Phenomenological studies on neutral \boldsymbol{B}-meson decays into $J / \psi f_{1}$ and $\eta_{c} f_{1}$

De-Hua Yao ${ }^{1}$, Xin Liu ${ }^{1, \mathrm{a}}{ }^{(D)}$, Zhi-Tian Zou ${ }^{2}$, Ying Li $^{2, \mathrm{~b}}{ }^{(\mathbb{D}}$, Zhen-Jun Xiao ${ }^{3}$
${ }^{1}$ School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
${ }^{2}$ Department of Physics, Yantai University, Yantai 264005, China
${ }^{3}$ Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

Received: 28 October 2022 / Accepted: 20 December 2022 / Published online: 10 January 2023
© The Author(s) 2023

Abstract

The axial-vector mesons f_{1} (1285) and $f_{1}(1420)$ are particularly viewed as the mixtures of flavor states f_{n} and f_{s} with mixing angle φ. In order to determine this angle, we study the $B_{d, s}^{0} \rightarrow J / \psi f_{1}(1285,1420)$ and $B_{d, s}^{0} \rightarrow \eta_{c} f_{1}(1285,1420)$ decays in perturbative QCD (PQCD) approach, including the effects of vertex corrections, nonfactorizable diagrams and penguin operators. Not only the branching fractions, but also the direct $C P$ asymmetries and the polarization fractions are calculated. It is found that the branching fractions of these decays are large enough to be measured in the running LHCb and Belle-II experiments. Moreover, in comparison with the observed $\mathcal{B}\left(B_{d, s}^{0} \rightarrow\right.$ $\left.J / \psi f_{1}(1285)\right), B_{s}^{0} \rightarrow\left(J / \psi, \eta_{c}\right) f_{1}(1420)$ decays have large branching fractions, which could be measured promisingly through $f_{1}(1420) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ in experiments. We also propose several ratios that could be used to further constrain the absolute value of the mixing angle φ, but its sign cannot be determined yet in these decays. The direct CP asymmetries of these decays indicate the penguin pollution in the $B_{d}^{0} \rightarrow\left(J / \psi, \eta_{c}\right) f_{1}$ decays cannot be neglected. We acknowledge that there are large theoretical uncertainties arising from the distribution amplitudes of axial-vector mesons and charmonium states, and more precise nonperturbative parameters are called. The comparisons between our results and future experimental data would help us to understand the nature of f_{1} states and to test the PQCD approach.

1 Introduction

In the quark model, two nonets of $J^{P}=1^{+}$axial-vector mesons are expected as the orbital excitation of the $\bar{q} q$ sys-

[^0]tem. In terms of the spectroscopic notation ${ }^{2 S+1} L_{J}$, there are two types of P-wave axial-vector mesons, namely, ${ }^{3} P_{1}$ and ${ }^{1} P_{1}$. These two nonets have distinctive C quantum numbers for the corresponding neutral mesons, $C=+$ and $C=-$, respectively [1-3]. The light axial-vector f_{1} states, namely, $f_{1}(1285)$ and $f_{1}(1420)$, accompanied with a_{1} (1260) and $K_{1 A}$, are categorized as the 1^{++}multiplets, while the 1^{+-}multiplets incorporate $b_{1}(1235), h_{1}(1170), h_{1}(1380)$ and $K_{1 B}[4,5]$. Although lots of efforts have been made to investigate these light axial-vectors [6-26], our understanding on their natures is still far from satisfactory [6]. Similar to the $\eta-\eta^{\prime}$ mixing in the pseudoscalar sector, two physical f_{1} mesons (For convenience, we will adopt f_{1} to denote the $f_{1}(1285)$ and $f_{1}(1420)$ mesons in the following context, unless otherwise stated.) are generally viewed as the mixtures of two flavor states $f_{n}(\equiv(\bar{u} u+\bar{d} d) / \sqrt{2})$ and $f_{s}(\equiv \bar{s} s)$ with a single mixing angle φ, which can be written as
\[

\binom{f_{1}(1285)}{f_{1}(1420)}=\left($$
\begin{array}{rr}
\cos \varphi & -\sin \varphi \tag{1}\\
\sin \varphi & \cos \varphi
\end{array}
$$\right)\binom{f_{n}}{f_{s}} .
\]

However, both the magnitude and the sign of the mixing angle φ have not been determined yet. In addition, in light of Gell-mann-Okubo mass relation, this mixing angle φ could provide constraints to the unique mixing between the $K_{1 A}\left(1^{3} P_{1}\right)$ and $K_{1 B}\left(1^{1} P_{1}\right)$ states for the axial-vector strange K_{1} mesons [1]. In order to study the mixing angle φ, besides the f_{1} mesons decays, the productions of f_{1} mesons in the nonleptonic decays of heavy mesons could also be used. With this strategy, many B decays to f_{1} have been explored in the literature [13, 14, 20-26].

