has been tremendous progress in the capabilities
of the tools that can compute such scattering amplitudes
numerically. Replacing sums of Feynman diagrams by recur-
sive numerical evaluation opened the realm of many-legged
amplitudes, including loop corrections. In fact, the treatment
of QCD corrections has matured so much that tools like
Madgraph5 [2] are now employed regularly by endusers for
LHC physics. Electroweak radiative corrections are starting
to become available in user friendly tools and recursive tech-
niques are being applied to loop calculations. At the same
time, de facto standard formats like UFO [3,4] allow the
specification of almost any physics model that might be of
interest in the near and not so near future.

In this paper, I will elaborate a common mathematical
structure behind the recursive calculations. The focus is not
on the immediate numerical evaluation, but on the elucida-
tion of an algebraic structure that will later be translated

a e-mail: ohl@physik.uni-wuerzburg.de (corresponding author)

into numerical code. This simplifies supporting more gen-
eral interactions, because purely numerical codes have to
make assumptions that can turn out to be hard to relax later.
In addition, algebraic expressions can be used to generate
more comprehensive tests of models and implementations.
They also simplify the automatic generation of the additional
expressions needed for subtractions schemes [5].

Finally, at a time when functional programming and strong
type systems are moving more and more from academia into
the mainstream, it is a useful exercise to reconstruct the math-
ematical structures in a way that can easily be translated into
efficient programs making use of these paradigms. The math-
ematical structures presented here have not been developed
in a vacuum, but are a distillation of commonalities observed
in the concrete data structures implemented for the matrix
element generator O’Mega [6] that is part of the Whizard
event generator [7].

Nothing in the following discussion will be specific to
leading order, tree level matrix elements. Exactly the same
structures appear when implementing loops using additional
legs [8–11] or when adding higher order contributions as
terms in an effective action using a skeleton expansion. The
translation of the algebraic expressions into robust numeric
code calling sophisticated external libraries for loop integrals
[12] is much more challenging, of course. However, also here
the algebraic step offers more options than a purely numerical
approach.

The outline of the paper is as follows: in Sect. 2, I briefly
review the recursive techniques used for computing scatter-
ing amplitudes for processes with many external particles.
This section also serves the purpose of establishing the ter-
minology and notation used in the remaining sections. In
Sect. 3, I introduce Directed Acyclical Graphs (DAGs), bun-
dles and their relationships. In Sect. 4, I present an algorithm
for efficiently constructing the DAGs representing scatter-
ing amplitudes. In Sect. 5, I briefly describe how to gener-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11787-2&domain=pdf
https://orcid.org/0000-0002-7526-2975
mailto:ohl@physik.uni-wuerzburg.de

636 Page 2 of 12 Eur. Phys. J. C (2023) 83 :636

ate efficient numerical code from DAGs constructed accord-
ing to the algorithm presented in the previous sections. In
Appendix A, I sketch the implementation of DAGs and bun-
dles in O’Mega [6,7].

2 Scattering amplitudes

It has long been recognized that the textbook representa-
tion of scattering amplitudes as a sum of Feynman diagrams
becomes very inefficient as the number of external particles
rises. Indeed, even though general estimates are hard to derive
for realistic models with conserved quantum numbers, ana-
lytic formulae for toy models and explicit calculations for
specific processes confirm the expectation that the number
of tree level Feynman diagrams grows factorially with the
number of external particles. If Feynman diagrams with loops
are represented by tree diagrams [8–11], each loop adds two
more external particles. In addition to requiring prohibitive
computational resources, the destructive interferences inher-
ent in gauge theories lead to a loss of precision if too many
terms are added. Starting with 2 → 6 processes at tree level,
the need for a more efficient representation became evident.

In order to simplify the notation in this section, I will
cross all scattering amplitudes from nin → nout to n = nin +
nout → 0. Except for the momentum, I will also suppress all
quantum numbers in this introductory section. The treatment
of general quantum numbers (spin, flavor, color, etc.) will be
the focus of the following sections.

2.1 Recursion

The appropriate building blocks to replace Feynman dia-
grams turned out to be k-particle matrix elements of fields

φ({i1, i2, . . . , ik}) = 〈0|�|pi1, pi2 , . . . , pik 〉 (1a)

which will be referred to as wavefunctions or of their asso-
ciated currents

j ({i1, i2, . . . , ik}) = 〈0|J |pi1 , pi2 , . . . , pik 〉, (1b)

as pioneered by Berends and Giele [13]. The set of indices I =
{i1, i2, . . . , ik} is a subset of the indices enumerating the
external particles or open loop momenta.

Since I ∈ 2{1,2,...,n}, the number of possible different
wavefunctions or currents grows only as an exponential 2n

instead of a factorial n! ∼ nn . Furthermore, both can be
computed recursively

φ(I) =
∑

I1∪I2=I

PI VI,I1,I2φ(I1)φ(I2) (2a)

j (I) =
∑

I1∪I2=I

VI,I1,I2 PI1 j (I1)PI2 j (I2) , (2b)

without expanding them into Feynman diagrams, which
would reintroduce factorial growth. In (2), PI denotes a prop-
agator and VI,I1,I2 a vertex factor for three legs. The gener-
alization to models containing vertices with more than three
legs is obvious.

Note that φ is just j multiplied by a momentum space
propagator. Thus the choice between the two is only a mat-
ter of convenience. The rest of the paper will mostly refer
to wavefunctions (1a), but all constructions can be repeated
trivially for the currents (1b).

2.2 Topologies

There are many ways in which a scattering amplitude M
can be constructed from (1). The first approach observes that
the j in (1b) is already amputated. It therefore suffices to set
the momentum

p1 = −
n∑

i=2

pi (3)

on the mass shell of particle 1 to obtain the scattering ampli-
tude using the LSZ prescription

M({1, 2, . . . , n}) = j ({2, 3, . . . , n}). (4a)

This is implemented numerically in Helac [14,15] and
Recola [10,11].

The second approach glues the φ from (1a) at vertices to
obtain the scattering amplitude in the form

M({1, 2, . . . , n})
=

∑

I1∪I2∪I3={1,...,n}
KI1,I2,I3φ(I1)φ(I2)φ(I3) (4b)

with obvious generalizations to models containing vertices
with more than three legs. The partitions (I1, I2, I3) of the
external particles must be chosen carefully to avoid double
counting [6,16] and the keystones K correspond to vertex fac-
tors. This approach was pioneered for numerical calculations
in the standard model by Alpha [16–18] and is implemented
as an algebraic algorithm for arbitrary models in O’Mega
[6,7].

