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Abstract We consider simultaneous explanations of the
electron and muon g − 2 anomalies through a single Z ′
of a U (1)′ extension to the Standard Model (SM). We first
perform a model-independent analysis of the viable flavour-
dependent Z ′ couplings to leptons, which are subject to var-
ious strict experimental constraints. We show that only a
narrow region of parameter space with an MeV-scale Z ′
can account for the two anomalies. Following the conclu-
sions of this analysis, we then explore the ability of different
classes of Z ′ models to realise these couplings, including
the SM+U (1)′, the N -Higgs Doublet Model+U (1)′, and a
Froggatt–Nielsen style scenario. In each case, the necessary
combination of couplings cannot be obtained, owing to addi-
tional relations between the Z ′ couplings to charged leptons
and neutrinos induced by the gauge structure, and to the strin-
gency of neutrino scattering bounds. Hence, we conclude
that no U (1)′ extension can resolve both anomalies unless
other new fields are also introduced. While most of our study
assumes the Caesium (g − 2)e measurement, our findings
in fact also hold in the case of the Rubidium measurement,
despite the tension between the two.
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1 Introduction

The excellent agreement between the Standard Model (SM)
and experimental observations makes the persisting anoma-
lies all the more interesting. One long-standing discrepancy
between theory and experiment is that of the anomalous mag-
netic dipole moment of the muon, aμ ≡ (g − 2)μ/2, which
has recently been updated to a 4.2σ tension with the SM
[1–3],1

�aμ ≡ aexp
μ − aSM

μ = (2.51 ± 0.59) × 10−9 . (1)

Further data from the ongoing Muon g-2 experiment at Fer-
milab is expected to reduce the uncertainty by a factor of
four [5], and the future J-PARC experiment forecasts similar
precision [6], both of which should clarify the status of this
disagreement. To add to the puzzle, an anomaly emerged in
the electron sector due to (a) an improved measurement of

1 We note that the significance of this anomaly has been questioned
by a lattice QCD calculation of the leading-order hadronic vacuum
polarisation contribution to aSM

μ [4].
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fine-structure constant, αem, using Caesium atoms [7], from
which the value of (g − 2)e may be extracted, and (b) an
updated theoretical calculation [8]. This yielded a discrep-
ancy in the electron anomalous magnetic moment of

�aCs
e ≡ aexp

e (Cs) − aSM
e = (−8.7 ± 3.6) × 10−13 , (2)

which constitutes a 2.4σ tension with the SM [9]. Notably,
this has the opposite sign to the muon anomaly, Eq. (1).
Recently, however, a new measurement of the fine-structure
constant using Rubidium atoms gave [10]

�aRb
e ≡ aexp

e (Rb) − aSM
e = (4.8 ± 3.0) × 10−13 . (3)

This is a milder anomaly, the discrepancy between experi-
ment and SM being only 1.6σ , and it is in the same direc-
tion as the muon anomaly. Remarkably, the Caesium and
Rubidium measurements of αem disagree by more than 5σ ,
therefore it is difficult to obtain a consistent picture of aexp

e .
Given this uncertain status quo, in this paper we choose to

focus predominantly on the earlier Caesium result, Eq. (2),
and only discuss the Rubidium result in Sect. 5 (which, how-
ever, is the first Z ′ analysis of this new experimental situation,
to the best of our knowledge). The presence of dual anomalies
in the electron and muon sectors motivates an exploration of
new physics models that could simultaneously explain both.
Moreover, the relative size and sign of these anomalies poses
an interesting theoretical challenge.

Let us consider these issues. Firstly, the opposite signs of
�aμ and �aCs

e (from now on we will drop the superscript)
immediately excludes all new physics models whose contri-
bution to the magnetic dipole moment of charged leptons has
a fixed sign. The dark photon [11], for instance, generates
�ae,μ > 0, and therefore cannot satisfy the dual anoma-
lies. Secondly, the contribution from flavour-universal new
physics to (g − 2) is generally expected to be proportional
to the mass or mass squared of the lepton (see e.g. [12,13]),
whereas from Eqs. (1) and (2) we find

m2
e

m2
μ

�
∣
∣
∣
∣

�ae
�aμ

∣
∣
∣
∣
∼ 3.5 × 10−4 � me

mμ

. (4)

These considerations, along with numerous low scale con-
straints discussed below, lead to significant model-building
obstacles. So far, various attempts have been made to
explain the anomalies, with different solutions relying on
the introduction of new scalars, SUSY, leptoquarks, vector-
like fermions, or other BSM mechanisms, see e.g. [9,14–46].
In this paper, we study a rather unexplored possibility that
a (light) Z ′ boson with flavour-dependent lepton couplings
accounts for both anomalies.

A new gauge boson of a U ′(1) symmetry is a well-
motivated candidate for many BSM models. It has long been

considered a possible explanation of the (g − 2)μ anomaly
[47] (see also e.g. [48–52]), thus it seems important to inves-
tigate if a U (1)′ extension of the SM can at the same time
also resolve the (g − 2)e anomaly. One immediate advan-
tage of Z ′ models is that it is possible to generate positive
or negative contributions to the magnetic moment simply by
adjusting the relative size of its vector and axial couplings to
fermions, as will be shown below.

We focus on the Z ′ in mass rangeme < mZ ′ < mμ, which
is a natural consequence of various experimental bounds
(more on this in Sects. 2.2 and 3). A Z ′ in the MeV mass
range has been of interest (see e.g. [53–58]) due to hints of
a new 17 MeV boson to explain anomalies in nuclear transi-
tions observed by the Atomki collaboration, both in Beryl-
lium [59], and more recently Helium [60]. Models with MeV-
scale Z ′ also have the capacity to generate �Neff � 0.2 in
the early Universe [61], thereby somewhat ameliorating the
Hubble tension [62]. The question then is whether the sce-
nario survives the wealth of sensitive experiments, in partic-
ular for mZ ′ ∼ O(MeV). To answer this, we first perform a
model-independent analysis to identify regions in the param-
eter space of Z ′ models that can successfully explain both the
(g − 2) anomalies. This to our knowledge is the first study
of this scenario in such a general and model-independent
way, although a specific Z ′ model was previously studied in
the context of the dual (g − 2) anomalies and found not to
work [63]. Note that we are focusing on the minimal scenario
where the additional contribution to the anomalous magnetic
moments comes solely from the Z ′, which is different from
some of the other models studied in literature that include a Z ′
plus other new fields (e.g. [39,44,63]). The conclusions from
our model-independent analysis serve as a powerful tool in
checking the viability of various specific Z ′ models, and we
hope that it will be useful for more complex model-building.

