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Abstract We construct a novel class of spherically sym-
metric and asymptotically flat black holes and naked singu-
larities surrounded by anisotropic dark matter fluid with the
equation of state (EoS) of the form Pt = ωρ. We assume that
dark matter is made of weakly interacting particles orbiting
around the supermassive black hole in the galactic center and
the dark matter halo is formed by means of Einstein clusters
having only tangential pressure. In the large distance from
the black hole we obtain the constant flat curve with the upper
bound for the dark matter state parameter ω � 10−7. To this
end, we also check the energy conditions of the dark matter
fluid outside the black hole/naked singularity, the deflection
of light by the galaxy, and the shadow images of the Sgr A�

black hole using the rotating and radiating particles. For the
black hole case, we find that the effect of dark matter fluid on
the shadow radius is small, in particular the angular radius of
the black hole is shown to increase by the order 10−4 µarcsec
compared to the vacuum solution. For the naked singularity
we obtain significantly smaller shadow radius compared to
the black hole case. Finally, we study the stability of the S2
star orbit around Sgr A� black hole under dark matter effects.
It is argued that the motion of S2 star orbit is stable for values
ω � 10−7, however further increase of ω leads to unstable
orbits. Using the observational result for the shadow images
of the Sgr A� reported by the EHT along with the tightest
constraint for ω found from the constant flat curve, we show
that the black hole model is consistent with the data while
the naked singularity in our model can be ruled out.

1 Introduction

Black holes are extremely interesting objects predicted to
exists by general relativity. Through many astrophysical
observations, including the recent observation of the image of
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M87 and Sgr A� supermassive black holes by Event Horizon
Telescope (EHT) collaboration [1–5], detection of X-rays
and gravity waves [6–8], in fact it is now widely believed
that in the center of each galaxy there are objects described
just by the spacetime geometry of black holes predicted by
Einstein’s theory. In addition, black holes are now consid-
ered as astrophysical laboratories for testing not only gen-
eral relativity in the strong gravity regime but also different
extensions or modified theories of gravity. On other hand,
black holes have played an important role in discovering a
deep connection between the laws of thermodynamics and
gravity, this can play a significant role for understanding the
quantum nature of black holes. We now know that black
holes have entropy and as was shown by Hawking they radi-
ate energy as a consequence an external observer located far
away from the black hole should detect temperature [9,10].
In that sense, black holes are important for testing quantum
theories of gravity as well.

In spite of the great success of general relativity, there are
many open problems that general relativity cannot solve. One
can mention here the problem with the black hole singulari-
ties, cosmic inflation, constant flat curves in galaxies [11], the
accelerated expansion of the universe, and so on. The prob-
lem with the rotating curves in galaxies can be explained with
the dark matter - a mysterious substance probably made of
a new particle which weakly interacts with the surrounding
and hence very difficult to be detected. We can mainly probe
the dark matter effect in terms of the gravity. An alternative
way to explain the constant flat curves is to modify the law of
gravity [12], but other interesting possibilities have been sug-
gested recently, like dark matter as Bose-Einstein condensate
[13], dark matter as a superfluid [14], emergent gravity [15]
and others. As of today, there is no definite answer and this
questions and the problem of dark matter remains an open
problem in physics.
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In this work, we shall focus on an old method developed by
Einstein to construct spherically symmetric solutions using
the anisotropic matter distributions known as the Einstein
clusters [16]. Moreover, this idea was used to explain dark
matter in terms of Einstein clusters by Boehmer and Harko
[17] and Lake [18], as well as other related studies [19–21].
Recently Cardoso et al. [22] used the Einstein cluster to con-
struct a space time geometry using the Hernquist-type dis-
tribution and a black hole in the center. In this work, we
are interested to model the dark matter as a fluid with EoS
given by Pt = ωρ along with a central supermassive black
hole. We shall consider a different mass profile which locally
diverges but globally reduces to a asymptotically flat space-
time. Moreover we would like to understand more about the
effect of dark matter on shadow images of the Sgr A� black
hole, it’s effect on the motion of S2 star in our galactic center,
and the constraint on the dark matter parameter ω. Toward
this goal, we are going to extend the non-minimally coupling
effect between the black hole geometry and the dark matter
suggested in [22] and explore in details two special solutions.