The third approach combines the DAGs at propagators

M({1, 2, . . . , n}) =
∑

I∪I ′={1,...,n}
j (I)PI,I ′ j (I ′)

(4c)

instead of vertices as in (4c). It was pioneered by Comix [19]
and OpenLoops [8,9]

Algebraically, all expressions (4) will give the same final
result, but the number of nodes that need to be evaluated can

123

Eur. Phys. J. C (2023) 83 :636 Page 3 of 12 636

vary slightly and numerical results will differ due to the dif-
ferent order of evaluation. O’Mega [6,7] allows to compute
the amplitude both as (4a) and as (4b) and confirms these
expectations.

While it is impossible to give general estimates for the
number of wavefunctions that need to be evaluated in real-
istic models, one can count them for some examples using
O’Mega. In the standard model, it appears that (4a) requires
some 10% fewer evaluations than (4b) in an optimal imple-
mentation. One advantage of (4b) and (4c) is that at most n/2
of the external momenta appear in the φ compared to n − 1
for (4a). Therefore fewer steps with accumulating floating
point errors are required in the recursive evaluation of φ(I).
While this could in principle be a significant advantage in
amplitudes with strong gauge cancellations, the difference
appears to be small in practice.

The algorithm adding quantum numbers to (1), (2) and (4)
described in the following sections is equally applicable for
all three variants in (4).

2.3 Evaluation

In the case of a fixed physics model with a moderate number
of fields and couplings, such as the standard model, the recur-
sive evaluation (2) can be expressed as an iteration of matrix
multiplications [10,11,14–19]. This approach has the advan-
tage that all scattering amplitudes in the supported model can
be computed using the same executable, without the need for
recompilation.

However, extending this approach to more complicated
models, in particular to models that can be specified by
endusers in formats like UFO [3,4], is far from trivial [20].
Instead, it is beneficial to represent the recursion relations (2)
abstractly by a data structure from which dedicated code can
be generated and compiled subsequently, following the pio-
neering treatment of Feynman diagrams inMadgraph [1,2].
This approach has been implemented for the recursive eval-
uation in [6–9].

This motivates the search for a data structure that
represents the recursion relations (2) concisely and can
be constructed efficiently from the Feynman rules of a
model. The obvious candidate is a finite Directed Acycli-
cal Graph (DAG), that corresponds to the evaluation of an
arithmetical expression in which common subexpressions are
evaluated only once and later recalled from memory when
needed again.

Additional benefits of algebraic manipulations are that it
is easier to prune the computation of wavefunctions that are
not needed in the final result, that one can target special hard-
ware or dedicated virtual machines [21] that avoid the need
for compilation. Formfactors can be restricted to lightlike
momenta at compile time [22–24]. Finally, one can option-
ally instrument the code with numerical checks of Ward and

Slavnov–Taylor identities for gauge boson wavefunctions,
in order to test matrix element generator, numerical libraries
and model descriptions.

3 DAGs and bundles

In this section, I will focus on universal mathematical con-
structions, not practical algorithms. The discussion of the
latter will follow in Sect. 4.

Given a set N of nodes, a set E of edges and a set C(N) ⊆
2N of children which is typically the set of subsets of nodes
with a limited number of elements, any map from N to the
powerset of E × C(N)

� : N → 2E×C(N) (5)

defines a Directed Graph G = (N , E,�) in the sense
described below. The function � can be specified com-
pletely by the set {(n,�(n))|n ∈ N } of ordered pairs. This
equivalence will be used below to define transformations on
DAGs as set theoretical operations that can be implemented
efficiently in computer programs. I will often employ the
more intuitive notation {n
→ �(n)|n ∈ N } or the abbrevi-
ated form {δn|n ∈ N }. In order to avoid excessive nested
superscripts, I will sometimes use the notation A → B for
set BA of all functions from the set A to the set B.

With wavefunctions as nodes and vertex factors as edges,
this definition captures the recursion relations (2) exactly.
Note that the map � (5) is well defined iff the combination
of momenta and other quantum numbers identifies the wave-
functions or currents uniquely.

There are cases where physical quantum numbers are not
sufficient to distinguish wavefunctions. For example, if the
scattering amplitude is to be expanded in the powers of some
coupling constants, these powers can contribute at different
levels of the recursive expansion. Therefore a wavefunction
can appear more than once with the same momentum and
physical quantum numbers. This forces us to add the pow-
ers of these coupling constants as unphysical labels that will
be combined in the final step (4). Since such labels are later
required anyway to disambiguate variable names in the gen-
erated numerical code, this adds no additional burden. Such a
counting of coupling constants is of course crucial for adding
a consistent number of counterterms in calculations involving
loops and when adding precomputed loops using a skeleton
expansion or effective actions.

The nodes in the preimage of ∅ under �

L = �−1(∅) = {n ∈ N |�(n) = ∅} (6)

are called leaf nodes and correspond to the external states
in scattering amplitudes. Since the elements of C are sets of
elements of N , we can derive from � two mutually recursive

123

636 Page 4 of 12 Eur. Phys. J. C (2023) 83 :636

expansion functions

�̂ : E × C(N) → E × C(2E×C(N))

(e, {ni |i ∈ I })
→ (e,
{
�∗(ni)|i ∈ I

}
)

(7a)

element-by-element and

�∗(n) =
{

{n} for �(n) = ∅
�̂(�(n)) for �(n) = ∅.

(7b)

If D = (N , E,�) represents an acyclical graph, i.e. a DAG,
with a finite number of nodes |N |, the functions�∗ and �̂will
reach a fixed point after a finite number of steps. This fixed
point consists exclusively of mutually nested sets of leaves.
If the image of � consists only of singleton sets and ∅, the
fixed point reached from any starting node n corresponds to a
tree diagram. Otherwise it corresponds to a forest of tree dia-
grams, if the elements of the sets are distributed recursively.

As an illustration, consider the DAG D with the sets

N = {1, 2, . . . , 8} (8a)

E = ∅ (8b)

C = {{n, n′}|n = n′ ∈ N
}

(8c)

and the map

� = {
1
→ ∅, 2
→ ∅, 3
→ ∅, 4
→ ∅,

5
→ {{1, 2}}, 6
→ {{5, 3}}, 7
→ {{5, 4}},
8
→ {{6, 4}, {7, 3}}}, (8d)

where I have not spelled out the unlabeled edges. A quick
calculation gives

�∗(8) = {{{{{{1, 2}}, 3}}, 4},
{{{{{1, 2}}, 4}}, 3}}. (9)

This corresponds to the forest consisting of the trees

{{{1, 2}, 3}, 4} (10a)

{{{1, 2}, 4}, 3} . (10b)

This DAG encodes a stripped down version of the Feyn-
man diagrams for the process e+e−qq̄ → g, that ignores
both the details of the couplings and the contributions
of Z and Higgs bosons. Note that the common subdia-
gram e+e− → γ appears only once in the DAG as 5
→
{{1, 2}}, but twice in the forest.

