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1 Introduction and summary

The SYK model [2, 3] and its variants are useful toy models to study various aspects of
quantum chaos and its gravity dual related to the black hole dynamics [4, 5]. The SYK
model is a disordered quantum mechanical model where N Majorana fermions are coupled
by q-body interactions with random couplings Ji1i2···iq . This model is simple enough to
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study directly at finite parameter regime. The perturbative expansion of the correlation
functions simplifies in the large N limit, where only the melonic diagrams survives. As a
result one can resum the perturbation series and write down the Schwinger-Dyson equation
explicitly, with which one can study the thermalization property (decay of autocorrelation
function) and the chaos exponent (out-of-time-ordered four point function) [6, 7] directly
at finite coupling. We can also study the fluctuation properties of the spectrum and
the eigenvectors [8, 9] for finite N by the exact diagonalization of the Hamiltonian as a
2N/2× 2N/2 matrix for each realization of Ji1i2···iq . Despite these simplicities the dynamics
of the SYK model is highly chaotic. By solving the Schwinger-Dyson equation at the strong
coupling limit we find that the chaos exponent saturates the universal upper bound [10]
for q ≥ 4. The SYK model for q ≥ 4 also enjoys the random matrix theory like level
statistics [11–16], which are distinctive criteria for the quantum chaos. For q = 2 the SYK
model is not chaotic.

Although there are no direct argument on the gravity dual of the SYK model, the
SYK model has some features in common with AdS2 spacetime at finite distance from
the boundary (which is called nearly AdS2 or NAdS2) in the following sence [17]. In the
low energy limit the large N SYK model enjoys an emergent symmetry corresponding to
the reparametrization of the time variable. This symmetry is spontaneously broken to
SL(2,R) by choosing a single solution to the Schwinger-Dyson equation (or equivalently, a
single reparametrization), and is broken explicitly once we take into account the term of
time derivative in the Schwinger-Dyson equation. The low energy effective theory of the
reparametrization modes is given by the Schwarzian action. Whole these structures are
same as what we encounter for the dynamics of the shape of the cutoff boundary of NAdS2.

We can construct various models by using the SYK models as building blocks, often
keeping the aformentioned tractableness of the original SYK model. Such models would
play the role of experiments to understand various phenomena related to the quantum
chaos. For example, we can study the thermalization process under various quantum
quench caused by SYK-like deformations [18], can introduce spatial directions [19, 20],
can realize a model with tunable chaoticity by coupling SYKq≥4 with SYK2 to compare
different characterizations of the quantum chaos [21, 22], and so on.

In this paper we consider the model of two SYK systems (which we call L system and
R system) coupled by a uniform quadratic interaction, where the random coupling of the
two SYK systems are completely correlated. This model was proposed [23] to be dual to
the two sided AdS2 black hole or the global AdS2 spacetime depending on the strength
of the LR coupling, where in the latter situation it can be interpreted as a traversable
wormhole created by negative null energy due to the direct coupling between the two
boundaries [24, 25]. Indeed from the analysis of the large N free energy this model was
found to exhibit a first order phase transition between the low temperature gapped phase
and the high temperature (or small LR coupling) large entropy phase, which correspond
respectively to the traversable wormhole and the two-sided black hole [23].

Note that the thermodynamic quantities which characterize the black hole phase and
the Hawking-Page like phase transition mentioned above are not by themselves direct
criteria for the quantum chaos. However, since various holographic arguments suggests
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that the system dual to a black hole spacetime is highly chaotic [26–30], it would be
natural to expect that the Hawking-Page like transition is indeed related to the quantum
chaos [21]. This motivate us to study in detail how the chaotic property of a system varies
around the phase transition. As the phase transition takes place only in the large N limit,
in this paper we focus on the chaos exponent which we can study directly in the large N
limit by solving the real time Schwinger-Dyson equation, rather than the level statistics
which would require a non-trivial extrapolation to address the large N limit [31].

Here we briefly summarize our results. First of all, at high temperature far from the
phase transition regime the chaos exponent of the two coupled model agrees with that for
the single SYK model. This is because the LR coupling is essentially a mass term and hence
irrelevant in the high energy limit. As the temperature is decreased the two results start to
deviate; while the chaos exponent for the SYK model monotonically approaches the upper
bound 2π

β , for the two coupled model λL/(2π/β) starts to decrease at some temperature
above the phase transition temperature Tc. This is in contrast to the behavior of the
free energy whose temperature dependence in the black hole phase is almost same as that
for the uncoupled case even near T = Tc. At T = Tc the chaos exponent jumps due to
the interchange of the dominant configuration among the two distinctive solutions to the
Schwinger-Dyson equation.

We have also studied the chaos exponent in the low-temperature wormhole phase in
detail. At first thought one may expect that the system is not chaotic at all in the wormhole
phase. For example if we consider the decay rate of a large N two point function, the
decaying behavior in the black hole phase can be understood as the fact that the infalling
mode does not come out from the black hole again [32]. In the wormhole geometry, on
the other hand, the signal from the right boundary reaches the left boundary and then
reflects back to reach the right boundary again, which seems to suggest that the two point
function continues to oscillate and the system never thermalizes. This is indeed the case
for example for the confining phase of the 4d U(N) Yang-Mills theory on S3 [26, 33, 34].
However, it was found [1] that the two point functions exhibit exponential decay even in the
wormhole phase, although the decay rate is small so that the signal can traverse between
the two boundaries many times before it disappears [35]. We have found that the chaos
exponent in the wormhole phase is also small but non-zero, which is consistent with the
results in [1]. We have further discovered a simple relation between the chaos exponent λL
and the energy gap Egap holds in the low temperature regime:

λL ∼ e−
q
2−2

2 βEgap , (q = 4). (1.1)

We found this is true also when the LR coupling is sufficiently large so that the phase
transition does not exist any more [23, 31], as long as the temperature is sufficiently low.
This formula is reminiscent of the low temperature limit of the chaos exponent for the
weakly coupled matrix field theory λL ∼ λ2e−mβ [36] where m is the mass of the matrix
scalar field and λ is the ’t Hooft coupling.

As a comparison, we have also studied the chaos exponent of the single SYK model
with the same quadratic deformation [37]. Although this single sided model is similar to the
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two coupled model when the quadratic coupling is zero or large enough, it was found [38]
that this model does not exhibit phase transition in any parameter regime. We have found
that as we decrease the temperature the chaos exponent of the single sided model behaves
qualitatively similarly to that of the two coupled model in the black hole phase, while
the temperature where λL/(2π/β) starts to decrease is slightly lower than that in the two
coupled model. At low temperature, the chaos exponent is significantly large compared
with the two coupled model due to the absence of the phase transition. We have also found
that the chaos exponent of the single sided model also obeys the same formula (1.1) when
the energy gap is significant compared with the thermal fluctuations (i.e. when the spectral
function shows well separated peaks).

This paper is organized as follows. In section 2, we introduce the models we will
study: the two coupled model [23] and the single sided model [37], and review their large
N effective descriptions by the bilocal fields (GΣ formalism). In section 3 we continue the
GΣ formalism to the Lorentzian real time to study the OTOC and the chaos exponent of
the two models. In section 4, after reviewing the phase structures of the two models, we
display the results of the real time numerical analysis. In particular, we display the chaos
exponent of the two models in the whole parameter regime including the vicinity of the
phase transition point in the case of the two coupled model. We observe an interesting
similarity between the critical behavior of the chaos exponent and that of the specific heat.
We also argue an analytic derivation of the chaos exponent in the low temperature regime.
In section 5 we discuss implications of our results and propose future directions.

Although in section 4 we focus on the cases where the two models are built from the
SYK model with q = 4, in appendix A we also display some results for the two models
built from SYKq=6 or SYKq=8.

2 Models

In this paper we consider the following two models. The first model consists of the two
SYK systems withN/2 fermions per each side,1 coupled with a simple quadratic interaction:
coupled with a simple quadratic interaction:

Htwo = i
q
2

N
2∑

i1<i2<···<iq
Ji1i2···iq(ψLi1ψ

L
i2 · · ·ψ

L
iq + (−1)

q
2ψRi1ψ

R
i2 · · ·ψ

R
iq) + iµ

N
2∑
i=1

ψLi ψ
R
i , (2.1)

where {ψai , ψbj} = δabδij and

〈Ji1i2···iq〉 = 0, 〈(Ji1i2···iq)2〉 = J
2 · 2q−1(q − 1)!
q(N/2)q−1 . (no sum over i1, i2, · · · , iq) (2.2)

The second model is the single SYK system with N fermions with the same mass defor-
mation:

Hsingle = i
q
2

N∑
i1<i2<···<iq

J ′i1i2···iqχi1χi2 · · ·χiq + iµ

N
2∑
i=1

χ2i−1χ2i, (2.3)

1Here we put N/2, not N , fermions per each side, which is a different notation from [23].
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where {χi, χj} = δij and

〈J ′i1i2···iq〉 = 0, 〈(J ′i1i2···iq)
2〉 = J

2 · 2q−1(q − 1)!
qN q−1 . (no sum over i1, i2, · · · , iq) (2.4)

In the following sections we shall call these models respectively as “two coupled model”
and “single sided model”. These models show interesting thermodynamical properties [23,
38]. We will review some of these properties in section 4 which are particularly relevant to
the study of the chaos exponent.

The two coupled model (2.1) has a Z4 symmetry [31] that is generated by

ψLi → ψRi , ψRi → −ψLi . (2.5)

2.1 GΣ formalism

In these models we can rewrite the partition function into an expression without disorder
by introducing new variables of bi-local fields. This formalism turns out to be useful for
analyzing the system in the large N limit.

2.1.1 Two coupled model

First let us consider the two coupled model (2.1), whose partition function is defined as

Ztwo(β) =
〈∫
Dψai (u) exp

[
−
∫
du

(1
2
∑

a=L,R

N/2∑
i=1

ψai ∂uψ
a
i +Htwo

)]〉
Ji1i2···iq

. (2.6)

We can perform the disorder average first by writing it explicitly as the Gaussian integration
over Ji1i2···iq , to obtain

Ztwo(β)=
(
πJ 22q−1(q−1)!
q(N/2)q−1

)− 1
2(N/2q )∫

dJi1i2···iq exp
[
− (N/2)q−1q

2J 22q−1(q−1)!
∑

i1<i2<···<iq
J2
i1i2···iq

]

×
∫
Dψai exp

[
−
∫
du

(1
2
∑
a,i

ψai ∂uψ
a
i +Htwo

)]

=
∫
Dψai exp

[
iqJ 22q−1(q−1)!

