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We present the first analytic scheme-independent series calculations of anomalous dimensions of several
types of baryon operators at an infrared fixed point (IRFP) in an asymptotically free SU(3) gauge theory
with Nf fermions. Separately, for an asymptotically free gauge theory with a gauge group G and Nf

fermions in a representation R of G, we consider physical quantities at an IRFP, including the anomalous
dimension of gauge-invariant fermion bilinears and the derivative of the beta function. These quantities
have been calculated in series expansions whose coefficients have been proved to be scheme-independent
at each order. We illustrate the scheme independence using a variety of schemes, including the RI0 scheme
and several types of momentum subtraction schemes.
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I. INTRODUCTION

In conformal field theories, quantities of particular
interest are the scaling dimensions, DO, of gauge-invariant
operators, O. In general, we write

DO ¼ DO;cl: − γO; ð1:1Þ

where DO;cl: is the classical (free-field) dimension of O,
and γO is the anomalous dimension of O due to inter-
actions. We shall focus on the determination of γO in
perturbation theory at a fixed point of the renormalization
group (RG). An important example of such a fixed point is
encountered in the case of an asymptotically free non-
Abelian gauge theory with gauge group G and sufficiently
many massless fermions in a representation R of G. We
denote the running gauge coupling at a Euclidean scale μ as
g ¼ gðμÞ and denote α ¼ g2=ð4πÞ and a ¼ g2=ð16π2Þ. In
this theory, the gauge coupling evolves from small values in
the ultraviolet (UV) at large μ to an infrared fixed point
(IRFP) at a value denoted αIR as μ → 0. At this value, the
theory is scale-invariant and is inferred to be conformally
invariant [1,2]. This infrared behavior is commonly
denoted the non-Abelian Coulomb phase (NACP) or

conformal window. The RG evolution of the gauge
coupling is described by the beta function,

βα ¼
dα

d ln μ
¼ −2α

X∞
l¼1

blal; ð1:2Þ

where bl is the l-loop coefficient. At the two-loop ð2lÞ
level [3–7], the IR zero of βα function occurs at

αIR;2l ¼ −
4πb1
b2

: ð1:3Þ

If Nf is only slightly smaller than the upper limit,

Nu ¼
11CA

4Tf
ð1:4Þ

implied by the property of asymptotic freedom [5,6], then
αIR;2l is small and can be analyzed perturbatively [4,7]. As
Nf decreases, the value of the coupling at the infrared zero
of the beta function increases, motivating calculation of this
IRFP value of α to higher-loop order. This was carried out
to the four-loop level for general gauge group G and
fermion representation R in [8–10], using b3 [11] and b4
[12] computed in the modified minimal subtraction scheme
[13] for regularization and renormalization, denoted MS.
(The minimal subtraction scheme was originally presented
in [14].) Subsequently, the IRFP was calculated to the
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five-loop level [15], using b5 in the MS scheme [16,17].
Effects of scheme dependence were studied in [18–25].
The anomalous dimension of a gauge-invariant operator

O, evaluated at a zero of the beta function (hence an RG
fixed point), is, in principle, measurable, and hence cannot
depend on the scheme used for regularization and renorm-
alization. However, this property is not maintained in a
conventional finite-order perturbative calculation of the
anomalous dimension of such an operator as a power series
in the coupling α,

γO ¼
X∞
l¼1

cO;lal: ð1:5Þ

Once the perturbative expansion for γO is truncated at a
finite order, scheme dependence is induced in the result for
γO. Only if one had the entire perturbative series available
would the final result be guaranteed to be scheme-
independent. Explicitly, to evaluate γO to finite order at
an IRFP using Eqs. (1.2) and (1.5), one solves for the
relevant zero of the n-loop beta function to obtain the n-loop
value of α at this IRFP, denoted αIR;nl and then substitutes
this into Eq. (1.5) to obtain the value at the IRFP, γO;IR.
However, beyond the lowest orders, the result is scheme-
dependent, because of scheme dependence in both the
higher-order bl and the cO;l coefficients. The calculations
of γψ̄ψ ;IR to four-loop order in [8,9] and to five-loop order in
[15] used the four-loop and five-loop coefficients cψ̄ψ ;4 [26]
and cψ̄ψ ;5 [27], respectively, calculated in the MS scheme.
This scheme dependence of higher-order perturbative cal-
culations is, of course, not limited to these quantities, but is a
generic property of higher-order calculations. For example,
it is well known that higher-order calculations of differential
and total cross sections in quantum chromodynamics (QCD)
are also scheme-dependent.
Intuitively, one expects that as one increases the order

of the perturbative computation, there is more scheme-
independent information contained in γO. This expectation
is justified by the fact that higher-order QCD calculations
used, e.g., to analyze data from the Fermilab Tevatron and
CERN Large Hadron Collider showed less dependence
on the scheme/scale than lower-order calculations [28].
Indeed, for many years there has been work on the
construction and application of schemes in QCD designed
to reduce the scheme and scale dependence in higher-order
QCD calculations (e.g., [29–31]).
Ideally, one would use a method of perturbative calcu-

lation of physical quantities that manifestly preserves the
scheme independence at each finite order in the series
expansion. That is, one would like to extract the scheme-
independent information that is contained in the scheme-
dependent higher-order coefficients bl and cO;l. A key
property of the IRFP in an asymptotically free gauge theory
is that αIR → 0 as Nf (considered to be generalized to real

numbers [6]) approaches the upper limit, Nu, allowed by
asymptotic freedom. It follows that one can reexpress a
physical quantity such as γO at the IRFP as a series
expansion in powers of the difference

Δf ¼ Nu − Nf; ð1:6Þ
i.e.,

γO ¼
X∞
n¼1

κO;nΔn
f: ð1:7Þ

Since Δf is obviously scheme-independent and so is γO,
each coefficient κO;n is also scheme-independent. Some
early work based on this was in [7,32].
Recently, extensive scheme-independent expansions for

anomalous dimensions of a number of physical quantities
have been calculated and analyzed in [33–42]. For asymp-
totically free vectorial gauge theories with gauge group G
andNf fermions transforming according to a representation
R of G, physical quantities of interest include the fermion
bilinears ψ̄ψ and ψ̄T jψ , where we suppress the sum over
fermion flavor indices and T j denotes a generator of the
Lie algebra of SUðNfÞ. These have the same anomalous
dimension [43]. We denote this anomalous dimension as
γψ̄ψ and its evaluation at the IRFP as γψ̄ψ ;IR. The scheme-
independent series expansion of γψ̄ψ ;IR is written as

γψ̄ψ ;IR ¼
X∞
n¼1

κnΔn
f: ð1:8Þ

In general, the calculation of the coefficient κn in Eq. (1.8)
requires, as inputs, the values of the bl for 1 ≤ l ≤ nþ 1
and the cl for 1 ≤ l ≤ n.
The derivative of the beta function evaluated at the IRFP,

β0IR ¼ dβα
dα

����
α¼αIR

; ð1:9Þ

is also a physical quantity and hence is scheme-independent
[44]. Indeed, from the trace anomaly [45] Tμ