A general directed graph can contain cycles and the func-
tions �∗ and �̂ will not reach a fixed point even if |N | < ∞.
As described in Sect. 4.1, it will however always be possible
to equip N with a natural order so that the application of �

acts strictly decreasing with respect to this order. There can
obviously be no cycles and the graph is guaranteed to be a
DAG in this case.

If the same node n appears many times in the children,
a DAG provides a very efficient encoding of large sets of
graphs. The storage and computing time required by typ-
ical sets of tree diagrams grows factorially with the num-
ber of leaves |L|. In contrast, the space and time required
for implementing the DAG scales linearly with |N |, which
only grows exponentially with |L|. Using persistent func-
tional data structures [25] instead of mutable arrays to imple-
ment the function � simplifies the algorithm described below
significantly. The additional space and time requirements
replace |N | by |N | ln |N | and turn out not to be important
for large |N |.

3.1 Constructing DAGs

Using DAGs as a compact representation has only a marginal
benefit if their construction requires the generation of all tree
diagrams in intermediate steps or if the applications require
a full expansion. Fortunately, the sum of Feynman diagrams
encoded in the DAG can be evaluated either using the DAG
directly or by generating a dedicated numerical code that
evaluates each noden ∈ N only once. As explained in Sect. 4,
it turns out that the DAGs representing perturbative scatter-
ing amplitudes can be constructed without requiring the con-
struction of the corresponding forest.

For this purpose, I introduce the empty DAG

ε = (∅,∅,∅,∅) (11)

where � = ∅ is the function with empty domain and
codomain. I also define a function

ω : (N → E × 2C(N)) × D → D
(n
→ (e, c), x)
→ ωn
→(e,c)(D) (12a)

with the function ωn
→(e,c) that adds a node n together with
the mapping n
→ (e, c)

ωn
→(e,c)(N , E,�)

= (N ∪ {n}, E ∪ e,� ∪ {n
→ (e, c)}) , (12b)

where e and (e, c) are shorthands for the sets {ei |i ∈ I }
and {(ei , ci)|i ∈ I } with |I | elements. In particular, they may
be empty to allow inserting a leaf node. In order to avoid
ambiguities in the definition of ω, I will require that n /∈
N ∧ n′

i ∈ N in ωn
→{(e,{n′
i |i∈I})}.

With these definitions, the DAG in (8) is

ω8
→{{6,4},{7,3}}ω7
→{{5,8}}ω6
→{{5,3}}
ω5
→{{1,2}}ω4
→∅ω3
→∅ω2
→∅ω1
→∅ε, (13)

where the function applications associate to the right, of
course. It is obvious that any finite DAG can be constructed
by repeated applications of ω.

123

Eur. Phys. J. C (2023) 83 :636 Page 5 of 12 636

For the finite DAGs that are the subject of this paper,
the function ω can be implemented easily in programming
languages that have efficient support for persistent sets and
maps (also known as dictionaries) that can grow without
a lot of reallocation. Functional programming languages
with garbage collection make such implementations partic-
ularly straightforward. The domain and codomain of func-
tions like ω (12) are highly structured sets and static type
systems allow to verify already at compile time that only
matching functions are being composed. Beyond preventing
errors, a strict type discipline helps to uncover mathematical
structures, such as the ones described in this section. This
paper is based on the implementation in the matrix element
generator O’Mega [6] using ocaml [26], as described in
Appendix A.1.

3.2 Lattices of DAGs

For our purposes, DAGs representing scattering amplitudes
for the same external states, categories of DAGs that share
the same leaf nodes

DL =
{
D = (N , E,�)|�−1(∅) = L

}
(14)

are the most interesting. Since we describe a DAG as a tuple
of sets, there is a natural notion of inclusion for pairs of DAGs
in DL

D′ = (N ′, E ′,�′) ⊆ D = (N , E,�) ⇔
N ′ ⊆ N ∧ E ′ ⊆ E ∧ (∀n ∈ N ′ : �′(n) ⊆ �(n)

)
. (15a)

It is obvious that this notion of inclusion corresponds to the
inclusion of the sets of tree diagrams encoded by the DAGs.

In the same fashion, we can define union and intersection
for the DAGs Di = (Ni , Ei ,�i)

D1 ∪ D2 = (N1 ∪ N2, E1 ∪ E2,�1 ∪ �2) (16a)

D1 ∩ D2 = (N1 ∩ N2, E1 ∩ E2,�1 ∩ �2) (16b)

where

�1 ∪ �2 = {n
→ �1(n) ∪ �2(n)|n ∈ N1 ∩ N2}
∪ {n
→ �1(n)|n ∈ N1 \ N2}
∪ {n
→ �2(n)|n ∈ N2 \ N1} (16c)

and in

�1 ∩ �2 = {
n
→ �1(n) ∩ �2(n)

∣∣n ∈ N1 ∩ N2

∧ (�1(n) ∩ �2(n) = ∅ ∨ n ∈ L)
}

(16d)

I am careful to avoid adding new leaf nodes to the intersec-
tion.

From these definitions, it is obvious that ⊆ turns DL into
a partially ordered set and ∪ and ∩ turn it into a lattice. From
this point of view, D1 ∪D2 is the least common upper bound

of D1 and D2, while D1 ∩D2 is their greatest common lower
bound. Finally DL is bounded from below, with

⊥L = (L , E, {n → ∅|n ∈ L}) (17)

as the bottom element.

3.3 Mapping and folding DAGs

The most important functions for manipulating DAGs and
extracting the information encoded by them are folds that
perform a nested application of a suitable function for all
nodes to a starting value x

� f ((N , E,�), x) = fδ|N | · · · fδ2 fδ1x, (18)

where the elements of � = {δn1, δn2 , . . . , δn|N | } are arranged
in the partial order of the nodes that guarantees acyclicity of
the DAG. The only constraint on the function

f : (N → E × 2C(N)) × X → X

(δ, x)
→ fδ(x)
(19)

is that the domain and codomain of fδ : X → X must be
identical. The computational cost scales with the size of the
DAG and not with the size of the forest of tree diagrams
described by it.

Used with the constructor ω (12) on the empty DAG, the
fold performs a complete copy of any DAG D

�ω(D, ε) = D. (20)

Precomposing the first argument of ω in (20) with a func-
tion

f : (N → 2E×C) → (N → 2E×C) (21)

in the first argument using the notation

(ω ◦ f)δ = λ f (δ) (22)

maps a DAG D to a new DAG D′

�ω◦ f (D, ε) = D′ (23)

which can encode a different set of tree graphs.
The precomposition (22) can naturally be extended to

functions mapping nodes to sets of nodes

f : (N → 2E×C) → 2(N→2E×C)

δ
→ { f1(δ), . . . , fk(δ)}
(24)

as

ω f (δ) = ω fk (δ) . . . ω f1(δ) (25)

with the identity

ω∅D = D (26)

iff the result of f is the empty set ∅.