The layout is as follows: Sect. 2 introduces our conven-
tions for the effective Z ′ couplings and potential origins of
these couplings. We study experimental constraints on these
couplings in Sect. 3, summarising our findings in Figs. 2
and 3. In light of the array of experiments probing light
vector bosons in the near future, we discuss the discovery
potential of such a Z ′ in Sect. 3.3. Equipped with the model-
independent analysis, in Sect. 4 we consider several models
and the challenges they face. We demonstrate that some of
the simplest and most common classes of U (1)′ extensions
of the SM cannot explain the two anomalies simultaneously.
Finally, in Sect. 5 we address the Rubidium (g−2)e anomaly
and study the capacity of a Z ′ model to explain it in conjunc-
tion with the (g − 2)μ anomaly.
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2 Formalism of a light Z′

2.1 Effective Z ′ couplings

In the most general framework, a new Z ′ with family-
dependent charged lepton couplings leads to flavour vio-
lation. However, in this paper we assume that the charged
lepton Yukawa matrix and the matrix of charged lepton Z ′
couplings are simultaneously diagonalisable and therefore
the Z ′ has only lepton-flavour conserving couplings. Various
flavour models predict such scenarios (see, for instance, [64])
and in this way we avoid stringent limits on flavour-violation,
such as from μ → eγ [65]. Flavour-conserving couplings of
fermions to the Z ′ can be described through L = −Z ′

μ J
μ

Z ′ ,
with gauge current,

Jμ

Z ′ =
∑

f

ψ̄ f γ
μ(CL f PL + CR f PR)ψ f . (5)

Rewriting the charged lepton interactions in terms of vector
and axial couplings, CV (A) f = (CR f ± CL f )/2, gives

L ⊃ −
∑

α=e,μ,τ

[

�αγ μ (CVα + CAαγ5) �α

+ Cναναγ μPLνα

]

Z ′
μ . (6)

It is typically a simple exercise to derive these effective cou-
plings for a given model. For now we assume that the differ-
ent effective couplings are unrelated. In models with no extra
fermions, there are three different contributions to the cou-
plings of SM fermions to the Z ′ arising from a U (1)′ gauge
group. These are:

• Charge assignment of the fermion under the U (1)′
(flavour dependent).

• Gauge-Kinetic Mixing (GKM) arising from the
Lagrangian term LGKM = − ε

2 B
′
μνX

′μν , where B ′
μν and

X ′
μν are the field strength tensors of hypercharge and

U (1)′, respectively (flavour universal).
• Z − Z ′ mass mixing, which is generated if the SM Higgs

sector is charged under the U (1)′ (flavour universal).

The combination of these three contributions can generate
variety of vector and axial couplings. As explained in the
introduction, in this work we are concerned with exploring
the possibility that a single Z ′ accounts for the (g − 2)e,μ
discrepancies. We will firstly survey the parameter space in
a model-independent way in terms of the effective lepton-
Z ′ couplings defined in Eg. (6). The conclusions from this
analysis are then used in Sects. 4 and 5 to study whether
these couplings can be realised in a few specific classes of
Z ′ models.

Fig. 1 The one-loop Z ′ contribution to the anomalous magnetic
moment of a charged lepton

2.2 Contribution to the charged lepton anomalous magnetic
moment

The Z ′ modifies the magnetic moment of a charged lepton
via the one-loop diagram in Fig. 1. In the notation of Eq. (6),
the contribution for a charged lepton of flavour α is [66]

�aα = m2
α

4π2m2
Z ′

(

C2
Vα

∫ 1

0

x2(1 − x)

1 − x + x2m2
α/m2

Z ′
dx

−C2
Aα

∫ 1

0

x(1 − x)(4 − x) + 2x3m2
α/m2

Z ′

1 − x + x2m2
α/m2

Z ′
dx

)

.

(7)

In the limits mα � mZ ′ and mα 	 mZ ′ , this simplifies to

�aα �
{

m2
α

(

C2
Vα − 5C2

Aα

)

/(12π2m2
Z ′) , mα � mZ ′ ,

(m2
Z ′C2

Vα − 2m2
αC

2
Aα)/(8π2m2

Z ′) , mα 	 mZ ′ .

(8)

We see that the way to achieve correct signs for the con-
tributions to muon and electron anomalies (�ae < 0 and
�aμ > 0) is with a non-zero axial coupling for the electron
(CAe) and vector coupling for the muon (CVμ).

We remark that it is impossible to satisfy both the anoma-
lies simultaneously if we demand flavour universality, i.e.
CVe = CVμ and CAe = CAμ. This is straightforward to
see from Eq. (8) when mZ ′ < me or mZ ′ > mμ. For the
remaining case of me < mZ ′ < mμ, solving the anomalies
demands |CAe| � 0.45 |CVe| and |CVμ| 	 |CAμ|, which is
inconsistent with flavour universality.2 This is precisely why
we consider models with flavour-dependent Z ′ couplings in
this paper.

We may now make some broad arguments about preferred
mZ ′ values. In the case of a light Z ′ withmZ ′ � me, even the
smallest effective couplings required to explain the anoma-
lies, accomplished by settingCVe = CAμ = 0, lead to orders

2 It is interesting to note that if the anomalies had the opposite sign,
i.e. had the experimental data required �ae > 0 and �aμ < 0, then
CVe = CVμ and CAe = CAμ could have given a viable solution.
Thus, neither the different sign nor the unusual ratio of the anomalies
necessarily implies that flavour non-universal physics must be present.
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of magnitude between CVμ and CAe, which could only be
accounted for by either an orders of magnitude difference
in their charges under the U (1)′ or a very fine-tuned can-
cellation of the flavour-dependent part of CAe against the
flavour-universal contribution. We will see in Sect. 3 that
such a light Z ′ with couplings sufficiently large that it satis-
fies the anomalies is in any case excluded by cosmological
constraints. Therefore, we will focus on mZ ′ > me.

For the heavy regime, i.e. mZ ′ 	 mμ, two arguments
follow. Firstly, considering the muon sector, in the region
2mμ < mZ ′ ≤ 10 GeV, the new vector boson is excluded by
BaBar from its decay into two muons [67], while for 5 GeV
≤ mZ ′ ≤ 70 GeV it is similarly excluded by CMS [68]. Turn-
ing to the electron sector, we note that for mZ ′ � 10 GeV, the
axial coupling to electrons required to satisfy the anomaly in
electron sector is |CAe| � 0.1. With such large couplings to
electrons, any GeV-scale object would have likely showed a
signal at previous colliders, such as SLAC RF linac, LEP and
LHC runs. A heavy Z ′ solution to the anomalies therefore
seems improbable given these considerations. Finally, in the
intermediate range, me < mZ ′ < mμ, the values of CAe and
CVμ required to explain the two anomalies are of a similar
order of magnitude, which lends this mass range to poten-
tially more natural, i.e. less fine-tuned, solutions and so we
will focus on this regime in the remainder of this paper.

3 Model-independent analysis of constraints on Z′
couplings

The effective couplings introduced in Eq. (6) are subject to a
wide variety of constraints, which we shall now discuss. In
general, the Z ′ could couple to all SM fermions, and indeed
there are some rather stringent bounds on Z ′ couplings to
quarks. However, we will focus on Z ′ interactions with elec-
trons and muons, those being the critical ones for the expla-
nation of the (g − 2)e,μ anomalies. Since lepton doublets
contain both charged leptons and neutrinos, non-zero effec-
tive couplings to charged leptons generally imply effective
couplings to neutrinos, which have their own experimental
constraints. This will be borne out in the example models
considered in Sect. 4.3

For a given explicit model, there may be many additional
constraints. These can arise in several different ways. Firstly,
as mentioned just above, the Z ′ may also couple to the tau
or to quarks. Bounds on Z ′ couplings to light quarks are
discussed for instance in [53,54,56–58]. Secondly, Z − Z ′

3 The dark photon is a notable counter-example, with interactions solely
generated through gauge-kinetic mixing, where CVα �= 0 while CAα =
Cνα = 0. However, the dark photon does not successfully explain the
(g − 2)e,μ anomalies because, as is easily seen from Eq. (7), CAe = 0
implies �ae ≥ 0.

mixing leads to a shift in Z boson couplings, which have
been very precisely measured at LEP [69], as well as other
electroweak-scale parameters.

While there may be such model-dependent bounds, the
goal of this section is to study the viability or otherwise of a Z ′
solution to the two anomalies based on leptonic Z ′ couplings
alone. The plethora of experimental constraints are described
below, with our results summarised in Figs. 2 and 3 .