μ ¼
½βα=ð4αÞ�Fa

μνFaμν, where Fa
μν is the field-strength tensor, it

follows that the full scaling dimension of F2 ≡ TrðFμνFμνÞ,
satisfies the relation [46]

DF2 ¼ 4þ dβα
dα

−
2

α
βα; ð1:10Þ

so that, at the IRFP, with βα ¼ 0, γF2;IR ¼ −β0IR, i.e., β0IR is
equivalent to the anomalous dimension ofF2 evaluated at the
IRFP. The scheme-independent series expansion of β0IR is
written as

β0IR ¼
X∞
n¼2

dnΔn
f: ð1:11Þ
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(Note that d1 ¼ 0 for allG andR.) In general, the calculation
of the coefficientdj inEq. (1.11) requires, as inputs, thevalues
of the bl for 1 ≤ l ≤ j. In addition to these calculations for
vectorial gauge theories, Ref. [41] carried out scheme-
independent calculations of β0IR for chiral gauge theories.
The results of the scheme-independent series expansions

in [33–40] are useful for several reasons, which are also
motivations for the present study. First, they give new
information about fundamental properties of conformal
field theories, namely anomalous dimensions at an IRFP in
the non-Abelian Coulomb phase of an asymptotically free
gauge theory. A second important use of these calculations
pertains to the determination of the size of the NACP. The
upper end of the NACP, as a function ofNf, is known and is
equal to Nu. However, for nonsupersymmetric theories, the
lower end, at a value that we denote as Nf;cr, is not known,
and there is an intensive ongoing effort to determine Nf;cr

by means of lattice simulations [47,48]. Applying scheme-
independent calculations of γψ̄ψ ;IR, Refs. [34–38,40]
obtained estimates of Nf;cr in a manner complementary
to lattice gauge simulations. This was done using the
monotonic increase of γψ̄ψ ;IR with decreasing Nf that
was shown by the scheme-independent calculations, in
conjunction with the rigorous upper limit on γψ̄ψ ;IR from
conformal invariance, namely γψ̄ψ ;IR < 2 [49]. A third
application follows from the second, namely that a knowl-
edge of Nf;cr (for a given gauge group G and fermion
representation R) is necessary for the construction and
study of quasiconformal theories of physics beyond the
Standard Model (BSM), since these require Nf to be
slightly less than Nf;cr in order to achieve the slow running
of the gauge coupling and associated quasiconformal
behavior. In turn, the dynamical breaking of the approxi-
mate dilatation invariance in these theories leads to
a light approximate Nambu-Goldstone boson, the dilaton
[47,48,50–52]. These vectorial BSM theories can naturally
arise from the sequential breaking of asymptotically free
chiral gauge theories [53]. This is relevant to the inves-
tigation of the Higgs boson; although its production and
decay properties are consistent with the predictions of
the Standard Model, there is the continuing question of
whether it might be a composite, dilaton-like state resulting
from a quasiconformal BSM theory [51].
The accuracy of the scheme-independent series expan-

sions of γψ̄ψ ;IR and β0IR was studied in several ways in
[33–42]. One way was to evaluate the stability of these
quantities as higher-order terms in powers of Δf were
added in the series. It was shown that the finite-order
scheme-independent series calculations were most accurate
at the upper end of the NACP, and remained reasonably
accurate over a substantial portion of the NACP extending
to lower values of Nf.
For the gauge group G ¼ SUð3Þ, a baryon operator

has the form of a product of three fermion fields, each

transforming as the fundamental (triplet) representation of
G, with their gauge indices a, b, c contracted with the ϵabc
tensor to form a color singlet. Relevant previous studies of
anomalous dimensions of baryon operators in QCD include
[54–61]. In particular, the anomalous dimensions of baryon
operators have been calculated to one-loop [54], two-loop
[55,57], and three-loop order [58,59] as powers series in α
and related studies have been presented in [60,61].
In this paper we shall present, for the first time, analytic

scheme-independent series calculations to order OðΔ3
fÞ of

anomalous dimensions of several types of baryon operators
at an infrared fixed point of an asymptotically free SU(3)
gauge theory with Nf fermions in the fundamental repre-
sentation. An assessment of the accuracy of these calcu-
lations will also be given. As was discussed previously
[33–35], the procedure for the calculation of scheme-
independent series expansions requires that the IRFP be
exact, and this is only the case in the non-Abelian Coulomb
phase, in which the chiral flavor symmetry is exact [62].
Since we thus necessarily restrict our analysis to the NACP,
where there is no confinement, we use the term “baryon” to
refer only to the property that the baryon operators that we
consider are singlets under the SU(3) gauge symmetry. We
note that there is actually some irony in using the term
“baryon” here, since it is derived from the Greek word
βαρυς, meaning “heavy.” However, a gauge-singlet state
produced by the operation of a baryon creation operator on
the vacuum in the non-Abelian Coulomb phase is massless,
as are all physical states in this phase.
As a second part of our paper, we shall present, for

general gauge group G and fermion representation R,
an explicit illustration of the scheme independence of
the earlier calculations of Δf expansions of γψ̄ψ ;IR and
β0IR [33–38,40]. These calculations naturally used the MS
scheme because the n-loop coefficients in the beta function
and in γψ̄ψ had been calculated to the highest loop order in
this scheme, and these coefficients have the simplest form
in this scheme. Since a rigorous proof was already given in
these earlier works of the scheme independence of the
coefficients in these Δf expansions, it is not necessary
to carry out the calculations in schemes other than the
simplest one. However, it is, nevertheless, quite instructive
to see how the considerably more complicated higher-order
coefficients in the beta function and anomalous dimensions
in these more complicated schemes combine to reproduce
exactly the results of the MS scheme for the coefficients in
the various Δf series expansions. For the purpose of
these illustrations, we shall consider a variety of different
schemes, including the RI0 scheme [63,64] and several
varieties of momentum (MOM) subtraction schemes
[29,65–70] (see also [71]).
It should be mentioned that this program of explicitly

demonstrating scheme independence of the coefficients in
the Δf expansions of anomalous dimensions of various
operators was previously carried out for the N ¼ 1
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supersymmetric gauge theories in [33,35,36,39], where it
was shown that the use of two different schemes, namely
the DR scheme [72] and the Novikov-Shifman-Vainshtein-
Zakharov (NSVZ) scheme [73] yield the same scheme-
independent results for the anomalous dimension of
a holomorphic composite product of chiral superfields,
γΦcomp;IR, which, order by order are in precise agreement
with the corresponding series expansion of the exactly
known expression [74]. In addition to demonstrating
explicitly that different schemes yield the same values of
coefficients in the scheme-independent expansion of
γΦcomp;IR of the form (1.7), this work showed that (i) the
series (1.7) converges to the exact expression everywhere
where the latter applies, i.e., in the NACP, (ii) for a fixedNf

in the NACP, a finite truncation of the series (1.7) to order
OðΔp

f Þ approaches the exact expression exponentially
rapidly, and (iii) throughout the entire NACP, one achieves
excellent accuracy of a few percent even with a series
calculated to a modest order of n ¼ 4, i.e., OðΔ4

fÞ. These
scheme-independent calculations of anomalous dimensions
in an N ¼ 1 supersymmetric gauge theory thus improved
upon conventional scheme-dependent series expansions in
powers of αIR [75–76] (see also [77]).