123

636 Page 6 of 12 Eur. Phys. J. C (2023) 83 :636

Finally, I define a function

H : (S,D)
→ D′ ⊆ D (27)

that takes a set S ⊆ N of nodes and a DAG and returns
the minimal DAG that contains all the nodes in the set such
that the mutually recursive evaluation of the functions �∗
and �̂ from (7) is well defined for the nodes in this set.
Intuitively, this corresponds to following all chains of arrows
in {n → �(n)|n ∈ N } from D that start in S.

3.4 Bundles

I am interested in maps between DAGs that respect certain
structures. In order to describe these concisely, I borrow the
notion of bundles from topology and differential geometry.

A bundle B = (X, B, π) is a triple consisting of a set X ,
called the total set, a set B, called the base, and a projec-
tion π : X → B. The preimages π−1(b) ⊆ X are called
fibers. The notation π−1 : B → 2X must of course not be
misunderstood as the inverse of π . The fibers are pairwise
disjoint and their union

X =
⊔

b∈B
π−1(b) (28)

reproduces the set X . A section is a map s : B → X for
which π ◦ s : B → B is the identity. It corresponds to
choosing one and only one element from each fiber. This
definition generalizes the trivial bundle

Btrivial = (B × F, B, π) (29a)

with

π(b, x) = b (29b)

π−1(b) = (b, F) (29c)

where all fibers are trivially isomorphic to F and a section is
the parameterized graph s : B → B × F of a function B →
F .

Bundles formalize equivalence relations on the set X , with
the base B as the set of all equivalence classes and π the
canonical projection of an element of X to its equivalence
class. The composition π−1 ◦ π : X → 2X maps each ele-
ment to the set of the members of its equivalence class. Sec-
tions correspond to choosing one element from each equiva-
lence class. An illustrative example is equivalence of nodes
up to color quantum numbers, where π corresponds to ignor-
ing color. Flavor, coupling constant and loop expansion order
can be treated in the same way.

Bundles can be arranged in a sequence

B0
π1←−−−− B1

π2←−−−− B2
π3←−−−− · · · . (30)

However, since the preimage π−1
i is not the inverse of the

projection πi , the preimage of a composition of projections
is not the composition of the individual preimages, but

(πi ◦ πi+1)
−1(b) = ∪x∈π−1

i (b)π
−1
i+1(x) (31)

instead.
As in the case of DAGs, such structures and the opera-

tions on them can be implemented for finite sets X straight-
forwardly in functional programming languages with static
type systems and garbage collection (cf. Appendix A.2). In
particular, it is efficient to add elements to the set X and
update the base B and maps π and π−1 immediately. This
allows to grow a bundle simultaneously while building a new
DAG in order to maintain the relationships to be introduced
in Sect. 3.5.

3.5 Projections and preimages of DAGs

Given a DAG D = (N , E,�), where the set of nodes N is
also the total set in a bundle B = (N , B, π), it is natural to
ask if there is a canonical DAG D′ = (B, E ′,�′) with the
base of B as its set of nodes.

First, we observe that every section s of B and map f :
E → E ′ defines a projected DAG Ds, f = (B, E ′,�s, f)

with

�s, f : B → 2E ′×C(B)

b
→ π̂ f (�(s(b)))
(32a)

where π̂ f is the distribution of π over the nodes together with
the application of f to the edges

π̂ f (e, {ni |i ∈ I }) = (f (e), {π(ni)|i ∈ I }). (32b)

The formula (32) has to be augmented by the prescrip-
tion that a b for which s(b) is a leaf node in D and there-
fore �s, f (b) = ∅ is not added as a leaf node to Ds, f , similar
to the definition (16d) of the intersection of two DAGs.

In most cases f : E → E ′ will be a simple projection
that in our applications will be determined straightforwardly
by the two sets of Feynman rules governing the construction
of the two DAGs. Therefore we can write Ds instead of the
more explicit Ds, f .

The dependence of this projection on the section s is not
satisfactory. However, the DAG

�(D) =
⋃

s∈S(B)

Ds, (33)

where S(B) denotes the set of all sections of the bundle B,
is well defined and will be shown to suit our needs. Observe
that the union is the correct universal construction for our
applications, because the additional quantum numbers in N
lead to more selection rules. These selection rules are the

123

Eur. Phys. J. C (2023) 83 :636 Page 7 of 12 636

reason for the dependency of Ds on s. The DAG correspond-
ing to the more basic set of nodes B should therefore be the
combination of all possibilities. As an example consider the
scattering of two scalars without and with flavor. Without
flavor, there will be s-, t− and u-channel diagrams. With a
conserved flavor, only one of them will remain.

Note however, that this construction does not guarantee
that the set of nodes of the DAG �(D) is actually the full
base B of the bundle B. We must therefore demand in addi-
tion compatibility of DAG and bundle, by requiring that the
diagram

B
π←−−−− N

ν

⏐⏐
⏐⏐ν

�(D)
�←−−−− D

(34)

commutes. The function ν in the commuting square (34) just
extracts the set of nodes from a DAG

ν(N , E,�) = N . (35)

The objects in the commuting square (34) can be understood
as a combination of a pair of DAGs and a bundle, which I
will call a fibered DAG. In programs, nodes can be added to
the DAG D and the bundle in concert such that the relation-
ship (34) is maintained.

An immediate benefit of such an universal construction
of the projection is that it provides a corresponding preim-
age �−1 which maps DAGs with the base B as nodes to all
DAGs with the set N as nodes. The maps in the preimage
can be written

�s, f : N → 2E×C(N)

n
→ ŝ f (�(π(n)))
(36)

where ŝ f is to be understood as the distribution of s over
the nodes together with the application of f to the edges.
Unfortunately, in contrast to (32), there will not be a single
function f : E → E ′. Instead, we must allow that ŝ f maps
into the powerset 2E ′×C(N) instead of E ′×C(N). In addition,
the image of f will depend, via the Feynman rules, on the
nodes appearing as children.

Since the resulting notation would be unnecessarily cum-
bersome, I will refrain from making the nature of f in (36)
explicit as a function by specifying its domain and writing
out all of its arguments. Nevertheless, the discussion of the
example in Sect. 4.2 will demonstrate how a set of Feynman
rules defines the maps �s, f unambiguously.

In this picture, the application of Feynman rules amounts
to choosing a particular element of the preimage �−1. It
would however be extremely wasteful to construct the preim-
age first and to throw away all but one of its elements later.
In Sect. 4.2, I will describe an algorithm that can be used to
construct the desired element directly.

So far, I have assumed that the DAGs are selected by Feyn-
man rules that are local to each vertex in the case of Feynman
diagrams or to each element δi of the map � in our DAGs
individually. There are however important exceptions. The
most important is provided by loop expansions. There it is
required for consistency that counterterms are inserted a fixed
number of times in Feynman diagrams. Such conditions on
complete Feynman diagrams do not translate immediately to
the DAGs, whose components can enter the scattering ampli-
tudes (4) more than once. Fortunately, this problem can be
solved by introducing additional unphysical labels represent-
ing loop orders to the physical labels of the nodes and to select
the required combinations of wavefunctions in (4) at the end,
as will be described in Sect. 4.4. The same applies to select-
ing fixed orders in the perturbative expansions, as required
for comparing to many results from the literature.

