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Abstract: The CKM unitarity precision test of the Standard Model requires a systematic
treatment of electromagnetic and strong corrections for semi-leptonic decays. Electromag-
netic corrections require the renormalization of a semileptonic four-fermion operator. In this
work we calculate the O(ααs) perturbative scheme conversion between the MS scheme and
several momentum-space subtraction schemes, which can also be implemented on the lattice.
We consider schemes defined by MOM and SMOM kinematics and emphasize the importance
of the choice of projector for each case. The conventional projector, that has been used in
the literature for MOM kinematics, generates QCD corrections to the conversion factor that
do not vanish for α = 0 and which generate an artificial dependence on the lattice matching
scale that would only disappear after summing all orders of perturbation theory. This can
be traced to the violation of a Ward identity that holds in the α = 0 limit. We show how
to remedy this by judicious choices of projector, and define two new schemes RI-MOM and
RI-SMOM. We prove that the Wilson coefficients in the new schemes are free from pure
QCD contributions, and find that the Wilson coefficients (and operator matrix elements)
have greatly reduced scale dependence. Our choice of the MS scheme over the traditional
W -mass scheme is motivated by the fact that, besides being more tractable at higher orders,
unlike the latter it allows for a transparent separation of scales. We exploit this to obtain
renormalization-group-improved leading-log and next-to-leading-log strong corrections to
the electromagnetic contributions and study the (QED-induced) dependence on the lattice
matching scale.
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1 Introduction

Leptonic and semi-leptonic decays of mesons and nuclear beta decays probe the CKM
matrix and provide an electroweak precision test of the standard model (SM), see for
example [1] and [2]. The short-distance physics of meson and nuclear beta decays in the
SM is described, to an excellent approximation, by an effective Hamiltonian that involves
only a single charged-current operator

H(x) = 4 GF√
2
V ∗ud O(x), O(x) =

(
d̄(x)γµPLu(x)

)
(ν̄l(x)γµPLl(x)) , (1.1)

where PL = (1− γ5)/2 and GF is the Fermi constant. At tree-level, the respective Wilson
coefficient is directly proportional to the GF and a single CKM matrix element, here Vud.
In particular, the measurements of Kaon [3] and nuclear beta decays [4] test CKM unitarity,
|V 2
ud|+ |V 2

us| = 1− |V 2
ub|. The extraction of the CKM matrix elements relies on the precise

predictions of short distance QED and electroweak corrections, a determination of the
relevant decay constants and form factors from lattice QCD [5–20] and the treatment of
isospin breaking corrections and long distance QED effects using a combination of chiral
perturbation theory and lattice field theory.

Traditionally, the calculation of the short distance contribution relies on current algebra
and is performed in the W -mass renormalization scheme [21]. This scheme preserves the
QED Ward identity and ensures that all weak corrections to the Fermi decay can be
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absorbed into GF while the short distance corrections for the semi-leptonic decays comprise
a large electromagnetic logarithm and electroweak corrections that are mostly absorbed
into GF . QED corrections for leptonic and semi-leptonic decays were calculated both in
the current algebra approach [22], in chiral perturbation theory ([23–25]) or in a combined
approach with chiral perturbation theory [26] where the electroweak box diagrams are
calculated with lattice gauge theory [27, 28]. Another possible scheme is the MS scheme,
which is already used for the calculation of QED corrections [29, 30] to the Fermi theory
that determine GF as defined in ref. [31]. This scheme is also used for the calculation
of electroweak corrections to the weak effective Hamiltonian [32], where the electroweak
matching corrections and next-to-leading order anomalous dimensions for the operator O
are given in ref. [33]. In the MS scheme weak and hadronic scales are separated unlike in
the W -mass scheme, and this scale separation simplifies the new physics interpretation and
allows for a systematic inclusion of higher-order perturbative corrections.

The complete treatment of QED corrections on the lattice is a difficult task and has
so far been performed for purely leptonic decays [34–37]. A novel feature in the semi-
leptonic decay is that the relevant operator renormalizes in the presence of QED corrections.
Both the W -mass scheme and the MS scheme are defined perturbatively and cannot be
implemented on the lattice. This limitation does not apply to momentum-space subtraction
schemes, which can be implemented both on the lattice and in continuum perturbation
theory. The renormalization in the RI’-MOM scheme with a lattice regulator was given in
ref. [36], including the one-loop perturbative matching to the W -mass scheme.

In this paper we will perform the perturbative matching at two-loop level for different
momentum-space subtraction schemes. These schemes are regulator-independent (RI) and
are defined through a condition on a projected renormalized Green’s function for a particular
off-shell momentum configuration. The choice of projector is an important part of the
definition of a particular RI scheme. In particular, special choices of projectors are required
to ensure that the weak currents do not receive a finite renormaliation in RI schemes [38, 39].
Similarly, it is preferable to choose renormalization conditions that do not result in a finite
renormalization of the semileptonic operator O in the pure QCD limit, as a finite QCD
renormalization would imply an artificial (residual) scale dependence that only (formally)
disappears once all orders of perturbation theory are summed.

The remainder of this paper is organised as follows: in section 2 we discuss different
choices of renormalization scheme and show which choices of projectors lead to vanishing pure-
QCD corrections. Section 3 describes salient technical aspects of our two-loop calculation,
including the tensor reduction and the master integrals used in the loop calculations. In
section 4 we present the results, where we combine the two-loop lattice continuum matching
corrections with the known short-distance corrections and perform a renormalization-group
improvement showing explicitly the dependence on the scales µW , µb, and the lattice
matching scale µL. We also study in detail the cancellation of the dependence on the
scale µL between the RG-improved Wilson coefficient and the conversion factor (or matrix
element). Section 5 contains our conclusion.
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Figure 1. Kinematic conventions for the four- and two-point diagrams.