2q(N/2)q−1

∑
i1<i2<···<iq

(∫
du(ψLi1ψ

L
i2 ···ψ

L
iq+(−1)

q
2ψRi1ψ

R
i2 ···ψ

R
iq)
)2

−
∫
du

(1
2
∑
a,i

ψai ∂uψ
a
i +iµ

∑
i

ψLi ψ
R
i

)]
. (2.7)

If we define the bi-local fields

Gab(u, u′) = 1
(N/2)

N/2∑
i=1

ψai (u)ψbi (u′), (2.8)

the last expression can be written as

Ztwo(β) =
∫
Dψai exp

[
−1

2
∑
a,i

∫
duψai ∂uψ

a
i (2.9)

+
∑
a,b

∫
dudu′

[
NJ 22q−1

4q2 sabGab(u, u′)−
iµ

4 εabGab(u, u
′)δ(u− u′)

]]
,
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where we have defined Gab(u, u′) = 1/(N/2)
∑N/2
i=1 ψ

a
i (u)ψbi (u′) and also the following con-

stant matrices

sab =

 1 (−1)
q
2

(−1)
q
2 1

 , εab =

 0 1
−1 0

 . (2.10)

If we further introduce Lagrange multiplier bilocal field Σab(u, u′)

1 =
∫
DGab(u, u′)

∏
u,u′

δ

(
Gab(u, u′)−

1
(N/2)

∑
i

ψai (u)ψbi (u′)
)

=
∫
DGabDΣabe

−N4
∫
dudu′(Σab(u,u′)−iµεabδ(u−u′))(Gab(u,u′)− 1

(N/2)
∑

i
ψai (u)ψbi (u

′))
, (2.11)

to regard Gab(u, u′) as an independent set of the integration variables from ψai (u), we can
perform the integration over ψai in (2.9) explicitly as2

∫
Dψai (u)exp

[
1
2

∫
dudu′

(
ψLi (u) ψRi (u)

)
(2.12)

×

−δ(u−u′)∂u′+ ΣLL(u,u′)−ΣLL(u′,u)
2

ΣLR(u,u′)−ΣRL(u′,u)
2 − iµδ(u−u′)

ΣRL(u,u′)−ΣLR(u′,u)
2 + iµδ(u−u′) −δ(u−u′)∂u′+ ΣRR(u,u′)−ΣRR(u′,u)

2

ψLi (u′)
ψRi (u′)

]

=Pf
[−δ(u−u′)∂u′+ ΣLL(u,u′)−ΣLL(u′,u)

2
ΣLR(u,u′)−ΣRL(u′,u)

2 − iµδ(u−u′)
ΣRL(u,u′)−ΣLR(u′,u)

2 + iµδ(u−u′) −δ(u−u′)∂u′+ ΣRR(u,u′)−ΣRR(u′,u)
2

]N2 .
As a result we obtain [23]

Ztwo(β) =
∫
DGabDΣabe

−NStwo (2.13)

with

Stwo =−1
4 logdet

−δ(u−u′)∂u′+ ΣLL(u,u′)−ΣLL(u′,u)
2

ΣLR(u,u′)−ΣRL(u′,u)
2 − iµδ(u−u′)

ΣRL(u,u′)−ΣLR(u′,u)
2 + iµδ(u−u′) −δ(u−u′)∂u′+ ΣRR(u,u′)−ΣRR(u′,u)

2


+
∑
a,b

1
4

∫
dudu′

(
Σab(u,u′)Gab(u,u′)−

J 2

2q2 sab[2Gab(u,u
′)]q
)
. (2.14)

2In this paper we do not impose anti-symmetry property on Gab(u, u′) in the GΣ formalism, and treat
Gab(u, u′) as four independent bilocal fields without any restriction on the u, u′-dependence. This approach
allows, when we discuss variational problems, us to treat all of δGab(u, u′) and δΣab(u, u′) as independent
variational modes. Also note that here we have introduced the auxiliary field Σab(u, u′) with a shift by a
fixed configuration −iµεabδ(u− u′) for later convenience in section 3.1.1.
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In the large N limit, the partition function is dominated by the contribution from the saddle
point configurations, which are the solutions of the following Schwinger-Dyson equations

δStwo
δΣab(u,u′)

= 0 ↔ (2.15)

Gab(u,u′)

=−

−δ(u−u′′)∂u′′+ ΣLL(u,u′′)−ΣLL(u′′,u)
2

ΣLR(u,u′′)−ΣRL(u′′,u)
2 − iµδ(u−u′′)

ΣRL(u,u′′)−ΣLR(u′′,u)
2 + iµδ(u−u′′) −δ(u−u′′)∂u′′+ ΣRR(u,u′′)−ΣRR(u′′,u)

2

−1

ab

(u,u′),

δStwo
δGab(u,u′)

= 0 ↔ Σab(u,u′) = J
2

q
sab[2Gab(u,u′)]q−1. (2.16)

Note that in the GΣ formalism we do not impose the symmetry property Gab(u, u′) =
−Gba(u′, u) which follows from the original way we have introduced them (2.8), and treat
each of Gab(u, u′), Σab(u, u′) as independent bilocal fields. This symmetry property, how-
ever, must be recovered once we integrate out the auxiliary bilocal fields Σab(u, u′). Indeed,
in the first line of the equation of motion (2.15) since the right-hand side is anti-symmetric
under (u, a)↔ (u′, b) it follows that a saddle solution satisfies

Gab(u, u′) = −Gba(u′, u), Σab(u, u′) = −Σba(u′, u). (2.17)

Here we have also recalled the second line of (2.16) to obtain the latter result. Tak-
ing into account these relations we can rewrite the first line of the equations of motion
δStwo/δΣab(u, u′) = 0 simpliy as

∂uGab(u, u′)−
∑
c

(
−iµεacGcb(u, u′) +

∫
du′′Σac(u, u′′)Gcb(u′′, u′)

)
= δabδ(u− u′), (2.18)

which we will use to derive the real time continuation in the next section.
Lastly, note that the solution we are interested in is the one which we can indeed

interpret as the two point function of ψai (u) at finite temperature3

Gab(u, u′) = 1
(N/2)

N
2∑
i=1
〈T ψai (u)ψbi (u′)〉 (2.21)

=


1

(N/2)
∑N

2
i=1〈treĤuψai (0)e−Ĥ(u−u′)ψbi (0)e−Ĥu′e−βĤ〉Ji1i2···iq (Re[u] > Re[u′])

− 1
(N/2)

∑N
2
i=1〈treĤu

′
ψbi (0)e−Ĥ(u′−u)ψai (0)e−Ĥue−βĤ〉Ji1i2···iq (Re[u] < Re[u′])

,

3In this paper we adopt the annealed average

〈O〉 ≡
〈
∫
DψaiOe

−
∫
du( 1

2ψ
a
i ∂uψ

a
i +H)〉Ji1i2···iq

〈
∫
Dψai e

−
∫
du( 1

2ψ
a
i
∂uψ

a
i

+H)〉Ji1i2···iq

(2.19)

so that we can treat the random coupling in the same way as a constant field and integrate them in the
partition function (2.6). Although this is different from the quenched average

〈O〉quenched ≡
〈∫
DψaiOe

−
∫
du( 1

2ψ
a
i ∂uψ

a
i +H)∫

Dψai e
−
∫
du( 1

2ψ
a
i
∂uψ

a
i

+H)

〉
Ji1i2···iq

(2.20)

which was originally adopted for finite N , the two results agrees in the large N limit.
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which obeys the following properties:

Gab(u, u′)∗ = −Gab(−u∗,−u′
∗), (2.22)

Gab(u+ β, u′) = −Gab(u, u′) (if Re[u] < Re[u′] < Re[u+ β]). (2.23)

Hence when we solve the equations of motions we should further impose these properties as
ansatze, although they are neither imposed on the integration measure DGab(u, u′) in (2.13)
nor consequences of the equations of motion (2.18), (2.16).

2.1.2 Single sided model

One can do the same rewriting for the single sided model (2.3) by introducing4

GLL(u, u′) = 1
N/2

N
2∑
i=1

χ2i−1(u)χ2i−1(u′), GLR(u, u′) = 1
N/2

N
2∑
i=1

χ2i−1(u)χ2i(u′),

GRL(u, u′) = 1
N/2

N
2∑
i=1

χ2i(u)χ2i−1(u′), GRR(u, u′) = 1
N/2

N
2∑
i=1

χ2i(u)χ2i(u′), (2.24)

as

Zsingle =
〈∫
Dχi(u) exp

[
−
∫
du

(1
2

N∑
i=1

χi∂uχi+Hsingle

)]〉
J ′i1i2···iq

=
∫
DGabDΣabe

−NSsingle , (2.25)

with

Ssingle =−1
4 logdet

−δ(u−u′)∂u′+ ΣLL(u,u′)−ΣLL(u′,u)
2

ΣLR(u,u′)−ΣRL(u′,u)
2 −iµδ(u−u′)

ΣRL(u,u′)−ΣLR(u′,u)
2 +iµδ(u−u′) −δ(u−u′)∂u′+ ΣRR(u,u′)−ΣRR(u′,u)

2


+ 1

4

∫
dudu′

(∑
a,b

Σab(u,u′)Gab(u,u′)−
J 22q

q2

(
GLL(u,u′)+GRR(u,u′)

2

)q)
. (2.26)

4Note that (2.24) is redundant; one may also proceed by introducing only two bi-local fields G(u, u′) =
1
N

∑N

i=1 χi(u)χi(u′) and Goff(u, u′) = 1
N/2

∑N/2
i=1 χ2i−1(u)χ2i(u′), as in [38]. Nevertheless we found it

more convenient to introduce the four bi-local fields Gab(u, u′) and the subsequent four auxiliary bilocal
fields Σab(u, u′) as they allow a completely parallel treatment of the one-loop determinant contribution
and the ΣG bilinear term when we discuss the variations of the action Ssingle to derive the equations of
motion (2.27), (2.28) and the ladder kernel for the four point functions (3.52).
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The equations of motion are
δSsingle
δΣab

= 0 ↔

Gab(u,u′) (2.27)

=−

−δ(u−u′)∂u′+ ΣLL(u,u′)−ΣLL(u′,u)
2

ΣLR(u,u′)−ΣRL(u′,u)
2 − iµδ(u−u′)

ΣRL(u,u′)−ΣLR(u′,u)
2 + iµδ(u−u′) −δ(u−u′)∂u′+ ΣRR(u,u′)−ΣRR(u′,u)

2

−1

ab

(u,u′),

δSsingle
δGab

= 0 ↔ (2.28)

ΣLL(u,u′) = ΣRR(u,u′) = J
2

q

(
GLL(u,u′)+GRR(u,u′)

)q−1
, ΣLR(u,u′) = ΣRL(u,u′) = 0.

Similarly to the case of the two coupled model, from the equations of motion we immediately
find

Gab(u, u′) = −Gba(u′, u), Σab(u, u′) = −Σba(u′, u),
ΣLL(u, u′) = ΣRR(u, u′), ΣLR(u, u′) = ΣRL(u, u′) = 0. (2.29)

Using the last three equations of (2.29), we can simplify the first line of the equaitons of
motion (2.27) as

∂uGLL(u, u′)−
∫
du′′ΣLL(u, u′′)GLL(u′′, u′) + iµGRL(u, u′) = δ(u− u′),

∂uGLR(u, u′)−
∫
du′′ΣLL(u, u′′)GLR(u′′, u′) + iµGRR(u, u′) = 0,

∂uGRL(u, u′)−
∫
du′′ΣLL(u, u′′)GRL(u′′, u′)− iµGLL(u, u′) = 0,

∂uGRR(u, u′)−
∫
du′′ΣLL(u, u′′)GRR(u′′, u′)− iµGLR(u, u′) = δ(u− u′). (2.30)

Remarkably, in the single sided model we can solve these equations of motion explicitly
with respect to GLR, GRL

GLR(u, u′) = − i
µ

(
∂uGRR(u, u′)−

∫
du′′ΣLL(u, u′′)GRR(u′′, u′)− δ(u− u′)

)
,

GRL(u, u′) = i

µ

(
∂uGLL(u, u′)−

∫
du′′ΣLL(u, u′′)GLL(u′′, u′)− δ(u− u′)

)
, (2.31)

with which we obtain a closed set of equations only for GLL, GRR,ΣLL:
i

µ

∫
du′′(δ(u− u′′)∂u′′ − ΣLL(u, u′′))

[∫
du′′′(δ(u′′ − u′′′)∂u′′′ − ΣLL(u′′, u′′′))GLL(u′′′, u′)

− δ(u′′ − u′)
]
− iµGLL(u, u′) = 0,

i

µ

∫
du′′(δ(u− u′′)∂u′′ − ΣLL(u, u′′))

[∫
du′′′(δ(u′′ − u′′′)∂u′′′ − ΣLL(u′′, u′′′))GRR(u′′′, u′)

− δ(u′′ − u′)
]
− iµGRR(u, u′) = 0, (2.32)

together with the first equation of (2.28).
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Lastly, as in the case of the two coupled model, our interest is restricted to the solutions
which satisfies the following additional properties

Gab(u, u′)∗ = −Gab(−u∗,−u′
∗), (2.33)

Gab(u+ β, u′) = −Gab(u, u′) (if Re[u] < Re[u′] < Re[u+ β]), (2.34)

such that we can interpret Gab(u, u′) as

GLL(u,u′)= 1
N/2

N
2∑
i=1
〈T χ2i−1(u)χ2i−1(u′)〉, GLR(u,u′)= 1

N/2

N
2∑
i=1
〈T χ2i−1(u)χ2i(u′)〉,

GRL(u,u′)= 1
N/2

N
2∑
i=1
〈T χ2i(u)χ2i−1(u′)〉, GRR(u,u′)= 1

N/2

N
2∑
i=1
〈T χ2i(u)χ2i(u′)〉. (2.35)

3 Chaos exponent

3.1 Two coupled model

The quantum chaoticity of the two coupled model can be characterized by the following
four point functions called the out-of-time-ordered correlators (OTOC)

1
(N/2)2

∑
i,j

〈
ψai

(3β
4 + it1

)
ψbi

(
β

4 + it2

)
ψcj

(
β

2

)
ψdj (0)

〉
Ji1i2···iq

(3.1)

= 1
(N/2)2

∑
i,j

〈
ψai

(3β
4 + it1

)
ψbi

(
β

4 + it2

)〉〈
ψcj

(
β

2

)
ψdj (0)

〉
Ji1i2···iq

+ 1
N/2Fabcd(t1, t2).