3.1 Couplings to electrons

We first outline the most important limits on the effective
couplings of the Z ′ to electrons (CVe, CAe) and electron
neutrinos (Cνe).

3.1.1 Cosmological and astrophysical bounds

MeV-scale states with even very small interactions with elec-
trons or neutrinos (effective couplings as tiny as |C | ∼ 10−9)
can remain in thermal contact with the SM plasma during Big
Bang Nucleosynthesis (BBN) and thereby significantly alter
early universe cosmology. Bounds on the masses of elec-
trophilic and neutrinophilic vector bosons from various cos-
mological probes were calculated in [70]. Combining BBN
and Planck data, they found at 95.4% CL that an electrophilic

Z ′, i.e.
√

C2
Ve + C2

Ae 	 |Cνe|, is constrained to have a mass
of at least 9.8 MeV. From Eqs. (2) and (8), we see that
for mZ ′ � MeV, the effective electron-Z ′ coupling should
be |CAe| > 10−6, so the BBN bounds do apply here. The
limit is slightly weakened for larger |Cνe|, therefore we take
mZ ′ ≥ 9.8 MeV as a conservative lower bound on our Z ′
mass.4

The Z ′ also affects various aspects of stellar evolution. The
most critical of these for a MeV-scale Z ′ is white dwarf cool-
ing [71]. The Z ′ mediates an additional source of cooling, via
e+e− → Z ′ → νν̄. Since the Z ′ mass under consideration is
much larger than white dwarf temperatures, TWD ∼ 5 keV,
this can be treated as an effective four-fermion interaction
at the scale TWD with the Z ′ integrated out. Motivated by
the good agreement between predictions and observations of
white dwarf cooling, the benchmark set by [71] is that new
sources of cooling should not exceed SM ones. We therefore
impose
√

(C2
Ve + C2

Ae)(C
2
νe + C2

νμ + C2
ντ )

m2
Z ′

≤ GF , (9)

4 This bound can in principle be avoided by sufficiently light mZ ′ .
When mZ ′ � 100 eV, the (g − 2)e anomaly can be explained with
|CVe|, |CAe|, |Cνe| < 10−9. However, we will see in Sect. 3.2 that such
a light Z ′ solution to the (g − 2)μ discrepancy is ruled out by similar
cosmological considerations.
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as an approximate bound. When plotting this constraint in
Fig. 2, we assume that only CVe, CAe and Cνe are non-zero.

Finally, we note that a Z ′ which couples to neutrinos
can also be an additional source of energy loss for super-
novae, if it is able to escape the supernova core. We followed
the formalism in Appendix B of [61] and enforced that the
additional energy loss due to the Z ′ is no greater than the
energy loss in the SM during the first ten seconds of the
supernova explosion. However, for a roughly MeV-scale Z ′
this observation only constrains a band of effective couplings
10−12 � Cνα � 10−7, which is much too small to be relevant
for the anomalies.

3.1.2 Collider and beam dump bounds

A stringent limit on Z ′ interactions with electrons comes
from the BaBar experiment, which searched for a dark pho-
ton, A′, via e+e− → γ A′ with A′ → e+e−. The results
are reported in [72] and probe masses from 20 MeV up
to 10.2 GeV. The bound on ε, the kinetic mixing parame-
ter in the dark photon model arising from the gauge-kinetic
term LGKM ⊃ − ε

2 B
′
μνX

′μν can be converted into a limit

on
√

C2
Ve + C2

Ae. We neglect the statistical fluctuations in
the BaBar bound (cf. Fig. 4 of [72]), opting conservatively to
extrapolate from the most constraining points of the 90% con-
fidence exclusion region and obtain our bound by interpolat-
ing between these. This constraint becomes mildly stronger
with Z ′ mass, with for instance
√

(C2
Ve + C2

Ae)BR(Z ′ → e+e−) � 3(6) × 10−4 , (10)

for mZ ′ � 40(20) MeV. For mZ ′ < 2mμ, the Z ′ is suf-
ficiently light that it decays only to electrons and neutri-
nos. We will see that the couplings to electrons should
generically be much larger than couplings to neutrinos, thus
BR(Z ′ → e+e−) ≈ 1.

The BaBar result alone rules out a vast region of param-
eter space. The smallest axial Z ′ − e coupling required
to satisfy the (g − 2)e discrepancy is given by |CAe| �
9 × 10−6(mZ ′/MeV), as can be seen from Eq. (8) by set-
ting CVe = 0. Then the BaBar bound |CAe| � 3 × 10−4

for mZ ′ � 40 MeV rules out all solutions (notwithstanding
some statistical fluctuations) with a Z ′ heavier than 40 MeV
up to the largest mass probed by the experiment, 10.2 GeV.
This limit only strengthens forCVe �= 0, since a largerCAe is
then required to explain (g−2)e, while at the same time CAe

is more constrained because BaBar bounds the combination√

C2
Ve + C2

Ae.

The KLOE experiment also constrains the Z ′ coupling
to electrons [73]. Although generally weaker than BaBar’s
limit, its exclusion region covers additional parameter space
since the experiment probes masses as small as 5 MeV. For

these low masses, the bound is around
√

(C2
Ve + C2

Ae)BR(Z ′ → e+e−) � 6 × 10−4 . (11)

Beam dump experiments probe the Z ′ couplings to electrons,
since the Z ′ may be produced and detected via e− + Z →
e− + Z ′[→ e+e−], see e.g. [74]. The produced Z ′s should
therefore decay in the dump before they reach the detector.
The best bound comes from NA64 [75], which sets limits on
a Z ′ with masses between 1 MeV and 24 MeV.

A further stringent bound on the parameter space comes
from the precise measurement of parity-violating Møller
scattering at SLAC [76]. For Z ′ masses below around 100
MeV, the bound is independent of mZ ′ and yields [77]

|CVeCAe| � 10−8 . (12)

As indicated above, a tiny CVe is ideal for explaining the
(g− 2)e anomaly while avoiding collider constraints with as

small a value of
√

C2
Ve + C2

Ae as possible. Taking CVe close
to zero is clearly also an efficient way to evade this Møller
scattering limit.

3.1.3 Neutrino scattering bounds

Very strong restrictions on the effective couplings come from
measurements of neutrino-charged lepton scattering [55].
There have been many experiments testing neutrino interac-
tions. Here we study the most relevant ones: TEXONO [78]
Borexino [79], and CHARM-II [80]. These experiments are
known to be among the most constraining in general (see e.g.
[53,55,56,58]), they cover a range of energies and different
neutrino flavours. Let us first consider TEXONO. The typi-
cal energy transfer in a scattering event is ∼ √

meT , where
3 MeV ≤ T ≤ 8 MeV is the electron recoil energy. With
mZ ′ � 10 MeV (as enforced by the limits from cosmology),
we may safely make the assumptionmZ ′ 	 √

meT . The cor-
rection to the SM cross-section of anti-neutrino scattering is
then

σ(νee− → νee−)

σ (νee− → νee−)SM � 1

+ (2.07CVe + 1.39CAe) 1011Cνe

(
MeV

mZ ′

)2

+
(

1.37C2
Ve + 2.62CVeCAe + 1.64C2

Ae

) (

1011Cνe

)2

×
(

MeV

mZ ′

)4

, (13)

following Ref. [55]. Comparing this with the TEXONO mea-
surement, σ(νee− → νee−)exp = (1.08±0.26)×σ(νee− →
νee−)SM [78] puts extremely stringent bounds on the Z ′
effective couplings.
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Borexino measures the scattering of solar neutrinos. The
electron neutrino survival probability is measured as (51 ±
7)%, while the experiment cannot distinguish muon and tau
neutrinos. For simplicity, we therefore assume that 50% of
the scattered neutrinos are electron neutrinos, with 25% each
of muon and tau neutrinos.5 Then the scattering rate induced
by the Z ′ is

σ(νe− → νe−)

σ (νe− → νe−)SM � 1 + 1010
(

MeV

mZ ′

)2

×
[

CVe
(

6.86Cνe − 1.16Cνμ − 1.16Cντ

)

+ CAe
(−8.27Cνe + 2.22Cνμ + 2.22Cντ

) ]

+ 1021
(

MeV

mZ ′

)4 (

1.38C2
Ae+0.81C2

Ve−1.38CVeCAe

)

×
(

2C2
νe + C2

νμ + C2
ντ

)

. (14)

The cross-section including new physics should not deviate
from the SM cross-section by more than about 10% [79,81],
and this restriction sets a strong limit on the parameter space.
Note from Eqs. (13) and (14) that CVe and CAe can both be
large as long as the Cνe,μ,τ are sufficiently small.