2 Renormalization conditions and change of scheme

In this section we define the MS, RI′-MOM, RI-SMOM, RI-MOM, and RI-SMOM renor-
malization schemes for the fields and the operator O and express the scheme conversion
factors in terms of two- and four point Green’s functions (figure 1).

Let us define the connected fermion two-point function S and the amputated four-point
function with O-insertion Λ through (respectively)

(2π)4iS(p)αβδ4(p− q)δij =
∫
d4xd4yei(p·x−q·y)〈0|T{ψiα(x)ψjβ(y)}|0〉 (2.1)

and∫
d4xd4x1,...,4e

−i(p·x+p1·x1−p2·x2+p3·x3−p4·x4)〈0|T{ψu,iα(x1)ψd,jβ (x2)ψlγ(x3)ψνδ (x4)O(x)}|0〉

= (2π)4δijS(p1)αα′S(p2)ββ′S(p3)γγ′S(p4)δδ′ ΛO(p1,p2,p3,p4)α′β′γ′δ′ δ4(p−p1+p2−p3+p4),
(2.2)

where i, j represent colour indices, which are absent in (2.1) in the case of leptons. We
recall that the 1PI two-point function is then given by S−1. Fully defining the fields ψf (f =
u, d, `) and the operator O requires renormalization conditions. We note that, because O
does not mix with other operators, any two schemes A, B differ only by a (finite) rescaling:

OA = CA→BO OB, (2.3)
ψAf = (CA→Bf )1/2ψBf , (2.4)

from which the relation CBO = CA→BO CAO for the Wilson coefficient follows.
The RI′-MOM, RI-SMOM, RI-MOM, and RI-SMOM schemes are defined by imposing

the renormalization conditions

σA ≡ 1
4 p2 Tr

(
(SA)−1(p)/p

) A=RI= 1 (2.5)
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and
λA ≡ ΛAαβγδPαβγδ

A=RI= 1 (2.6)

at suitable kinematics, where P is a constant Dirac tensor satisfying Λ(tree)
αβγδ Pαβγδ = 1. The

difference between RI′-MOM and RI-MOM (as well as RI-SMOM and RI-SMOM) is only
in the choice of projector, with the latter schemes adding conditions to specify the projector
which are not present in the former. We defer specifics to section 2.2 below.

It follows that the scheme conversion factors satisfy

CA→RI
f =

(
σA
)−1/2

, (2.7)

CA→RI
O = λA

(
σAu σ

A
d σ

A
`

)1/2
, (2.8)

with implicit dependence on the choice of kinematic point and projector.
Equations (2.7) and (2.8) are the master formulas allowing for the computation of the

scheme conversion factors. We emphasize that they hold independently of the choice of
regulator used in computing the two- and four-point functions, though defining the MS
scheme in practice entails the use of dimensional regularization.

2.1 Dimensional regularization and MS renormalization

In our computations we employ dimensional regularization (with an anticommuting γ5;
no ambiguous traces will occur in the following), which at the same time is the basis for
defining MS schemes. The relations between the MS-renormalized objects OMS and ψMS

and the bare objects Ob, ψb in dimensional regularization are analogous to (2.3), (2.4) but
complicated by a regularization artefact, the evanescent operators. These are chosen such
that their (renormalized) infrared-finite Green’s functions vanish as d→ 4; in particular they
will vanish at the RI subtraction point. In our case and to the loop order of our calculation,
a single evanescent operator suffices, the bare version of which can be chosen to be

E = (d̄γµγνγλPLu)(ν̄lγµγνγλPL`)− (16− 4ε− 4ε2)(d̄γµPLu)(ν̄`γµPL`), (2.9)

following the notation of [40] and where all fields are understood to be bare.
We define

ψbf =
(
ZMS

2,f
)1/2

ψMS
f (2.10)

OMS = ZMS
OO O

b + ZMS
OE E

b, (2.11)

from which it follows that

ΛMS
O =

(
ZMS

2,u
)1/2(

ZMS
2,d
)1/2(

ZMS
2,l
)1/2 (

ZMS
OO ΛbO + ZMS

OE ΛbE
)
, (2.12)

SMS =
(
Z MS

2,f
)−1

Sb. (2.13)
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Explicitly,

ZMS
2,f = 1− α

4 π
ξ q2

ε
− αs

4 π
CF ξs
ε

+ α

4 π
αs
4 π

(
CF ξ ξs q

2

ε2
+ 3 CF q2

2 ε

)
, (2.14)

ZMS
OO = 1− α

4 π
2
ε

+ α

4 π
αs
4 π

(7 CF
4 ε

)
, (2.15)

ZMS
OE = − α

4 π
1

12 ε +O (α αs) , (2.16)

where α and αs represent the electromagnetic and strong coupling constant respectively,
while ξ and ξs represent the photon and gluon gauge fixing parameter. The objects ΛMS

O

and SMS then determine CMS→RI as previously described.

2.2 Specifics of the RI schemes and Ward identity

The main aim of the present paper is to compute the conversion factor between the MS
scheme (as defined above) and improved versions of two momentum-space subtraction
schemes defined in the literature:

• RI′-MOM [41];

• RI-SMOM [42].