When the system is chaotic, the connected part Fabcd(t1, t2) of an OTOC behaves at late
time as

Fabcd(t1, t2) ∼ e
λL(t1+t2)

2 (3.2)

where λL is the chaos exponent which quantify the chaoticity of the system. Since the
left-hand side of (3.1) inside 〈· · · 〉Ji1i2···iq is written in terms of the bi-local field (2.8) as
Gab(3β/4 + it1, β/4 + it2)Gcd(β/2, 0), we can calculate this four point function as well as
the connected part in the large N limit within the GΣ formalism, with the Euclidean time
variables continued appropriately. Below we first demonstrate the analytic continuation
and derive the real time Schwinger-Dyson equations (3.21), (3.22), and then explain how
to obtain the chaos exponent from the real time two point functions.

3.1.1 Real time Schwinger-Dyson equation

Our starting point is the Schwinger-Dyson equations (2.18), (2.16) together with the sym-
metry properties (2.17) and ansatz (2.22), (2.23). To obtain the Schwinger-Dyson equation
in Lorentzian time t, we continue u to u = it. There are two different ways to continue
Gab(u1, u2) when Re[u1] = Re[u2] corresponding to the ordering in the operator formalism,
which define the following two independent components

G>ab(t1, t2) = −iGab(it−1 , it
+
2 ) = −i lim

ε→+0
Gab(ε+ it1,−ε+ it2),

G<ab(t1, t2) = −iGab(it+1 , it
−
2 ) = −i lim

ε→+0
Gab(−ε+ it1, ε+ it2). (3.3)
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Figure 1. Left: Keldysh contour for the insertion of single operator. Right: contours C,C ′ used
in (3.4), (3.5).

When an operator is inserted at some u the forward/backward time evolution around u does
not cancel, which result in the Keldysh contour (see figure 1) in the path integral formalism.
As a result we obtain the following two real time equations from the continuation of (2.18)

−i∂t1Gab(it−1 , it
+
2 )−

∑
c

(
−iµεacGcb(it−1 , it

+
2 ) +

∫
C
du′Σac(it−1 , u′)Gcb(u′, it

+
2 )
)

= 0, (3.4)

−i∂t1Gab(it+1 , it
−
2 )−

∑
c

(
−iµεacGcb(it+1 , it

−
2 ) +

∫
C′
du′Σac(it+1 , u′)Gcb(u′, it

−
2 )
)

= 0, (3.5)

where the integrations are over the contours depicted in figure 1 and can be rewritten as

∫
C
du′Σac(it−1 , u′)Gcb(u′, it

+
2 ) = −i

∫ ∞
−∞

dt3(ΣR
ac(t1, t3)G>cb(t3, t2) + Σ>

ac(t1, t3)GAcb(t3, t2)),∫
C′
du′Σac(it+1 , u′)Gcb(u′, it

−
2 ) = −i

∫ ∞
−∞

dt3(ΣR
ac(t1, t3)G<cb(t3, t2)

+ Σ<
ac(t1, t3)GAcb(t3, t2)). (3.6)

Here we have defined the retarded/advanced component of the two point funcitons

GRab(t1, t2) = θ(t1 − t2)(G>ab(t1, t2)−G<ab(t1, t2)), (3.7)
GAab(t1, t2) = θ(t2 − t1)(G<ab(t1, t2)−G>ab(t1, t2)), (3.8)

and ΣR
ab,ΣA

ab in the same way. Taking the difference between (3.4) and (3.5), and using the
formulas (3.6), we obtain

−i∂t1GRab(t1,t2)−
∑
c

(
−iµρacGRcb(t1,t2)−

∫
dt3(ΣR

ac(t1,t3)GRcb(t3,t2)−ΣA
ac(t1,t3)GAcb(t3,t2))

)
=−iδ(t1−t2)·2G>ab(t1,t1)=−δabδ(t1−t2). (3.9)
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Here the second term in the integrand ΣA
ac(t1, t3)GAcb(t3, t2) vanishes for t1 > t2, hence we

end up with the following set of equations:

− i∂t1GRab(t1, t2)−
∑
c

(
−iµρacGRcb(t1, t2)−

∫
dt3ΣR

ac(t1, t3)GRcb(t3, t2)
)

= −δabδ(t1 − t2), (3.10)

Σ>
ab(t1, t2) = − i

qJ 2

q
sabG

>
ab(t1, t2)q−1, (3.11)

ΣR
ab(t1, t2) = θ(t1 − t2)(Σ>

ab(t1, t2) + Σ>
ba(t2, t1)). (3.12)

Here we have also written the continuation of the second line of the equations of mo-
tion (2.16) and the definition of the retarded component (3.8) with Σ<

ab eliminated with
the help of the anti-symmetric property Σab(u1, u2) = −Σba(u2, u1) (2.17). If we assume
G>ab(t1, t2) and GRab(t1, t2) depends only on t1 − t2, we can write the two point functions
also in the Fourier modes

f̃X(ω) =
∫ ∞
−∞

dteiωtfX(t), fX(t) =
∫ ∞
−∞

dω

2π e
−iωtf̃X(t), (f =Gab,Σab, X =>,<,R,A).

(3.13)
The first equation (3.10) can be written in the Fourier modes as

G̃RLL(ω) = −(−ω + Σ̃R
RR(ω))

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR(ω) + iµ)(Σ̃R

RL(ω)− iµ)
,

G̃RLR(ω) = Σ̃R
LR(ω) + iµ

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR(ω) + iµ)(Σ̃R

RL(ω)− iµ)
,

G̃RRL(ω) = Σ̃R
RL(ω)− iµ

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR(ω) + iµ)(Σ̃R

RL(ω)− iµ)
,

G̃RRR(ω) = −(−ω + Σ̃R
LL(ω))

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR(ω) + iµ)(Σ̃R

RL(ω)− iµ)
. (3.14)

Apparently the equations (3.10)–(3.12), (3.14), and (3.8) are not closed by themselves
as GRab(t) does not completely determine G>ab(t) throught (3.8). This problem is fixed by
taking into account the KMS condition (2.23) in the following way. First using the KMS
relation in Lorentzian signature, we obtain

GRab(t1, t2) = θ(t1 − t2)(G>ab(t1, t2)−G<ab(t1, t2))
= θ(t1 − t2)(G>ab(t1, t2) +G>ab(t1 − iβ, t2)). (3.15)

Next we consider (GRba(t2, t1))∗, use (2.22) to rewrite (G>,<ba )∗ in terms of G>ab, and then do
the same rewriting as above:

(GRba(t2, t1))∗ = θ(t2 − t1)(G>ba(t2, t1)∗ −G<ba(t2, t1)∗)
= θ(t2 − t1)(G<ba(t2, t1)−G>ba(t2, t1))
= θ(t2 − t1)(−G>ab(t1, t2) +G<ab(t1, t2))
= θ(t2 − t1)(−G>ab(t1, t2)−G>ab(t1 − iβ, t2)). (3.16)
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Combining these relations, we obtain

G>ab(t1, t2) +G>ab(t1 − iβ, t2) = GRab(t1, t2)− (GRba(t2, t1))∗. (3.17)

In the Fourier modes this is written as

G̃>ab(ω) = G̃Rab(ω)− (G̃Rba(ω))∗

1 + e−βω
. (3.18)

Hence (3.10)–(3.12), (3.14) and (3.18) together form a closed system of the equations for
GRab(t) which we can solve numerically.

Note that once we obtain the retarded component GRab(t), we can compute Gab(u) for
general u ∈ C with 0 < Re[u] < β as5

Gab(u) = iG>ab(t = −iu) = i

∫
dω

2π e
−ωu G̃

R
ab(ω)− (G̃Rba(ω))∗

1 + e−βω
, (3.19)

which we use to compute the chaos exponent in section 3.1.4. Also note that by setting
u = τ (0 < τ < β) the formula (3.19) reproduces the Euclidean propagator which we can
obtain relatively easily by solving the Schwinger-Dyson equations (2.18), (2.16) on the real
contour, hence (3.19) can be also used as a trivial check for the validity of the real time
computation.

3.1.2 Further symmetry ansatz

We can further impose the following symmetry properties consistently with the Schwinger-
Dyson equations (3.10)–(3.12), (3.14) and the physical ansatz (2.22)–(2.23), (3.18)

G>RR(t) =G>LL(t), G>RL(t) =−G>LR(t), Σ>
RR(t) = Σ>

LL(t), Σ>
RL(t) =−Σ>

LR(t). (3.20)

Note that this corresponds to imposing the Z4 symmetry (2.5). Under these additional
constraints, the Schwinger-Dyson equations (3.10)–(3.12), (3.14) reduce to the following
set of equations:

G̃RLL(ω)= −(−ω+Σ̃R
LL(ω))

(−ω+Σ̃R
LL(ω))2+(Σ̃R

LR(ω)+iµ)2
, G̃RLR(ω)= Σ̃R

LR(ω)+iµ
(−ω+Σ̃R

LL(ω))2+(Σ̃R
LR(ω)+iµ)2

,

Σ>
LL(t)=− i

qJ 2

q
[2G>LL(t)]q−1, Σ>

LR(t)=−J
2

q
[2G>LR(t)]q−1,

ΣR
LL(t)=θ(t)(Σ>

LL(t)+Σ>
LL(−t)), ΣR

LR(t)=θ(t)(Σ>
LR(t)−Σ>

LR(−t)), (3.21)

while the constraints of the physical ansatz are now written as

G>LL(t)∗ = −G>LL(−t), G>LR(t)∗ = G>LR(−t),

G̃>LL(ω) = 2iIm[G̃RLL(ω)]
1 + e−βω

= − iρLL(ω)
1 + e−βω

, G̃>LR(ω) = 2Re[G̃RLR(ω)]
1 + e−βω

= − ρLR(ω)
1 + e−βω

. (3.22)

Here we have defined the spectral functions

ρLL(ω) = −2Im[G̃RLL(ω)], ρLR(ω) = −2Re[G̃RLR(ω)]. (3.23)

As we see in section 4, these quantities are useful to characterize the gapped regime.
5We can also compute Gab(u) with −β < Re[u] < 0 by using the anti-symmetry property Gab(u) =

−Gba(−u) (2.17).
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3.1.3 Four point function

We consider the following four point function which is written as the two point function in
the GΣ formalism:

1
(N/2)2

N/2∑
i,j

〈ψai (u1)ψbi (u2)ψcj(u3)ψdj (u4)〉= 1
Ztwo

∫
DGabDΣabGab(u1,u2)Gcd(u1,u2)e−NStwo .