In 2013, LHCb collaboration reported their first measurements of the branching fractions of $B_{d, s}^{0} \rightarrow J / \psi f_{1}(1285)$ decays as follows [27],

$$
\begin{equation*}
\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)_{\operatorname{Exp}}=\left(8.37_{-2.09}^{+2.10}\right) \times 10^{-6} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)_{\operatorname{Exp}}=\left(7.14_{-1.41}^{+1.36}\right) \times 10^{-5} \tag{3}
\end{equation*}
$$

where the uncertainties from different sources have been added in quadrature. It is found that the uncertainties are still large, and are expected to be reduced in the on-going LHCb and Belle-II experiments. Using the $\mathrm{SU}(3)$ symmetry and neglecting the contributions from penguin operators, the mixing angle φ was extracted to be $\varphi^{\operatorname{Exp}}= \pm\left(24.0_{-2.6-0.8}^{+3.1+0.6}\right)^{\circ}$ [27]. In Ref. [20], two of us (Liu and Xiao) had studied $B_{s}^{0} \rightarrow J / \psi f_{1}(1285)$ decay and obtained $\left|\varphi^{\mathrm{Theo}}\right| \sim 15^{\circ}$, where the large errors arose from large theoretical uncertainties of the branching fraction. Although both $\left|\varphi^{\text {Theo }}\right|$ and $\left|\varphi^{\mathrm{Exp}}\right|$ locate in the range proposed by Stone and Zhang [18], the evident discrepancy still demands further explorations.

It is the purpose of this article to analyze the $B_{d, s}^{0} \rightarrow$ $J / \psi f_{1}$ decays and to search for new observables for determination of the mixing angle, and the quark level Feynman diagrams for these decays are illustrated in Fig. 1. The $B-$ meson decays with a charmonium state have been studied extensively in the QCD-inspired approaches [28-43]. In this article we focus on the perturbative QCD (PQCD) approach to non-leptonic B-decays [44-46]. It is a model-independent framework that systematically disentangles short-distance (perturbative) from long-distance (non-perturbative) effects based on the k_{T} factorization, and the basic concepts will be given in next section. It is found that for the color-suppressed modes, the contributions beyond leading order (LO) play important roles in explaining the experimental data. For instance, $B \rightarrow J / \psi V$ and $B \rightarrow \eta_{c} V$ decays have been studied in PQCD approach in Refs. [42,43] associated with the next-to-leading order (NLO) contributions, namely, the vertex corrections and the NLO Wilson coefficients, and the theoretical predictions are improved to basically agree with current data [4,5]. Recently, the Sudakov factor for charmonium that plays critical roles in suppressing the long-distance contributions was derived, which affects the observables of the decays with charmonium remarkably [47,48]. With above new ingredients, we will reexamine the decays $B_{s}^{0} \rightarrow J / \psi f_{1}$ [20] and evaluate the modes $B_{d}^{0} \rightarrow J / \psi f_{1}$ and $B^{0} \rightarrow \eta_{c} f_{1}$ for the first time, and will provide predictions of the branching fractions, polarization fractions, relative phases and CP asymmetries. Within the experimental data, the branching fractions could help us constrain $|\varphi|$ effectively, while other observables are helpful to further understand the QCD of f_{1}. Moreover, as pointed out in Refs. [12-15], the QCD behavior of 1^{++}axial-vector meson is very similar to that of 1^{--}vector, then it is natural to expect some important information provided by the considered B_{s}^{0} decay modes, relative to the golden channel $B_{s}^{0} \rightarrow J / \psi \phi$. For example, $B_{s}^{0} \rightarrow J / \psi f_{1}(1420)$ and $B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)$ decays might serve as the alternative channels to explore the $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing phase ϕ_{s} in a supplementary manner, provided that the mixing angle has been well determined by other ways. After
all, it is an unarguable fact that the exclusive decays of neutral B-meson into charmonium have attracted great attention in the past decades at both theoretical and experimental aspects, as they can play special roles in studies of CP asymmetries [49] and $B^{0}-\bar{B}^{0}$ mixing phases.