The two schemes are characterised by different kinematics and projectors. In the
RI′-MOM scheme, all four external momenta in figure 1 are equal, while RI-SMOM employs
a symmetric configuration with two independent momenta such that

RI′-MOM : p1 = p2 = p3 = p4 = p, p2 = −µ2, (2.17)

RI-SMOM : p1 = p3, p2 = p4, p2
1 = p2

2 = −µ2, p1 · p2 = −1
2µ

2. (2.18)

In both schemes, the condition (2.5) is imposed.
The conventional definition of the projector P entering the condition (2.6) on the

renormalized four-point function is [43]

Pαβγδ = − 1
16 (γµPR)αβ (γµPR)γδ ≡ − 1

16 (γµPR ⊗ γµPR)αβγδ , (2.19)

where PR = (1 + γ5)/2. This choice of the projector for (1.1) leads to a scale dependence of
the semileptonic operator already in pure QCD. Such a scale dependence does not occur
in the MS scheme and, as we explain in the following, its presence in the standard RI
schemes can be traced to the violation of a Ward identity which appears in the pure-QCD
limit. Such an artificial scale dependence is undesirable from a conceptual perspective and
complicates error control when perturbative and lattice results are eventually combined. We
derive projectors below which preserve the Ward identity and ensures that the running is of
order αem. Correspondingly, the conversion factors CMS→RI between the lattice schemes
and the MS scheme are modified at O(αs) and O(α2

s) relative to the conventional projectors.
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The Ward-identity-preserving RI projectors are:

PRI-MOM = 1
12 µ2

(
/pPR ⊗ /pPR −

µ2

2 γ
νPR ⊗ γνPR

)
, (2.20)

PRI-SMOM = 1
4

(
−1

2γ
νPR ⊗ γνPR −

1
µ2 /p1PR ⊗ /p1PR −

1
µ2 /p2PR ⊗ /p2PR+

+ 1
µ2 /p1PR ⊗ /p2PR + 1

µ2 /p2PR ⊗ /p1PR

)
.

(2.21)

To see how these projectors are obtained, first note that, if electromagnetism is neglected,
no diagrams with propagators connecting the quark and lepton lines occur. The lepton
line just gives the tree-level leptonic current Lµ = γµPL (again, we use open indices here).
Hence (suppressing Dirac indices)

Λb = Λb,µ(p1, p2)⊗ γµPL +O(α) ; (2.22)

note that, with our choice of Fierz ordering, this applies to the bare Green’s functions in
dimensional regularization.

Now, Λµ is the 1PI vertex function in pure QCD for the conserved current jµ = d̄γµPLu,
which satisfies the Ward identity

(p1 − p2)µΛb,µ(p1, p2) = Sb(/p1)−1 − Sb(/p2)−1, (2.23)

which in the exceptional configuration reads

Λb,µ(p1 = p2 = p) = ∂

∂pµ
Sb(/p)−1. (2.24)

More precisely, these identities hold in dimensional regularization with anticommuting γ5,
and continue to hold after minimal subtraction. (As is well known, there exist regularizations
in which the Ward identity does not hold.) As a consequence, the current does not
renormalize in MS, and for the semileptonic operator we have ZMS

OO = 1 +O(α). It follows
that the anomalous dimension is O(α) and the Wilson coefficient does not run in MS in
pure QCD.

As Gracey has pointed out in his work on momentum-space subtraction schemes for
quark bilinear operators [39], preserving the Ward identity requires a judicious choice of
projector. Unfortunately, (2.23), (2.24) do not hold (with QED neglected and Λµ defined
as above) for the RI′-MOM and RI-SMOM projectors when applied to the semileptonic
operators, and as a result ZRI

OO = 1 +O(αs, α). The resulting pure QCD renormalization
for these projectors is finite so that the Wilson coefficient still does not run at O(αs).
Yet, the resulting scheme conversion factor carries an implicit scale dependence, due to
the truncation of the perturbation series, which leads to unnecessarily large theoretical
uncertainties on the Wilson coefficient (or operator matrix element).

To find suitable replacements for the conventional projector (2.19), we extend the idea
in ref. [39] and expand the four-point function in a set of basis structures T(k)(p1, p2) and
Lorentz-invariant form factors Fk(p1, p2),

Λ(p1, p2)|p2
1=p2

2=−µ2 =
∑
k

Fk(p1, p2)T(k)(p1, p2). (2.25)

– 6 –
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In pure QCD, for general kinematics, the following 6 structures are sufficient:

T(1)(p1, p2) = γµPL ⊗ γµPL,

T(2)(p1, p2) = 1
µ2 /p1PL ⊗ /p1PL,

T(3)(p1, p2) = 1
µ2 /p1PL ⊗ /p2PL,

T(4)(p1, p2) = 1
µ2 /p2PL ⊗ /p1PL,

T(5)(p1, p2) = 1
µ2 /p2PL ⊗ /p2PL,

T(6)(p1, p2) = 1
µ2 γ

µ
/p2/p1PL ⊗ γµPL.

(2.26)

The ordering in T(6) is such that all structures but the first one vanish by the equations
of motion (but of course not at general or SMOM kinematics). Note that no evanescent
structures occur in the pure-QCD limit. For MOM kinematics (2.17) the shorter basis

T(1)(p1 = p2 = p) = γµPL ⊗ γµPL,

T(2)(p1 = p2 = p) = 1
µ2 /pPL ⊗ /pPL

(2.27)

suffices.
All structures are easily rewritten with γµPL as the second (“leptonic”) factor, e.g.

T(2) = 1
µ2 p

µ
1/p1PL⊗γµPL. Noting that S(/p)−1 = Σ(p2)/p and comparing coefficients of /p1 and

/p2 on both sides of the Ward identity, the form factors must satisfy, for general kinematics,F1(p1, p2)− 1
2F2(p1, p2) + 1

2F3(p1, p2) = Σ(p2
1)

F1(p1, p2) + 1
2F4(p1, p2)− 1

2F5(p1, p2)− F6(p1, p2) = Σ(p2
2),

(2.28)

which, for p2
1 = p2

2 = −µ2, can be combined into a family of equations

x

(
F1(p1, p2)− 1

2F2(p1, p2) + 1
2F3(p1, p2)

)
+ (1− x)

(
F1(p1, p2) + 1

2F4(p1, p2)− 1
2F5(p1, p2)− F6(p1, p2)

)
= Σ(−µ2).