3.1.4 Analysis of constraints in the electron sector

We now combine all the constraints discussed above to anal-
yse viable parameter space for the explanation of �ae. Our
results are summarised in Fig. 2. In the plots, effective cou-
plings to muons and taus are set to zero, which is relevant
for the bounds from White Dwarfs and Borexino, cf. Eqs. (9)
and (14) respectively. We first set the neutrino coupling, Cνe,
to zero in Fig. 2a, b to analyse limits solely on the electron
couplings, and plot constraints on the axial electron coupling,
CAe, against the vector boson mass, mZ ′ . We focus on the
axial coupling for two reasons. Firstly, CAe generates the
�ae < 0 required by experiment. Secondly, axial couplings
provide various model-building challenges, see Sect. 4.

For each value of CAe and mZ ′ , in Fig. 2a, b we choose
|CVe| such that the Z ′ loop induces a correction to ae that is
respectively 1σ less than and 1σ greater than the discrepancy
of Eq. (2), i.e. �ae = −12.3 × 10−13 in Fig. 2a and �ae =
−5.1×10−13 in Fig. 2b. This therefore displays the full range
of Z ′ masses and axial couplings which can reduce the ae
anomaly to less than 1σ . Note that the signs of CAe and CVe

are irrelevant for Fig. 2a, b since all constraints in these plots
bound only their absolute values. The blue triangular regions
in the lower right half of Fig. 2a, b correspond to values of

5 This assumption has negligible bearing on our main results since Cνμ

is specifically probed by CHARM-II, as outlined below, and we are not
concerned with Cντ .

CAe andmZ ′ such that it is impossible to generate the desired
deviation in ae, regardless of the value of CVe. The other
shaded regions are excluded by the experimental constraints
discussed above. In both plots there is a thin white strip,
bounded between the blue �ae and yellow Møller exclusion
regions, which represents the allowed parameter space. The
smallness of these allowed regions shows that even before
any model-building considerations are taken into account, it
is rather difficult to satisfy the (g−2)e anomaly while obeying
the copious experimental constraints we have mentioned. In
the white strips, |CVe| < |CAe|. Indeed, since the parity-
violating Møller scattering bound is |CVeCAe| � 10−8, we
find that since |CAe| � 1.3 × 10−4 is needed to explain
the anomalies, we therefore have CVe � 7.7 × 10−5. As the
vector coupling of Z ′ to electron is required to be smaller than
the axial coupling, Eq. 8 for electron is well approximated
by

�ae � −5m2
e C

2
Ae /(12π2 m2

Z ′) . (15)

Following this conclusion, we set CVe = 0 in Fig. 2c, d to
explore the maximum allowed parameter space for the neu-
trino coupling, Cνe , against the mass mZ ′ . Similar to before,
in the left plot, Fig. 2c, we set CAe such that ae is 1σ below
its experimental value, while in the right plot, Fig. 2d, we
set ae to 1σ above it. These values of CAe can be taken from
Eq. (15). We takeCAe > 0 here: if insteadCAe < 0, Fig. 2c, d
look the same but reflected about the x-axis, since all bounds
are invariant under Cνe → −Cνe and CAe → −CAe when
CVe = 0. The Texono and White Dwarf bounds become
apparent in these two plots, however we note that both Møller
scattering and KLOE constraints are satisfied when CVe = 0
and therefore do not appear. A key conclusion from Fig. 2c,
d is that NA64 and BaBar effectively restrict the mass range
of a Z ′ which can satisfy the ae anomaly to within 1σ to be
16 MeV � mZ ′ � 38 MeV. In both cases, Borexino gives
the strongest constraint on neutrino coupling, |Cνe| � 10−5,
more than an order of magnitude smaller than the required
axial coupling.

In summary, it is clear that a Z ′ solution to just the (g−2)e
anomaly alone requires some specific ingredients. In partic-
ular, |CAe| ∼ O(10−4) should be larger than |CVe| and at
least an order of magnitude larger than |Cνe|, while the mass
of Z ′ is constrained to a small window 16 MeV � mZ ′ � 38
MeV.

3.2 Couplings to muons

Now we turn to the bounds on the effective couplings of the
Z ′ to muons and the muon neutrino, namely CVμ, CAμ, and
Cνμ. There are fewer bounds on these than on the couplings
to electrons for a few reasons. One is that electrons, being
stable, are far easier to handle experimentally. Another rea-
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Fig. 2 Constraints on the mass and effective couplings of the Z ′ to the
electron sector. In the upper plots, we have set Cνe = 0 and taken |CVe|
so that the contribution of the Z ′ loop induces a value of ae which is a
1σ below, and b 1σ above the experimental value. The shaded regions
are excluded and in each plot a thin white strip of allowed parameter

space remains, indicated by the red arrow. In the lower plots the allowed
neutrino coupling is shown, with zero vector coupling CVe = 0, and
axial couplingCAe > 0 such that the contribution of the Z ′ loop induces
a value of ae which is c 1σ below, and d 1σ above the experimental
value

son is that we are led to probe Z ′ masses sufficiently light
that they don’t decay into muons. Then, as we have seen,
various experiments constrain CVe,Ae from the absence of
Z ′ → e+e− but cannot similarly constrain CVμ,Aμ from the
absence of the Z ′ → μ+μ− decays as these are already kine-
matically forbidden. Despite this, there remain various strict
limits on Z ′ interactions with muons and muon neutrinos.

3.2.1 Cosmological and astrophysical bounds

When |Cνμ| � 10−9, bounds from BBN and Planck studied
by [70] set a lower limit on the Z ′ mass,mZ ′ � 8.3 MeV. This

is similar to the limit on new electrophilic species outlined
at the start of Sect. 3.1. For |Cνμ| � 10−9, however, it may
seem that lower mZ ′ masses are in principle allowed. For a
light Z ′ (mZ ′ � mμ), a minimum vector coupling to muons
of |CVμ| � 4×10−4 is required to reduce the (g−2)μ tension
to within 1σ . This coupling ensures that the Z ′ was in thermal
equilibrium with the SM at earlier times. After decoupling (at
temperature T ∼ mμ/10), a very light Z ′ would constitute
an extra relativistic species contributing to the expansion rate
of the Universe during neutrino decoupling and BBN, which
took place between 10 keV � T � 2 MeV. In general, we
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therefore consider mZ ′ � 2 MeV to avoid constraints from
measurements of Neff and primordial element abundances.