(3.24)
In the large N limit we can evaluate this correlation function by expanding Stwo around a
solution of the Schwinger-Dyson equations (2.15), (2.16), Gab = G

(0)
ab + N−

1
2 δGab, Σab =

Σ(0)
ab +N−

1
2 δΣab as

Stwo =S
(0)
two+

∑
a,b,c,d

1
8N

∫
du1du2du3du4

×

−δ(u−u′)∂u′+ Σ(0)
LL(u,u′)−Σ(0)

LL(u′,u)
2

Σ(0)
LR(u,u′)−Σ(0)

RL(u′,u)
2 −iµδ(u−u′)

Σ(0)
RL(u,u′)−Σ(0)

LR(u′,u)
2 +iµδ(u−u′) −δ(u−u′)∂u′+

Σ(0)
RR(u,u′)−Σ(0)

RR(u′,u)
2


−1

da

(u4,u1)

× δΣab(u1,u2)−δΣba(u2,u1)
2

×

−δ(u−u′)∂u′+ Σ(0)
LL(u,u′)−Σ(0)

LL(u′,u)
2

Σ(0)
LR(u,u′)−Σ(0)

RL(u′,u)
2 −iµδ(u−u′)

Σ(0)
RL(u,u′)−Σ(0)

LR(u′,u)
2 +iµδ(u−u′) −δ(u−u′)∂u′+

Σ(0)
RR(u,u′)−Σ(0)

RR(u′,u)
2


−1

bc

(u2,u3)

× δΣcd(u3,u4)−δΣdc(u4,u3)
2

+
∑
a,b

1
4N

∫
du1du2

×
(
δΣab(u1,u2)δGab(u1,u2)−J

22q−1(q−1)
2q sabG

(0)
ab (u1,u2)q−2δGab(u1,u2)2

)
(3.25)

where the terms of O(δGab, δΣab) trivially vanish since we are expanding Gab,Σab around
a solution of the equations of motion. Note that the matrix elements in the first term can
be replaced with −Gda(u4, u1) and −Gbc(u2, u3) with the help of (2.15). Also noticing that
G

(0)
ab (u, u′) = −G(0)

ba (u′, u), we obtain

Stwo = S
(0)
two +

∑
a,b,c,d

1
8N

∫
du1du2du3du4

G
(0)
ac (u1, u3)G(0)

bd (u2, u4)−G(0)
ad (u1, u4)G(0)

bc (u2, u3)
2

× δΣab(u1, u2)δΣcd(u3, u4) +
∑
a,b

1
4N

∫
du1du2

×
(
δΣab(u1, u2)δGab(u1, u2)− J

22q−1(q − 1)
2q sabG

(0)
ab (u1, u2)q−2δGab(u1, u2)2

)
= S

(0)
two +

∑
A,B

1
8N

∫
dUdV GAB(U, V )δΣA(U)δΣB(V )

+
∑
A

1
4N

(
δΣA(U)δGA(U)− J

22q−1(q − 1)
2q sAG

(0)
A (U)q−2δGA(U)2

)
, (3.26)
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where in the second line we have abbreviated the pair of indices/coordinates as A = (a, b),
U = (u1, u2), and denoted the kernel of δΣ as GA(U, V ):

GAB(U, V ) =
G

(0)
A1B1

(U1, V1)G(0)
A2B2

(U2, V2)−G(0)
A1B2

(U1, V2)G(0)
A2B1

(U2, V1)
2 . (3.27)

Since the inserted operator Gab(u1, u2)Gcd(u3, u4) does not depends on Σab we can integrate
δΣab first, which is under the current approximation simply a Gaussian integration:

∫
DΣabe

−NStwo

= e−S
(0)
two

∫
DδΣA exp

[
−
∑
A,B

1
8

∫
dUdV GAB(U, V )δΣA(U)δΣB(V )

− 1
4
∑
A

∫
dU

(
δGA(U)δΣA(U)− J

22q−1(q − 1)
2q G

(0)
A (U)q−2δGA(U)2

)]

= e−S
(0)
two

∫
DδΣA exp

[
−1

8
∑
A,B

∫
dUdV

(
δΣA(U)−

∑
C

∫
dWδGC(W )(G−1)CA(W,U)

)

× GAB(U, V )
(
δΣB(V )−

∑
D

∫
dX(G−1)BD(V,X)δGD(X)

)

+
∑
A,B

∫
dUdV δGA(U)

(1
8(G−1)AB(U, V )

+ J
22q−1(q − 1)

8q sAG
(0)
A (U)q−2δABδ(U − V )

)
δGB(V )

]
= e−S

(0)
two exp

[
−1

8
∑
A,B

∫
dUdV δGA(U)

(
(G−1)AB(U, V )

+ J
22q−1(q − 1)

q
sAG

(0)
A (U)q−2δABδ(U − V )

)
δGB(V )

]
. (3.28)

Expanding the inserted Gab(u1, u2)Gcd(u3, u4) also around the saddle configuration, now
we are left with the Gaussian integration in δGA(U) which we can perform as

1
(N/2)2

N/2∑
i,j

〈ψai (u1)ψbi (u2)ψcj(u3)ψdj (u4)〉 = G
(0)
ab (u1, u2)G(0)

cd (u3, u4)

+ 1
(N/2)Fabcd(u1, u2, u3, u4). (3.29)
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Switching the notation back to A → (a, b), U → (u1, u2), the connected part
Fabcd(u1, u2, u3, u4) of the four point function is written as

Fabcd(u1, u2, u3, u4)

= −2
[
(G−1)AB(U, V )

+ J
22q−1(q − 1)

q
sAG

(0)
A (U)q−2δABδ(U − V )

]−1

A=(a,b),B=(c,d)
(U = (u1, u2), V = (u3, u4))

=
∞∑
n=0
Fn,abcd(u1, u2, u3, u4). (3.30)

with

F0,abcd(u1, u2, u3, u4) = −2G(a,b),(c,d)((u1, u2), (v1, v2))

= −G(0)
ac (u1, u3)G(0)

bd (u2, u4) +G
(0)
ad (u1, u4)G(0)

bc (u2, u3),
Fn,abcd(u1, u2, u3, u4)

=
∑
B

∫
dV

[
−G(a,b),B((u1, u2), V ) · J

22q−1(q − 1)
q

sBG
(0)
B (V )q−1

]
(a,b),B

((u1, u2), V )

×Fn,B1B2cd(V1, V2, u3, u4)

=
∑
e,f

∫
dvdv′Kabef (u1, u2, v, v

′)Fn−1,efcd(v, v′, u3, u4), (3.31)

×Kabcd(u1, u2, u3, u4) = −J
22q−1(q − 1)

q
G(0)
ac (u1, u3)G(0)

bd (u2, u4)scdG
(0)
cd (u3, u4)q−2.

Here to write down the ladder kernel Kabcd(u1, u2, u3, u4) we have used the fact that the
matrix on which K acts, Fn,abcd(u1, u2, u3, u4), is always anti-symmetric under (a, u1) ↔
(b, u2), which holds inductively. Note that Fabcd obeys the following self consistency equa-
tion

Fabcd(u1,u2,u3,u4)=F0,abcd(u1,u2,u3,u4)+
∑
e,f

∫
dvdv′Kabef (u1,u2,v,v

′)Fefcd(v,v′,u3,u4),

(3.32)
which we use in the next section.

3.1.4 Chaos exponent from OTOC at late time

Now we continue u1, u2, u3, u4 in (3.32) to

u1 = 3β
4 + it1, u2 = β

4 + it2, u3 = β

2 , u4 = 0, (3.33)
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and take the integration contour of v, v′ as the following Keldysh contour.

u1
<latexit sha1_base64="owU612ss0kt/beWsTZ0WWxk+PTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAIbI2h</latexit> u2

<latexit sha1_base64="3KK009f1vFrlgPwst9msQx+MaaY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEJ8I2i</latexit>

u3
<latexit sha1_base64="DDWbuH+aNlcNaNhpX9SwMVfPK7s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLdI2j</latexit>

u4
<latexit sha1_base64="fPwldOuaqJ8R+kDAtXk0VN3U1EA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6SPu1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbusVO9r5fpNHkcBTuEMLsCDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAM+I2k</latexit>

v, v0
<latexit sha1_base64="ODsg0A4AwzvwvY4LAOqBCaXV6Lo=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRg5TdKuix6MVjBfsB7VKyabYNTbJLki2UpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxveZ355QpVkkn8w0pr7AQ8lCRrDJpMnl5LxfrrhVdw60SrycVCBHo1/+6g0ikggqDeFY667nxsZPsTKMcDor9RJNY0zGeEi7lkosqPbT+a0zdGaVAQojZUsaNFd/T6RYaD0Vge0U2Iz0speJ/3ndxIS3fspknBgqyWJRmHBkIpQ9jgZMUWL41BJMFLO3IjLCChNj4ynZELzll1dJq1b1rqq1x+tK/S6PowgncAoX4MEN1OEBGtAEAiN4hld4c4Tz4rw7H4vWgpPPHMMfOJ8/hiON5Q==</latexit>

�
<latexit sha1_base64="EpwadKl79nuFFVBzWqBryCC0A38=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k90KOtF+pujV3DrJKvIJUoUCzX/nqDRKWxVwhk9SYruemGORUo2CST8u9zPCUsjEd8q6lisbcBPn82Ck5t8qARIm2pZDM1d8TOY2NmcSh7YwpjsyyNxP/87oZRjdBLlSaIVdssSjKJMGEzD4nA6E5QzmxhDIt7K2EjaimDG0+ZRuCt/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGAg4Ble4c1Rzovz7nwsWtecYuYE/sD5/AHFJI6o</latexit>

Cu1
<latexit sha1_base64="SgP2JsaS7RxQK2aUkD2HhcB5Mno=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdiLx4r2A9oQ9hst+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1LDpVC8hQIl7yaa0yiUvBNOGnO/88S1EbF6xGnC/YiOlBgKRtFKnUaQpYE3C8oVt+ouQNaJl5MK5GgG5a/+IGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny3OnZELqwzIMNa2FJKF+nsio5Ex0yi0nRHFsVn15uJ/Xi/F4a2fCZWkyBVbLhqmkmBM5r+TgdCcoZxaQpkW9lbCxlRThjahkg3BW315nbRrVe+qWnu4rtTv8jiKcAbncAke3EAd7qEJLWAwgWd4hTcncV6cd+dj2Vpw8plT+APn8wcQC49j</latexit> Cu2

<latexit sha1_base64="SnTVgQk18eGVWTFVAJOP4ExXQ3A=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdiLx4r2A9oQ9hst+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1LDpVC8hQIl7yaa0yiUvBNOGnO/88S1EbF6xGnC/YiOlBgKRtFKnUaQpUFtFpQrbtVdgKwTLycVyNEMyl/9QczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOyMXVhmQYaxtKSQL9fdERiNjplFoOyOKY7PqzcX/vF6Kw1s/EypJkSu2XDRMJcGYzH8nA6E5Qzm1hDIt7K2EjammDG1CJRuCt/ryOmnXqt5VtfZwXanf5XEU4QzO4RI8uIE63EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w8RkI9k</latexit>

We are interested in the growing behavior of F(3β/4 + it1, β/4 + it2, β/2, 0) ≡ F(t1, t2) at
late time t1, t2 � 1, where the only relevant contributions in the right-hand side of (3.32)
are the second terms with v ∈ Cu1 , v

′ ∈ Cu2 ; the integrations with v ∈ Cu2 or v′ ∈ Cu1

cancel by themselves due to the regularity of the integrand, and all the other terms including
the first term F0,abcd in (3.32) are suppressed as they contain the two point functions
evaluated at u with Im[u] ∼ t1, t2 being large. For the same reason, since the integration
over v ∈ Cu1 , v′ ∈ Cu2 is dominated only by the contributions from Im[v1] ∼ t1, Im[v2] ∼ t2,
we can freely add to Cu1 and Cu2 the infinite intervals Im[v], Im[v′] ∈ (−∞, 0). Hence we
can approximate the ladder relation (3.32) as

Fabcd(t1, t2)≈
∑
ef

∫
dtdt′KRabef (t1, t2, t, t′)Fefcd(t, t′), (3.34)

KRabcd(t1, t2, t3, t4) =−J
22q−1(q−1)

q
G(0)R
ac (t1− t3)G(0)R

bd (t2− t4)scdG
(0)
cd

(
β

2 + i(t3− t4)
)q−2

.