II. BARYON OPERATORS

In this section we consider a theory with gauge group
G ¼ SUð3Þ and Nf fermions in the fundamental (triplet)
representation, R ¼ F. Since the fermions are massless, the
ultraviolet theory is invariant under the global flavor (fl.)
symmetry group

Gfl: ¼ SUðNfÞL ⊗ SUðNfÞR ⊗ Uð1ÞV: ð2:1Þ

This symmetry is unbroken in the non-Abelian Coulomb
phase. Hence, the baryon operators that we consider trans-
formaccording to definite representations of this group. Each
fermion field can be decomposed into its left- and right-
handed chiral components asψ ¼ ðPL þ PRÞψ ¼ ψL þ ψR,
where PR;L ¼ ð1=2Þð1� γ5Þ and we suppress color and
flavor indices here. Showing these latter indices explicitly,
each fermion field can thus be written formally as
ψa
i;L þ ψa

i;R, where a is an SU(3) color gauge index. Here,
the flavor index i on ψa

i;L refers to the fundamental repre-
sentation of SUðNfÞL, while the flavor index i on ψa

i;R refers
to the fundamental representation of SUðNfÞR. This will be
understood implicitly below. The chiral componentsψa

i;L and
ψa
i;R transform as ðNf; 1Þ and ð1; NfÞ under the chiral part of

Gfl., SUðNfÞL ⊗ SUðNfÞR. The bilinear operator ψ̄ψ ¼PNf

i¼1ðψ̄ i;Lψ i;R þ ψ̄ i;Rψ i;LÞ thus corresponds to what would
be the flavor-singlet in the confined phase, where the chiral
part of Gfl.. is broken to the diagonal SUðNfÞV subgroup,
while the operator ψ̄T jψ corresponds to what would be the

flavor-adjoint in the confined phase. In our present work we
will use the symbols Sk;L and Ak;L to denote the k-fold
symmetric and k-fold antisymmetric representations of
SUðNfÞL, and similarly with Sk;R and Ak;R with SUðNfÞR.
Clearly, all of our baryon operators have unit baryonic

charge under the Uð1ÞV factor group [which is equivalent to
Uð1ÞB here] so we leave this implicit henceforth. Although
we are in an NACP without any confinement of color, it is
nonetheless convenient to deal with gauge-singlet opera-
tors, since they are gauge-invariant. The invariance of the
baryon operator under the SU(3) gauge group is guaranteed
by the contraction of the color indices a, b, c on the three
fermion fields with the ϵabc tensor, so that the color part of
the baryon wavefunction is totally antisymmetric. The
other parts of the baryon operator depend on the chirality,
spin contractions, and flavor structure of the three-fermion
operator. These are constrained by the requirement that the
full wavefunction must be totally antisymmetric under
interchange of any two of the fermions.
As is well known, relevant representations of the Lorentz

group SO(3,1) are specified by two spins, ðj1; j2Þ. It is
convenient to construct a subset of baryon operators by
combining two of the three fermions in a Majorana-type
bilinear operator product, since this has spin 0 and is
Lorentz-invariant. A Majorana-type bilinear links left-
handed to left-handed chiral components of a fermion,
and right-handed to right-handed chiral components. There
are thus two of these, namely ψaT

i;LCψ
b
j;L and ψaT

i;Rψ
b
j;R. Here,

C is the Dirac charge conjugation matrix defined by
CγμC−1 ¼ −γTμ and satisfying the properties CT ¼ −C
and C−1 ¼ CT . The full baryon operator product is then
obtained by combining each of these Majorana-type
bilinears with the left-handed or right-handed chiral
fermion. One thus has the operators

ORLL ¼ ϵabcψ
a
i;R½ψbT

j;LCψ
c
k;L� ð2:2Þ

OLRR ¼ ϵabcψ
a
i;L½ψbT

j;RCψ
c
k;R� ð2:3Þ

ORRR ¼ ϵabcψ
a
i;R½ψbT

j;RCψ
c
k;R� ð2:4Þ

and

OLLL ¼ ϵabcψ
a
i;L½ψbT

j;LCψ
c
k;L�: ð2:5Þ

To distinguish the chirality of the unpaired fermion, one
could use a subscript L or R, but we shall follow the
notational conventions of [55,58], according to which

O
ð1
2
;0Þ

þ ≡O
ð1
2
;0Þ

LLL ð2:6Þ

and
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Oð1
2
;0Þ

− ≡O
ð1
2
;0Þ

RLL: ð2:7Þ

As is evident, in the Lorentz ðj1; j2Þ labeling, the
j1 ¼ 1=2 refers to the fermion field that is not a member
of the Majorana fermion bilinear, and j2 ¼ 0 refers to the
spin-0 transformation property of this Majorana fermion
bilinear. These operators have anomalous dimensions

denoted γ
ð1
2
;0Þ;þ

B and γ
ð1
2
;0Þ;−

B , respectively. Because the theory
at the IRFP in the non-Abelian phase preserves the full

flavor symmetry (2.1), the anomalous dimension γ
ð1
2
;0Þ;þ

B for

O
ð1
2
;0Þ

LLL is equal to the anomalous dimension for the corre-
sponding operator with all L indices switched to R, namely

O
ð1
2
;0Þ

RRR, and, separately, the anomalous dimension γ
ð1
2
;0Þ;−

B for

O
ð1
2
;0Þ

RLL is equal to the anomalous dimension for the corre-
sponding operator with L and R indices interchanged,

namely O
ð1
2
;0Þ

LRR.
One part of the classification of baryon operators entails

the analysis of the combination of the three spin 1=2
representations of angular momentum SU(2). In general,
one has

1

2
×
1

2
×
1

2
¼ 1

2
þ 1

2
þ 3

2
ð2:8Þ

(i.e., 2 × 2 × 2 ¼ 2þ 2þ 4 in terms of the dimensions
2sþ 1 of the representations). We have considered above
the cases in which two of the spins are contracted to
produce spin 0, corresponding to one of the two spin-1=2
terms on the right-hand side of Eq. (2.8). There are two
remaining cases to consider, in which one combines two of
the spins to produce a spin-1 state and then combines this
with the third spin 1=2 to yield a net spin 1=2 or spin 3=2.
We recall that the spin wavefunction in the case of spin 3=2
is totally symmetric, i.e., S3 under the SU(2) of spin. In the
analysis of baryon operators in QCD, it has proved useful to
introduce a vector Δμ that is lightlike, i.e., has the property
Δ2 ¼ 0, and consider the operators (leaving the flavor
indices implicit)