Additionally, we note that a study of energy loss in super-
novae due to Z ′ − μ interactions by [82] rules out a Z ′ with
coupling |CVμ| � 4 × 10−4 for masses less than O(100)

eV.6 Recall, however, that for mZ ′ � 100 eV, the effective
coupling required to explain the (g − 2)e anomaly must be
greater than 10−9. With an interaction of this size, the BBN
bound on a new electrophilic species dictates that mZ ′ must
be at least in the MeV range.

We can therefore rule out the possibility of an extremely
light Z ′ (i.e.mZ ′ � MeV) being able to explain the two g−2
anomalies. Its mass must consequently be at least 16 MeV, as
we showed from the analysis of constraints on Z ′ couplings
to the electron sector in the previous section.

3.2.2 Neutrino scattering bounds

Several neutrino scattering experiments bound couplings to
muons and muon neutrinos. The most stringent of these are
Borexino and CHARM-II, introduced above. The Borexino
result was given in Eq. (14). The mean (anti)neutrino energy
in the CHARM-II experiment is much larger than the Z ′
masses we consider, with 〈Eν〉 = 23.7 GeV and 〈Eν̄〉 = 19.1
GeV [80], therefore the approximationmZ ′ 	 √

meT which
we used to obtain Eqs. (13) and (14) cannot be used. We apply
the formalism in [55,81] to obtain numerical results, which
enter into Fig. 3 by enforcing that the shift in the neutrino
scattering cross-section induced by the Z ′ is no greater than
6% [55]. We mention that some doubts on the CHARM-II
analysis were presented in [56], however we do not enter into
this discussion.

A Z ′ with couplings to muons and muon neutrinos also
modifies the neutrino trident process, νμN → νμμ+μ−N
[83]. Neglecting the coupling CAμ, since |CAμ| � |CVμ|
is necessary to explain the (g − 2)μ anomaly when mZ ′ �
mμ (see Eq. (8)), the trident cross-section including the Z ′
contribution is [83]

σTrident

σ SM
Trident

� 1 + 5.6 × 105CVμCνμ

+1.3 × 1011C2
VμC

2
νμ log

m2
μ

m2
Z ′

. (16)

This can be compared with the CCFR measurement,
σCCFR/σ SM = 0.82 ± 0.28 [84], to give a constraint.

6 In the models studied in [82], the Z ′ has interactions with both muons
and muon neutrinos. However, at low masses (� MeV) it is the Z ′ −μ

interactions with dominate the bounds, while the Z ′ − νμ interaction
plays a negligible role.

3.2.3 Analysis of constraints in the muon sector

We combine the results of the above constraints in Fig. 3. In
Fig. 3a we plot the allowed regions for the effective vector
coupling of the Z ′ to the muon, CVμ, against the Z ′ mass,
with relevant constraints overlaid, while setting Cνμ = 10−5

and fixing CAμ such that (g − 2)μ is satisfied. The large
white-space shows the parameter space which can explain the
(g−2)μ anomaly and is not excluded. It reflects the fact that
when a light Z ′ couples only to muons, there are few relevant
constraints. |CVμ| can be as large as 0.05 in the mass region
of interest, 16 MeV � mZ ′ � 38 MeV. In purple on the left
of Fig. 3a, c, d is the mass bound mZ ′ � 8.3 MeV from BBN
and Planck data. The pink bounds at the top and bottom of (a)
come from the CCFR neutrino trident measurement, see Eq.
(16). The thin blue line for |CVμ| � 5×10−4 gives the region
for which |CVμ| is too small to reduce the (g − 2)μ tension
to within 1σ , even if CAμ = 0. Then (b) shows contours of
the necessary values of |CAμ| to exactly satisfy the anomaly,
given mZ ′ and CVμ. This can be as large as O(10−3), but
must always be at least factor of a few smaller than |CVμ|.

The bounds on the Z ′ interaction with muon neutrinos
are significantly stronger. Figure 3c and d show bounds
on neutrino couplings from various experiments (we take
Cνe = Cντ = 0). We must invoke couplings to electrons,
since modifications to both neutrino scattering on electrons
and white dwarf cooling necessarily depend on the Z ′ cou-
pling to electrons, as does Z ′ detection at beam dumps. To be
as minimal as possible, we take only non-zeroCAe, assuming
CVe = 0. In (c) CAe > 0 is set (as a function of mZ ′) such
that ae is 1σ below its experimental value, while in (d) it is
set such that ae is instead 1σ above. This allows us to see the
full range of allowed Cνμ. Clearly, its absolute value cannot
be much larger than ∼ 2 × 10−5, which justifies the choice
of Cνμ in plot (a). Taking CAe < 0 instead would only flip
(c) and (d) about the x-axis, since the neutrino scattering and
white dwarf constraints are invariant under CAe → −CAe

and Cνμ → −Cνμ when those are the only non-zero cou-
plings.

3.3 Future discovery potential

Having surveyed the current limits, in this section we will dis-
cuss future experiments which could discover (or preclude)
the low scale Z ′ explanation of (g − 2)e,μ by closing the
allowed parameter space given in Figs. 2 and 3 (keeping
in mind that these were generated assuming the Caesium ae
result). The place to start is with the magnetic dipole moment
anomalies themselves. The two highly inconsistent measure-
ments of αem (from which the value of (g − 2)e is derived)
made in Caesium [7] and Rubidium [10] atoms demand a
third independent experiment to resolve the situation. It is
indeed not even clear whether an anomaly exists. On top

123



Eur. Phys. J. C (2021) 81 :1065 Page 9 of 16 1065

Fig. 3 Constraints on the mass and effective couplings of the Z ′ in the
muon sector. In a we have set Cνμ = 10−5 fixed CAμ so that the aμ

anomaly is exactly satisfied, while in b we show contours of the values
of |CAμ| this corresponds to, as a function of |CVμ| and mZ ′ . In the

bottom two plots we focus on the neutrino couplings, setting CAe > 0
and CVe = 0 such that the contribution of the Z ′ to ae is c 1σ below,
and d 1σ above the experimental value. See text for more details

of this, the Muon g-2 and J-PARC experiments [5,6] are
expected to provide improved measurements of aμ, which is
particularly important given the recent debate about the SM
prediction [4]. Beyond this, there are several future experi-
ments which are expected to test the allowed Z ′ couplings to
charged leptons.

We note first of all that an improved measurement of
parity-violating Møller scattering can never close the param-
eter space, as this bounds the combination |CVeCAe|, which
can always be satisfied by taking one of CVe or CAe to zero
while the other (depending on the sign of the ae anomaly)
explains the discrepancy. Thus, we will not discuss future
experiments in this area.

To fully probe the available space, we require other bounds
to be strengthened. Currently, the lower bound on the Z ′
mass, mZ ′ � 16 MeV, is fixed from NA64’s visible decay
limits. Future NA64 results after the LHC’s Long Shutdown
2 (LS2) should probe masses up to around 20 MeV [85].

For higher Z ′ masses, the most sensitive future experiment
will be Belle-II [86], from the visible dark photon search
mode A′ → ��. With 50 ab−1 luminosity (expected in 2025),
the projected sensitivity is [87]
√

(C2
Ve + C2

Ae)BR(Z ′ → e+e−) � 9 × 10−5. (17)
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An alternative experiment with similar sensitivity is MAGIX
at MESA [88], which is also currently under construction and
expecting results in the next few years.

The combination of NA64 and Belle-II (or MAGIX) could
entirely rule out or discover low scale Z ′ explanations of the
current Caesium (g − 2)e result. Beam dumps (e.g. FASER
[89] and SHiP [90]) are also expected to play a role. This
provides hope that a firm conclusion could be reached within
the next few years.