We call two DAGs D1 = (N1, E1,�1) and D2 =
(N2, E2,�2) equivalent with respect to a pair of bun-
dles B1 = (N1, B, π1) and B2 = (N2, B, π2) with the same
base B iff there is a common projected DAG D

�1(D1) = D = �2(D2). (37)

In this case D1 and D2 can be viewed as refinements of the
same basic DAG D. This notion of equivalence generalizes
the notion of topological equivalence for diagrams, where
two diagrams are considered equivalent if they agree after
stripping off all quantum numbers. With the new notion of
equivalence, we can say that the sets of Feynman diagrams
encoded in a DAG are equivalent up to flavor or upto color.

Using the basic commuting square (34), we can immedi-
ately extend the bundle complex (30) to include the corre-
sponding DAGs

B0
π1←−−−− B1

π2←−−−− B2
π3←−−−− · · ·

ν

⏐⏐ ν

⏐⏐ ν

⏐⏐

D0
�1←−−−− D1

�2←−−−− D2
�3←−−−− · · ·

. (38)

In our applications, this complex does not continue further
to the left, because for each number of leaf nodes there is a
natural leftmost nontrivial DAG DP, described in Sect. 4.1
below.

In the following Sect. 4 I will describe how to use Feynman
rules to walk the lower row of (38) to construct a DAG for a
scattering amplitude efficiently in stages.

4 DAGs from Feynman rules

In principle, it is possible to construct the DAG encoding all
Feynman diagrams in a single step.

First one adds leaf nodes for external states, labeled by
all quantum numbers (momentum, spin/polarization, flavor,

123

636 Page 8 of 12 Eur. Phys. J. C (2023) 83 :636

color, …). Which states are to be included here depends on
the choice of algorithm, as has been discussed in Sect. 2.2.

Then one uses the Feynman rules of the model to add
all nodes where the node and its children correspond to an
allowed vertex. This proceeds iteratively: in the first step
all subsets of the leaf nodes appear as children. In the fol-
lowing steps subsets of all nodes, including the leaf nodes
appear as children subject to the constraint that no leaf node
appears twice if the DAG is expanded recursively with the
functions �∗ and �̂ from (7). This iteration will terminate
after a finite number of steps when all leaf nodes have been
combined in all possible ways. While this algorithm inserts
nodes that will not appear in the scattering amplitude the
function H (27) can be used to harvest the minimal DAG.

This is a workable approach, but it is neither the most effi-
cient nor particularly maintainable in actual code. Since the
nodes are labeled by all quantum numbers, handling them
all at once requires the construction of many nodes that will
not appear in the final result. Adding quantum numbers in
several stages instead allows us to use the constraints from
earlier simpler stages to avoid in later stages the construction
of many more complicated nodes that will never be used.
While not relevant for the final numerical code, experience
with early versions of O’Mega [6,7] revealed that the lat-
ter approach requires noticeably less time and memory for
constructing the code.

Breaking up the construction of the DAG into several
stages also simplifies the implementation of each stage and
allows separate testing and swapping of different implemen-
tations. Finally, applications often need access to projected
DAGs as described in Sect. 3.5 anyway. A prominent exam-
ple is the construction of phase space parameterizations that
only refer to kinematical information, such as propagators
and masses.

Some of the stages described in the following subsections
will be performed in a particular order, while the order of
others can be interchanged easily.

4.1 Momenta

An element of the set NP of nodes in the first DAG DP =
(NP,∅,�P) to be constructed is uniquely labeled by a subset
of the powerset 2{1,2,...,n} of labels for the external momenta
and the edges are unlabeled. The leaf nodes are the ele-
ments n({i}) of NP and the action of the map �P is given
by

n(I)
→
{
(∅, {n(Ii)|1 ≤ i ≤ k})

∣∣∣2 ≤ k ≤ l − 1

∧ ∪k
i=1 Ii = I ∧ Ii = ∅

}
(39)

where l is the maximum number of legs of the vertices in the
model. Obviously, we can order the nodes n(I) according to

the number of elements of I to prove that there are no cycles
in DP.

In case of (4a), we only need the elements of 2{2,...,n} as
labels. In the cases (4b) and (4c), only labels with at most
n/2 elements are needed. Finally, the function H (27) is
applied to construct the minimal DAG required for evalu-
ating one of the expressions (4).

4.2 Flavors and Lorentz structures

In the next stage, the momenta of the leaf nodes of DP are
combined with the flavor quantum numbers of the corre-
sponding external state. The resulting leaf nodes form the
starting point of a new DAG DF = (NF, VF,�F) and bun-
dle BF = (NF, NP, πF). The edges VF are vertex factors
consisting of coupling constants, Lorentz tensors and Dirac
matrices.

Using a fold � of DP using the constructor ω of DF with
precomposition (23) that maintains the fibration (34) will
ensure that the nodes of DP are visited in the correct order of
growing label sets. The function f that is precomposed to ω

in (23) acts on each element

n(I)
→ (∅, {n(Ii)|1 ≤ i ≤ k}) (40)

of the map �P as follows: since the n(Ii) ∈ NP have been
processed, they are elements of the base of the growing bun-
dleBF. Therefore, the fibers π−1

F (n(Ii)) are already complete
and we can compute their cartesian product

 = π−1
F (n(I1)) × π−1

F (n(I2)) × · · · . (41)

We then use the Feynman rules to select all elements of

that can be combined with another flavor to obtain a valid
vertex. This defines a function
→ 2VF . For each of the
resulting flavors, a new node labeled by I and this flavor is
added to DF and BF together with the corresponding vertex
factors and elements of as edges and children, maintaining
the fibration (34).

This algorithm has been implemented in O’Mega [6,7]
and is completely independent of the kind of Feynman rules.
It can accommodate both hardcoded rules and rules derived
from a UFO file [3,4]. The only potential performance bot-
tleneck is the efficient matching of vertices to the elements
of a representing a large number of children. For vertices
with few legs, this is not a practical issue, but care has to be
taken for vertices with many legs where the factorial growth
of the number of permutations might be felt.

Once the flavors have been assigned, it is known which
fermion lines contribute in the computation of each node.
This information must also be added to the node in order to
be able to assign the correct sign to interfering contributions
in (4) later. Special care must be taken if the model contains
Majorana fermions [27–29].