The paper is organized as follows. In Sect. 2, we briefly
review the construction by Einstein and then we introduce a
black hole and a naked singularity in a dark matter fluid. In
Sect. 3, we explore the deflection of light by the galaxy due to
the dark matter and we also discuss the constant flat curve and
the constrain on ω. In Sect. 4, we study the shadow images
using rotating and radiating particles near the black hole and
a naked singularity, respectively. Importantly, we will use the
EHT result for the Sgr A� shadow radius to test our models.
In Sect. 5, we study the S2 star orbit. We comment on our
results in the last section.

2 A black hole surrounded by anisotropic dark matter
fluid

Let us start by assuming a surrounding anisotropic matter
which according to the Einstein construction can be written
in terms of the average stress tensor given by [16–18,22]

〈Tμν〉 = n

mp
〈PμPν〉, (1)

where n is the number density of particles, mp is the mass
of the particle and Pμ is the four-momentum satisfying
the geodesic equations. According to this model, we have
anisotropic matter with only tangential pressure Pt and van-
ishing radial pressure. In particular we can write [16–18,22]

Tμ
ν = diag(−ρ, 0, Pt , Pt ). (2)

In this work we are interested to describe a spherically
symmetric geometry therefore we can use the following line
element

ds2 = − f (r)dt2 + dr2

g(r)
+ r2(dθ2 + sin2 θdφ2), (3)

with

g(r) = 1 − 2m(r)

r
. (4)

One can show that the radial function f (r) is related to
the mass function according to the equation [22]

r f ′(r)
2 f (r)

= m(r)

r − 2m(r)
. (5)

On the other hand, one can use the conservation of the energy,
to show a relation between the tangential pressure and the
mass profile given by [22]

2Pt
ρ

= m(r)

r − 2m(r)
. (6)

In this paper we assume that dark matter is made of particles
rotating around the black hole and the resulting dark matter
halo can be expressed as an effective fluid with the EoS of
the form Pt = ωρ. From the last equation, it is easy to show
that the mass profile reads

m(r) = 2ωr

1 + 4ω
. (7)

Moreover from the last equation we can now obtain the
energy density of the dark matter fluid

ρ = 1

4πr2

dm(r)

dr
= ω

2πr2(1 + 4ω)
. (8)

It is very interesting to see that our model of Einstein clus-
ter is analogues to the isothermal dark matter profile which
can be written as

ρ(r) = C
4πr2 , (9)

where we have defined

C = 2ω

1 + 4ω
. (10)

Later on, we shall assign a physical interpretation to this
quantity. Furthermore, for the tangential pressure we obtain

Pt = ω2

2πr2(1 + 4ω)
. (11)

Let us now introduce a black hole in our spacetime in the
spirit of Ref. [22]. In order to include the central object in the
center, we can modify the mass profile solution by including
a coupling between the central object (for example a black
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hole) and dark matter, hence by generalizing the expression
for the mass profile as follows

m(r) = M0 + 2ωr

1 + 4ω

(
1 − 2M0

r

)α

. (12)

In general, we see that such a mass profile would lead to
a divergent mass and hence would be incompatible with
asymptotically flat spacetime, however, our goal here is to
construct asymptotically flat spacetimes from this mass pro-
file. Note also that α is some real number, in what follows
we shall consider some special cases. As we are going to
see, by assuming a central object with mass M0, in general,
depending on the specific choice of the mass function one
can end up not only with a black hole but also with a naked
singularity.

2.1 Model 1

In our first example, we are going to consider the simplest
case α = 1 in the mass profile equation. Our goal is to find
the radial function, hence we can use Eq. (5) to obtain

(r2 − 2M0r) f
′(r) − 2 f (r)(2rω + M0) = 0. (13)

Interestingly, as we shall see the dark matter profile has a
very simple solution for the metric components. Solving this
equations and using the condition f (r)|r=R = 1 to fix the
constant of integration and find the solution

f (r) =
(

1 − 2M0
r

)
(

1 − 2M0
R

)
(
r − 2M0

R − 2M0

)4ω

. (14)

At this point we can rescale the time coordinate and absorb
the factor 1 − 2M0/R as follows

dt ′ → dt√
1 − 2M0

R

. (15)