O
ð3
2
;0Þ

LLL ¼ ϵabc=Δψa
L=Δψ

b
L=Δψ

c
L ð2:9Þ

O
ð3
2
;0Þ

RRR ¼ ϵabc=Δψa
R=Δψ

b
R=Δψ

c
R ð2:10Þ

O
ð1;1

2
Þ

LLR ¼ ϵabc=Δψa
L=Δψ

b
L=Δψ

c
R ð2:11Þ

and

O
ð1;1

2
Þ

RRL ¼ ϵabc=Δψa
R=Δψ

b
R=Δψ

c
L: ð2:12Þ

In the notation of [55,58],

O
ð3
2
;0Þ

þ ≡O
ð3
2
;0Þ

LLL ð2:13Þ
and

Oð1;1
2
Þ

− ≡O
ð1;1

2
Þ

LLR: ð2:14Þ

The anomalous dimensions of these operators are
denoted γð32;0Þ;þ and γð1;12Þ;−, respectively. Again, owing to
the exact chiral symmetry (2.1), the anomalous dimension

γð32;0Þ;þ of O
ð3
2
;0Þ

LLL is equal to the anomalous dimension of

O
ð3
2
;0Þ

RRR, and the anomalous dimension γð1;12Þ;− of O
ð1;1

2
Þ

LLR is

equal to the anomalous dimension of O
ð1;1

2
Þ

RRL. The normali-
zation of these anomalous dimensions is fixed by the basic
relation (1.1).

III. SCHEME-INDEPENDENT SERIES
EXPANSION FOR ANOMALOUS DIMENSION

OF GENERAL BARYON OPERATOR

A general expression, calculated to the two-loop level,
was given for the anomalous dimension of a general baryon
operator OB in [57] and extended to the three-loop level in
[58,59]. This depends on certain coefficients Ck, which are
listed in Table I. With the definition (1.1) (which sets the
absolute normalization of the anomalous dimension), and
noting that the sign convention in (1.1) is opposite to that in
[58], we have

γB ¼ 1

3
C2aþ

�
ð−72þ 4NfÞC0 þ

�
47

18
−

1

27
Nf

�
C2 þ

1

36
C2
2 −

5

36
C4

�
a2

þ
��

−
16094

9
− 34ζ3 þ

1706

9
Nf −

20

9
N2

f

�
C0 þ

�
5873

108
−
433

18
ζ3 −

�
71

27
þ 40

9
ζ3

�
Nf −

13

81
N2

f

�
C2

þ
�
−
209

324
þ 71

27
ζ3 þ

1

324
Nf

�
C2
2 þ

�
5

648
−

1

27
ζ3

�
C3
2 þ

�
91

72
−
29

12
ζ3 þ

7

324
Nf

�
C4

þ
�
−

37

432
þ 25

144
ζ3

�
C2C4 þ

�
−
1

8
þ 2

9
ζ3

�
C444

�
a3 þOða4Þ: ð3:1Þ
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We list the values of the Ck coefficients for various
specific baryon operators in Table I.
We denote the anomalous dimension of the general baryon

operatorOB as γOB
and write the scheme-independent series

expansion for this as

γB ¼
X∞
n¼1

κB;nΔn
f: ð3:2Þ

For this SU(3) gauge theory with Nf fermions in the
fundamental representation, Nu ¼ 33=2, so the general
expression for Δf in Eq. (1.6) yields Δf ¼ ð33=2Þ − Nf.
We calculate the following coefficients in this scheme-

independent series expansion for the general baryon
operator:

κB;1 ¼
2

32 · ð107ÞC2; ð3:3Þ

κB;2 ¼ −
8

3 · ð107Þ2 C0 þ
27083

2 · 34 · ð107Þ3 C2

þ 1

34 · ð107Þ2 ðC
2
2 − 5C4Þ; ð3:4Þ

and

κB;3 ¼
�

291892

35 · ð107Þ4 −
272

33 · ð107Þ3 ζ3
�
C0 þ

�
352124197

22 · 36 · ð107Þ5 −
238124

35 · ð107Þ4 ζ3
�
C2

þ
�
−

47365

2 · 37 · ð107Þ4 þ
568

36 · ð107Þ3 ζ3
�
C2
2 þ

�
16525

2 · 36 · ð107Þ4 −
58

34 · ð107Þ3 ζ3
�
C4

þ
�

5

37 · ð107Þ3 −
8

36 · ð107Þ3 ζ3
�
C3
2 þ

�
−

37

2 · 36 · ð107Þ3 þ
25

2 · 35 · ð107Þ3 ζ3
�
C2C4

þ
�
−

1

33 · ð107Þ3 þ
16

35 · ð107Þ3 ζ3
�
C444; ð3:5Þ

where ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function. In

Eqs. (3.3)–(3.5) we have indicated the simple factorizations
of the denominators. The numerators do not, in general,
have such simple factorizations.
In floating-point format, to the indicated precision,

κB;1 ¼ ð2.076843 × 10−3ÞC2; ð3:6Þ

κB;2 ¼ −ð2.329170 × 10−4ÞC0 þ ð1.364679 × 10−4ÞC2

þ ð1.078319 × 10−6ÞC2
2 − ð5.391597 × 10−6ÞC4;

ð3:7Þ

and

κB;3 ¼ −ð0.721139 × 10−6ÞC0 − ð0.376693 × 10−6ÞC2

þ ð0.681918 × 10−6ÞC2
2 − ð0.616147 × 10−6ÞC4

− ð0.890178 × 10−8ÞC3
2 þ ð2.975975 × 10−8ÞC2C4

þ ð0.343749 × 10−7ÞC444: ð3:8Þ

IV. SCHEME-INDEPENDENT
SERIES EXPANSIONS FOR

ANOMALOUS DIMENSIONS OF
SPECIFIC BARYON OPERATORS

In this section we present results for coefficients in
scheme-independent series expansions for the anomalous
dimensions of specific baryon operators. These analytic
results are new here. The anomalous dimension of the
baryon operatorOðj1;j2Þ

� is denoted γðj1;j2Þ;�B . We express the
scheme-independent series expansion for this anomalous
dimension as

γðj1;j2Þ;�B ¼
X∞
n¼1

κðj1;j2Þ;�n Δn
f ð4:1Þ

The truncation of this infinite series to maximal power

(order) Δp
f is denoted γðj1;j2Þ;�B;Δp

f
. We note that numerical

results for the Δf series expansions for two of the four

specific operators, namely, O
ð1
2
;0Þ

� , were given previously in
[60]. Since they were based on the results of [58], they
should be multiplied by a factor of 2 [59].

TABLE I. Values of Ck coefficients.