If we further pose the following ansatz

Fabcd(t1, t2) = e
λL(t1+t2)

2 fabcd(t12), (3.35)

we finally obtain, after a little change of the integration variables,

fabcd(t12)≈−J
22q−1(q−1)

q

∑
ef

∫
dt−e

−λL(t12−t−)
2

[∫
dt′′G(0)R

ae (t12−t−−t′′)G(0)R
bf (−t′′)eλLt′′

]

×sefG
(0)
ef

(
β

2 +it−
)q−2

fefcd(t−), (3.36)

The consequences of this equation are the followings. First suppose that λL is less than or
equal to the actual value of the largest chaos exponent of the system. Then the mode (3.35)
indeed exists and hence (3.36) has a non-trivial solution f(t) corresponding to that mode.
On the other hand, if λL is larger than the largest chaos exponent, such mode does not
exist and hence (3.36) can only have a trivial solution f(t) = 0. Regarding the operation
in the right-hand side of (3.36) as a matrix, the former case is possible only if the largest
eigenvalue of the matrix is greater than or equal to 1. Therefore we can obtain the chaos
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exponent by varying the test value λL and finding the point where the largest eigenvalue
crosses 1. This procedure can be implemented numerically by the power iteration method.

We cau further simplify the ladder equation (3.36) as follows. First of all, notice that
the indices cd of f2,abcd are not mixed through the operation of M1,M2. This implies that
we have only to consider a single choice of cd, say cd = LL, which hereafter we do not write:
fab ≡ fabLL. Next, using the symmetry properties G>LL(t) = G>RR(t), G>LR(t) = −G>RL(t)
we have imposed by hand (3.20), we can show that the kernel KRabcd(t1, t2, t3, t4) (3.34) is
invariant under the simultaneous replacement L↔ R in the four indices abcd together with
a sign multiplication

KRAB →
∑
C,D


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


AC

KRCD


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


DB

, (A = LL,LR,RL,LL) (3.37)

which is equivalent to the following change of basis of Fab:
FLL
FLR
FRL
FRR

→


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




FLL
FLR
FRL
FRR

 . (3.38)

Hence the ladder equation splits to the one for the Fab which is symmetric under the flip:
(FLL,FLR,FRL,FRR) = (FLL,FLR,−FLR,FLL) and the one for Fab being antisymmetric:
(FLL,FLR,FRL,FRR) = (FLL,FLR,FLR,−FLL). We can finally write the ladder equation
for the symmetric/anti-symmetric sector, which we denote by σ = ±1, asf2,LL + σf2,RR

f2,LR − σf2,RL

 (3.39)

=

 M1,LLLL + σM1,LRLR M1,LLLR − σM1,LRLL

−(M1,LLLR − σM1,LRLL) M1,LLLL + σM1,LRLR

 ◦
M2,LL(f2,LL + σf2,RR)
M2,LR(f2,LR − σf2,RL)


where ◦ is the convolution (f ◦ g)(t) =

∫
dt′f(t− t′)g(t′) and

f2,ab(t12) = e
λLt12

2 fab(t12),

M1,abcd(t) =
∫
dt′G

(0)R
ab (t− t′)G(0)R

cd (−t′)eλLt′ ,

M2,ab(t) = −J
22q−1(q − 1)

q
sabG

(0)
ab

(
β

2 + it

)q−2
. (3.40)

Note that M1,abcd itself can also be written as a convolution: M1,abcd = G
(0)R
ab ◦ (Ĝ(0)R

cd eλLt)
with Ĝ(0)R

ab (t) = G
(0)
ab (−t).
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3.2 Single sided model

3.2.1 Real time Schwinger-Dyson equation

Thanks to the redundant GΣ formalism (2.25), (2.26), the calculation for the single sided
model is completely parallel to those for the two coupled model; the only difference is
in the form of the potential term of Gab(u, u′) (right-hand side of (2.28)), which do not
disturb the argument on the analytic continuation in sectoin 3.1.1, 3.1.4 and the derivation
of the ladder equation in section 3.1.3. Hence we obtain the following set of real time
Schwinger-Dyson equations

− i∂t1GRLL(t1, t2) + iµGRRL(t1, t2) +
∫
dt3ΣR

LL(t1, t3)GRLL(t3, t2) = −δ(t1 − t2),

− i∂t1GRLR(t1, t2) + iµGRRR(t1, t2) +
∫
dt3ΣR

LL(t1, t3)GRLR(t3, t2) = 0,

− i∂t1GRRL(t1, t2)− iµGRLL(t1, t2) +
∫
dt3ΣR

LL(t1, t3)GRRL(t3, t2) = 0,

− i∂t1GRRR(t1, t2)− iµGRLR(t1, t2) +
∫
dt3ΣR

LL(t1, t3)GRRR(t3, t2) = −δ(t1 − t2), (3.41)

Σ>
LL(t1, t2) = − i

qJ 2

q

(
G>LL(t1, t2) +G>RR(t1, t2)

)q−1
, (3.42)

ΣR
LL(t1, t2) = θ(t1 − t2)(Σ>

LL(t1, t2) + Σ>
LL(t2, t1)), (3.43)

where we have also used the fact ΣRR(u, u′) = ΣLL(u, u′) and ΣLR(u, u′) = ΣRL(u′, u) =
0 (2.29). If we assume that G>ab(t1, t2) and GRab(t1, t2) depend only on t1 − t2, we obtain
from the first four equations (3.41)

G̃RLL(ω) = G̃RRR(ω) = −(−ω + Σ̃R
LL(ω))

(−ω + Σ̃R
LL(ω))2 − µ2

, (3.44)

G̃RLR(ω) = −G̃RRL(ω) = iµ

(−ω + Σ̃R
LL(ω))2 − µ2

. (3.45)

The greater components G>ab(t) are related to the retarded components as

G̃>ab(ω) = G̃Rab(ω)− (G̃Rba(ω))∗

1 + e−βω
, (3.46)

or explicitly

G̃>LL(ω) = 2iIm[G̃RLL(ω)]
1 + e−βω

= − iρLL(ω)
1 + e−βω

, G̃>LR(ω) = 2Re[G̃RLR(ω)]
1 + e−βω

= − ρLR(ω)
1 + e−βω

, (3.47)

where we have defined the spectral functions ρLL(ω) = −2Im[G̃LL(ω)], ρLR(ω) =
−2Re[G̃LR(ω)] in the same was as in the two coupled model (3.23). As we have already
mentioned at the end of section 2.1.2, the Schwinger-Dyson equations are decomposed into
a closed set of equations only for GRLL, G>LL, ΣR

LL, Σ>
LL (3.42), (3.43), (3.44), (3.47) and

the rest which gives GRLR, G>LR explicitly in terms of ΣR
LL (3.45), (3.47).
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Once we obtain the retarded component GRab(t), we can compute Gab(u) for general
u ∈ C with 0 < Re[u] < β as

Gab(u) = iG>ab(t = −iu) = i

∫
dω

2π e
−ωu G̃

R
ab(ω)− (G̃Rba(ω))∗

1 + e−βω
, (3.48)

and Gab(u) with −β < Re[u] < 0 by using the anti-symmetry property Gab(u) =
−Gba(−u) (2.29).

3.2.2 Four point function

The caculation for the four point functions is also in parallel. If we denote χ2i−1(u) as
χLi (u) and χ2i(u) as χRi (u), the four point functions are expressed in the large N limit as
follows

1
(N/2)2

N
2∑
i,j

〈χai (u1)χbi(u2)χcj(u3)χdj (u4)〉= 1
Zsingle

∫
DGabDΣabGab(u1,u2)Gcd(u3,u4)e−NSsingle

=G
(0)
ab (u1,u2)G(0)

cd (u3,u4)+ 1
(N/2)Fabcd(u1,u2,u3,u4) (3.49)

where G(0)
ab are a solutions to the Schwinger-Dyson equations. The connected part Fabcd is

Fabcd(u1, u2, u3, u4) =
∞∑
n=0
Fn,abcd(u1, u2, u3, u4) (3.50)

where

F0,abcd(u1, u2, u3, u4) = −G(0)
ac (u1, u3)G(0)

bd (u2, u4) +G
(0)
ad (u1, u4)G(0)

bc (u2, u3),

Fn,abcd(u1, u2, u3, u4) =
∑
e,f

∫
dvdv′K(single)

abef (u1, u2, v, v
′)Fn−1,abcd(v, v′, u3, u4), (3.51)

with

K(single)
abcd (u1, u2, u3, u4) = −J

22q−1(q − 1)
2q

(∑
e

G(0)
ae (u1, u3)G(0)

be (u2, u4)
)

×
(
G

(0)
LL(u3, u4) +G

(0)
RR(u3, u4)

2

)q−2
δcd. (3.52)

Here we observe an additional simplification which did not occur in the two cou-
pled model: due to the structure of the cd index in K(single)

abcd it follows that the recursive
relation (3.52) decomposes to the following recursive relation which closes only within
Fab(u1, u2, u3, u4) ≡ FLLab(u1, u2, u3, u4) + FRRab(u1, u2, u3, u4)

Fn,ab(u1, u2, u3, u4) =
∫
dvdv′K(single)(u1, u2, v, v

′)Fn−1,ab(v, v′, u3, u4),

K(single)(u1, u2, u3, u4) = −J
22q−1(q − 1)

2q

(∑
a,b

G
(0)
ab (u1, u3)G(0)

ab (u2, u4)
)

×
(
G

(0)
LL(u3, u4) +G

(0)
RR(u3, u4)

2

)q−2
, (3.53)
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and the rest which explicitly determines the other components of Fabcd(u1, u2, u3, u4) in
terms of Fcd(u1, u2, u3, u4):

Fn,abcd(u1, u2, u3, u4) = −J
22q−1(q − 1)

2q

∫
dvdv′

(∑
e

G(0)
ae (u1, u3)G(0)

be (u2, u4)
)

×
(
G

(0)
LL(u3, u4) +G

(0)
RR(u3, u4)

2

)q−2
Fn−1,cd(v, v′, u3, u4). (3.54)

Therefore, for the purpose of determining the chaos exponent of the single sided model, it
is enough to proceed with only the recursive relation for Fab(u1, u2, u3, u4) written in the
form of a self-consistency equation

Fab(u1, u2, u3, u4) = F0,ab(u1, u2, u3, u4) +
∫
dvdv′K(single)(u1, u2, v, v

′)Fab(v, v′, u3, u4).
(3.55)

where F0,ab(u1, u2, u3, u4) = F0,LLab(u1, u2, u3, u4) + F0,RRab(u1, u2, u3, u4).

3.2.3 Chaos exponent

By continuing the ladder equation (3.55) to real time with u1 = 3β/4 + it1, u2 = β/4 + it2,
u3 = β/2, u4 = 0 and assuming a growing behavior of Fab(t1, t2) ≡ Fab(3β/4 + it1, β/4 +
it2, β/2, 0) at late time t1, t2 � 1, we obtain the following real time ladder equation

Fab(t1, t2) ≈
∫
dtdt′K(single)R(t1, t2, t, t′)Fab(t, t′), (3.56)

with the retarded kernel given as

K(single)R(t1, t2, t3, t4)

= −J
22q−1(q − 1)

2q

(∑
a,b

G
(0)R
ab (t1 − t3)G(0)R

ab (t2 − t4)
)

×
(
G

(0)
LL(β2 + i(t3 − t4)) +G

(0)
RR(β2 + i(t3 − t4))

2

)q−2

= −J
22q−1(q − 1)

q
(G(0)R

LL (t1 − t3)G(0)R
LL (t2 − t4) +G

(0)R
LR (t1 − t3)G(0)R

LR (t2 − t4))

×G(0)
LL

(
β

2 + i(t3 − t4)
)q−2

, (3.57)

where in the third line we have used the fact that G(0)R
RL (t) = −G(0)R

LR (t) and G
(0)
RR(u) =

G
(0)
LL(u) (3.44), (3.45). If we further pose the exponentially growing ansatz

Fab(t1, t2) = e
λL(t1+t2)

2 fab(t12), (3.58)

the real time ladder equation reduces to

fab(t12) ≈ −J
22q−1(q − 1)

q

∫
dt−e

−λL(t12−t−)
2

[∫
dt′′(G(0)R

LL (t12 − t− − t′′)G(0)R
LL (−t′′)

+G
(0)R
LR (t12 − t− − t′′)G(0)R

LR (−t′′))eλLt′′
]
G

(0)
LL

(
β

2 + it−

)q−2
fab(t−). (3.59)
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a

b

c

d

t1 0

0t2

Fabcd

a

b

c

d

t1 0

0t2

Fabcd

t3

t4

=

c

d

a

b

t1

t2 t4

t3GR
ac(t13)

GR
bd(t24)

GW
cd (t34) scd=

c

d

a

b

t1

t2 t4

t3

=

Figure 2. Top/Middle: the diagrammatic representation of the ladder equation/ retarded ker-
nel (3.34). Bottom: the diagrammatic representation of the retarded kernel (3.57).