Therefore, we can say that our solution in the general case
describes the whole region with the following spacetime met-
ric [by dropping the prime notation in the time coordinate]

ds2 =

⎧⎪⎨
⎪⎩

−
(
1− 2M0

r

) (
r−2M0
R−2M0

)4ω

dt2+ dr2(
1−2M0

r

)(
1− 4ω

1+4ω

) +r2d
2, r < R

− (
1 − 2M

r

)
dt2 + dr2

1− 2M
r

+ r2d
2, r ≥ R

Basically, we have the interior region of the galaxy described
by the line element in the region r < R, and the exterior
region r ≥ R which is effectively a Schwarzschild metric.
Note that as a special case by setting ω = 0 we can obtain the
vacuum solution without dark matter effect. Furthermore it
looks like this solution has an event horizon at r = 2M0, but
a further investigation shows that the metric inside r < R is
not a black hole, rather it is a naked singularity. One way to

see this is by looking at the regularity condition at r = 2M0,
and by computing det gμν evaluated at r = 2M0 which gives
zero. In other words, the central singularity has been shifted
at r = 2M0. We can see this more clearly if we introduce
new coordinates rnew → r−2M0 and R → R−2M0, where
M0 is now the mas parameter of the naked singularity. The
interior metric in terms of the new coordinate reads

ds2 =

⎧⎪⎨
⎪⎩

−
(

r
r+2M0

) (r
R

)4ω
dt2+ dr2(

r
r+2M0

)(
1− 4ω

1+4ω

) +(r+2M0)
2d
2, r < R

− (
1 − 2M

r

)
dt2 + dr2

1− 2M
r

+ r2d
2. r ≥ R

The interior solution as can be seen is regular at r = 2M0,
but is has a central singularity at r = 0, thus it is a naked
singularity. The region r > R remains basically the same in
large distances from the center. The mass of the system is
given by

M = M0 + 2ωR

1 + 4ω

(
1 − 2M0

R

)
. (16)

In the last equation R is some large number and in prin-
ciple can be obtained from observations if we know the total
mass and the parameter ω. Later on, we will discuss this issue
in more details. As we already pointed out the mass profile
in Eq. (12) diverges, in order to obtain asymptotically flat
solution in the large limit of r the whole process must be
conducted with caution. Namely, we can see that the interior
metric solves the Einstein equations while the exterior the
vacuum solution, in addition to that the metric is continuous
but not smooth at r = R. Such a similar issue was recently
discussed by Remmen (see for more details [28]) in the con-
text of singular isothermal fluid. To resolve this issue, at the
surface at �, we need to discuss the junction conditions. In
other words, at the surface �, where the dark matter fluid
in the interior region matches the effective Schwarzschild
vacuum exterior, there must be a thin shell of matter that
confines the fluid. The energy-momentum for the induced
metric on � reads Tab = −σ(uaub + γab), where σ bis the
surface density energy. In the full spacetime coordinates, we
can write the extra energy-momentum tensor of the shell in
the following form [28]

�Tμν = −σ δ(r − R) diag(0, 0, r2, r2 sin2 θ)|r=R . (17)

As we are going to see the energy-momentum tensor of
the surface violates the null energy condition, but as pointed
out in [28] this can be simply rectified by adding an arbitrary
surface density larger than σ . We can compute the aμ =
(uν∇νuμ), that is, the acceleration in both regions resulting
with

a =
⎧⎨
⎩

4ωr+4ωM0+M0
2r(r+M0)

√
1+4ω

(
1 + 2M0

r

)−1/2
r < R

M
r2

(
1 − 2M

r

)−1/2
r ≥ R.

(18)
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As we know the surface gravity of the object is the force at
infinity needed to suspend an observer at the r = R surface.
At the distance r = R, since M0 	 R, thus we can basically
neglect the central mass and set it to zero, i.e., M0 → 0, and
simplify the computations. In that case, taking the limit from
the inside versus outside we indeed find a discontinuity

κ+ = lim
r→R+ |ξ |a = M

R2 ,

κ− = lim
r→R− |ξ |a = √

1 + 4ω
M

R2 ,

(19)

note that one can use the Killing vector ξμ to find |ξ |. We
now see that the difference across the r = R boundary gives

�κ = κ+ − κ− = 2ω

R

(
1 − √

1 + 4ω

1 + 4ω

)
, (20)

using the expansion
√

1 + 4ω = 1 + 2ω + ... (21)

we can approximate the difference as

�κ 
 −2 Cω

R
= −8πσ, (22)

where C is defined by Eq. (10). From the last equation we
see that the corresponding perfect fluid to the thin shell has
surface tension given by σ = Cω/4πR. One can relate this to
the the extra force needed to counteract the tension supplied
by the boundary shell. The mass of the thin shell can be
computed from the relation

∂Mshell

∂A
= �κ

8π
= σ, (23)

This means that the only effect on the geometry of doing
so would be to shift M in the r > R part of the metric by the
total mass of the shell, which gives

Mtot = M + Mshell = 2ωR

1 + 4ω

(
1 − ω

1 + 4ω

)
. (24)

We found that the corrections due to the thin shell matter are
proportional to ω2, but as we are going to see ω is a very
small number, hence the total mass of the dark matter halo
can be approximated to Mtot 
 M and, more importantly,
we will have an asymptotically flat spacetime geometry. In
Fig. 1, we show the plot of the total mass as a function of the
state parameter ω and R.