ðj1; j2Þ chirality C0 C2 C4 C444

ð1
2
; 0Þ þ 1 12 72 0

ð1
2
; 0Þ − 1 12 −24 0

ð3
2
; 0Þ þ 1 −12 72 0

ð1; 1
2
Þ − 1 −4 −24 0
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We calculate the following:

κ
ð1
2
;0Þ;þ

1 ¼ 8

3 · ð107Þ ¼ 2.492212 × 10−2 ð4:2Þ

κ
ð1
2
;0Þ;þ

2 ¼ 38758

33 · ð107Þ3 ¼ 1.171780 × 10−2 ð4:3Þ

κ
ð1
2
;0Þ;þ

3 ¼ 314021069

35 · ð107Þ5 −
97792

33 · ð107Þ4 ζ3
¼ 5.892227 × 10−5 ð4:4Þ

κ
ð1
2
;0Þ;−

1 ¼ 8

3 · ð107Þ ¼ 2.492212 × 10−2 ð4:5Þ

κ
ð1
2
;0Þ;−

2 ¼ 18626

32 · ð107Þ3 ¼ 1.689374 × 10−3 ð4:6Þ

κ
ð1
2
;0Þ;−

3 ¼ 40784885

33 · ð107Þ5 −
70400

33 · ð107Þ4 ζ3
¼ 0.837892 × 10−4 ð4:7Þ

κ
ð3
2
;0Þ;þ

1 ¼ −
8

3 · ð107Þ ¼ −ð2.492212 × 10−2Þ ð4:8Þ

κ
ð3
2
;0Þ;þ

2 ¼ −
69574

33 · ð107Þ3 ¼ −ð2.103448 × 10−3Þ ð4:9Þ

κ
ð3
2
;0Þ;þ

3 ¼ −
32245429

33 · ð107Þ5 þ
1169920

34 · ð107Þ4 ζ3
¼ 4.730261 × 10−5 ð4:10Þ

κ
ð1;1

2
Þ;−

1 ¼ −
8

32 · ð107Þ ¼ −ð0.830737 × 10−2Þ ð4:11Þ

κ
ð1;1

2
Þ;−

2 ¼ −
62726

34 · ð107Þ3 ¼ −ð6.321370 × 10−4Þ ð4:12Þ

κ
ð1;1

2
Þ;−

3 ¼ −
314714429

36 · ð107Þ5 þ 178688

33 · ð107Þ4 ζ3
¼ 2.991050 × 10−5: ð4:13Þ

As is evident from these results, all of the scheme-

independent coefficients κ
ð1
2
;0Þ;þ

n and κ
ð1
2
;0Þ;−

n that have been
calculated, namely those for n ¼ 1, 2, 3, are positive. In
contrast, we find mixed signs for the scheme-independent

coefficients κ
ð3
2
;0Þ;þ

n ; while κ
ð3
2
;0Þ;þ

1 and κ
ð3
2
;0Þ;þ

2 are negative,

κ
ð3
2
;0Þ;þ

3 is positive, and similarly with the κ
ð1;1

2
Þ;−

n for n ¼ 1,
2, 3.
In Figs. 1–4 we show curves of these anomalous

dimensions, and in Tables II–V we list values of these

anomalous dimensions, as calculated to the various orders
in Δf in our scheme-independent expansions.
We comment further on the results for the coefficients

κ
ð1
2
;0Þ;þ

n and κ
ð1
2
;0Þ;−

n in the respective scheme-independent

series expansions for γ
ð1
2
;0Þ;�

B . It will be recalled that an
important property of the scheme-independent calculations
of γψ̄ψ ;IR in [33–39] is that (a) the coefficients κ1 and κ2 are
manifestly positive, and (b) for all groups and representa-
tions considered, κ3 and κ4 were also found to be positive.
This result implied several monotonicity properties, namely
that (i) for a fixed truncation order p, the scheme-
independent series expansion for γψ̄ψ ;IR is a monotonically
increasing function of Δf, i.e., it increases monotonically
with decreasing Nf, and (ii) for a fixed value of Nf, the

FIG. 1. Plot of γ
ð1
2
;0Þ;þ

B , as calculated in the scheme-independent
series expansion to OðΔp

f Þ with 1 ≤ p ≤ 3, as a function of Nf.
The curves refer to the calculation toOðΔfÞ (red);OðΔ2

fÞ (green);
and OðΔ3

fÞ (blue), with colors online.

FIG. 2. Plot of γ
ð1
2
;0Þ;−

B , as calculated in the scheme-independent
series expansion to OðΔp

f Þ with 1 ≤ p ≤ 3, as a function of Nf.
The curves refer to the calculation toOðΔfÞ (red);OðΔ2

fÞ (green);
and OðΔ3

fÞ (blue), with colors online.
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series calculation to OðΔp
f Þ is a monotonically increasing

function of p. Indeed, as was noted in several of these
works, and was studied in detail in [39], the coefficients in
the corresponding scheme-independent expansions of
anomalous dimensions of composite holomorphic products
of chiral superfields in N ¼ 1 supersymmetric gauge
theories are all positive.
In view of these previous positivity findings, it is of

considerable interest that all of the κ
ð1
2
;0Þ;þ

n and κ
ð1
2
;0Þ;−

n that
have been calculated, namely those for j ¼ 1, 2, 3, are
positive, so the corresponding monotonicity results apply

for γ
ð1
2
;0Þ;�

B . These calculations to finite order in OðΔfÞ are
expected to be most accurate for small Δf, i.e., for Nf

FIG. 3. Plot of γ
ð3
2
;0Þ;þ

B , as calculated in the scheme-independent
series expansion to OðΔp

f Þ with 1 ≤ p ≤ 3, as a function of Nf.
The curves refer to the calculation toOðΔfÞ (red);OðΔ2

fÞ (green);
and OðΔ3

fÞ (blue), with colors online.

FIG. 4. Plot of γ
ð1;1

2
Þ;−

B , as calculated in the scheme-independent
series expansion to OðΔp

f Þ with 1 ≤ p ≤ 3, as a function of Nf.
The curves refer to the calculation toOðΔfÞ (red);OðΔ2

fÞ (green);
and OðΔ3

fÞ (blue), with colors online.

TABLE II. Values of γ
ð1
2
;0Þ;þ

B;Δp with 1 ≤ p ≤ 3.

Nf γ
ð1
2
;0Þ;þ

B;Δ1 γ
ð1
2
;0Þ;þ

B;Δ2 γ
ð1
2
;0Þ;þ

B;Δ3

8 0.212 0.296 0.333
9 0.187 0.253 0.278
10 0.162 0.212 0.228
11 0.137 0.173 0.182
12 0.112 0.136 0.141
13 0.0872 0.102 0.104
14 0.0623 0.0696 0.0705
15 0.0374 0.0400 0.0402
16 0.0125 0.0128 0.0128

TABLE III. Values of γ
ð1
2
;0Þ;−

B;Δp with 1 ≤ p ≤ 3.

Nf γ
ð1
2
;0Þ;−

B;Δ1 γ
ð1
2
;0Þ;−

B;Δ2 γ
ð1
2
;0Þ;−

B;Δ3

8 0.212 0.334 0.385
9 0.187 0.282 0.317
10 0.162 0.233 0.256
11 0.137 0.188 0.202
12 0.112 0.146 0.154
13 0.0872 0.108 0.112
14 0.0623 0.0729 0.0742
15 0.0374 0.0412 0.0415
16 0.0125 0.0129 0.0129

TABLE IV. Values of γ
ð3
2
;0Þ;þ

B;Δp with 1 ≤ p ≤ 3.