We can also understand the structure of the retarded kernels and ladder equations
using diagrams (figure 2).

4 Results

In this section we display the numerical results for the real time two point functions and
the chaos exponent of the two coupled model and the single sided model. In all of the
following analyses we have chosen q = 4 and J = 1 for both of the two models. Some
results for different values of q are displayed in appendix A.

4.1 Two coupled model

4.1.1 Euclidean propagator Gab(τ ), phase diagram and Egap

When the contour of u in (2.6) is taken as the Euclidean slice u = τ ∈ (0, β) with τ ∼ τ+β,
the partition function gives the thermal free energy

F (T )
N

= − 1
βN

logZ ≈ − 1
βN

∑
saddles

e−NStwo[G(saddle)
ab

,Σ(saddle)
ab

], T = β−1, (4.1)

where (G(saddle)
ab ,Σ(saddle)

ab ) are the solutions of the Schwinger-Dyson equations (2.18), (2.16).
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q = 4, calJ = 1, μ = 0.1, T = 0.036 (Λ = 105, ΔT = ±0.001)

GLL (ΔT<0)

GLR (ΔT<0)

GLL (ΔT>0)

GLR (ΔT>0)

0.0 0.2 0.4 0.6 0.8 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

τ/β

Figure 3. Euclidean propagators for the black hole phase (∆T < 0) and those for the wormhole
phase (∆T > 0).

By solving the Schwinger-Dyson equations numerically by using the iteration
method [7]6 we found7 that when µ is smaller than µc ≈ 0.177 [31], for each µ there
are two distinctive solutions each of which varies continuously as the temperature is var-
ied. One of these two solutions exists only for T > Tc,BH while the other exists only for
T < Tc,WH with some Tc,BH(µ), Tc,WH(µ) which satisfies Tc,BH < Tc,WH. For example for
µ = 0.1 we have obtained Tc,BH = 0.032, Tc,WH = 0.04. We call the solution exists at high
temperature “the black hole (BH) solution” and the other “the wormhole (WH) solution”.
See figure 3 for the profile of these two solutions.

The free energies evaluated at these two solution intersect at some Tc(µ) which satisfies
Tc,BH < Tc < Tc,WH hence the system exhibhts a first order phase transition at T = Tc.
See figure 4 for the phase diagram together with the list of Tc,BH and Tc,WH. Note that the
values of Tc,BH and Tc,WH we have obtained are respectively higher and lower compared
with those displayed in [23, 39]. These discrepancies are presumably because our criterion
for a given configuration to be the solution (4.2) is more strict than that adopted in [39].
We have further evidence for the values of Tc,BH and Tc,WH: (i) for several values of µ we

6For the numerics we have discretized τ as τ = βm/(2Λ) (m = 0, 1, · · · , 2Λ − 1) with Λ = 105. As the
criterion for a configuration Gab(τ),Σab(τ) to be a solution to the Schwinger-Dyson equations (2.16), (2.18)
we have adopted the following condition:

max
{∣∣∣∣G̃LL(νn) + iνn + Σ̃LL(νn)

(iνn + Σ̃LL(νn))2 + Σ̃LR(νn)2

∣∣∣∣, ∣∣∣∣G̃LR(νn)− Σ̃LR(νn)
(iνn + Σ̃LL(νn))2 + Σ̃LR(νn)2

∣∣∣∣}Λ−1

n=−Λ

< 2× 10−9, (4.2)

(G̃ab(ν) =
∫ β

0 dτeiντGab(τ) = (β/2Λ)
∑2Λ−1

m=0 e
iνβm/(2Λ)Gab(βm/(2Λ))) where νn = (2π/β)(n+ 1/2). Note

that this convergence criterion is more strict than the one adopted in [23, 39] (see eq. (104) in [39] which
uses the average of the elements in (4.2) instead of the maximum.

7Note that the numerical results of the Euclidean propagator (figure 3), the phase diagram (figure 4) and
the energy gap Egap(µ) (figure 6) in this subsection as well as the real time propagator (figure 7) and the
first decay rate Γ (figure 8) in the next subsection were already obtained in the literatures [1, 23, 35, 39, 40].
Nevertheless, for completeness here we have repeated the same analyses in the current notation and displayed
the results obtained by ourselves.
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Figure 4. Top left/top right/bottom left: free energy/energy/entropy for the black hole solution
and the wormhole solution; bottom right: phase diagram of the two coupled model. In the phase
diagram we have computed Tc,BH, Tc and Tc,WH for µ = 0.07, 0.08, 0.09, 0.1 and µ ≥ 0.16 with
∆T = ±10−5, Tc,BH for µ = 0.01, 0.015 and Tc,WH for 0.002 ≤ µ ≤ 0.009 with ∆T = ±10−4, while
all the other data points with ∆T = 10−3.

ran the iterations with ∆T = ±0.0001 as well as ∆T = ±0.001, and obtained the same
values of (Tc,BH, Tc,WH); (ii) we have obtained the same values of Tc,BH, Tc,WH from the
numerical study of the real time Schwinger-Dyson equation. However, at present it is not
clear which results are closer to the exact values of Tc,BH, Tc,WH.

We observe that the slope of the energy E(T ) diverges as the temperature approaches
Tc,BH in the black hole phase or Tc,WH in the wormhole phase, where we can define the
critical exponents νBH, νWH as

cT = ∂E

∂T
∼

(T − Tc,BH)−νBH (T ≈ Tc,BH, black hole phase)
(Tc,WH − T )−νWH (T ≈ Tc,WH, wormhole phase)

. (4.3)

We have obtained νBH, νWH ≈ 0.5 when µ is not close to µc, while νBH, νWH approaches ≈
0.66 as µ approaches µc. See figure 5. These results are consistent with the claim that there
are no phase transition in the microcanonical picture [23], where the black hole phase and
the wormhole phase are smoothly connected by a canonically unstable intermediate phase
which was called “hot wormhole phase” in [39]. Indeed, if T (E) is infinitely differentiable
with respect to E at the canonical critical points Ec,BH ≡ E(Tc,WH) and Ec,WH ≡ E(Tc,WH),
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Figure 5. The critical exponents νBH, νWH of the specific heat (4.3) of the two coupled model
with q = 4, J = 1. We have determined νBH, νWH by fitting (∂E/∂T )−1 near the discontinuity of
E(T ) (figure 4) by the ansatz (∂E/∂T )−1 = c(T − Tc,BH)νBH and (∂E/∂T )−1 = c(Tc,WH − T )νWH

with the fitting parameters (c, νBH) and (c, νWH).

we have T (E) = Tc,BH+(· · · )(E−Ec,BH)m+· · · and T (E) = Tc,WH+(· · · )(Ec,WH−E)n+· · ·
around these points, with m,n being some integers greater than 1. Inverting these relations
we find that the possible values of critical exponents are 1 − 1/N>1 = 1/2, 2/3, · · · . The
critical exponents we found for µ < µc and for µ→ µc are close to 1/2 and 2/3 respectively.

As we can see from figure 6 (left), the wormhole solution exhibits exponential decay
Gab(τ) ∼ e−Egapτ which indicates that the system is gapped with the energy gap Egap.
Indeed when the temperature is sufficiently low (β is large) the two point functions can be
expanded as

〈ψai (τ)ψbi (0)〉β = 1
Z(β)Tre

τĤ ψ̂ai e
−τĤ ψ̂bi e

−βĤ

= 1
Z(β)

∑
m,n

〈Em|ψ̂ai |En〉〈En|ψ̂bi |Em〉e−βEm+τ(Em−En)

≈ 〈E0|ψ̂ai |E0〉〈E0|ψ̂bi |E0〉+ 〈E0|ψ̂ai |E1〉〈E1|ψ̂bi |E0〉e−(E1−E0)τ + · · · , (4.4)

where the fist term is zero since the Hamiltonian of the two coupled model preserves parity
(fermion number) symmetry. See figure 6 (right) for the values of Egap(µ) which we have
obtained by fitting the Euclidean propagators at T = 0.001.

For µ > µc there is only one solution with which both the BH/WH solutions in the
subcritical regime are smoothly connected.

4.1.2 Real time propagator G>
ab(t) and decay rates Γ

By solving the real time Schwinger-Dyson equations (3.21), (3.22) we found two distinctive
solutions for each single point on the µ-T plane around the line T = Tc(µ) (see figure 7).8

8In the numerics for the real time formalism we have to introduce both the UV cutoff and the IR cutoff,
since t is not compactified like τ ∼ τ + β. We have chosen the UV/IR cutoff as t = TL/(2ΛL)(m + 1/2)
(m = −ΛL,−ΛL + 1, · · · ,ΛL− 1) with (ΛL, TL) = (105, 2000). As we mention later, in the wormhole phase
we have also performed the numerics with (ΛL, TL) = (2× 105, 105).
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Figure 6. Left: Euclidean propagator for the wormhole phase around τ ∼ 0 which show exponential
decay Gab(τ) ∼ e−Egapτ with a common exponent Egap for ab = LL,LR. Right: Egap obtained by
fitting Gab(τ) of the wormhole solutions at T = 0.001.

These two solutions correspond respectively to the black hole phase and the wormhole
phase. Indeed, by calculating the Euclidean propagator from the spectral function of each
solution by (3.19), we have obtained precisely the same configuration as those obtained
by directly solving the Euclidean Schwinger-Dyson equations. We have also found that
the real time BH/WH solution stops to exist precisely at T = Tc,BH/T = Tc,WH as we
decrease/increase the temperature slowly, as we have mentioned in the previous subsection.
In figure 7 we have displayed the real time propagator G>ab(t) together with the spectral
functions ρLL(ω) = −2Im[G̃LL(ω)], ρLR(ω) = −2Re[G̃LR(ω)] of BH/WH phase for µ = 0.1,
T = 0.036. Note that these two quantities (G>ab(t), ρab(ω)) are not independent with each
other; given one of them one can construct the other through (3.8), (3.22).