The MUonE experiment [91] will probe the product of
couplings to electrons and to muons. In this way it is a unique
test of a Z ′ which explains both anomalies, because it is
required to have significant couplings to both leptons. The
experiment is expected to cover a significant portion of the
parameter space which remains open, see [92,93].

Finally, we point out that while there are many dark photon
experiments beyond those listed above, many do not directly
test our framework. There are two reasons for this. Firstly, we
are concerned with the lepton-Z ′ couplings only, so experi-
ments which involve production of the Z ′ though quarks are
not applicable. This includes electron-proton scattering (such
as DarkLight [94]), proton-proton scattering and pion decays
(e.g. NA62 [95]). Secondly, we require visible (Z ′ → ee)
decays of the Z ′, which excludes the invisible-only exper-
iments such as PADME [96], VEPP-3 [97], BDX [98] and
LDMX [99]. Consequently, the available parameter space in
Figs. 2 and 3, and hence the discovery potential, may only
be fully reached by the small number of experiments which
focus on vector bosons produced by leptons and which decay
to e+e−.

4 Viability of specific Z′ models

Having completed our model-independent analysis in Sect. 3,
we now turn to specific realisations of Z ′ models. The ingre-
dients for the simultaneous explanation of the (g−2) anoma-
lies with a single Z ′ are:

1. A light Z ′ in the mass range 16 MeV � mZ ′ � 38 MeV.
2. Axial coupling of the Z ′ to electrons larger than the vector

coupling: |CAe| ∼ [1−3.2]×10−4, |CVe| � 7.7×10−5.
3. Large vector coupling to muons, 5 × 10−4 < |CVμ| �

0.05, and an axial coupling CAμ that is smaller by at least
a factor of a few.

4. Tiny Z ′ couplings to neutrinos: |Cνe, νμ | � 10−5.

We now attempt to realise this hierarchy of couplings in
various classes of Z ′ models, each of which inevitably intro-
duces additional relations between effective couplings. We
will begin with the simplest case of just the SM extended
by a U (1)′. We will then move onto a scenario with addi-
tional Higgs doublets, and finally discuss the viability of a

Froggatt–Nielsen style model, in which the gauge invariance
of the charged lepton Yukawa interactions is relaxed. Note
that in each case the dominant contribution to the shift in
(g − 2)e,μ comes solely from the Z ′.

Before commencing, we also remark that the cancellation
of gauge anomalies is crucial for constructing a consistent
theory. The U (1)′3 and U (1)′grav2 anomalies can always be
satisfied by introducing additional chiral fermions which are
charged under the U (1)′ but sterile with respect to the SM
(in fact one needs at most five [100]). The anomaly cancel-
lation conditions involving SM groups are typically more
challenging to satisfy. However, this section addresses the
primary question of whether it is possible to generate the
desired effective couplings, without delving into how to do
so in an anomaly-free way.

4.1 SM+U (1)′

First consider a minimal Z ′ model, in which the SM is
extended by a gauge U (1)′ and also add a scalar, S, charged
under the U (1)′, whose non-zero VEV, 〈S〉 = vS/

√
2, spon-

taneously breaks the U (1)′ symmetry. We note here that
this unspecified U (1)′ covers in particular the case of gaug-
ing combinations of electron, muon and tau number, i.e.
U (1)xe+yμ+zτ for some x, y, z. Let us establish the formal-
ism, which will also be useful for the subsequent models.

In general there is mixing between U (1)Y and U (1)′, and
the kinetic terms for the pair of U (1)s can be written as

Lkin ⊃ −1

4
B ′

μνB
′μν − 1

4
X ′

μνX
′μν − ε

2
B ′

μνX
′μν , (18)

where X ′
μ is the gauge field associated with U (1)′ and X ′

μν

is the corresponding field strength tensor.
An appropriate rotation and rescaling of fields removes

the mixing (see e.g. [101]),

(
B ′

μ

X ′
μ

)

=
(

1 −ε√
1−ε2

0 1√
1−ε2

)(

Bμ

Xμ

)

, (19)

and leaves the couplings in the covariant derivative in the
form,

Dμ = ∂μ + ig1Y Bμ + i(g̃Y + g′z)Xμ , (20)

where g′ and g1 are the respective U (1)′ and U (1)Y gauge
couplings, and Y and z are the respective charges of the field
under U (1)Y and U (1)′. In the above, we have only kept
terms that are leading order in the kinetic mixing parameter
ε, which is taken to be small. This gives g̃ � −g1ε. Breaking
the EW and U (1)′ symmetries and diagonalising the gauge
boson mass matrix, we move into the basis of mass eigen-
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states, Aμ, Zμ, and Z ′
μ, using

⎛

⎝

Bμ

W 3
μ

Xμ

⎞

⎠ =
⎛

⎝

cw −swcφ swsφ
sw cwcφ −cwsφ
0 sφ cφ

⎞

⎠

⎛

⎝

Aμ

Zμ

Z ′
μ

⎞

⎠ , (21)

where w is the weak-mixing angle, φ is the Z − Z ′ mix-
ing angle, and s (c) denotes sine (cosine). This gauge boson
mixing is given by

tan 2φ � 2z′Hg′e/(swcw)

z′2Hg′2 + (2zSg′vS/v)2 − e2/(s2
wc

2
w)

, (22)

where z′H � g̃/g′ + 2zH , zH (zS) is the U (1)′ charge of
the Higgs (S). Finally, after outlining this procedure, we can
write the effective couplings of SM fermions to the gauge
boson mass eigenstates. We find that the effective couplings
for charged leptons at leading order in g′, g̃ are

CVα � −g̃c2
w + g′

2
(zH (4s2

w − 1) + zLα + zRα) , (23)

CAα � g′

2
(zH + zRα − zLα) , (24)

where zLα (zRα) is the U (1)′ charge of the lepton doublet
(singlet), lLα (eRα).

Here we see from the U (1)′ invariance of the SM charged
lepton Yukawa couplings, L ⊃ −lLYeHeR + h.c., we have
that zLα = zRα + zH . Consequently, CAα = 0 at leading
order in g′, g̃, and therefore |CVα| 	 |CAα|. Under this con-
dition, the Z ′ with mZ ′ > me always induces a positive shift
in ae, cf. Eq. (8), which is the wrong direction for explaining
the Caesium anomaly. The simplest U (1)′ extension of the
SM can therefore be ruled out as a possibility of resolving
both (g − 2)e and (g − 2)μ discrepancies.

4.2 NHDM+U (1)′

We have seen that extending the SM by just a gauge U (1)′
and a scalar does not give us enough freedom to arrange
|CAe| � |CVe|. There are several options to circumvent this
problem, including a) introducing new fermions which mix
with the SM ones, b) extending the Higgs sector, or c) remov-
ing the gauge invariance of the Yukawas via a Froggatt–
Nielsen [102] type set-up. In the case of option (a), our anal-
ysis is not valid because loops involving the new fermions
could also contribute to (g−2)e,μ.7 Here we consider option
(b). This was previously explored e.g. in the context of the
Atomki anomaly [103]. In Sect. 4.3 we will consider option
(c).

7 An attempt to explain both anomalies by introducing a heavy vector-
like fourth family of leptons was made in [63] but was ultimately unsuc-
cessful.

Let us take the type-I 2HDM, wherein all SM fermions
couple to the same Higgs doublet, H2. This choice will not
be important for the following discussion, since we are con-
cerned only with the lepton couplings, thus our discussion is
general. We can also generalise to the case of many Higgs
doublets, see for instance Appendix A of [55]. The key point
is that this set-up modifies Eq. (24) and therefore permits
non-negligible axial couplings.