2.1.1 Energy conditions

It is interesting to elaborate the energy conditions for the
dark matter fluid. They are a sets of inequalities depending

Fig. 1 The plot shows the total mass of the dark matter halo as a func-
tion of state parameter ω and R

on energy momentum tensor. In particular the weak energy
condition (WEC), i.e. TμνUμU ν , where Uμ is a timelike
vector implies

ρ(r) ≥ 0 and ρ(r) + Pi (r) ≥ 0. (25)

On the other hand, the null energy condition (NEC) is given
by Tμνkμkν , where kμ is null vector. This implies that ρ(r)+
Pi (r) ≥ 0, with i = 1, 2, 3.

We also have the strong energy condition (SEC) given by,

ρ(r) +
∑

Pi (r) ≥ 0, and ρ(r) + Pi (r) ≥ 0. (26)

From the energy density of the dark matter fluid we have

ρ(r) + Pr (r)|r=r0 = ω

2πr2
0 (1 + 4ω)

≥ 0, (27)

where in our case we have Pr (r) = 0. Since r2
0 > 0, from

the last equation it follows that ω ≥ 0. Furthermore we can
check the strong energy condition to find

ρ(r) + Pt (r)|r=r0 = ω(1 + ω)

2πr2
0 (1 + 4ω)

≥ 0. (28)

Here the positive region is given in the interval −1 ≤ ω <

−1/4 and ω ≥ 0, therefore we choose as a physical solution
only the region ω ≥ 0. Finally using Eq. (26), we obtain

ρ(r) + Pr (r) + 2Pt (r) = ω(1 + 2ω)

2πr2
0 (1 + 4ω)

≥ 0. (29)

the positive region is given in the interval −1/2 ≤ ω < −1/4
and ω ≥ 0, again we choose only the region ω ≥ 0.

Thus, we argued that the energy conditions in general are
satisfied by the dark matter fluid outside the naked singularity
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metric. In what follows, we are going to consider another
important mass profile which results with a black hole in the
center.

2.2 Model 2

Here we consider another solution with a slightly different
and more realistic mass profile for the dark matter fluid. As
we shall see, in this case we do get a black hole metric, hence
we replace M0 = MBH in the mass profile. Specifically, we
will focus and explore here the case α = 2 in our mas profile.
From Eq. (5) we find the following differential equation

(9r − 2MBH ) (r + 8ωMBH )

1 + 4ω
f ′(r)

−2 f (r)

[
MBH + 2ωr

1 + 4ω

(
1 + 2MBH

r

)2
]

= 0. (30)

By solving this differential equation and by using the con-
dition f (r)|r=R = 1 and after we fix the constant of integra-
tion and find the solution

f (r) =
(

1 − 2MBH
r

)
(

1 − 2MBH
R

)
(
r + 8ωMBH

R + 8ωMBH

)4ω

. (31)

In a similar way, we can absorb the factor 1−2MBH/R in
the time coordinate, in that case it follows that our solution
has the following spacetime metric in two regions

ds2 =

⎧⎪⎨
⎪⎩

−
(

1 − 2MBH
r

) (
r+8 ω MBH
R+8 ω MBH

)4ω

dt2 + dr2(
1− 2MBH

r

)[
1− 4ω

1+4ω

(
1− 2MBH

r

)] + r2d
2. r < R

− (
1 − 2M

r

)
dt2 + dr2

1− 2M
r

+ r2d
2 r ≥ R

where

M = MBH + 2ωR

1 + 4ω

(
1 − 2MBH

R

)2

. (32)

In this case, the metric has an event horizon at r = 2MBH

and the regularity condition at r = 2MBH is satisfied. One
can simply check that det gμν evaluated at r = 2MBH is a
positive number. At this point, we need to discuss the junction
conditions at r = R. Following the same approach as in the
case of Model 1, therefore we can skip the details here and
simply compute the acceleration in both regions

a =
⎧⎨
⎩

2r2ω+(1−4ω)MBHr+8M2
BHω

r2
√

1+4ω
√

(r−2MBH )(r+8ωMBH )
, r < R

M
r2

(
1 − 2M

r

)−1/2
, r ≥ R.