123

Eur. Phys. J. C (2023) 83 :636 Page 9 of 12 636

By construction, after the fold is complete, the new
DAG DF encodes all the information needed to compute the
scattering amplitude for the leaf nodes in a theory without
color, using one of the formulae (4). Some nodes inDF might
not be needed due to conserved quantum numbers. Therefore
the function H (27) from DF is applied again to construct the
minimal DAG required to evaluate one of the expressions (4).

4.3 Colors

Since the color representation depends on the flavor, the
assignment of color quantum numbers in the construction
of the DAG DC = (NC, VC,�C) naturally comes after the
construction of DF.

We can now follow the steps of the previous stage, as
described in Sect. 4.2, word for word, only replacing the
subscripts (F, P) by (C, F). The implementation in O’Mega
uses the realization of the color flow basis described in [30],
but, except for the labeling of the nodes in NC, the form of
the vertices in VC and the Feynman rules to be used, the
algorithm is completely independent of the representation of
the color algebra.

Having the color information available algebraically
allows to compute color factors and color correlators [5] ana-
lytically.

4.4 Coupling orders

As already mentioned in Sect. 3.5, there are cases where it is
important that the Feynman diagrams encoded by the DAG
contain certain coupling constants with fixed powers. The
most important examples are the counterterms and the terms
of an effective action in a loop expansion. Also the inclusion
of self energy type terms will not terminate in a DAG, unless
a finite maximum expansion order is prescribed.

For practical purposes it is sometimes also important to
compute only a part of a scattering amplitude corresponding
to fixed powers of couplings. Such results are often available
in the literature from Feynman diagram based calculations
and a comparison for the purpose of validation is only possi-
ble if the DAG based calculation can select exactly the same
contributions.

A priori, this conflicts with the representations (4) of scat-
tering amplitudes as DAGs, since the wavefunctions or cur-
rents will have accumulated different powers of couplings
that will be mixed by (4).

Fortunately, there is a simple solution. For example, in the
case of (4b) we can write

Mo({1, 2, . . . , n})
=

∑

I1∪I2∪I3={1,...,n}
o1+o2+o3=o

KI1,I2,I3φo1(I1)φo1(I2)φo1(I3) (42)

to compute the scattering amplitude at the coupling order o.
The only change required is that the wavefunctions have to
keep track of the coupling orders accumulated in their recur-
sive computation. Since the powers of the couplings are addi-
tive, we never have to add the wavefunctions or currents that
exceed the requested order to the DAG.

This necessitates augmenting the set of labels of the nodes
by unphysical “quantum numbers” corresponding to the cou-
pling orders. It can be implemented easily, as long as the
number of coupling orders to be tracked remains moderate.

4.5 Skeleton expansion

If we are using DAGs to efficiently implement a skeleton
expansion, the remarks in Sect. 4.4 apply word for word by
replacing “coupling order” by “loop order”.

4.6 Multiple amplitudes

In practical applications [7], it is usually necessary to com-
pute scattering amplitudes for the same external momenta,
but more than one combination of flavors and colors at the
same time. These flavor and color combinations often over-
lap pairwise and the sets of leaf nodes will also overlap,
i.e. L1 ∩ L2 = ∅. In this case, it is efficient to combine the
corresponding DAGs DL1 and DL2 into a single DAG and to
compute the scattering amplitudes from this DAG in order to
reuse nodes from the part of the DAG build on L1 ∩ L2. For
this purpose, we can generalize the union defined in (16c) to
a map

∪ : DL1 × DL2 → DL1∪L2 (43)

in an obvious way.

5 Code generation

The example (8) can be translated directly into, e.g. Fortran,
as

w1 = phi(p1)
w2 = phi(p2)
w3 = phi(p3)
w4 = phi(p4)
p5 = p1 + p2
w5 = prop(p5)*g*w1*w2
p6 = p5 + p3
w6 = prop(p6)*g*w5*w3
p7 = p5 + p4
w7 = prop(p7)*g*w5*w4
p8 = p6 + p4

! p8 = p7 + p3
w8 = prop(p7)*(g*w6*w4 + g*w7*w3)

123

636 Page 10 of 12 Eur. Phys. J. C (2023) 83 :636

where pn and wn denote fourmomenta and wavefunc-
tions, respectively. phi() computes external wavefunc-
tions, prop() propagators and g is a coupling constant.
Using overloaded operators +,− and ∗ allows to write sim-
ilarly concise and readable code for realistic models with
standard model quantum numbers. In the case of more gen-
eral models, functions implementing the vertex factors can
be generated from UFO files [3,4].

Identically structured code can be emitted as bytecode for
a virtual machine that realizes the operators as basic instruc-
tions [21]. The improving memory bandwidth for graphical
processing units even allows to start targeting GPUs for inter-
esting examples.

As already mentioned in the introduction, the generation
of robust numerical code is much more challenging if the
DAG encodes diagrams that contain loops. The problem has
been solved for the standard model [8–11]. The structures
described in the paper will help with the task of extending
this approach to general models.

6 Conclusions

I have described the algebraic structures that organize recur-
sive calculations in perturbative quantum field theory without
the need to expand intermediate expressions into Feynman
diagrams. In functional programming languages, these alge-
braic structures translate directly into data structures. In a
second step, these data structures are translated to efficient
numerical code for any programming language or hardware
target required.

This algebraic approach adds flexibility over purely
numeric implementations tied to specific models and com-
puting targets. It allows for more extensive consistency
checks and paves the way for more challenging applications.

Acknowledgements I thank Wolfgang Kilian, Jürgen Reuter and the
other members of the Whizard team for the decades long pro-
ductive collaboration. This work is supported by the German Fed-
eral Ministry for Education and Research (BMBF) under contract
no. 05H21WWCAA.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: As a theoretical
work, this manuscript has no associated data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Implementation

A.1 DAGs

Here is the relevant subset of the ocaml signature [26] of
the DAG module in O’Mega [6], implementing the functions
from Sects. 3.1 and 3.3. For flexibility, this module is imple-
mented as a functor application on the typesnode,edge and
children, corresponding to N , E and C(N) respectively
module type DAG = sig

type node
type edge
type children
type t
val empty : t
val add_node : node -> t -> t
val add_offspring :

node -> edge * children -> t -> t
val fold_nodes :

(node -> ’a -> ’a) -> t -> ’a -> ’a
val fold :

(node -> edge * children -> ’a -> ’a)
-> t -> ’a -> ’a

val harvest : t -> node -> t -> t
end

Here type declares an abstract data type and val
declares values and functions, the latter just being values in a
functional programming language. The type ’a is polymor-
phic. The actual signature in O’Mega contains additional
convenience functions that can be build from the functions
presented here.

Note that this implementation breaks the function ω (12)
into products of functions ω0 and ω1, with

ωn
→∅ = ω0
n (A1a)

ωn
→{(e1,c1),...,(ek ,ck)} =
k∏

i=1

ω1
n
→(ei ,ci) . (A1b)

The function ω0 (called add_node here) can be used to con-
struct ⊥L ∈ DL from ε ∈ D∅, while the action of ω1 (called
add_offspring here), does not leave the category DL .
This provides a better interface for programming, but the ω

used in the main part of the paper allowed a more concise
writeup of the mathematical structures in Sect. 3.