The kinetic mixing betweenU (1)Y andU (1)′ and the sub-
sequent modification of covariant derivatives is as described
in Eqs. (18)–(20). The neutral gauge boson mass mixing is
modified by the presence of two Higgs fields, H1,2, with
U (1)′ charges z1,2 and VEVs 〈H1,2〉 = (0 , v1,2/

√
2)T ,

where v1 = v cos β and v2 = v sin β. Then the mixing angle
is given by

tan 2φ � 2zH g′e/(swcw)

z2
H2g′2 + (2zSg′vS/v)2 − e2/(s2

wc
2
w)

, (25)

where

zH = z′1c2
β + z′2s2

β , zH2 = z′21 c2
β + z′22 s2

β , (26)

with z′j = g̃/g′ + 2z j for j = 1, 2. Note that in the limit
β → 0 (π), i.e. when only v1 (v2) is non-zero, we recover
the result of Eq. (22) up to zH → z1 (z2). Accounting for the
kinetic and mass mixing, the effective couplings for charged
leptons and neutrinos at leading order in in g′, g̃ are

CVα � zLαg
′ − c2

w g̃ − g′

2

[

(1 − 4s2
w)c2

β z1

+(1 + s2
β − 4s2

ws
2
β)z2

]

(27)

CAα � (z1 − z2)

2
c2
βg

′ (28)

Cνα � − g̃

2
+ g′ (zLα + zH

2

)

, (29)

using that theU (1)′-invariance of the charged lepton Yukawa
couplings demands zRα = zLα − z2. We see that CAα can be
non-zero when z1 �= z2, and that it is flavour-universal. CVα

and Cνα , on the other hand, are flavour-dependent. However,
both depend linearly on zLα , so that

CVe − CVμ = g′(zLe − zLμ) = Cνe − Cνμ . (30)

Consequently, there are not six independent effective cou-
plings CVα,CAα,Cνα for α = e, μ, but rather only four are
independent. Given this, it is in fact simple to argue that this
class of models cannot simultaneously explain the (g−2)e,μ
anomalies. Our model-independent analysis in Sect. 3 estab-
lished that due to the stringency of the bounds from neutrino
scattering experiments, the effective neutrino couplings must
be tiny: Cνe,Cνμ � 10−5, cf. Figs. 2 and 3. From Eq. (30),
this implies that we need |CVe − CVμ| � 10−5. However,
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it is apparent from points 2 and 3 of the summary list at the
beginning of this section that |CVe − CVμ| � 4 × 10−4.
Clearly, this framework is not successful.

In the simplest U (1)′ extension of the SM, only the
(g − 2)μ anomaly could be resolved as it was impossible
to generate significant axial couplings of the Z ′. Introducing
additional Higgs fields enables large axial couplings, so that
either the (g−2)e or the (g−2)μ anomaly may be explained.
However, the correlations between different effective cou-
plings and the strength of the bounds on neutrino couplings
conspire to preclude an explanation of both anomalies at the
same time.

4.3 Froggatt–Nielsen model

A second way to generate sizeable axial couplings, as is nec-
essary to explain the Caesium (g − 2)e anomaly, is by con-
sidering a Froggatt–Nielsen type model [102]. In this set-up,
we modify the charged lepton Yukawa interactions to some
effective interactions of the form,

L ⊃ − λαβ

�nαβ
lLαHeRβϕnαβ + h.c. (31)

Here λαβ = λαδαβ is a diagonal matrix of couplings (in the
charged lepton mass basis), ϕ is a flavon, nαβ = nαδαβ is a
diagonal matrix whose entries are determined by the U (1)′
charges of the flavon and the SM leptons, and � is the scale of
some unspecified UV physics. Then the SM charged lepton
Yukawa couplings are recovered at the non-zero VEV of the
flavon, i.e. yα = λα(〈ϕ〉/�)nα . More complicated set-ups
can also be written down (e.g. the clockwork model of [58]),
and there may be more than one flavon.

The introduction of flavons removes the relation between
the U (1)′ charges of the SM leptons and the Higgs. This per-
mits non-vanishing axial Z ′ couplings at leading order in g′,
unlike in the standard SM+U (1)′ scenario, (recall Eq. (24)).
From Eq. (31) we have zH + zRα − zLα = −nα , and we have
the freedom to treat nα as a free, family-dependent param-
eter.8 In all other respects, the formalism of this model fol-
lows that of the U (1)′ extension outlined in Sect. 4.1. Equa-
tions (22)–(24) still hold, while the effective neutrino cou-
plings are given by

Cνα � g′(zH + zLα) , (32)

at leading order in g′, g̃. This model was previously studied in
[57] to explain the Atomki Beryllium anomaly [59], another
instance in which unsuppressed CAe is required.

Combining Eqs. (23), (24) and (32) gives

CVe − CAe − Cνe = CVμ − CAμ − Cνμ . (33)

8 In this framework we will not attempt to generate the observed
charged lepton Yukawa couplings, but rather focus on whether the
(g − 2)e,μ anomalies can be simultaneously explained

This is a generalisation of Eq. (30) to the case of non-
universal CA. However, we see from Fig. 2a and Eq. (7)
that in order to reduce the (g − 2)e,μ anomalies to < 1σ

while satisfying all experimental constraints, we require
|CAe| � 3.2×10−4 and |CVμ| � 4.8×10−4, givenmZ ′ � 16
MeV, the lower bound on the Z ′ mass obtained in Sect. 3.
However, we have established that |Cνe|, |Cνμ| � 10−4,
while the Møller scattering bound gives |CVe| � 3 × 10−5

for |CAe| ∼ 3 × 10−4. Finally, a sizeable |CAμ| demands an
even larger |CVμ|, since �aμ ∝ (m2

Z ′C2
Vμ − m2

μC
2
Aμ) to a

good approximation, see Eqs. (7) and (8). Thus, |CVe−CAe−
Cνe| < 3.5×10−4, while |CVμ −CAμ −Cνμ| > 4.6×10−4

in the mass range of interest, and hence there is no combina-
tion of effective couplings fulfilling Eq. (33) such that both
anomalies are satisfied to within 1σ and all experimental con-
straints are satisfied. It is notable that even in such a general
theoretical setting, the Z ′ explanation is unsuccessful.

5 Z′ solutions considering the Rubidium measurement

We have thus far considered only the (g− 2)e anomaly from
the Caesium measurement, Eq. (2). Significantly, this has the
opposite sign to the muon anomaly. In Sect. 4, it was shown
that the combination of the different signs and sizes of the
anomalies, along with the copious experimental constraints,
makes it impossible to construct a model which can satisfy
both at the same time. One might suppose that it is easier
to explain two anomalies which have the same sign, which
is exactly the situation if one considers instead the recent
Rubidium result for ae, cf. Eq. (3). Here we consider this
possibility. This has not, to the best of our knowledge, previ-
ously been studied. Our model-independent analysis of muon
sector constraints in Sect. 3.2 still applies. The conclusions
of the study of bounds on electron and electron neutrino cou-
plings in Sect. 3.1 are no longer valid, however Eqs. (9)–(14)
all still hold.