Here are additional remarks on the wormhole solution. As shown in figure 7, the
spectral functions ρab(ω) of the wormhole solution split into sharp peaks. We find that the
position of the peaks are same for ρLL(ω) and ρLR(ω) and, in particular, the position of
the first peak is in good agreement with Egap obtained by fitting the Euclidean propagator
(see figure 6). Indeed, if ρab(ω) were given as ρLL(ω) = ALL(δ(ω − Egap) + δ(ω + Egap))
and ρLR(ω) = ALR(δ(ω − Egap)− δ(ω + Egap)), then from (3.19) we obtain

GLL(τ) = ALL
π

(
e−Egapτ

1 + e−βEgap
+ eEgapτ

1 + eβEgap

)
≈ ALL

π
e−Egapτ ,

GLR(τ) = − iALR
π

(
e−Egapτ

1 + e−βEgap
− eEgapτ

1 + eβEgap

)
≈ − iALR

π
e−Egapτ . (4.5)

The situation is not completely same with the actual result of ρab where there are infinitely
many other peaks and each peak is of finite width. Each peak can be fit well with AδΓ(ω−
ω0) with δΓ(ω) = − 1

π Im[ 1
ω−ω0+iΓ ] (see figure 8), which corresponds to a particle of finite
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Figure 7. Top left/right: propagators/spectral functions ρLL(ω) = −2Im[G̃RLL(ω)], ρLR(ω) =
−2Re[G̃RLR(ω)] for the black hope solution. Bottom left/right: propagators/spectral functions for
the wormhole solution.

lifetime:

ρLL(ω) = ALL(δΓ(ω − Egap) + δΓ(ω + Egap))

⇒ G>LL = − iALL
π

(
e−iEgapt

1 + e−βEgap
+ eiEgapt

1 + eβEgap

)
e−Γ|t|,

ρLR(ω) = ALR(δΓ(ω − Egap)− δΓ(ω + Egap))

⇒ G>LR = −ALR
π

(
e−iEgapt

1 + e−βEgap
− eiEgapt

1 + eβEgap

)
e−Γ|t|. (4.6)

The decay width of each peak decreases as the temperature decreases. In order the finite
IR cutoff |t| < TL/2 to be a good approximation to the reality t ∈ (−∞,∞), TL has to be
sufficiently larger than the inverse of the decay rates so that GRab(t), G>ab(t) ≈ 0 at the IR
cutoff and the effect of compactification t ∼ t+ tL is negligible. For example, for µ = 0.1,
if we choose ΛL, TL as ΛL = 105, TL = 2000 we could solve the Schwinger-Dyson equation
only for T ≥ 0.03. In general when we increase TL we also have to increase the number
of the discrete points ΛL at the same rate to keep the UV resolution, which makes the
numerics at low temperature difficult. However, we found that the weight of the peak
A is smaller for the higher peaks. In particular, for µ = 0.1, T = 0.03 the total weight
of the first three peaks of ρLL is 6.04, which is 96.1% of the total weight

∫
dωρLL(ω) =
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Figure 8. Top left/top right/bottom left: first/second/third peak of the spectral function ρLL(ω)
for q = 4, J = 1, µ = 0.1, T = 0.03 with (ΛL, TL) = (2 × 105, 105). Red lines: fitting curve
A
π

Γ
(ω−ω0)2+Γ2 . Here we have determined A,ω0 separately as the integration of ρLL around the peak

and the local maximim, and used only Γ as the fitting parameter. Bottom right: results of fitting
for the first three peaks of ρLL(ω), ρLR(ω).

2πi(GRLL(+0)− (GRLL(−0))∗) = 2π; ρLL is well approximated by the contributions of only
first three peaks. We found this is the case also for other values of µ, T as long as the
temperature is low enough so that the peaks are well separated. This fact implies that
the sufficient value of ΛL relative to TL is such that ωmax = (π/TL)(ΛL − 1/2) is larger
than the position of the third peak. This required value is much smaller than ωmax = 157
for (ΛL, TL) = (105, 2000), hence we can improve the numerics at low temperature by just
increasing TL with ΛL kept the same. Indeed, by choosing (ΛL, TL) = (2 × 105, 105), for
µ = 0.1 we achieved to reach down to T = 0.019.

We have displayed in figure 8 the fitting results for the first three peaks of the wormhole
solution at µ = 0.1, T = 0.03. The results we have obtained are consistent with those
displayed in [1, 35]. We have also found that the decay rate of the first peak Γ1st obeys
the following relation with Egap

Γ1st ∼ e−
1
2Egapβ (4.7)

up to some overall constant which is independent of T , as argued in [1]. See figure 9.
Interestingly, we have found that the chaos exponent λL also obeys the same formula in
the wormhole phase, as we display in the next subsection.

– 28 –



J
H
E
P
0
2
(
2
0
2
1
)
1
5
0

q = 4, calJ = 1, μ=0.1

●

●

●

●

●

e-0.788-0.112 β

40 45 50 55 60
0.000

0.001

0.002

0.003

0.004

0.005

0.006

β

Γ
L
L
,1
st

q = 4, calJ = 1, c s.t. ΓLL,1 st ~ e-cβ (μ = 0.07 ~ 0.3)

-0.00087 + 0.51 Egap

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

Egap

c

Figure 9. Left: fitting of decay width of the first peak of ρLL ΓLL,1st for µ = 0.1 with ec1−c2β .
Right: comparison of the fitting coefficient c2 with Egap.
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Figure 10. Chaos exponent of the two coupled model with q = 4, J = 1, µ = 0.1 computed
separately for L↔ R even/odd sector (σ = ±1).

4.1.3 Chaos exponent

We can compute the chaos exponent of the two coupled model by solving the ladder equa-
tion (3.36) with the ladder kernel evaluated on the real time propagators obtained in the
previous section. As we have seen in (3.39), the ladder equation decomposes into the two
sectors which are even/odd under the L ↔ R flipping (3.38), hence we can compute the
chaos exponent for each sector separately. We have observed that the chaos exponent of the
even (σ = +1) sector is always larger than that of the odd (σ = −1) sector (see figure 10),
hence below we focus on the even sector.

In figure 11 we have displayed the chaos exponent of the even sector for various µ in
the two phases. It is remarkable that the chaos exponent is small but non-zero even in
the wormhole phase. This is indeed consistent with the fact that the decay rate is small
but non-zero in the same phase, as we have seen in the previous subsection; the system
thermalize, which is another indication for the system to be quantum chaotic. Furthermore,
we have found that the chaos exponent obeys completely the same formula (4.7) as the
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Figure 11. Top left: chaos exponent for the black hole solution and the wormhole solution, where
the dashed black line is the chaos exponent of the pure SYK model µ = 0. Top right: fitting of
the chaos exponent for µ = 0.1 with ec1−c2β . Bottom: comparison of the fitting coefficient c2 with
Egap.

decay rate of the first peak when the temperature is low enough

λL ∼ e−
1
2βEgap , (4.8)

up to an overall factor which is independent of T . See figure 11. We have found this
formula is also satisfied for µ > µc where there are no phase transition, if the temperature
is sufficiently low, as was the case also for Γ1st.

We also observe that the slope of the chaos exponent of the black hole phase ∂λL/∂T
diverges as the temperature approaches Tc,BH (figure 12). Similarly, the slope also seems to
diverge in the wormhole phase at T = Tc,WH. From the detailed analysis close to T = Tc,BH
and T = Tc,WH we have identified the critical exponent as

∂λL
∂T
∼

 (T − Tc,BH)ηBH (T ≈ Tc,BH, black hole phase)
(Tc,WH − T )ηWH (T ≈ Tc,WH, wormhole phase)

(4.9)

with ηBH and ηWH displayed in figure 13. In particular, as µ approaches µc = 0.177 the
two critical exponents almost coincide around η ≈ 2/3. This agrees with the behavior of
the critical exponent νBH, νWH defined by the specific heat (4.3), and is consistent with
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Figure 12. The chaos exponent of the two coupled model near T = Tc,BH and T = Tc,WH (q = 4,
J = 1). The data point in the black hole phase are generated with (ΛL, TL) = (105, 2000) and
∆T = −10−3,−10−4,−10−5, while the data points in the wormhole phase are generated with
(ΛL, TL) = (2× 105, 105) and ∆T = 103, 104, 105.

q = 4, calJ = 1, critical exponent of ∂T(λL); ∂T(λL) ~ (T - Tc,BH)-ηBH , ∂T(λL) ~ (Tc,WH - T)-ηWH
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Figure 13. The critical exponent ηBH and ηWH of the chaos exponent (4.9) of the two coupled
model with q = 4, J = 1. We have determined ηBH, ηWH by fitting (∂TλL)−1 by the ansatz
(∂TλL)−1 = c(T −Tc,BH)ηBH and (∂TλL)−1 = c(Tc,WH−T )ηWH with the fitting parameters (c, ηBH)
and (c, ηWH).
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the fact that for µ ≥ µc the phase transition disappears and the two phases are smoothly
connected. On the other hand, for µ ≤ 0.1 the critical exponents deviate significantly from
those of the specific heat νBH, νWH ≈ 1/2, except ηBH(µ = 0.1) and ηWH(µ = 0.07).

4.1.4 Chaos exponent in quasi-particle approximation

In the wormhole phase at T � TWH, we can reduce the ladder equation (3.34), which is
originally a set of integral equations, to a simple differential equation. This enables us to
evaluate the chaos exponent in this regime analytically in terms of Egap and the decay rate
of the first peak Γ.

The calculation goes as follows. When the temperature is sufficiently low, the spectral
function is dominated by the first peak and its mirror image

ρLL(ω) ≈ π(δΓ(ω−Egap)+δΓ(ω+Egap)), ρLR(ω) ≈ π(δΓ(ω−Egap)−δΓ(ω+Egap)), (4.10)

from which we obtain, via (3.22),

GRLL(t)≈− i2θ(t)(e
−iEgapt+eiEgapt)e−Γt, GLL

(
β

2 +it
)
≈e−

βEgap
2 cos(Egapt)e−Γ|t|, (4.11)

GRLR(t)≈−1
2θ(t)(e

−iEgapt−eiEgapt)e−Γt, GLR

(
β

2 +it
)
≈−e−

βEgap
2 sin(Egapt)e−Γ|t|.

By substituting these GRLL, GRLR into the ladder equation (3.34) we obtain, under the
assumption FRL = −FLR, FRR = FLL (here we suppress the last two indices of Fabcd to
which the ladder kernel does not act, and we denote Fabcd simply as Fab), the following
equations

FLL(t1, t2)± iFLR(t1, t2) (4.12)

= J
2 · 2q−1(q − 1)

q

∫
dtdt′θ(t1 − t)θ(t2 − t′)e(∓iEgap−Γ)(t1−t)e(±iEgap−Γ)(t2−t′)

×
[
GLL

(
β

2 + i(t− t′)
)q−2

FLL(t, t′)± i(−1)
q
2GLR

(
β

2 + i(t− t′)
)q−2

FLR(t, t′)
]
.

Now we differentiate both sides of this equation by ∂t1 + Γ ± iEgap and ∂t2 + Γ ∓ iEgap.
Since the exponential factors in (4.12) are eliminated by these differential operators, from
the right-hand side of (4.12) we only gain ∂t1∂t2θ(t1− t)θ(t2− t′) = δ(t1− t)δ(t2− t′), which
cancel the integrations and we obtain a differential equation

(∂t1 + Γ± iEgap)(∂t2 + Γ∓ iEgap)(FLL(t1, t2)± iFLR(t1, t2)) = J
2 · 2q−1(q − 1)

q
(4.13)

×
[
GLL

(
β

2 + i(t1 − t2)
)q−2

FLL(t1, t2)± i(−1)
q
2GLR

(
β

2 + i(t1 − t2)
)q−2

FLR(t1, t2)
]
.
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If we assume the t1, t2 dependence of Fab(t1, t2) as Fab = eλL(t1+t2)/2fab(t1 − t2) and also
assume fab ∈ R, the ladder equation (4.13) becomes (t ≡ t1 − t2)[

−∂2
t + E2

gap +
(
λL
2 + Γ

)2]
fLL(t) + 2Egap∂tfLR(t)

= J
2 · 2q−1(q − 1)

q
GLL

(
β

2 + it

)q−2
fLL(t),[

−∂2
t + E2

gap +
(
λL
2 + Γ

)2]
fLR(t)− 2Egap∂tfLL(t)

= (−1)
q
2J 2 · 2q−1(q − 1)

q
GLR

(
β

2 + it

)q−2
fLR(t), (4.14)

For q ∈ 4N these equations simplify drastically with the following additional ansatz9

fLL(t) = cos(Egapt)g(t), fLR(t) = − sin(Egapt)g(t), (4.15)

as [
−∂2

t +
(
λL
2 + Γ

)2]
g(t) = J

2 · 2q−1(q − 1)
q

GLL

(
β

2 + it

)q−2
g(t),[

−∂2
t +

(
λL
2 + Γ

)2]
g(t) = J

2 · 2q−1(q − 1)
q

GLR

(
β

2 + it

)q−2
g(t). (4.16)

By assuming that g(t) varies slowly compared to the scale E−1
gap, we can replace cosq−2Egapt

in GLL(t)q−2 and sinq−2Egapt in GLR(t)q−2 with their average over the period as

cosq−2Egapt, sinq−2Egapt −→
(q − 2)!