(2.29)

whose left-hand side equates to Σ(−µ2). This allows us to define an infinite1 number of
potential projectors parameterised by x. For MOM kinematics, the simpler condition

F1(p1 = p2 = p) = Σ(−µ2) (2.30)

must hold.
As explained above, the conditions (2.29) and (2.30) are satisfied in the MS scheme.

They will hold in a momentum-space subtraction scheme if the projector P is defined
1The symmetry p1 ↔ p2 at the symmetric point results in additional constraints on the form factors. In

particular, it follows that F2(p1, p2) = F5(p1, p2), which has been explicitly checked at two-loop in QCD [39].
One could use this property to further increase the space of possible projectors.
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such that the projected amplitude results in the left-hand sides of (2.29) (for RI-SMOM)
and (2.30) (for RI-MOM), in which case CMS→RI = 1 (in pure QCD) by virtue of (2.8). This
is equivalent to the current conservation condition ZRI

OO = 1 +O(α), and at the same time
shows that the Wilson coefficient necessarily agrees with MS up to corrections suppressed
by the electromagnetic coupling constant. In other words, we require

P(T µ(i)) =
{

1,−x2 ,
x

2 ,
1− x

2 ,−1− x
2 , x− 1

}
(RI-SMOM), (2.31)

P(T µ(i)) = {1, 0} (RI-MOM). (2.32)

To find solutions to (2.31) and (2.32) we define a “basis” of linearly independent
projectors (six for SMOM and two for MOM) as

P(k) = T(k)|PL→PR
. (2.33)

Eqs. (2.31) and (2.32) then provide linear systems which uniquely determine the projectors
in terms of our basis; the results are given in (2.20) and (2.21). (There may exist other
suitable projectors built from different basis structures.) The RI-SMOM projector for
general x is

PRI-SMOM = x− 2
12 P(1) −

x+ 1
6 P(2) + 2− x

6 P(3)

+ 1 + x

6 P(4) + x− 2
6 P(5) + 2x− 1

12 P(6)

(2.34)

This projector reduces to the one defined in (2.21) for x = 1
2 , which we use as a reference

value to present our results. As the conventional projectors appear among our basis
projectors but do not agree with our solutions, it also follows that the standard schemes do
not preserve the Ward identity. This is also evident from the known results for the Wilson
coefficient, which has a scheme conversion factor different from unity, even in the absence
of electromagnetism (see section 4).

2.3 W -mass renormalization scheme and the definition of the Fermi constant

The W -mass renormalization scheme [21, 22] was traditionally used in the determination
of the Fermi constant GF and is still in use in the calculation of electroweak corrections
for the semi-leptonic decays [21, 26, 36]. In this scheme, the amplitude is regularized by
splitting the photon propagator

1
q2 −→

1
q2 −M2

W

+ M2
W

M2
W − q2

1
q2 , (2.35)

where q is the momentum carried by the photon and MW is the mass of the W-Boson. The
first term of (2.35) acts as a massive photon propagator that contains all UV poles, which are
absorbed by GF . The second term is UV finite, thanks to theW -boson mass acting as a hard
UV cut-off, but results in an IR contribution to the Fermi constant of O(αm2

µ/M
2
W ). When

GF is used to normalize the weak Hamiltonian, such a contribution, while small, breaks
the manifest separation of scales that is a main virtue of the effective-field-theory approach.

– 8 –
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Figure 2. Some examples of the two-loop diagrams calculated. They are from Basis 1, 2, and
4 respectively.

On the other hand the complete 2-loop QED corrections to the Fermi theory (leptonic
weak Hamiltonian) have been calculated in the MS scheme [29, 30] for the Fermi operator
in its Fierz-rearranged form, and this scheme was used for the determination of GF from
the muon lifetime in [31]. This definition of GF is also used in the calculation of electroweak
corrections to the weak effective Hamiltonian [32, 33], where the normalization of the
dimension-6 Hamiltonian to GF absorbs most electroweak corrections. In the present work,
we employ the MS scheme for GF . Our Wilson coefficient results below can therefore
directly be used with GF from [31], and allow for a transparent separation of contributions
from different scales.

In order to be able to compare to the result in ref. [36] we have however determined
the scheme conversion from the MS scheme to the W -mass scheme to one loop. Neglecting
O(αm2

µ/M
2
W ) and O(αm2

s/M
2
W ) corrections, we find that the conversion factor for the Fermi

(leptonic) operator equals one, while the conversion factor for the semi-leptonic operator reads

CW−mass→MS
O = 1− α

4π
11
3 . (2.36)

3 Details of the calculation

There are 21 relevant diagrams at O(ααs) for the renormalization of semi-leptonic operator
and example diagrams can be seen in figure 2.

We kept open Dirac indices in the evaluation of the respective Feynman amplitudes
and only took the traces with the projectors as defined in section 2 after renormalization.
This allows us to consider different projectors and has the additional benefit that possible
ambiguities arising from the treatment of gamma matrices, specifically γ5, in d-dimensions
are avoided. In our loop calculations tensor integrals appear.

At two-loops, the most complicated structure is given by

Iµνρσ =
∫
ddk ddl

kµkν lρlσ

D(p1, p2) , (3.1)

where k and l are the loop momenta and D(p1, p2) is a combination of the propagators
involved in the loop.