Let us immediately turn to the most general class of mod-
els considered in the previous section, the Froggatt–Nielsen
scenario. The SM+U (1)′ and NHDM+U (1)′ models are
indeed specific cases of this set-up. The key feature of this
model is the relation between electron and muon couplings
given in Eq. (33), which is itself a consequence of gauge
invariance. We note that the magnitude of the Rubidium
anomaly is similar to that of the Caesium anomaly, with
|�aRb

e /�aCs
e | = 0.55, and therefore the former demands

CVe ∼ O(10−4), just as the latter had required CAe ∼
O(10−4). Moreover, the electron neutrino couplings are still
constrained to be � O(10−5), with the bounds of Fig. 2c, d
modified by an order-one factor because the relevant bounds
are similar or identical under CAe → CVe, see Eqs. (9), (13)
and (14).
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Fig. 4 Constraints on the mass and effective coupling of the Z ′, given
the Rubidium measurement of ae. The bounds are on CVe, where we
have taken CAe = −10−8/CAe, saturating the Møller scattering con-
straint (12), and fixed CVμ by Eq. (33), while setting all other effective
couplings to zero. The blue (purple) stripe corresponds to where ae (aμ)
is satisfied to within 1σ . The pink region in the bottom left, green region
in top left, and orange region in top right are ruled out by NA64, KLOE
and BaBar, respectively. As can be seen, the region simultaneously sat-
isfying ae and aμ is excluded by BaBar

The most minimal case is non-zero CVe and CVμ only, in
which case Eq. (33) dictates CVe = CVμ . Such a Z ′ only
satisfies both anomalies to within 1σ for mZ ′ � 25 MeV and
CVe,μ � 5 × 10−4, which however is excluded by BaBar.9

For smaller mZ ′ , keeping the same effective coupling CV

causes either too small a shift in aμ or too great a shift in ae.
Generalising to include CAe and CAμ, the former is

restricted by the Møller scattering bound, |CVeCAe| � 10−8.
In Fig. 4, we plot 1σ regions which explain the two anoma-
lies individually along with the various constraints, setting
CAe = −10−8/CVe to saturate the Møller scattering limit,
and CAμ = Cνe = Cνμ = 0. Equation (33) dictates that
CVμ = CVe + 10−8/CVe. As can be seen, while either
anomaly can be satisfied by itself, the pair cannot simulta-
neously be explained. Various alternatives do not ameliorate
the problem. Smaller |CAe| would in turn require that |CVe|
is smaller in order to satisfy �aRb

e , thereby lowering the blue
bland in Fig. 4. Making CAe > 0 would decrease CVμ as
a function of CVe, thus raising the purple aμ band. Finally,
larger |CAμ| would mean a larger CVμ is needed to explain
�aμ, this also raises the purple band. For this reason, the gen-

9 The BaBar and NA64 bounds on |CAe| in Fig. 2a, b for CVe � 0 (i.e.
along the diagonal) can be reinterpreted here as a bound on |CVe|, since
the experiments bound the combination C2

Ve + C2
Ae.

eral Froggatt–Nielsen scenario cannot solve the anomalies.
Since this set-up covers the SM+U (1)′ and NHDM+U (1)′
models, those scenarios are similarly unsuccessful.

We see that three main challenges in explaining both �aCs
e

and �aμ – namely (i) the relative magnitudes of the anoma-
lies, (ii) the stringent experimental limits on the different
effective couplings, particularly Cνe and Cνμ , and (iii) the
relations between the effective couplings due to gauge invari-
ance – are also present in the attempt to explain �aRb

e and
�aμ simultaneously. Thus, although the different signs of
the muon and Caesium electron anomalies is an interesting
feature, it therefore seems that this is not the main obsta-
cle for Z ′ model-building. Since the sizes of the anomalies is
fixed by experiment and the limits on effective couplings will
only get stronger with time (see the summary in Sect. 3.3),
in order to solve both anomalies one must find ways to get
around Eq. (33) in particular. Possible ways to do this, such
as introducing extra fermions, are beyond the scope of this
paper.

6 Conclusion

There is a mixed experimental picture for the anomalous
magnetic moment of charged leptons. While the status of
(g − 2)μ has been solidified by the recent Fermilab mea-
surement, there is considerably more uncertainty surround-
ing (g − 2)e. We have explored in detail the possibility
of simultaneously explaining both the (Caesium) (g − 2)e
and (g − 2)μ anomalies with a single low scale Z ′. After
introducing the formalism in Sect. 2, in Sect. 3 we found
the experimentally allowed region which can explain the
anomalies to within 1σ . The permitted Z ′ mass range is
16 MeV � mZ ′ � 38 MeV, and one requires some sizeable
effective couplings, {5 × 10−4 � |CVμ| � 0.05; 1.3 ×
10−4 � |CAe| � 3.2 × 10−4}, and some smaller ones,
{|CVe| � 7.7 × 10−5; |Cνe,Cνμ| � 10−5}, while |CAμ|
can be anywhere between 0 and 8 × 10−3 depending on the
size of |CVμ|. The key findings are summarised in Figs. 2 and
3. Our survey of the parameter space was very general, in par-
ticular allowing for both vector and axial Z ′ couplings and
for flavour non-universality. Turning to the range of exper-
iments planned for the near future, we argued in Sect. 3.3
that the entirety of the allowed parameter space for solving
the (g − 2)e anomaly could be tested soon, in particular by
NA64, Belle-II and MAGIX.

This analysis provides a very specific target for model-
building. In Sect. 4 we explored three classes of models of
increasing complexity with the aim of generating a combi-
nation of couplings which lies within the allowed parameter
space. In the simplest extension, a SM+U (1)′ model, the
gauge invariance of the Yukawa couplings prevented the sig-
nificant CAe required to resolve the (g−2)e anomaly. Going
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further to a 2HDM+U (1)′ (which can be generalised to a
NHDM+U (1)′ scenario), we showed that the smallness of the
neutrino couplings required to evade constraints from neu-
trino scattering experiments demands nearly universal effec-
tive vector couplings, and that this, in addition to the univer-
sal effective axial couplings of the model, does not permit an
explanation of both the anomalies at the same time. Finally,
we turned to a Froggatt–Nielsen inspired scenario which
permitted greater freedom by removing the gauge invari-
ance of the Yukawas. The relation between the couplings
to left-handed charged leptons and their respective neutri-
nos imposed by the gauge structure, in conjunction with the
very stringent bounds on the neutrino couplings in particular,
again conspired to forbid a solution to the two anomalies.

We then demonstrated in Sect. 5 that such models also
cannot simultaneously satisfy the (g−2)μ and Rubidium (g−
2)e anomalies. This was notable since those two anomalies
have the same sign. Thus, factors such as the strong individual
limits on Z ′ couplings (studied in Sect. 3) and the relative size
of the two anomalies are more challenging to overcome in Z ′
models than their relative sign. To our knowledge, this was
the first study of a Z ′ explanation for the muon anomaly with
the newest (g − 2)e result. The conclusion of our analysis
is that Z ′-only explanations of the dual (g − 2)e and (g −
2)μ anomalies are ruled out. Additional new fields must be
introduced in order to explain the two discrepancies. This is
true both for the Caesium and Rubidium values of ae.

If the (g−2)μ anomaly, measured both at Brookhaven and
Fermilab, is borne out by the future J-PARC experiment, and
(either) (g − 2)e discrepancy persists, the SM will be faced
by two disagreements between theory and experiment of a
similar nature but a different magnitude and possibly sign. In
principle, a MeV-scale vector boson can have couplings to
leptons which resolve both while satisfying the plethora of
existing experimental constraints. It appears, however, that
additional fields contributing to leptonic magnetic moment(s)
are also required. Given the promising experimental outlook
over the next decade, we should know soon whether or not
there does exist such a Z ′, and associated dark sector, with
the ability to resolve the (g − 2)e,μ anomalies.
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