The paper is organized as follows. In Sect. 2, we shortly review the formalism of PQCD approach in association with the meson wave functions, and then present the perturbative calculations of considered decays. The analytic expressions of decay amplitudes are also collected in this section. In Sect. 3, we perform the numerical evaluations and discuss the theoretical results. Finally, a brief summary of this work is given in Sect. 4.

2 Formalism and perturbative QCD calculations

We consider the B meson at rest for simplicity. For the decays $B^{0} \rightarrow M_{c \bar{c}} f_{1}$ with $M_{c \bar{c}}$ denoting the J / ψ and η_{c}, $M_{c \bar{c}}$ and f_{1} are assumed to move in the plus and minus z directions, respectively. In the light-cone coordinate, the B meson momentum P_{1}, the charmonium momentum P_{2} and f_{1} meson momentum P_{3} are taken to be:

$$
\begin{align*}
P_{1} & =\frac{m_{B}}{\sqrt{2}}\left(1,1, \mathbf{0}_{T}\right), \quad P_{2}=\frac{m_{B}}{\sqrt{2}}\left(1-r_{3}^{2}, r_{2}^{2}, \mathbf{o}_{T}\right) \\
P_{3} & =\frac{m_{B}}{\sqrt{2}}\left(r_{3}^{2}, 1-r_{2}^{2}, \mathbf{0}_{T}\right) \tag{4}
\end{align*}
$$

and the polarization vectors ϵ_{2} of J / ψ and ϵ_{3} of f_{1} as,
$\epsilon_{2 L}=\frac{1}{\sqrt{2\left(1-r_{3}^{2}\right) r_{2}}}\left(1-r_{3}^{2},-r_{2}^{2}, \mathbf{0}_{T}\right), \quad \epsilon_{2 T}=\left(0,0, \mathbf{1}_{T}\right)$,
and
$\epsilon_{3 L}=\frac{1}{\sqrt{2\left(1-r_{2}^{2}\right) r_{3}}}\left(-r_{3}^{2}, 1-r_{2}^{2}, \mathbf{0}_{T}\right), \epsilon_{3 T}=\left(0,0, \mathbf{1}_{T}\right)$,
where the ratios $r_{2}=m_{M_{c \bar{c}}} / m_{B}$ and $r_{3}=m_{f_{1}} / m_{B}$. Due to the conservation of the angular momentum, only the longitudinal polarization vector $\epsilon_{3 L}$ of f_{1} contributes to the $B^{0} \rightarrow \eta_{c} f_{1}$ decays. Denoting the (light-)quark momenta in the $B^{0}, M_{c \bar{c}}$ and f_{1} mesons as k_{1}, k_{2} and k_{3} correspondingly, we then have
$k_{1}=\left(x_{1} P_{1}^{+}, 0, \mathbf{k}_{1 T}\right)=\left(\frac{m_{B}}{\sqrt{2}} x_{1}, 0, \mathbf{k}_{1 T}\right)$,
$k_{2}=\left(x_{2} P_{2}^{+}, x_{2} P_{2}^{-}, \mathbf{k}_{2 T}\right)=\left(\frac{m_{B}}{\sqrt{2}} x_{2}\left(1-r_{3}^{2}\right), \frac{m_{B}}{\sqrt{2}} x_{2} r_{2}^{2}, \mathbf{k}_{2 T}\right)$,
$k_{3}=\left(x_{3} P_{3}^{+}, x_{3} P_{3}^{-}, \mathbf{k}_{3 T}\right)=\left(\frac{m_{B}}{\sqrt{2}} x_{3} r_{3}^{2}, \frac{m_{B}}{\sqrt{2}} x_{3}\left(1-r_{2}^{2}\right), \mathbf{k}_{3 T}\right)$.