– 9 –
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We applied the Passarino-Veltman decomposition [44] to write the tensor integral as a
linear combination of scalar form factors and tensor structures

Iµν = I2
0g

µν + I2
11p

µ
1p

ν
1 + I2

22p
µ
2p

ν
2 + I2

3 (pµ1pν2 + pµ2p
ν
1) . (3.2)

During this calculation, we found that we could relate all form factors of rank n to form
factors of rank n− 1 or n− 2. The most complicated matrix inversion we needed to perform
in order to do this was the inversion of the matrix(

p2
1 p1 · p2

p1 · p2 p2
2

)
. (3.3)

After reducing the problem to the level of scalar integrals, we made use of Reduze 2 [45]
and FIRE6 [46] to perform an IBP reduction of the integrals. In some cases, the Feynman
diagram could not be expressed in terms of a propagator basis which was conducive to
IBP reduction. In these cases, once we had reduced the Feynman diagram to the level of
scalar integrals, we processed these scalars using the method described in ref. [47] such that
we were left with a new set of scalar integrals in bases that were appropriate for direct
application of IBP reduction. This left us with a set of Master Integrals, the topologies for
which are given in figure 3. Details regarding our set of Master Integrals, as well as sources
used for integral values can be found in tables 1 and 2. We found values for most of these
master integrals in refs. [48–50], but for those integrals for which there are no analytical
results we made use of PySecDec [51] to evaluate them numerically.

We found a typo in eq. (29) of [48] where an extra factor of 2π2

3 is present in the last
line and hence we used the integral definition in eq. (28). Moreover, eq. (11) breaks down
in some kinematic configuration, e.g. x = 4 and y = 1, and as a result eq. (9) needs to be
evaluated numerically.

In some cases, we needed to improve the analytical expression of the integral found in
the literature and in order to do so we made use of PySecDec to evaluate the missing parts
in the ε-expansion numerically.

We have been able to retrieve the scale dependence of these integrals (which is logarith-
mic) by exploiting the fact that there is only one independent kinematic scale. This meant
that we could rescale the master integral, leaving only dimensionless loop and external
momenta before either performing the integration, or using PySecDec to perform the calcu-
lation. To illustrate, consider the loop integral Iex, with dimensionfull quantities k, a loop
integral, and p, an external momentum. If we re-express these in terms of a dimensionfull
scale, ν, and dimensionless variables, k̃ and p̃,

k = νk̃ (3.4)
p = νp̃ (3.5)

we retrieve

Iex = (µ2)ε
∫

ddk

(2π)d
1

[k2]a[(k − p)2]b (3.6)

= 1
(ν2)a+b−2

(µ2)ε
(ν2)ε

∫
ddk̃

(2π)d
1

[k̃2]a[(k̃ − p̃)2]b
. (3.7)
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Figure 3. The topologies for all master integrals. All external momenta are incoming. A black dot
represents a power of 2 on the scalar propagator.
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Type Source of Value a b c
Fig. 3(i) This Work 2p p p

Fig. 3(d) [48] −p −p 2p
Fig. 3(h) This Work 2p — —
Fig. 3(i) This Work −p 2p −p
Fig. 3(h) This Work p — —
Fig. 3(i) This Work p — —

Table 1. The master integrals for this work in the MOM kinematics. For master topologies, see
figure 3.

As can be seen, we retain the overall mass dimension of the integral in the first prefactor,
but are then able to retrieve the log behaviour of the integral through the second prefactor,
upon expanding in ε.

4 Results and numerics

In this section we present our results for the conversion factors between the MS and the
RI′-MOM, RI-MOM and RI-SMOM schemes. The respective conversion factors exhibit a
scale dependence that mirrors the scale dependence of the relevant semi-leptonic Wilson
coefficient. Working in renormalization group improved perturbation theory, this scale
dependence will cancel order-by-order in perturbation theory for the product of the Wilson
coefficient and a given conversion factor. By studying the residual scale dependence of this
product, we can estimate the uncertainty from unknown higher-order corrections.

4.1 Scale dependence

In the following we will combine the matching corrections with the renormalization-group-
improved Wilson coefficient. The results of our two-loop calculation together with (2.7)
and (2.8) determine the conversion factor CMS→i

O including its analytic dependence on the
MS scale µ. The fact that the product of the Wilson coefficient CMS(µ) of the semi-leptonic
operator (1.1) and the conversion factor is scale-independent implies the renormalization
group equation

d

d ln(µ)C
MS→i
O (µ) = −γWCMS→i

O , (4.1)

where γW is the anomalous dimension of the semi-leptonic operator. The two-loop anoma-
lous dimension and the one-loop electroweak matching corrections for the Wilson at the
electroweak scale are given in ref. [33]. This renormalization-group equation provides an
additional check of our calculation. In the following, we study the residual scale dependence
in the product CMS

O (µL) · CMS→i
O (µL), where µL ∼ O(GeV) is the lattice scale and the large

logarithms lnµL/MW are summed in renormalization-group-improved perturbation theory.
To this end we write the Wilson coefficient at the lattice scale as a product

CO(µL) = U(µL, µW ) CO(µW ) (4.2)