Correspondingly, the fold � from (18) is broken into
fold_nodes processing all nodes and fold processing
all N → E ×C mappings element-by-element. The ocaml
equivalent of (20) is then

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2023) 83 :636 Page 11 of 12 636

let leaves’ =
fold_nodes add_node dag empty in

fold add_offspring dag leaves’

Note that this gives up some generality, because the �

from (18) could process the sets of E × C as a whole and
not only element-by-element. However, this interface is more
straightforward and is better tailored to our applications.

The function harvest implements H (27). In par-
ticular, harvest dag n dag’ finds the subset of the
DAG dag that is reachable from the node n and adds it to the
DAG dag’. This way, applications can compute a minimal
DAG for further processing.

Since the construction of the DAGDP (cf. Sect. 4.1) is very
simple, it had been combined with the construction of DF

(cf. Sect. 4.2) in O’Mega [6] before the structures described
in this paper were elaborated. However, the separation of the
remaining stages described in Sect. 4 forms the backbone of
the current version of O’Mega.

A.2 Bundles

Here is the signature of the Bundle module in O’Mega [6].
Again a functor is applied to the types elt, base and the
function pi, corresponding to X , B and π respectively

module type Bundle = sig
type elt
type base
val pi : elt -> base
type t
val empty : t
val add : t -> elt -> t
val inv_pi : t -> base -> fiber
val base : t -> base list

end

The semantics of the functions is evident from the discussion
of bundles in Sect. 3.4. Note that π is universal for all bundles
with this type, while π−1 depends on the elements added to
the bundle previously.

References

1. T. Stelzer, W.F. Long, Automatic generation of tree level helicity
amplitudes. Comput. Phys. Commun. 81, 357–371 (1994). https://
doi.org/10.1016/0010-4655(94)90084-1. arXiv:hep-ph/9401258

2. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, Mad-
Graph 5: going beyond. JHEP 06, 128 (2011). https://doi.org/10.
1007/JHEP06(2011)128. arXiv:1106.0522 [hep-ph]

3. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer,
T. Reiter, UFO—the universal FeynRules output. Comput. Phys.
Commun. 183, 1201–1214 (2012). https://doi.org/10.1016/j.cpc.
2012.01.022. arXiv:1108.2040 [hep-ph]

4. L. Darmé et al., UFO 2.0—the Universal Feynman Output
format (2023). https://doi.org/10.1140/epjc/s10052-023-11780-9.
arXiv:2304.09883 [hep-ph]

5. S. Catani, M.H. Seymour, A general algorithm for calculating jet
cross-sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997).
[Erratum: Nucl. Phys. B 510, 503–504 (1998)]. https://doi.org/10.
1016/S0550-3213(96)00589-5. arXiv:hep-ph/9605323

6. M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing Matrix
Element GenerAtor. In: Proceedings of the 2nd Workshop of
the 2nd Joint ECFA/DESY Study on Physics and Detectors
for a Linear Electron Positron Collider, pp. 1981–2009 (2001).
arXiv:hep-ph/0102195

7. W. Kilian, T. Ohl, J. Reuter, WHIZARD: simulating multi-particle
processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2011). https://
doi.org/10.1140/epjc/s10052-011-1742-y. arXiv:0708.4233 [hep-
ph]

8. F. Cascioli, P. Maierhofer, S. Pozzorini, Scattering amplitudes with
open loops. Phys. Rev. Lett. 108, 111601 (2012). https://doi.org/
10.1103/PhysRevLett.108.111601. arXiv:1111.5206 [hep-ph]

9. F. Buccioni, J.N. Lang, J.M. Lindert, P. Maierhöfer, S. Pozzorini,
H. Zhang, M.F. Zoller, OpenLoops 2. Eur. Phys. J. C 79(10),
866 (2019). https://doi.org/10.1140/epjc/s10052-019-7306-2.
arXiv:1907.13071 [hep-ph]

10. S. Actis, A. Denner, L. Hofer, A. Scharf, S. Uccirati, Recur-
sive generation of one-loop amplitudes in the standard model.
JHEP 04, 037 (2013). https://doi.org/10.1007/JHEP04(2013)037.
arXiv:1211.6316 [hep-ph]

11. S. Actis, A. Denner, L. Hofer, J.N. Lang, A. Scharf, S. Ucci-
rati, RECOLA: REcursive Computation of One-Loop Amplitudes.
Comput. Phys. Commun. 214, 140–173 (2017). https://doi.org/10.
1016/j.cpc.2017.01.004. arXiv:1605.01090 [hep-ph]

12. A. Denner, S. Dittmaier, L. Hofer, COLLIER: a fortran-based
Complex One-Loop LIbrary in Extended Regularizations. Com-
put. Phys. Commun.212, 220–238 (2017). https://doi.org/10.1016/
j.cpc.2016.10.013. arXiv:1604.06792 [hep-ph]

13. F.A. Berends, W.T. Giele, Recursive calculations for processes with
n gluons. Nucl. Phys. B 306, 759–808 (1988). https://doi.org/10.
1016/0550-3213(88)90442-7

14. A. Kanaki, C.G. Papadopoulos, HELAC: a package to
compute electroweak helicity amplitudes. Comput. Phys.
Commun. 132, 306–315 (2000). https://doi.org/10.1016/
S0010-4655(00)00151-X. arXiv:hep-ph/0002082

15. A. Cafarella, C.G. Papadopoulos, M. Worek, Helac-Phegas: a
generator for all parton level processes. Comput. Phys. Com-
mun. 180, 1941–1955 (2009). https://doi.org/10.1016/j.cpc.2009.
04.023. arXiv:0710.2427 [hep-ph]

16. F. Caravaglios, M. Moretti, An algorithm to compute born scatter-
ing amplitudes without Feynman graphs. Phys. Lett. B 358, 332–
338 (1995). https://doi.org/10.1016/0370-2693(95)00971-M.
arXiv:hep-ph/9507237

17. F. Caravaglios, M. Moretti, e+e− into four fermions +γ with
ALPHA. Z. Phys. C 74, 291–296 (1997). https://doi.org/10.1007/
s002880050390. arXiv:hep-ph/9604316

18. F. Caravaglios, M.L. Mangano, M. Moretti, R. Pittau, A
new approach to multijet calculations in hadron collisions.
Nucl. Phys. B 539, 215–232 (1999). https://doi.org/10.1016/
S0550-3213(98)00739-1. arXiv:hep-ph/9807570

19. T. Gleisberg, S. Hoeche, Comix, a new matrix element generator.
JHEP 12, 039 (2008). https://doi.org/10.1088/1126-6708/2008/
12/039. arXiv:0808.3674 [hep-ph]