(33)

By taking the limit from the inside versus outside we again
obtain a discontinuity according to

κ+ = lim
r→R+ |ξ |a = M

R2

κ− = lim
r→R− |ξ |a = √

1 + 4ω
M

R2 .

(34)

Where we have simplified the computations by neglect-
ing the black hole mass. It follows that we obtain the same
difference across the r = R boundary as in the Model 1, that
is �κ = −2Cω/R. Using the relation between the surface
density and the mass of the shell we find that the total mass
of the system is given by Eq. (24). Again, the corrections due
to the thin shell of matter are very small and the resulting
spacetime geometry is asymptotically flat.

2.2.1 Energy conditions

Finally, we can elaborate the energy conditions using the dark
matter Model 2. From the energy density it is easy to show

ρ(r) + Pr (r)|r0 = ω(r2
0 − 4M2

BH )

2πr4
0 (1 + 4ω)

≥ 0. (35)

Since r4
0 > 0, it follows that outside the black hole we must

have r0 > 2MBH , and hence one must have ω ≥ 0. On the
other hand, the (SEC) stipulates that

ρ(r) + Pt (r)|r0 = ω(1 + ω)(r2
0 − 4M2

BH )

2πr4
0 (1 + 4ω)

≥ 0. (36)

In this case, we again can see that outside the event horizon
the positive interval is given by −1 ≤ ω < −1/4 and ω ≥ 0,
but we accept as a physical solution only the region ω ≥ 0.
We easily find also that

ρ(r) + Pr (r) + 2Pt (r)|r0 = ω(1 + 2ω)(r2
0 − 4M2

BH )

2πr4
0 (1 + 4ω)

≥ 0,

(37)

which has a positive region outside the black hole when
−1/2 ≤ ω < −1/4 and ω ≥ 0. This shows that, the
energy conditions are indeed satisfied only in the domain
ω ≥ 0. Thus, we have shown that the energy conditions
are satisfied by the dark matter fluid outside the black hole
having ω > 0. The value of ω can only be obtained from
observations.
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3 The constant flat curve, deflection of light by a galaxy,
and the Einstein rings

Near the region r � R, the constant flat curve for the velocity
should be recovered. The solution in this region as we pointed
out is asymptotically flat and given by

ds2 = −
(

1 − 2Mtot

r

)
dt2 + dr2

1 − 2Mtot
r

+ r2d
2, (38)

In the limit r → ∞, we can neglect the black hole mass
thus we end up

Mtot 
 2ωR

1 + 4ω

(
1 − ω

1 + 4ω

)
, (39)

and the spacetime element reads

ds2 = −
[

1 − 4ωR

r(1 + 4ω)

(
1 − ω

1 + 4ω

)]
dt2

+ dr2[
1 − 4ωR

r(1+4ω)

(
1 − ω

1+4ω

)] + r2d
2. (40)

This metric is suitable to study the deflection of light by a
galaxy in presence of dark matter. In leading order terms the
deflection angle of light by the galaxy easily can be found to
be

α̂ = 8ωR

b(1 + 4ω)

(
1 − ω

1 + 4ω

)
. (41)

We can specialize the deflection angle when b ∼ R, in that
case we we see that the deflection angle will be independent
of the impact parameter

α̂ = 8ω

1 + 4ω

(
1 − ω

1 + 4ω

)
. (42)

This is very similar to the isothermal dark matter profile
which has the deflection angle α̂I S = 2πv2

0. This equation
can explain the flat rotation curve in the outer region of the
galaxy for large r � MBH in the region r ∼ R. Namely,
we can neglect the term ω2 and the black hole mass for such
large distances, then the velocity goes like

v2
0 ∼ 2ω

1 + 4ω
. (43)

In terms of the velocity, our result can be written as α̂ = 4v2
0,

which is slightly smaller compared to the isothermal dark
matter model. If we take as an example v0 ∼ 220km/s, we
find ω ∼ 2.68 × 10−7, and a deflection angle α̂ ∼ 2.15 ×
10−6. Compared to the case of isothermal dark matter profile
α̂I S ∼ 6.28 × 10−6, this suggest that a galactic dark matter
halo modelled as Einstein cluster predicts slightly smaller
gravitational lensing effect. A similar effect was found in

[17]. In Eq. (39) if we assume a dark matter mass Mtot ∼
1010MBH in our galaxy, we find R ∼ 1.85 × 1016MBH .