Fig. 1 Leading quark-level Feynman diagrams for neutral B-meson decays into $J / \psi f_{1}$ and $\eta_{c} f_{1}$

For the considered decays $B^{0} \rightarrow M_{c \bar{c}} f_{1}$, the effective Hamiltonian $H_{\text {eff }}$ could be read as [50]

$$
\begin{align*}
H_{\mathrm{eff}}= & \frac{G_{F}}{\sqrt{2}}\left\{V_{c b}^{*} V_{c q}\left[C_{1}(\mu) O_{1}^{c}(\mu)+C_{2}(\mu) O_{2}^{c}(\mu)\right]\right. \\
& \left.-V_{t b}^{*} V_{t q}\left[\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)\right]\right\} \tag{8}
\end{align*}
$$

where the light quark $q=d$ or s, the Fermi constant $G_{F}=1.16639 \times 10^{-5} \mathrm{GeV}^{-2}, V_{i j}$ represents the Cabibbo-Kobayashi-Maskawa (CKM) matrix element, and $C_{i}(\mu)$ is Wilson coefficients corresponding to the effective operator O_{i} at the renormalization scale μ. The local four-quark operators $O_{i}(i=1, \ldots, 10)$ are given as

- Tree operators

$$
\begin{align*}
& O_{1}^{c}=\left(\bar{q}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{c}_{\beta} b_{\alpha}\right)_{V-A}, \\
& O_{2}^{c}=\left(\bar{q}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{c}_{\beta} b_{\beta}\right)_{V-A}, \tag{9}
\end{align*}
$$

- QCD penguin operators

$$
\begin{align*}
O_{3} & =\left(\bar{q}_{\alpha} b_{\alpha}\right)_{V-A} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{V-A}, \\
O_{4} & =\left(\bar{q}_{\alpha} b_{\beta}\right)_{V-A} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{V-A}, \\
O_{5} & =\left(\bar{q}_{\alpha} b_{\alpha}\right)_{V-A} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{V+A}, \\
O_{6} & =\left(\bar{q}_{\alpha} b_{\beta}\right)_{V-A} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{V+A} \tag{10}
\end{align*}
$$

- Electroweak penguin operators

$$
O_{7}=\frac{3}{2}\left(\bar{q}_{\alpha} b_{\alpha}\right)_{V-A} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{V+A}
$$

$$
\begin{align*}
O_{8} & =\frac{3}{2}\left(\bar{q}_{\alpha} b_{\beta}\right)_{V-A} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{V+A}, \\
O_{9} & =\frac{3}{2}\left(\bar{q}_{\alpha} b_{\alpha}\right)_{V-A} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{V-A}, \\
O_{10} & =\frac{3}{2}\left(\bar{q}_{\alpha} b_{\beta}\right)_{V-A} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{V-A}, \tag{11}
\end{align*}
$$

where α and β are the color indices and q^{\prime} are the active quarks at the scale m_{b}, i.e. $q^{\prime}=(u, d, s, c, b)$. The left handed current is defined as $\left(\bar{q}_{\alpha}^{\prime} q_{\beta}^{\prime}\right)_{V-A}=\bar{q}_{\alpha}^{\prime} \gamma_{\nu}\left(1-\gamma_{5}\right) q_{\beta}^{\prime}$ and the right handed current $\left(\bar{q}_{\alpha}^{\prime} q_{\beta}^{\prime}\right)_{V+A}=\bar{q}_{\alpha}^{\prime} \gamma_{\nu}\left(1+\gamma_{5}\right) q_{\beta}^{\prime}$. For convenience, the combination a_{i} of the Wilson coefficients is defined as $[46,51]$

$$
\begin{align*}
& a_{1}=C_{2}+C_{1} / 3, \quad a_{3}=C_{3}+C_{4} / 3, \quad a_{5}=C_{5}+C_{6} / 3, \\
& a_{7}=C_{7}+C_{8} / 3, \quad a_{9}=C_{9}+C_{10} / 3, \\
& a_{2}=C_{1}+C_{2} / 3, \quad a_{4}=C_{4}+C_{3} / 3, \quad a_{6}=C_{6}+C_{5} / 3, \\
& a_{8}=C_{8}+C_{7} / 3, \quad a_{10}=C_{10}+C_{9} / 3 . \tag{12}
\end{align*}
$$