Nf γ
ð3
2
;0Þ;þ

B;Δ1 γ
ð3
2
;0Þ;þ

B;Δ2 γ
ð3
2
;0Þ;þ

B;Δ3

8 −0.212 −0.364 −0.335
9 −0.187 −0.305 −0.285
10 −0.162 −0.251 −0.238
11 −0.137 −0.201 −0.193
12 −0.112 −0.155 −0.150
13 −0.0872 −0.113 −0.111
14 −0.0623 −0.0755 −0.0747
15 −0.0374 −0.0421 −0.0420
16 −0.0125 −0.0130 −0.0130

TABLE V. Values of γ
ð1;1

2
Þ;−

B;Δp with 1 ≤ p ≤ 3.

Nf γ
ð1;1

2
Þ;−

B;Δ1 γ
ð1;1

2
Þ;−

B;Δ2 γ
ð1;1

2
Þ;−

B;Δ3

8 −0.0706 −0.117 −0.0979
9 −0.0623 −0.0979 −0.0852
10 −0.0540 −0.0807 −0.0725
11 −0.0457 −0.0648 −0.0598
12 −0.0374 −0.0502 −0.0475
13 −0.0291 −0.0368 −0.0355
14 −0.0208 −0.0247 −0.0243
15 −0.0125 −0.0139 −0.0138
16 −0.00415 −0.00431 −0.00431

GRACEY, RYTTOV, and SHROCK PHYS. REV. D 97, 116018 (2018)

116018-8



slightly below Nu ¼ 16.5, while higher-order corrections
become progressively larger as Nf decreases toward the
lower end of the NACP. In [34–37] these scheme-
independent calculations were used to derive estimates
of the value of Nf at the lower end of the NACP. The
method was to use the unitarity lower bound DO ≥ 1 for a
Lorentz-scalar operator O in a conformal field theory [49].
From the basic definition (1.1), taking into account that the
free-field (classical) dimension of ψ̄ψ is Dψ̄ψ ;cl: ¼ 3, there
follows the upper bound γψ̄ψ ;IR ≤ 2. Combining this with
the above-mentioned monotonicity results for the scheme-
independent calculation of γψ̄ψ ;IR yielded the estimate
[34–37] that the conformal non-Abelian Coulomb phase
extends from Nu ¼ 16.5 down to slightly above Nf ¼ 8, so
the maximal value of Δf in this NACP, is ðΔfÞmax ≃ 8.
As was done for γψ̄ψ ;IR and β0IR in previous works

[33–35,37], we may estimate the accuracy of these

OðΔ3
fÞ series calculations of γ

ð1
2
;0Þ;þ

B and γ
ð1
2
;0Þ;−

B in several
ways. The first is to plot the various truncations to OðΔp

f Þ
with p ¼ 1, 2, 3 as functions of Δf, or equivalently, Nf in
the conformal regime (non-Abelian Coulomb phase) and
ascertain how close the curves are to each other. As

expected, the curves of γ
ð1
2
;0Þ;þ

B , calculated to the higher
two orders, OðΔ2

fÞ and OðΔ3
fÞ, remain close to each other

over a larger range, extending to lower Nf, than the
corresponding curves calculated to the lower two orders,
OðΔfÞ and OðΔ2

fÞ. A similar comment applies to the

corresponding curves of γ
ð1
2
;0Þ;−

B .
We recall that if a function fðzÞ is analytic at z ¼ 0 and

thus has a Taylor series fðzÞ ¼ P∞
n¼1 snz

n, then the ratio
test states that the series converges to the function fðzÞ if
jzj < z0, where

z0 ¼ lim
n→∞

jsnj
jsnþ1j

: ð4:14Þ

Of course, even if these series expansions in powers of Δf

were Taylor series, it would not be possible to actually
calculate the limit (4.14), since we have only the first few
coefficients. Furthermore, the Δf expansion is not generi-
cally expected to be a Taylor series, because the properties
of the theory change qualitatively as Nf increases through
Nu and the theory becomes IR-free instead of UV-free.
Nevertheless, a calculation of the first few ratios can give a
rough idea of the accuracy of a truncation of the series to a
given order. Accordingly, this was carried out for γψ̄ψ ;IR and
β0IR in [33–38]. It was found that the series expansions for
γψ̄ψ ;IR toOðΔ4

fÞ and β0IR toOðΔ5
fÞwere reasonably accurate

over a substantial portion of the NACP.
It is thus worthwhile to carry out the analogous calcu-

lation of ratios here for γ
ð1
2
;0Þ;�

B . We find

κ
ð1
2
;0Þ;þ

1

κ
ð1
2
;0Þ;þ

2

¼ 21.27 ð4:15Þ

κ
ð1
2
;0Þ;þ

2

κ
ð1
2
;0Þ;þ

3

¼ 19.89 ð4:16Þ

κ
ð1
2
;0Þ;−

1

κ
ð1
2
;0Þ;−

2

¼ 14.75 ð4:17Þ

and

κ
ð1
2
;0Þ;−

2

κ
ð1
2
;0Þ;−

3

¼ 20.16: ð4:18Þ

These ratios are all substantially larger than ðΔfÞmax ≃ 8,
indicating that the scheme-independent series expansions

for γ
ð1
2
;0Þ;�

B to OðΔ3
fÞ may be reasonably accurate over a

substantial part of the NACP for this SU(3) theory.

V. UNITARITY BOUNDS ON ANOMALOUS
DIMENSIONS OF BARYONIC OPERATORS

Since our scheme-independent series expansions for
baryon operators apply at an infrared fixed point in the
non-Abelian Coulomb phase, where the theory is confor-
mally invariant, it is of interest to study how the resultant
anomalous dimensions compare with the unitarity bounds
on a conformal field theory. In general [49], for an operator
O characterized by Lorentz spins ðj1; j2Þ, unitarity in a
conformal field theory requires that the full scaling dimen-
sion DO is bounded below according to

DO ≥ j1 þ j2 þ 1: ð5:1Þ

For our case of SU(3), the free-field dimension of a baryon
operator is DB;free ¼ 3ð3=2Þ ¼ 9=2, so, with Eq. (1.1), the
lower bound (5.1) implies the upper bound on the anoma-
lous dimension

SUð3Þ∶ γðj1;j2ÞB ≤
7

2
− ðj1 þ j2Þ: ð5:2Þ

Specifically, for the various operators considered here
(suppressing �),

γ
ð1
2
;0Þ

B ≤ 3 ð5:3Þ

γ
ð3
2
;0Þ

B ≤ 2 ð5:4Þ

and
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γ
ð1;1

2
Þ

B ≤ 2: ð5:5Þ

For the present theory with gauge group SU(3) and Nf

fermions in the fundamental representation, the previous
work in [34–37] led to the inference that the lower end of
the NACP occurs at Nf;cr around 8-9. In Fig. 1 and Fig. 2,
one can see that our scheme-independent calculations of