The small angles lens equation (in the weak deflection
approximation) reads

β = θ − DLS

DOS
α̂. (44)

In the special situation β = 0, when the source lies on (or
passes through) the optical axis an Einstein ring is formed.
The weak deflection approximation, α̂ 	 1 represents the
angular radius of the Einstein ring given by

θE 
 DLS

DOS
α̂(b). (45)

Here we took into account that DOS = DOL + DLS , when
the angular source position is β = 0. Keeping only the
first order of the deflection angle and using the relation
b = DOL sin θ 
 DOLθ the bending angle in the small
angle approximation gives the the angular radius

θE 

√

DLS

DOSDOL

[
8ωR

1 + 4ω

(
1 − ω

1 + 4ω

)]
. (46)

The lensing phenomena is a great tool to test different
dark matter models based on the prediction of the deflection
angle. Although the difference is small, in principle, we can
distinguish different models.

4 Dark matter effect on the shadow of black holes and
naked singularites

We turn our focus now on the observational aspects of the our
dark matter models with a black hole in the galactic center.
Recently the studies concerning the shadow of black holes
has recently gained a lot of interest [29–32,34–48]. In the
present work we would like to study the effect of the dark
matter Model 1 and Model 2 on the shadow of black hole
and naked singularity. We can start by writing the Hamilton-
Jacobi equation

∂S

∂σ
+ H = 0, (47)

with S representing the Jacobi action and σ is some affine
parameter along the geodesics. Considering the fact that our
geometry is spherically symmetrical the Hamiltonian can be
further written as

1

2

[
− p2

t

f (r)
+ g(r)p2

r + p2
φ

r2

]
= 0. (48)

To obtain the photon radius, first we use the fact that there
are two constants of motions for the photon: the energy E and
angular momentum L , respectively. Secondly, to determine
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Fig. 2 Shadow radius (left panel) and angular diameter (right panel) of the Sgr A� using the Model 1. We have set the location of the observer
r0 = 1010 and M0 = 4.1 × 106M�

Fig. 3 Shadow radius (left panel) and angular diameter (right panel) of the Sgr A� black hole using the Model 1. We have set the location of the
observer r0 = 1010 and M0 = 4.1 × 106M�

the circular and unstable orbits we can use the conditions
given by the effective potentials

Veff(r)
∣∣
r=rph

= 0,
∂Veff(r)

∂r

∣∣∣
r=rph

= 0, (49)

It is not very difficult to show that [47]

dr

dφ
= ±r

√
g(r)

[
r2

b2 f (r)
− 1

]
, (50)

where b is the impact parameter. Let us assume that a light
ray is sent from a static observer located at some distance r0

from the black hole, and let ϑ be the angle with respect to
the radial direction, in that case we can write [47]

cot ϑ =
√
grr√
gφφ

dr

dφ

∣∣∣
r=r0

. (51)

Without going into details here, one can show that the shadow
radius measured by such an observer is computed via

Rsh = rph

√
f (r0)

f (rph)
. (52)

On the other hand, from the condition of the unstable pho-
ton orbitrph, for the Model 1 we get

rModel1
ph = (4ω + 1) M0

1 − 2ω
, (53)

and for the dark matter Model 2 we get

rModel2
ph = (12ω − 3 ± √−48ω2 + 24ω + 9)MBH

4ω − 2
. (54)

One can us the photon orbit equations to compute the
shadow radius and the angular diameter of the black hole
and naked singularity. In Figs. 2 and 3, we have used both
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Fig. 4 Shadow images of the Sgr A� using the dark matter Model 1 and Model 2, respectively. We have used ω = 2 × 10−7, M0 = 4.1 × 106M�
and R = 1016[M0]

dark matter models and plotted the dependence of the shadow
radius and angular diameter of the Sgr A� on the state param-
eter ω and R. The parameter range used here is consistent
with the constant flat curve. For the black hole (Model 2) we
obtain larger shadow radius compared to the naked singular-
ity (Model 1) which basically can distinguish these objects.
However, the results show that the dark matter in the Model
2 increases the angular diameter of the black hole by the
order of 10−4 µarcsec compared to the Schwarzschild vac-
uum solution. Such an effect is very small and out of reach
of the present technology. Next, we model the accretion disk
as optically thick medium, with the specific intensity mea-
sured at some point (X,Y ) of the observer’s image given by
[29,32,34,43–46]