Under the factorization hypothesis, the amplitude of $B^{0} \rightarrow M_{c \bar{c}} f_{1}$ decay in PQCD can be written conceptually as follows [44-46],

$$
\begin{align*}
& \mathcal{A}\left(B^{0} \rightarrow M_{c \bar{c}} f_{1}\right) \sim \int d x_{1} d x_{2} d x_{3} b_{1} d b_{1} b_{2} d b_{2} b_{3} d b_{3} \\
& \quad \times \operatorname{Tr}\left[C(t) \Phi_{B}\left(x_{1}, b_{1}\right) \Phi_{M_{c \bar{c}}}\left(x_{2}, b_{2}\right) \Phi_{f_{1}}\left(x_{3}, b_{3}\right)\right. \\
& \left.\quad \times H\left(x_{i}, b_{i}, t\right) S_{t}\left(x_{i}\right) e^{-S(t)}\right] \tag{13}
\end{align*}
$$

where $C(t)$ stands for the corresponding Wilson coefficient. $x_{i}(i=1,2,3)$ denotes the fraction of momentum carried by (light-)quark inside the meson, and b_{i} is the conjugate space coordinate of transverse momentum $k_{i T}$. The wave function Φ describes the hadronization of quark and antiquark into a meson, and it is nonperturbative in nature but universal. The hard kernel $H\left(x_{i}, b_{i}, t\right)$ involves the dynamics associated with the effective "six-fermion interaction" by exchanging a hard gluon $[44,45,52,53]$, where t is the largest energy scale involved in the hard part. The rest two factors, namely,
the Sudakov factor $e^{-S(t)}$ and the jet function $S_{t}\left(x_{i}\right)$ as shown in the above Eq. (13), play important roles on the effective evaluations of B-meson decay amplitude in PQCD, which is based on the k_{T} factorization theorem. The Sudakov factor $e^{-S(t)}$ suppresses the soft dynamics effectively, which makes perturbative calculation of the hard part H applicable at intermediate scale $[54,55]$. The jet function $S_{t}\left(x_{i}\right)$ smears the endpoint singularities with threshold resummation technique [56,57]. Recently, the Sudakov factor for charmonium up to the next-to-leading-logarithm accuracy has been derived in Refs. [47,48], where the effects of the charm quark mass are also included. In this work, we will adopt the new factor. Besides, more concepts of PQCD can be found in Ref. [58]. In recent years, several developments on this approach have been obtained, for a review, see, e.g. $[59,60]$.

2.1 Meson wave functions

As aforementioned, the nonperturbative meson wave functions and the related distribution amplitudes are the most important inputs in PQCD, which are universal and usually determined within the experimental data or the nonperturbative techniques, such as QCD sum rule or Lattice QCD.

For the B meson wave function, we adopt the form used widely in the literature [44,45,52,53,58], which is expressed as
$\Phi_{B}\left(x, \mathbf{k}_{T}\right)=\frac{i}{\sqrt{2 N_{c}}}\left\{\left(\mathbb{P}_{1}+m_{B}\right) \gamma_{5} \phi_{B}\left(x, \mathbf{k}_{T}\right)\right\}_{\alpha \beta}$,
$N_{c}=3$ being the color factor. ϕ_{B} is the leading-twist $B-$ meson distribution amplitude, and x and \mathbf{k}_{T} are the momentum fraction and the intrinsic transverse momentum of light quark in B meson, respectively. The subscripts α and β are the color indices.

For charmonium states J / ψ and η_{c}, their wave functions have been studied within the non-relativistic QCD approach [61]. For the vector J / ψ meson, the longitudinal and transverse wave functions are given as,
$\Phi_{J / \psi}^{L}(x)=\frac{1}{\sqrt{2 N_{c}}}\left\{m_{J / \psi} \not{ }_{L} \phi_{J / \psi}^{L}(x)+\not \varnothing_{L} \not P_{2} \phi_{J / \psi}^{t}(x)\right\}_{\alpha \beta}$,
$\Phi_{J / \psi}^{T}(x)=\frac{1}{\sqrt{2 N_{c}}}\left\{m_{J / \psi} \not{ }_{T} \phi_{J / \psi}^{v}(x)+\not{ }_{T} \mathbb{P}_{2} \phi_{J / \psi}^{T}(x)\right\}_{\alpha \beta}$.