– 12 –



J
H
E
P
0
1
(
2
0
2
3
)
1
5
9

Topology Source of Value a b c d
Fig. 3(a) [51] −q −p1 q p1

Fig. 3(a) [51] −q −p1 q p1

Fig. 3(a) [51] −p1 p2 2p1 − p2 −p1

Fig. 3(b) [51] q −p1 −q p1

Fig. 3(b) [51] −p1 p2 2p1 − p2 −p1

Fig. 3(b) [51] 2p1 − p2 −p1 −p1 p2

Fig. 3(b) [51] −p1 −p1 2p1 − p2 p2

Fig. 3(b) [51] 2p1 − p2 p2 −p1 −p1

Fig. 3(c) [51] −q p1 −p1 −q
Fig. 3(c) [51] −p1 2p1 − p2 −p1 p2

Fig. 3(d) [48] and [51] −q 2p1 − p2 −p1 —
Fig. 3(d) [48] and [51] p1 −p2 −q —
Fig. 3(d) [48] and [51] 2p1 p2 − 2p1 −p2 —
Fig. 3(d) [48] and [51] 2p1 −p1 −p1 —
Fig. 3(d) [48] and [51] −p1 −p1 2p1 —
Fig. 3(d) [48] and [51] −p2 p2 − 2p1 2p1 —
Fig. 3(e) [48] and [51] p1 −p2 −q —
Fig. 3(e) [48] and [51] −q 2p1 − p2 −p1 —
Fig. 3(e) [48] and [51] p2 − 2p1 p1 q —
Fig. 3(e) [48] and [51] −p2 p2 − 2p1 2p1 —
Fig. 3(e) [48] and [51] −2p1 2p1 − p2 p2 —
Fig. 3(f) [48] and [51] −q 2p1 − p2 −p1 —
Fig. 3(f) [48] and [51] p2 q −p1 —
Fig. 3(f) [48] 2p1 p2 − 2p1 −p2 —
Fig. 3(g) This Work, [49] and [51] p1 q −p2 —
Fig. 3(h) This Work p1 — — —
Fig. 3(h) This Work 2p1 — — —
Fig. 3(h) This Work 2p1 − p2 — — —
Fig. 3(i) This Work p1 0 −p1 —
Fig. 3(i) This Work 2p1 −p1 −p2 —
Fig. 3(j) [48] q −p1 p2 —
Fig. 3(j) [48] 2p1 −p2 p2 − 2p1 —
Fig. 3(j) [48] −q −p1 2p1 − p2 —
Fig. 3(k) [48] p1 −q −p2 —

Table 2. The master integrals for this work in the SMOM kinematics. For master topologies, see
figure 3.
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of the Wilson coefficient at the electroweak scale and the evolution kernel U(µ, µ0), where µW
is the weak scale, and where the evolution kernel fulfils the renormalization group equation

d

d ln(µ)U(µ, µ0) = γW U(µ, µ0). (4.3)

In the following we will consider the expanded anomalous dimension

γW = γ
(0)
W

α

4π + γ
(1)
W

ααs
(4π)2 + γ

(2)
W

αα2
s

(4π)3 , (4.4)

up to O(αα2
s), since the value of γ(2)

W is sensitive to O(ααs) scheme transformation of the
effective theory. The value γ(2)

W is currently not known, but will play a part in our numerical
analysis later.

The solution of (4.3), under the assumption that α(µ) = α(µW ) = α is scale independent,
is found to be

U(µ, µ0) = 1 + α

4π

(
γ

(0)
W ln

(
µ

µ0

))
− α

4π
1

2β(Nf )
0

γ
(1)
W

(
ln
(
αs(µ)
αs(µ0)

))

+ α

4π
1

2β(Nf )
0

γ(1)
W

β
(Nf )
1

β
(Nf )
0

− γ(2)
W

 αs(µ)− αs(µ0)
4π ,

(4.5)

where β(Nf )
0 = 11CA/3−(4/3)TF Nf and β(Nf )

1 = (34/3)C2
A−4CF TF Nf−(20/3)CA TF Nf

are the first two terms of the QCD beta function that determines the running of αs(µ);
CF = 4

3 is the Casimir factor of the fundamental representation of SU(3), CA = 3 is the
Casimir factor of the adjoint representation of SU(3) and TF = 1

2 is the trace normalization
of the fundamental representation, while Nf is the number of flavours.

When evolving the Wilson coefficient down to the lattice scale we must take into account
the threshold corrections due to the fact that we integrate out the heavy quarks. In order
to do this, we split the evolution in three steps:

• µW → µb ∼ 4.4 GeV, here we have Nf = 5;

• µb → µL ∼ 1− 6 GeV, here we have Nf = 4.

Combining these steps and expanding in powers of α and αs as

CMS
O (µW ) = 1 + α

4π CeO (µW ,MZ) + α

4π
αs
4π CesO (µW ,MZ) ,

CMS→i
O (µL) = 1 + αs(µL)

4π Cs,1O
(
−p2, µ2

L

)
+ α2

s(µL)
(4π)2 C

s,2
O

(
−p2, µ2

L

)
+ α

4π C
e
O

(
−p2, µ2

L

)
+ α

4π
αs(µL)

4π CesO
(
−p2, µ2

L

)
,

(4.6)

we obtain the final expression of the low-scale matching,

CiO(µL, p2) = CMS
O (µW ) U(µW , µL) CMS→i

O (µL, p2) = Ciα+Ciαs
+ α

4π
(
Ciα,αs LL + Ciα,αs NLL

)
,

(4.7)
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where the superscript i denotes either of the RI schemes, Ciα is the resummed QED
contribution, Ciαs

is the leading O(αs) effect and Ciα,αs LL and Ciα,αs NLL are the leading-log
(LL) and next-to-leading-log (NLL) strong corrections to the electromagnetic contributions,

Ciα = 1 + α

4π

(
CeO(µW ,MZ) + γ

(0)
W ln

(
µL
µW

)
+ CeO(−p2, µ2

L)
)
,

Ciαs
= αs(µL)

4π

(
Cs,1O

(
−p2, µ2

L

)
+ αs(µL)

4π Cs,2O
(
−p2, µ2

L

))
,

Ciα,αs LL = −γ(1)
W

 1
2β(4)

(0)

ln
(
αs(µL)
αs(µb)

)
+ 1

2β(5)
(0)

ln
(
αs(µb)
αs(µW )

) ,
Ciα,αs NLL = αs(µL)

4π
(
CesO

(
−p2, µ2

L

)
+ γ̄(4)

)
+ αs(µb)

4π
(
γ̄(5) − γ̄(4)

)
+ αs(µW )

4π
(
CesO (µW ,MZ)− γ̄(5)

)
,

(4.8)

with γ̄(Nf ) = 1
2β

(Nf )
0

(
γ

(1)
W

β
(Nf )
1

β
(Nf )
0

− γ(2)
W

)
. We stress again that the contributions coming from

Ciαs
will vanish to all orders for the renormalization schemes defined by the conditions (2.31)

and (2.32) by virtue of the Ward Identity.