γ
ð1
2
;0Þþ

B and γ
ð1
2
;0Þ−

B to OðΔ3
fÞ are well below the upper bound

of 3 in (5.3). Our results for γ
ð3
2
;0Þþ

B and γ
ð1;1

2
Þ−

B are negative,
so they obviously also satisfy the respective upper bounds
(5.4) and (5.5).
The fact that these baryon anomalous dimensions, as

calculated to OðΔ3
fÞ, do not saturate their respective

unitarity upper bounds as Nf decreases toward the lower
end of the non-Abelian Coulomb phase is reminiscent of
the situation for an N ¼ 1 supersymmetric gauge theory
with gauge group SUðNcÞ and Nf pairs of chiral super-
fields, transforming respectively as the representations R
and R̄ of SUðNcÞ, as studied in [39]. For this super-
symmetric gauge theory, the only composite chiral super-
field for which the anomalous dimension saturates its
unitarity upper bound from conformal invariance as Nf

approaches the lower end of the NACP from above is the
gauge-invariant quadratic chiral superfield, which contains
the ψ̄ψ component field product. In contrast [aside from the
pseudoreal case of SU(2)], a baryonic chiral superfield does
not saturate its unitarity upper bound from conformal
invariance at the lower end of the NACP [39].

VI. SCHEMES FOR ILLUSTRATIVE
CALCULATIONS

In this section we review some background and methods
relevant for our calculations illustrating the scheme inde-
pendence of theΔf series expansions for γψ̄ψ ;IR and β0IR. We
consider several schemes for regularization and renormal-
ization. We first discuss these schemes. Recall that a
common expression that one obtains from loop integrals
performed in d-dimensional spacetime is

Γð2 − ðd=2ÞÞ
ð4πÞd=2

1

Aðd=2Þ−2 ; ð6:1Þ

where ΓðzÞ is the Euler gamma function, and A is
a denominator depending on some external momenta.
Defining ϵ ¼ 4 − d and expanding about ϵ ¼ 0, using
the Taylor-Laurent expansion of ΓðzÞ about a pole at z ¼ 0,

ΓðzÞ ¼ 1

z
− γE þOðzÞ; ð6:2Þ

Eq. (6.1) becomes

1

ð4πÞ2
�
2

ϵ
− γE þ lnð4πÞ − lnAþOðϵÞ

�
; ð6:3Þ

where

γE ¼ lim
n→∞

�Xn
k¼1

1

k
− ln n

�
≃ 0.5772157: ð6:4Þ

In the minimal subtraction scheme MS [14], one subtracts
the pole term, 2=ϵ. In the modified minimal subtraction
scheme MS [13], one subtracts the pole term and also
the two following terms, namely the combination
2=ϵ − γE þ lnð4πÞ. Both the MS and MS schemes are
mass-independent and have the appeal that the beta
function and anomalous dimensions of gauge-invariant
operators are gauge-invariant. As was noted above, the
calculations of [33–38,40,41] used this scheme, although
the resulting Δf expansions were proved to be scheme-
independent.
In addition to the MS scheme used in the previous work

[34–38,40], the schemes that we use for our present
illustrative demonstrations of scheme independence of
Δf expansions are the following:
(1) the modified renormalization-invariant scheme (RI0)

[63,64],
(2) the momentum subtraction scheme MOMggg de-

fined by focusing on the triple-gluon vertex [29,70],
(3) the momentum subtraction scheme MOMh defined

by focusing on the gluon-ghost-ghost vertex [29,70],
(4) themomentumsubtraction schemeMOMqdefined by

focusing on the gluon-fermion-fermionvertex [29,70]
(indicated with the subscript q for “quark”), and

(5) the minimal momentum subtraction (mMOM)
scheme [65,68].

We write the conventional expansion of γψ̄ψ as

γψ̄ψ ¼
X∞
l¼1

clal; ð6:5Þ

where the cl are the l-loop coefficients and, where no
confusion will result, we set cl ≡ cψ̄ψ ;l. The one-loop
coefficient, c1 ¼ 6Cf, is scheme-independent, while the cl
with l ≥ 2 are scheme-dependent [44]. The evaluation of
the n-loop truncation of (6.5) at the IRFP is obtained by
substituting α ¼ αIR;nl and is denoted γIR;nl.
Concerning the beta function (1.2), the one-loop coef-

ficient, b1 [3], is scheme-independent. In mass-independent
schemes, the two-loop coefficient, b2 [4], is also indepen-
dent of the specific scheme [44]. We have mentioned above
the calculations of b3 [11], b4 [12], and b5 [16,17] in the
MS scheme. As noted, the cl were calculated to four-loop
order [26] and to five-loop order in [27], in the MS
scheme [78].
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The bl and cl have been calculated to four-loop order in
the RI0 scheme [64] and the minimial MOM (mMOM)
scheme [68]. Additional calculations in generalized MOM
schemes were presented in [70]. A comparison of conven-
tional calculations of αIR;nl and γIR;nl was given up to the
four-loop order in [20,21,23,25]. An important aspect in
which the RI0 and MOM schemes differ with the MS
scheme is that beyond the lowest orders, the bl and cl are
gauge-dependent. We consider a covariant gauge-fixing
term so that the gauge part of the Lagrangian is [with our
ðþ−−−Þ metric]

Lgauge ¼ −
1

4
Fa
μνFμν;a −

1

2ξ
ð∂μAa

μÞ2 þ F:P:; ð6:6Þ

where

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν ð6:7Þ

is the field-strength tensor, with a ¼ 1; ::; oðGÞ is the group
index, oðGÞ is the order of the gauge group, fabc are the
structure constants of the Lie algebra of G, and F.P. denote
Faddeev-Popov terms. The gauge field propagator is thus

Δab
μνðkÞ ¼ −

δab½gμν − ð1 − ξÞ kμkνk2 �
k2

: ð6:8Þ

The Landau gauge corresponds to ξ ¼ 0, where this
propagator is transverse, i.e., kμΔab

μνðkÞ ¼ 0. In these other
schemes, the gauge parameter ξ also depends on the
Euclidean scale μ, and so there is an associated function
that measures this dependence, namely

βξ ¼
dξ

d ln μ
: ð6:9Þ

We write the series expansion for this in powers of the
coupling as

βξ ¼ −2ξ
X∞
l¼1

bξ;lal: ð6:10Þ

Evidently, the situation is the simplest in Landau gauge,
since in this gauge, βξ ¼ 0 and the gauge parameter is
independent of the Euclidean scale. The value of α at the IR
zero of βα and the resultant value of γψ̄ψ ;IR were calculated
in Landau gauge at the three-loop level in the RI0 scheme in
[20] and in the mMOM scheme in [21], and at the four-loop
level in [23]. We recall the procedure for this calculation.
One looks for a physically acceptable simultaneous sol-
ution to the two coupled equations