Here, ϵ_{L} and ϵ_{T} are the two polarization vectors of J / ψ, $\phi_{J / \psi}^{L}(x)$ and $\phi_{J / \psi}^{T}(x)$ are the twist- 2 distribution amplitudes, while $\phi_{J / \psi}^{t}(x)$ and $\phi_{J / \psi}^{v}(x)$ are the twist- 3 ones. For the pseudoscalar η_{c} meson, its wave function could be read as,
$\Phi_{\eta_{c}}(x)=\frac{i}{\sqrt{2 N_{c}}} \gamma_{5}\left\{\not P \phi_{\eta_{c}}^{v}(x)+m_{\eta_{c}} \phi_{\eta_{c}}^{s}(x)\right\}_{\alpha \beta}$,
where $\phi_{\eta_{c}}^{v}(x)$ and $\phi_{\eta_{c}}^{s}(x)$ are the twist- 2 and twist- 3 distribution amplitudes, respectively.

For the light axial-vector f_{q} with $q=n$ or s, its wave function could be written as follows [12,62],

$$
\begin{align*}
\Phi_{f_{q}}^{L}(x)= & \frac{1}{\sqrt{2 N_{c}}} \gamma_{5}\left\{m_{f_{q}} \not_{L} \phi_{f_{q}}(x)+\not \varnothing_{L} \not P_{3} \phi_{f_{q}}^{t}(x)\right. \\
& \left.+m_{f_{q}} \phi_{f_{q}}^{s}(x)\right\}_{\alpha \beta}, \tag{18}\\
\Phi_{f_{q}}^{T}(x)= & \frac{1}{\sqrt{2 N_{c}}} \gamma_{5}\left\{m_{f_{q}} \not_{T} \phi_{f_{q}}^{v}(x)+\not \varnothing_{T} \not P_{3} \phi_{f_{q}}^{T}(x)\right. \\
& \left.+m_{f_{q}} i \epsilon_{\mu \nu \rho \sigma} \gamma_{5} \gamma^{\mu} \epsilon_{T}^{v} n^{\rho} v^{\sigma} \phi_{f_{q}}^{a}(x)\right\}_{\alpha \beta}, \tag{19}
\end{align*}
$$

where x denotes the momentum fraction carried by quark in $f_{q}, n=\left(1,0, \mathbf{0}_{T}\right)$ and $v=\left(0,1, \mathbf{0}_{T}\right)$ are the dimensionless lightlike vectors, the Levi-Cività tensor $\epsilon^{\mu \nu \alpha \beta}$ is conventionally taken as $\epsilon^{0123}=1$. It should be stressed that $m_{f_{q}}$ stands for the mass of f_{q} obtained through the following mass relations [63],
$m_{f_{n}}^{2}=m_{f_{1}(1285)}^{2} \cos ^{2} \varphi+m_{f_{1}(1420)}^{2} \sin ^{2} \varphi$,
$m_{f_{s}}^{2}=m_{f_{1}(1285)}^{2} \sin ^{2} \varphi+m_{f_{1}(1420)}^{2} \cos ^{2} \varphi$,
with $m_{f_{1}(1285)}$ and $m_{f_{1}(1420)}$ being the masses of physical states $f_{1}(1285)$ and $f_{1}(1420)$, respectively.

For the sake of simplicity, the distribution amplitudes in the above wave functions have been collected in Appendix A. With the above essential hadronic inputs, we can then proceed with perturbative calculations of the $B^{0} \rightarrow M_{c \bar{c}} f_{1}$ decay amplitudes within the framework of PQCD approach.

2.2 Perturbative calculations

It can be seen from Fig. 1 that for the $B_{d}^{0} \rightarrow M_{c \bar{c}} f_{1}$ decays, the spectator d quark enters the final axial vector meson f_{1}, therefore only f_{n} component contributes to the decays with mixing angles. Similarly, only f_{s} component contributes to the $B_{s}^{0} \rightarrow M_{c \bar{c}} f_{1}$ decays. According to the effective Hamiltonian Eq. (8), the lowest-order (LO) Feynman diagrams are summarized in Fig. 2 for $B \rightarrow M_{c \bar{c}} f_{1}$ decays, where the first two diagrams are called factorizable and the last two diagrams are the non-factorizable diagrams. Due to the fact that the behavior of axial vector in $B \rightarrow M_{c \bar{c}} f_{1}$ decays is very similar to that of vectors, the amplitudes F for the factorizable diagrams and M for the nonfactorizable ones are almost same as those of decays $B \rightarrow\left(J / \psi, \eta_{c}\right) V$ decays. In this case, we will not list them in current work, and the readers are referred to Refs. [42,43] for detail. It should be stressed
that the term $\sqrt{1-r_{2}^{2}}$ in the denominator of the longitudinal polarization vector $\epsilon_{3 L}$ is kept in Eq. (6), while it has been neglected in Ref. [42].