Iobs(νobs, X,Y ) =
∫

γ

g3 j (νe)dlprop. (55)

We also assume a rotating and radiating gas around the black
hole with the four-velocity components

uμ
e = ut

(
1, 0, 0,


)
, (56)

where ut = ( f (r)−r2
2)−1/2, and 
 = √
f ′(r)/2r . More-

over one has to use the relation for the photon pμ pμ = 0,
and the redshift function g given by

g = pμu
μ
obs

pνuν
e

, (57)

here uμ
obs gives the 4-velocity of the observer. In the present

work, we assume that the specific emissivity is described by
the radial law r−2, according to

j (νe) ∝ δ(νe − ν�)

r2 , (58)

where ν� is the emitter’s-rest frame frequency. We can now
use the proper length to express the total observed flux in

terms of the radial coordinate [29,32,34,43–46]

Fobs(X,Y ) ∝ −
∫

γ

g3 pt
r2 pr

dr. (59)

In Fig. 4, we present the shadows and the corresponding
intensities for the Model 1 and Model 2, respectively. We see
that for the black hole the size of the shadow is significantly
larger. We can use the EHT result for the shadow radius of
the Sgr A� [3–5,33]

4.54 ≤ Rsh/M0 ≤ 5.22, (60)

within 1σ confidence level, as well as

4.20 ≤ Rsh/M0 ≤ 5.56 (61)

within 2σ confidence level. We fix ω 
 2 × 10−7 which
is the tightest constraint obtained from the flat curves in
Sect. 3. Furthermore, we can fix the location of the observer
at r0 ∼ 1010 (measured in units of mass M0), then for Model
1 we obtain Rsh/M0 
 1.73, while for the Model 2 we get
Rsh/M0 
 5.196, respectively. This simply means that the
naked singularity (Model 1) is not consistent with observa-
tions and can be ruled out. The black hole model is in perfect
agreement with the data, and the effect of dark matter are
very small. Of course, we can consider ω as a free parameter
and we can further use Eq. (61) to constrain ω, say within
2σ to obtain ω ≤ 10−3. However, such constraint is not very
precises and, as we will argue in the next section, such a
bound cannot describe the experimental data for the S2 star
orbit in our galaxy (leads to instability of the S2 orbit).

5 Dark matter effect on the S2 star orbit

In this final section we would like to understand more about
the stability of the S2 star orbit around the Sgr A black
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Fig. 5 Left panel: The stable
orbit of S2 star having a naked
singularity in the center using
dark matter Model 1 with
ω = 10−8, M0 = 4.1 × 106M�
and R = 1016[M0]. Right panel:
The unstable obit of S2 star
using dark matter Model 1 for
ω = 10−3,
M0 = 4.10 × 106M� and
R = 1016[M0]. In both cases we
have used υ = 66.26,
i = 134.56, and ζ = 228.17

hole/naked singularity when the dark matter effect are taken
into consideration. Toward this goal, we can model the
motion of the S2 star as a point particle and, for simplic-
ity, we are going to restrict our analyses in the equatorial
plane (θ = π/2, θ̇ = 0). From the Lagrangian it follows
that

2L = − f (r)ṫ2 + ṙ2

g(r)
+ r2φ̇2. (62)

In the present paper, we shall assume that the Sgr A� black
hole mass is 4.1 × 106M� and will take R ∼ 1016. Next,
we can use the above Lagrangian which implies two con-
stants of motion: the energy of the particle E and total angu-
lar momentum L , given by E and L , respectively. Using
the above results, it is not difficult to obtain the equation of
motion for the S2 star

ṫ = E

f (r)
,

r̈ = 1

2
(grr (r))

−1
[
dgtt (r)

dr
ṫ2 + dgrr (r)

dr
ṙ2+ dgφφ(r)

dr
φ̇2

]
,

φ̇ = L

r2 . (63)

We can use Cartesian coordinates to describe the motion
of the S2 star in real orbit via (x, y, z), along with the veloc-
ity components (vx , vy, vz), respectively. However, one can
also use the coordinate transformation to relate the spherical
coordinates to Cartesian coordinates by [49–56]

{x, y, z} = {r cos φ, r sin φ, 0},
{vx , vy} = {vr cos φ − rvφ sin φ, vr sin φ + rvφ cos φ}.