4.2 RI′-MOM & RI-MOM

Here and in the following, we will collect the results for the different operator and field
conversion factors. The explicit form of the operator conversion factor will depend on
the renormalization kinematics and on the choice of projectors. Contrary to this, the
field conversion factor is the same in the RI′-MOM, RI-SMOM, RI-MOM, and RI-SMOM
schemes and reads

CRI→MS
f = 1+ αs

4π CF ξs
(

ln
(
−p2

µ2

)
−1
)

+ α

4π ξ q
2
(

ln
(
−p2

µ2

)
−1
)

+ α

4π
αs
4π

1
4CF q

2
(

4 ln
(
−p2

µ2

)(
ξ ξs ln

(
−p2

µ2

)
−2 ξ ξs−3

)
+8 ξ ξs+5

)

+
(
αs
4π

)2 1
8 CF

(
CA

(
−9 ξ2

s−52 ξs+24(ξs+1)ζ(3)−82
)

+CF
(
8 ξ2

s+5
)

+28Nf TF

+2 ln
(
−p2

µ2

)(
2CA ξs (ξs+3)ln

(
−p2

µ2

)
+CA (ξs (ξs+8)+25)−6CF−8Nf TF

))

+O
((

αs
4π

)3
)
, (4.9)

where ξ (ξs) is the photon (gluon) gauge parameter. The two-loop QCD correction is given
in ref. [38] while the O(ααs) contribution is a novel result.
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Figure 4. Residual µ-dependence of the low-scale Wilson coefficient CRI′-MOM
O for the conventional

projector choice, where we set ξ = ξs = 0 and −p2 = 9. It is evident that the leading strong
corrections introduce an artificial scale dependence at low scales µ ∼ µL.

For MOM kinematics we give the operator conversion factor both for the RI′-MOM
scheme (using the projector in eq. (2.19)) and our new RI-MOM scheme using the projector
in eq. (2.20). Here we used the results in ref. [38] to implement the two-loop QCD corrections
to the operator conversion factors. For the RI′-MOM scheme we find

CMS→RI′-MOM
O = 1+ α

4π

(
−2ln

(
−p2

µ2

)
−1.23728 ξ−0.87851

)
+αs(µL)

4π (−0.5CF ξs)

+ α

4π
αs(µL)

4π CF

((
ξs+

3
2

)
ln
(
−p2

µ2

)
+ξ (−0.13990 ξs−1.38558)+0.56651ξs+6.96381

)

+
(
αs(µL)

4π

)2 1
8 CF (−CA (ξs (3 ξs+14)+25)+6CF +8Nf TF )+O

((
αs(µL)

4π

)3)
.

(4.10)

As a check, we combine this result with the scheme conversion factor (2.36) and find
agreement with the one-loop QED result obtained in ref. [36] (in our convention ξ = 1(0) in
the Feynman (Landau) gauge).

The choice of the conventional projector leads to the presence of O(αs) and O(α2
s)

corrections, where the latter correction does not even vanish for ξ = 0. The µ dependence
of αs will introduce an artificial scale dependence into this conversion factor that is
not related to the operator anomalous dimension. The resulting residual dependence
of CRI′-MOM

O (µL, p2) on the scale µL, shown of figure 4, suggest at least an uncertainty of
±0.5% from unknown three-loop QCD corrections.
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For the RI-MOM scheme using the projector which we derived (eq. (2.20)), we find

CMS→RI-MOM
O = 1 + α

4π

(
−2 ln

(
−p2

µ2

)
− 1.51506 ξ − 0.87851

)

+ α

4π
αs(µL)

4π CF

(
3
2 ln

(
−p2

µ2

)
+ ξ(−0.52364 ξs − 1.23469) + 0.31714 ξs + 6.04812

)

+O

(
α

4π

(
αs(µL)

4π

)2)
, (4.11)

where we have explicitly checked that all pure QCD corrections vanish.
Combining the expression (4.7) with the values of the coefficients given by (4.11)

and [33] we obtain the expression of the Wilson Coefficient in the RI-MOM scheme

CRI-MOM
O (µL,p2) = 1+ α

4π

(
−11

3 −1.51506 ξ−0.87851−2 ln
(
−p2

M2
Z

))

+ α

4π

−4

 1
2β(4)

(0)

ln
(
αs(µL)
αs(µb)

)
+ 1

2β(5)
(0)

ln
(
αs(µb)
αs(µW )

)
−αs(µL)

8π ln
(
−p2

µ2
L

)
+ α

4π

(
αs(µL)

4π
(
CF ( (−0.52364 ξs−1.23469) ξ+0.31714 ξs+6.04812)+γ̄(4)

)
+αs(µb)

4π
(
γ̄(5)−γ̄(4)

)
+αs(µW )

4π
(
CesO (µW ,MZ)−γ̄(5)

))
. (4.12)

We recall that γ̄(Nf ) = 1
2β

(Nf )
0

(
γ

(1)
W

β
(Nf )
1

β
(Nf )
0

− γ(2)
W

)
.

We can see that there is an exact cancellation of the µ dependence in the case of pure
electromagnetic corrections.

When we switch on QCD interactions, however, while the scale dependence of the LL
term given by ln

(
αs(µL)
αs(µb)

)
cancels with the explicit scale dependence of the NLL terms in

the conversion factor, there is a residual scale dependence coming from the other NLL terms
proportional to αs(µL)

4π

(
γ̄(4) + CesO

)
. This effect, nevertheless, is sub-leading with respect

to the residual scale dependence in (4.10), which is dominant at the low scale. In order to
explore the contributions from higher order corrections in our numerical analysis, we vary
γ

(2)
W in the range −100 < γ

(2)
W < 100, since it is currently not known. This range was chosen

to reflect the typical range of values for this type of quantity. This effect can be seen in the
light green bands of figures 5 and 6.