2q−2(( q2 − 1)!)2 , (4.17)

hence we obtain[
−∂2

t +
(
λL
2 + Γ

)2
− 2J 2(q − 1)!
q(( q2 − 1)!)2 e

−( q2−1)βEgape−(q−2)Γ|t|
]
g(t) = 0. (4.18)

If we rescale t as t′ = (q − 2)Γt and use the expression for Γ under the quasi-particle
approximation Γ ≈

√
2J 2(q − 2)!/(((q/2)!)2)e−(q/2−1)βEgap/2 [1], we finally obtain[

− ∂2

∂t′2
+ 1

(q − 2)2

(
λL
2Γ + 1

)2
− q(q − 1)

(q − 2)! e
−|t′|

]
g(t′) = 0. (4.19)

It is not difficult to solve the differential equation (4.19); the solution for t′ > 0 and
t′ < 0 are separately given by Bessel function Jn(z) with n = 2(λL/(2Γ) + 1)/(q − 2) and
z = 2

√
q(q − 1)/(q − 2)2e−|t

′|/2, and the value of λL/Γ is determined by requiring a smooth
connection of g(t′) at t′ = 0, as

λL
Γ = (q − 2)n− 2, ∂Jn(z)

∂z

∣∣∣∣
z=2
√

q(q−1)
(q−2)2

= 0. (4.20)

9For q ∈ 4N+ 2 we could not find a way to simplify the differential equation where a non-trivial solution
still exists.
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Figure 14. Top left: Euclidean propagator Gab(τ) of the single sided model with µ = 0.05,
T = 0.001, 0.05. Top right: free energy. Bottom left: Euclidean propagator at low temperature
µ = 0.05, T = 0.001 where the exponential decay is significant. Bottom right: Egap of the single
sided model obtained by fitting Gab(τ) at T = 0.001 (µ ≥ 0.04) and at T = 0.0001 (µ ≤ 0.03). For
µ ≤ 0.03 we have set Λ = 106.

For q = 4 this gives λL/Γ ≈ 2.706. Actually it is not easy to reproduce this value (as well
as the overall factor

√
2J 2(q − 2)!/(((q/2)!)2) of Γ) precisely from the numerical analysis.

However, the remarkable point of this conclusion is rather that when the temperature is
sufficiently low the ratio λL/Γ is completely independent of the temperature and the other
parameters of the two coupled model J , µ.

4.2 Single sided model

In figure 14 we have displayed the Euclidean propagators and the free energy of the single
sided model for µ = 0.1. This model does not exhibit a phase transition regardless of
the value of µ [38]. When the temperature is sufficiently low, however, the Euclidean
propagators exhibits exponential decay, which indicates that the system is gapped. We
find that Egap of the single sided model is smaller than that of the two coupled model at
same value of µ and that it behaves as Egap ∼ µ2 at small µ [38], which is in contrast to
the two coupled model where Egap ∼ µ2/3 [23].

The real time propagators also behave similarly to those in the two coupled model
both at high temperature and at low temperature. In particular when the temperature
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is sufficiently low the spectral functions split into sharp peaks, which corresponds to the
fact that the system is gapped. The height of the first peak is lower than that for the two
coupled model. This is not because the weight A is smaller but rather because the decay
width Γ is larger. We have found the decay width of the first peak for the single sided
model again obeys the formula (4.7) when the temperature is sufficiently low

Γ1st ∼ e−
1
2βEgap . (4.21)

Here Egap is the energy gap of the single sided model. See figure 15.
Lastly we display the chaos exponent λL in figure 16. The overall behavior of the chaos

exponent is qualitatively same as that of the two coupled model except the absence of the
phase transition. We also observe that λL for the single sided model is always greater than
that of the two coupled model at the same values of (µ, T ) as displayed in figure 17. At
low temperature we again found that λL obeys (4.8)

λL ∼ e−
1
2βEgap . (4.22)

As Egap for the single sided model is smaller than that of the two coupled model, this
explains the fact that λL for the single sided model is greater than that of the two coupled
model. For the same dominance persisting at higher temperature we do not have such clear
explanation, but we argue a possible interpretation of it in section 5.

5 Discussion

In this paper we have studied the chaos exponent of the two coupled model (2.1) introduced
by Maldacena and Qi [23] in detail. The analysis of the level statistics at finite N [31]
suggests that there is a quantum chaos transition below µ = µc = 0.177 where the Hawking-
Page like transition in the two coupled model disappears. This motivate us to study the
chaos exponents, which can be analyzed in the large N limit using the GΣ formalism. Since
the Hawking-Page like transition originates from the exchange of the dominance of two
different saddles, one may think that the coincidence of the thermal phase transition and
a chaos transition is not so surprising. However, it is still non trivial how both phases are
characterized from the view of quantum chaos. We have found that when the system goes
to the wormhole phase from the black hole phase, the chaos exponent jumps to extremely
small values, which is consistent with the expectation in [31].

Another motivation of our analysis is to study the chaos exponent in the gapped
phase, which we expect to be an integrable phase. Surprisingly, however, it was found [1]
that the two point function shows an exponential decay, which indicates that the system
is still chaotic even in this regime. Indeed, we have found that the chaos exponent is
small but non-zero also in the wormhole phase. Moreover, we have found a quantitative
relation (4.20) between the chaos exponent and the decay rate which was found to behave
as Γ1st ≈ J

√
(q − 2)!/(2((q/2)!)2)e−(q/2−1)Egapβ/2 [1]. Note that these formulas imply that

both the decay rate and the chaos exponent vanishes non-perturbatively in the large q limit
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Figure 15. Top left/top right: propagator and spectral function of the single sided model at
µ = 0.1, T = 0.01 which are qualitatively same as those in the black hole phase of the two coupled
model. Middle left/middle right: propagator and spectral funcntion at µ = 0.1, T = 0.01 where
the spectral functions split into well separated peaks as in the wormhole phase of the two coupled
model. Bottom left: fitting of the decay width of the first peak with ec1−c2β , at sufficiently low
temperature where the first peak is well separated from the second peak and the mirror of the first
peak at ω < 0. Bottom right: comparison of c2 with Egap of the single sided model.
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Figure 16. Top left: chaos exponent λL of the single sided model. Top right: comparison of λL
with the exponential decay ec1−c2β obtained by fitting last three to six data points with the largest
values of β for each µ. Bottom: comparison of the fitting coefficient c2 with Egap.
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Figure 18. Schematic picture for the expected behavior of the chaos exponent in the unstable hot
wormhole phase for µ < µc.

with qµ and qT kept fixed,10 which is consistent with the fact that we did not observe these
chaotic properties in the direct large q analysis [23]. Also note that such a simple relation
would not hold in general. For example, in a general conformal field theory the two point
function is completely determined by the conformal dimension of the two operators, while to
calculate the four point function, which encodes the chaos exponent, we also have to know
the OPE coefficients. It would be interesting to understand how the simple relation (4.20)
between the chaos exponent and the decay rate, if it exists, will be generalized in other
chaotic systems.

What is the gravity interpretation of the finite decay rate in the wormhole phase? At
first sight two point functions periodically oscillate in time in the wormhole phase, which
contradicts with the exponential decay in the SYK side. One possibility is the bulk interac-
tion causes the decay of the bulk fields. Usually the bulk interaction is suppressed in 1/N
expansion and we expect that the decay rates are also suppressed in 1/N expansion below
the Hawking Page transition. However, we expect order N light bulk fields in the SYK
model, which may enhance the effects of bulk interaction and the bulk interaction effects
may remain even at large N . It is interesting future work to study this possibility further.

We have also found that the slope of the chaos exponent ∂TλL(T ) diverges at the end
of the two phases T = Tc,BH, T = Tc,WH. These divergent behaviors resemble that of the
energy E(T ) and the entropy S(T ), rather than of the free energy F whose slope is finite
(almost constant) in each phase even near Tc,BH, Tc,WH. In [23] it was claimed that for
Tc,BH < T < Tc,WH there exists another canonically unstable phase throught which the
energy varies completely smoothly in the all parameter regime [39]. Although we could
not reach the unstable phase in the current analysis, we expect that the chaos exponent
shows a similar behavior as the energy, as sketched in figure 18. This would be confirmed
by solving the Kadanoff-Baym equation of the two coupled system coupled to a cool bath
and evaluating the chaos exponent by using the propagators at each time t1 + t2 before it
reaches the equilibrium with Tbath [39, 41, 42].

10Although the prefactor
√

(q − 2)!/(2((q/2)!)2) grows exponentially in q as ∼ 2q, the exponential decay
of e−(q/2−1)βEgap/2 is even faster due to the rescaling of T .
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We have also considered a model with single SYK with a mass deformation (2.3) [37].
While this single sided model is qualitatively same as the two coupled model in the limit
of µ→ 0 and µ→∞, in contrast to the two coupled model, this model does not exhibit a
phase transition. Correspondingly, the chaos exponent we have obtained varies smoothly
at all (µ, T ). We have also found that the chaos exponent obeys the same exponential
formula λL ∼ e−(q/2−1)βEgap/2 (1.1) as the decay rate of the first peak [1]. As displayed in
appendix A.2, for the single sided model we have reached the low temperature regime also
for q = 6, 8, where we have confirmed the formula (1.1) holds also for q = 6, 8.

We have further found that the chaos exponent of the single sided model is always
greater than that of the two coupled model in the whole parameter regime. Though in
this paper we have regarded the two models in independent ways, we can treat the two
models as two different parameter points of a unifed model, where the direct comparison
would be more reasonable. We can consider a generalization of the two coupled model
with the correlation between the random couplings of the two sides being incomplete
〈JLi1i2···iqJ

R
i1i2···iq〉 < 〈(J

L
i1i2···iq)

2〉 = 〈(JRi1i2···iq)
2〉, where 〈JLi1i2···iqJ

R
i1i2···iq〉/〈(J

L
i1i2···iq)

2〉 is a
new tunable parameter of the theory. As we have commented in [38], the single sided
model (2.3) is equivanlent to this model with 〈JLi1i2···iqJ

R
i1i2···iq〉/〈(J

L
i1i2···iq)

2〉 = 0 at the
level of the large N GΣ formalism.11 Hence this model unifies the two coupled model
and the single sided model, and our observation can be rephrased that the model is less
chaotic when JLi1i2···iq and J

R
i1i2···iq are more correlated. It would be interesting to study the

chaotic property of this unifying model and see whether the chaos exponent monotonically
decreases with respect to 0 < 〈JLi1i2···iqJ

R
i1i2···iq〉/〈(J

L
i1i2···iq)

2〉 < 1 [43].
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A Numerical results for q = 6, 8

A.1 Two coupled model

Below we display the results for the phase diagram obtained by solving the Euclidean
Schwinger-Dyson equations, and the chaos exponent obtained by solving the real time
Schwinger-Dyson equations. See figure 19, 20. In contrast to the q = 4 case in the real
time analysis we could not reach the convergence in the wormhole regime even with the
method of taking Λ/TL small explained in the end of section 4.1.2.

11Precisely speaking, the GΣ effective action and its first variation are identical for the two models after
imposing the ansatz GLL = GRR, while the second variation of the effective action is not the same even
after the substitution of the solution to the equations of motion with GLL = GRR. One can show, however,
that this discrepancy does not affect the leading chaos exponent [43].
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Figure 19. Phase diagram (left) and the chaos exponent (right) of the two coupled model with
q = 6, J = 1.

q = 8, calJ = 1 (Λ = 105, ΔT = ±0.001)
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Figure 20. Phase diagram (left) and the chaos exponent (right) of the two coupled model with
q = 8, J = 1.

A.2 Single sided model

Below we display the results for the chaos exponent of the single sided model with q = 6, 8.
See figure 21. As in the case of q = 4, there are no phase transition. At low temperature
we found that the chaos exponent obeys the following formula

λL ∼ e−
q/2−1

2 βEgap . (A.1)

Interestingly, this behavior is completely same as that of the decay rate of the first peak [1].
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Figure 21. Top left/right: the chaos exponent of the single sided model with q = 6, J = 1 and
q = 8, J = 1. Bottom left/right: the energy gap Egap and its comparison with the decay exponent
c of the chaos exponent λL ∼ e−cβ at low temperature regime.
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