Furthermore, we need to define a new set of coordinates
to describe the apparent orbit on the plane of the sky via
(X ,Y,Z) along with the apparent coordinate velocities

using the relations [49–56]

{X ,Y,Z} = {x B + yG, x A + yF, xC + yF}.
{VX ,VY ,VZ } = {vx B + vyG, vx A + vy F, vxC + vy F},

where [49–56]

B = sin ζ cos υ + cos ζ sin υ cos i

G = − sin ζ sin υ + cos ζ cos υ cos i

A = cos ζ cos υ − sin ζ sin υ cos i

F = − cos ζ sin υ − sin ζ cos υ cos i

C = sin υ sin i

F = cos υ sin i.

In the above equations we have the following osculating
orbital elements: the argument of pericenter (υ), the incli-
nation between the real orbit and the observation plane (i),
and the ascending node angle (ζ ), respectively. Finally, we
can now use the spacetime geometry described by our dark
matter model to find the orbit of the S2 star and compare it
with the observational data. Using numerical methods (see
for details [49–56]), in Fig. 5 (left panel), e have found the
elliptic orbit of the S2 star using our dark matter Model 1.
For the dark matter parameter, we have used a specific value
which is agreement with the constant flat curve for the veloc-
ity (as we found in Sect. 3). However, we find that by increas-
ing the state parameter of the dark matter, more specifically
when ω > 10−7, there is a significant effect on the orbit of
the S2 star and the orbit is not stable to describe or confront
the observational data for the S2 star. As a particular exam-
ple, in Fig. 5 (right panel), we have shown the orbit of such a
case using ω ∼ 10−3. The results obtained from the Model
2, having a black hole in the center, are very similar as can
be seen from Fig. 6.
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Fig. 6 Left panel: The stable
orbit of S2 star having a black
hole in the center using dark
matter Model 2 with
ω = 2 × 10−8,
M0 = 4.1 × 106M� and
R = 1016[M0]. Right panel:
The unstable obit of S2 star
using dark matter Model 1 for
ω = 2 × 10−3,
M0 = 4.10 × 106M� and
R = 1016[M0]. In both cases we
have used υ = 66.26,
i = 134.56, and ζ = 228.17

6 Conclusions

In this paper we used the Einstein construction to model a
black hole and a naked singularity immersed in a dark matter
fluid with the parameter of state ω. We studied two mod-
els which are spherically symmetric where the dark matter
mass locally diverges but globally reduces to the asymptoti-
cally flat geometry. In order to achieve the asymptotically
flat geometry we have matched the interior spacetime of
the galaxy with the exterior metric models as Schwarzschild
geometry and found that a thin shell of matter is needed.
As a special case, we have shown that for large distances
from the galactic center the constant flat curves are obtained
implying an upper bound for the dark matter state parameter
ω � 10−7. We have also examined the the energy conditions
for the dark matte fluid and showed that they are satisfied out-
side the black hole/naked singularity. We used a rotating and
radiating particles to model the optically thick medium and
compute the shadow images. Using astrophysical values for
the dark matter parameter having a black hole in the galac-
tic center, it is shown that the effect of dark matter fluid on
the shadow radius is small, in particular, the angular radius of
the black hole is shown to increase by the order 10−4 µarcsec
compared to the Schwarzschild vacuum solution. The black
hole shadow (Model 2) is significantly larger compared to the
naked singularity (Model 1) and can be distinguished with
the present technology. Finally, we have shown that the effect
of dark matter is very important on the motion of S2 star orbit,
in particular the orbit is stable and compatible with the data
for values within the range ω � 10−7, but further increase of
ω leads to unstable orbits. From the EHT shadow images for
the Sgr A� black hole we obtained the following constrain
ω � 10−3. We used the tightest constraint obtained from the
flat curves ω 
 2×10−7 and found that the naked singularity
(Model 1) is not consistent with the EHT result. On the other

hand, the predicted shadow radius using the black hole solu-
tion with dark matter (Model 2) is in perfect agreement with
observations. Let us point out here that, the state parameter
ω can depend on the nature of the galaxy, namely different
galaxies can have different state parameters. It is also possible
that dark matter has different phases within a given galaxy,
in that case we expect a richer dark matter phenomenology.
In the near future, we expect more precise observations for
the angular size and hence more precise constraints.
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