20. A. Denner, J.N. Lang, S. Uccirati, Recola2: REcursive Com-
putation of One-Loop Amplitudes 2. Comput. Phys. Commun.
224, 346–361 (2018). https://doi.org/10.1016/j.cpc.2017.11.013.
arXiv:1711.07388 [hep-ph]

21. B. Chokoufe. Nejad, T. Ohl, J. Reuter, Simple, parallel vir-
tual machines for extreme computations. Comput. Phys. Com-

123

https://doi.org/10.1016/0010-4655(94)90084-1
https://doi.org/10.1016/0010-4655(94)90084-1
http://arxiv.org/abs/hep-ph/9401258
https://doi.org/10.1007/JHEP06(2011)128
https://doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/1106.0522
https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2040
https://doi.org/10.1140/epjc/s10052-023-11780-9
http://arxiv.org/abs/2304.09883
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(96)00589-5
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/hep-ph/0102195
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233
https://doi.org/10.1103/PhysRevLett.108.111601
https://doi.org/10.1103/PhysRevLett.108.111601
http://arxiv.org/abs/1111.5206
https://doi.org/10.1140/epjc/s10052-019-7306-2
http://arxiv.org/abs/1907.13071
https://doi.org/10.1007/JHEP04(2013)037
http://arxiv.org/abs/1211.6316
https://doi.org/10.1016/j.cpc.2017.01.004
https://doi.org/10.1016/j.cpc.2017.01.004
http://arxiv.org/abs/1605.01090
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/j.cpc.2016.10.013
http://arxiv.org/abs/1604.06792
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/S0010-4655(00)00151-X
https://doi.org/10.1016/S0010-4655(00)00151-X
http://arxiv.org/abs/hep-ph/0002082
https://doi.org/10.1016/j.cpc.2009.04.023
https://doi.org/10.1016/j.cpc.2009.04.023
http://arxiv.org/abs/0710.2427
https://doi.org/10.1016/0370-2693(95)00971-M
http://arxiv.org/abs/hep-ph/9507237
https://doi.org/10.1007/s002880050390
https://doi.org/10.1007/s002880050390
http://arxiv.org/abs/hep-ph/9604316
https://doi.org/10.1016/S0550-3213(98)00739-1
https://doi.org/10.1016/S0550-3213(98)00739-1
http://arxiv.org/abs/hep-ph/9807570
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/0808.3674
https://doi.org/10.1016/j.cpc.2017.11.013
http://arxiv.org/abs/1711.07388

636 Page 12 of 12 Eur. Phys. J. C (2023) 83 :636

mun. 196, 58–69 (2015). https://doi.org/10.1016/j.cpc.2015.05.
015. arXiv:1411.3834 [physics.comp-ph]

22. A. Alboteanu, W. Kilian, J. Reuter, Resonances and unitarity in
weak boson scattering at the LHC. JHEP 11, 010 (2008). https://
doi.org/10.1088/1126-6708/2008/11/010. arXiv:0806.4145 [hep-
ph]

23. W. Kilian, T. Ohl, J. Reuter, M. Sekulla, High-energy vec-
tor boson scattering after the Higgs discovery. Phys. Rev. D
91, 096007 (2015). https://doi.org/10.1103/PhysRevD.91.096007.
arXiv:1408.6207 [hep-ph]

24. W. Kilian, T. Ohl, J. Reuter, M. Sekulla, Resonances at the
LHC beyond the Higgs boson: the scalar/tensor case. Phys. Rev.
D 93(3), 036004 (2016). https://doi.org/10.1103/PhysRevD.93.
036004. arXiv:1511.00022 [hep-ph]

25. C. Okasaki, Purely Functional Data Structures (Cambridge Uni-
versity Press, New York, 1998)

26. X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, K. Sivara-
makrishnan, J. Vouillon, The OCaml System, Release 5.0. Docu-
mentation and User’s Manual (Institut National de Recherche en
Informatique et en Automatique, 2022). https://ocaml.org/manual/

27. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Compact Feynman rules
for Majorana fermions. Phys. Lett. B 291, 278–280 (1992). https://
doi.org/10.1016/0370-2693(92)91045-B

28. J. Reuter, Supersymmetry of scattering amplitudes and green func-
tions in perturbation theory. PhD Thesis, Technische Universität
Darmstadt, Germany (2002). arXiv:hep-th/0212154

29. T. Ohl, J. Reuter, Clockwork SUSY: supersymmetric ward and
Slavnov–Taylor identities at work in green’s functions and scat-
tering amplitudes. Eur. Phys. J. C 30, 525–536 (2003). https://doi.
org/10.1140/epjc/s2003-01301-7. arXiv:hep-th/0212224

30. W. Kilian, T. Ohl, J. Reuter, C. Speckner, QCD in the color-
flow representation. JHEP 10, 022 (2012). https://doi.org/10.1007/
JHEP10(2012)022. arXiv:1206.3700 [hep-ph]

123

https://doi.org/10.1016/j.cpc.2015.05.015
https://doi.org/10.1016/j.cpc.2015.05.015
http://arxiv.org/abs/1411.3834
https://doi.org/10.1088/1126-6708/2008/11/010
https://doi.org/10.1088/1126-6708/2008/11/010
http://arxiv.org/abs/0806.4145
https://doi.org/10.1103/PhysRevD.91.096007
http://arxiv.org/abs/1408.6207
https://doi.org/10.1103/PhysRevD.93.036004
https://doi.org/10.1103/PhysRevD.93.036004
http://arxiv.org/abs/1511.00022
https://ocaml.org/manual/
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1016/0370-2693(92)91045-B
http://arxiv.org/abs/hep-th/0212154
https://doi.org/10.1140/epjc/s2003-01301-7
https://doi.org/10.1140/epjc/s2003-01301-7
http://arxiv.org/abs/hep-th/0212224
https://doi.org/10.1007/JHEP10(2012)022
https://doi.org/10.1007/JHEP10(2012)022
http://arxiv.org/abs/1206.3700

	Functional directed acyclical graphs for scattering amplitudes in perturbation theory
	Abstract
	1 Introduction
	2 Scattering amplitudes
	2.1 Recursion
	2.2 Topologies
	2.3 Evaluation

	3 DAGs and bundles
	3.1 Constructing DAGs
	3.2 Lattices of DAGs
	3.3 Mapping and folding DAGs
	3.4 Bundles
	3.5 Projections and preimages of DAGs

	4 DAGs from Feynman rules
	4.1 Momenta
	4.2 Flavors and Lorentz structures
	4.3 Colors
	4.4 Coupling orders
	4.5 Skeleton expansion
	4.6 Multiple amplitudes

	5 Code generation
	6 Conclusions
	Acknowledgements
	Appendix A: Implementation
	A.1 DAGs
	A.2 Bundles

	References