βαðα; ξÞ ¼ 0; βξðα; ξÞ ¼ 0; ð6:11Þ

where we have explicitly indicated the dependence of βα
and βξ on the variables α and ξ. Because βξ is proportional

to ξ, one is always guaranteed to find a solution with ξ ¼ 0.
That is, if ξ ¼ 0 at some value μ ¼ μ0, then ξ ¼ 0 for all μ.
This was the basis for the choice of Landau gauge in
Refs. [20,21,23]. As was discussed in [23], there also exist
fixed points for which ξ ≠ 0, but these solutions are on a
different footing from the ξ ¼ 0 solution. As was noted in
[20], at the two-loop level in the mMOM scheme, there is
also an IRFP with ξ2l ¼ −3, and calculations at the three-
loop level exhibit an IRFP with ξ3l near to this value (see
also [79]). A list of the bl, bξ;l, and cl for general ξ, with
1 ≤ l ≤ 3 in the mMOM scheme was given in [20] and
a list of the bl, bξ;l, and cl for ξ ¼ 0, i.e., Landau gauge,
with 1 ≤ l ≤ 4 was given in [23] for the RI0 and mMOM
schemes. We will also remark on the general case in which
ξ is not necessarily zero. The corresponding expressions for
the bl, cl, and bξ;l are too long and complicated to include
here; they have been given, for example, as external files
with the arXiv version of [70]. An important difference
between the cl in the RI0 scheme and the bl and cl in the
MOM schemes, as contrasted with the bl and cl in the MS
scheme is that in the non-MS schemes, these coefficients
depend on a number of additional mathematical functions
and constants. For example, as was discussed in [25], at the
four-loop level, in addition to the dependence on the group
invariants CA, Cf, and Tf, the bl and cl in the MS, RI0, and
mMOM schemes contain dependence on the quantities

fQ; ζ3; ζ5g: ð6:12Þ

For the following, note that ζm with even m ¼ 2r are
proportional to π2r:

ζ2r ¼
ð−1Þrþ1B2rð2πÞ2r

2ð2rÞ! ; ð6:13Þ

where the Bn are the Bernoulli numbers, defined by

t
et − 1

¼
X∞
n¼0

Bn
tn

n!
; ð6:14Þ

so listing π2 is equivalent to listing ζ2, etc. In contrast to
Eq. (6.12), even at the lower, three-loop level, bl and cl in
the other MOM schemes have a considerably more com-
plicated form, since they depend on the following set of
mathematical functions and constants:

�
Q; π2; ζ3; π4;ψ 0ð1=3Þ;ψ 000ð1=3Þ; s2ðπ=kÞ; s3ðπ=kÞ;

π lnð3Þffiffiffi
3

p ;
π lnð3Þ2ffiffiffi

3
p ;

π3ffiffiffi
3

p
	
; ð6:15Þ

where here k takes the values k ¼ 2 and k ¼ 6; ψðsÞ is the
Euler ψ function, ψðsÞ¼dln½ΓðsÞ�=ds, ψ 0ðsÞ ¼ dψðsÞ=ds;
and snðzÞ is defined as
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snðzÞ ¼
1ffiffiffi
3

p Im
�
Lin

�
eizffiffiffi
3

p
��

; ð6:16Þ

where LinðzÞ is the polylogarithm function,

LinðzÞ ¼
Z

z

0

Lin−1ðzÞ
t

dt ð6:17Þ

with Li0ðzÞ ¼ z=ð1 − zÞ and Li1ðzÞ ¼ − lnð1 − zÞ. For
jzj ≤ 1, this function has the series representation

LinðzÞ ¼
X∞
j¼1

zj

jn
; n ¼ 2; 3;…: ð6:18Þ

As noted above, the calculation of the coefficient dn in
Eq. (1.11) requires, as input, the l-loop coefficients bl with
1≤l≤n. The calculation of the coefficient κn in Eq. (1.8)
requires, as inputs, the values of the bl for 1 ≤ l ≤ nþ 1,
and the l-loop coefficients cl in Eq. (6.5) with 1 ≤ l ≤ n.
In addition to our explicit demonstration that different

schemes yield the samevalues for the coefficientsdn and κn in
the scheme-independent expansions (1.11) and (1.8), our
work shows that the full physical content of these scheme-
independent coefficients is derived from the use of the
simplest scheme, namely MS. Thus, there is a huge cancella-
tion of the additionalmathematical functions and quantities in
(6.15) in the scheme-independent coefficients dn and κn. On
the one hand, one may take the view that this had to be true,
since a rigorous proof was given already that these coef-
ficients are scheme-independent and their values were there-
fore already completely determined from the calculations in
[33–37] in the MS scheme. But nevertheless, our explicit
demonstration of the cancellation is quite a striking result.

VII. SCHEME-INDEPENDENT
EXPANSION OF γψ̄ψ;IR

The coefficients κn in the scheme-independent expansion
of γψ̄ψ ;IR in powers of Δf, Eq. (1.8), were calculated for a
gauge groupGwithNf fermions in a representation R up to
n ¼ 3 in [33] and up to n ¼ 4 in [36,37]. [The coefficient
κ4 was calculated for G ¼ SUð3Þ and R ¼ F in [34].] For
example, the first two of these coefficients are

κ1 ¼
8CfTf

CAð7CA þ 11CfÞ
ð7:1Þ

and

κ2 ¼
4CfT2

fð5CA þ 88CfÞð7CA þ 4CfÞ
3C2

Að7CA þ 11CfÞ3
: ð7:2Þ

For the present work we have explicitly verified that we
obtain the same results for these κn using the RI0, mMOM,
and other MOM schemes. We have carried out this check to
the highest order possible with existing inputs available in
these schemes, i.e., to order n ¼ 3.

VIII. SCHEME-INDEPENDENT
EXPANSION OF β0IR

The derivative β0IR is an important physical quantity
characterizing the conformal field theory at αIR. For general
gauge group G with Nf fermions in a general representa-
tion R, the scheme-independent coefficients dn were
calculated up to n ¼ 4 in [35] and up to n ¼ 5 in
[36,37]. The first two nonzero coefficients are

d2 ¼
25T2

f

32CAð7CA þ 11CfÞ
ð8:1Þ

and

d3 ¼
27T3

fð5CA þ 3CfÞ
33C2

Að7CA þ 11CfÞ2
: ð8:2Þ

We have explicitly verified that we obtain the same results
for dn with the RI0, mMOM, and other MOM schemes. We
have carried out this check to the highest order possible
with existing inputs available in these schemes, i.e., to
order n ¼ 4.

IX. CONCLUSIONS

In conclusion, in this paper we have presented the first
analytic scheme-independent expansions to OðΔ3

fÞ for the
anomalous dimensions of a variety of (gauge-invariant)
baryon operators at an infrared fixed point of an asymp-
totically free SU(3) gauge theory with Nf fermions in the
fundamental (triplet) representation. Furthermore, for an
asymptotically free theory with a general gauge group G
and Nf fermions in a general representation R of G, we
have given explicit illustrative demonstrations of the
scheme independence of γψ̄ψ ;IR and β0IR at an IRFP.
Although this scheme independence had been proved
rigorously earlier, it is worthwhile to see how different
schemes yield identical results for the coefficients in the
scheme-independent expansions. We have carried out these
calculations for the RI0 and several MOM schemes.
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