The resulting residual scale dependence of CRI-MOM
O (µL, p2) is given in figure 5 and

suggest a very small, i.e. ±2 · 10−4, uncertainty from higher order corrections. While these
uncertainty are encouraging, we would like to remind the reader that the uncertainties from
higher order electroweak corrections are not included and that the contribution of γ(2)

W to
the NLL QCD corrections is only estimated.
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Figure 5. Residual scale dependence of the low-scale Wilson coefficient CRI-MOM
O , where we set

ξ = ξs = 0, −p2 = 9 and γ
(2)
W = 0 (dark green curve). We can see the reduction of the scale

dependence in going from CRI-MOM
α,αsLL

to CRI-MOM
α,αsNLL

, while the residual scale dependence is dramatically
reduced compared to the RI′-MOM scheme (figure 4). The light green shaded area shows the effect
of the unknown value of γ(2)

W on the next-to-leading-log contribution: the upper limit is obtained
with γ(2)

W = −100, while the lower limit is given by γ(2)
W =100.

4.3 RI-SMOM

The field conversion factor for RI-SMOM equals the one for the other RI schemes given in
eq. (4.9). For the operator conversion factor we only consider the RI-SMOM scheme (i.e.
the one defined using the projector seen in (2.21)), which should not yield any pure QCD
corrections. It reads

CMS→RI-SMOM
O = 1 + α

4π

(
−2 ln

(
−p2

µ2

)
− 1.62969 ξ − 1.54518

)

+ α

4π
αs
4π CF

(
3
2 ln

(
−p2

µ2

)
+ ξ(−0.18563 ξs − 0.24468) + 0.58741 ξs + 5.69043

)

+O

(
α

4π

(
αs
4π

)2
)
, (4.13)

where we have again checked explicitly that O
((αs

4π
)2) corrections are absent. If we use the

x-dependent projector, our result then becomes

CMS→RI-SMOM
O = 1+ α

4π

(
−2 ln

(
−p2

µ2

)
−1.62969 ξ−0.520868x−1.28474

)

+ α

4π
αs
4π CF

(3
2 ln

(
−p2

µ2

)
+ξ((0.376692x−0.373979) ξs+0.00885096x−0.249106)+

+(0.462791x+0.356019) ξs−1.22351x+6.30218
)

+O
(
α

4π

(
αs
4π

)2
)
. (4.14)
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Figure 6. Residual scale dependence of the low-scale Wilson coefficient CRI-SMOM
O , where we set

ξ = ξs = 0, −p2 = 9 and γ(2)
W = 0 (dark green curve). As in figure 5, the residual scale dependence

is suppressed by α. The light green shaded area shows the effect of the value of γ(2)
W on the NLL

contribution: the top limit is obtained with γ(2)
W = −100, while the bottom limit is given by γ(2)

W =100.

The two-loop QCD computation needed for this check can be extracted from intermediate
results that appear in the QCD renormalization of the vector current in the SMOM
scheme [39].

As in 4.2, we can combine the analytical expression (4.2) with the numerical values
in (4.13) and [33] obtaining the Wilson Coefficient in the SMOM scheme

CRI-SMOM
O (µL, p2) = 1+ α

4π

(
−11

3 −1.62969 ξ−1.54518−2 ln
(
−p2

M2
Z

))

+ α

4π

−4

 1
2β(4)

(0)

ln
(
αs(µL)
αs(µb)

)
+ 1

2β(5)
(0)

ln
(
αs(µb)
αs(µW )

)
− αs(µL)

8π ln
(
−p2

µ2
L

)
+ α

4π

(
αs(µL)

4π
(
CF ( (−0.18563 ξs−0.24468) ξ+0.58741 ξs+5.69043)+ γ̄(4)

)
+αs(µb)

4π
(
γ̄(5)− γ̄(4)

)
+ αs(µW )

4π
(
CesO (µW ,MZ)− γ̄(5)

))
. (4.15)

The resulting residual scale dependence of CRI-SMOM
O (µL, p2) is given in figure 6 and

again suggests a very small, i.e. ±2 · 10−4, uncertainty from higher order corrections. Again,
the uncertainties from higher order electroweak corrections are not included, while the
contribution of γ(2)

W to the NLL QCD corrections is only estimated.
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5 Conclusions

In this paper we have calculated the scheme conversions for the semi-leptonic weak effective
operator between the MS scheme and the RI′-MOM scheme, as well as to our newly defined
RI-MOM and RI-SMOM schemes. We emphasized the importance of the projector in the
definition of these schemes and found that a conventional choice of projector leads to an
artificial QCD correction to the conversion factor with a bad perturbative convergence.
Using the Ward identity in the pure-QCD limit, we defined modified vesions of the RI′-MOM
and RI-SMOM schemes that rectify this problem, by showing the existence of adequate new
projectors, thereby defining the RI-MOM and RI-SMOM schemes. Performing an effective
field theory analysis with renormalization-group-improved perturbation theory we showed
that these schemes indeed exhibit an excellent perturbative convergence, when LL and
partial NLL QCD corrections were added to the photonic corrections. We exhibited the
dependence on the various thresholds µW , µb and the scheme conversion (lattice matching)
scale µL and studied the cancellation of the µL dependence for the product of the MS
Wilson coefficient and the conversion factor (or equivalently, for the RI Wilson coefficients
or RI operator matrix elements).

Given the theoretical attractiveness and good perturbative convergence, we argue
that the schemes defined with our proposed projectors should be used in future work on
semileptonic decays in place of the coventional RI schemes. In particular, this should allow a
better precision in determining CKM matrix elements in future phenomenological analyses.

Our approach also lends itself to a systematic improvement of short-distance contribu-
tions. We leave the evaluation of the relevant three-loop anomalous dimensions and two-loop
electroweak matching calculations required for completing the NLL QCD corrections for
future work.
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