In Refs. [28-35,37], it was found that for the colorsuppressed processes, such as B-meson decays into charmonium states, the vertex corrections play so important roles in explaining the experimental data that cannot be neglected. For this reason, the vertex corrections in $B^{0} \rightarrow M_{c \bar{c}} f_{1}$ decays as illustrated in Fig. 3 should be included, and their effects are embodied by modifying the Wilson coefficients in the factorizable emission diagrams, leading to the effective Wilson coefficients $\tilde{a}_{i}^{h}(i=2,3,5,7,9)$ as follows,
$a_{2} \rightarrow \tilde{a}_{2}^{h}=a_{2}+\frac{\alpha_{s}}{4 \pi} \frac{C_{F}}{N_{c}} C_{2}\left(-18+12 \ln \frac{m_{b}}{\mu}+f_{I}^{h}\right)$,
$a_{3} \rightarrow \tilde{a}_{3}^{h}=a_{3}+\frac{\alpha_{s}}{4 \pi} \frac{C_{F}}{N_{c}} C_{4}\left(-18+12 \ln \frac{m_{b}}{\mu}+f_{I}^{h}\right)$,
$a_{5} \rightarrow \tilde{a}_{5}^{h}=a_{5}+\frac{\alpha_{s}}{4 \pi} \frac{C_{F}}{N_{c}} C_{6}\left(6-12 \ln \frac{m_{b}}{\mu}-f_{I}^{h}\right)$,
$a_{7} \rightarrow \tilde{a}_{7}^{h}=a_{7}+\frac{\alpha_{s}}{4 \pi} \frac{C_{F}}{N_{c}} C_{8}\left(6-12 \ln \frac{m_{b}}{\mu}-f_{I}^{h}\right)$,
$a_{9} \rightarrow \tilde{a}_{9}^{h}=a_{9}+\frac{\alpha_{s}}{4 \pi} \frac{C_{F}}{N_{c}} C_{10}\left(-18+12 \ln \frac{m_{b}}{\mu}+f_{I}^{h}\right)$.

In above formulae, the function f_{I}^{h} with helicities $h=0, \pm$ are defined as:
$f_{I}^{0}=f_{I}+g_{I}\left(1-r_{2}^{2}\right), \quad f_{I}^{ \pm}=f_{I}$,
where the explicit expressions for the functions f_{I} and g_{I} can be found in Ref. [29].

We also note that in the LO calculations we used the LO Wilson coefficients $C_{i}\left(m_{W}\right)$ and the LO renormalization group evolution matrix $U(t, m)^{(0)}$ for the Wilson coefficient associating with the LO running coupling α_{s},
$\alpha_{s}(t)=\frac{4 \pi}{\beta_{0} \ln \left[t^{2} / \Lambda_{\mathrm{QCD}}^{2}\right]}$,
where $\beta_{0}=\left(33-2 N_{f}\right) / 3$. In the NLO contributions, it is natural for us to adopt the NLO Wilson coefficients $C_{i}\left(m_{W}\right)$ and the NLO renormalization group evolution matrix $U(t, m, \alpha)$ with the running coupling $\alpha_{s}(t)$ at two-loop [50],

$$
\begin{equation*}
\alpha_{s}(t)=\frac{4 \pi}{\beta_{0} \ln \left(t^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)} \cdot\left\{1-\frac{\beta_{1}}{\beta_{0}^{2}} \cdot \frac{\ln \left[\ln \left(t^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)\right]}{\ln \left(t^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\right\} \tag{29}
\end{equation*}
$$

where $\beta_{1}=\left(306-38 N_{f}\right) / 3$. For the hadronic scale Λ_{QCD}, $\Lambda_{\mathrm{QCD}}^{(4)}=0.287 \mathrm{GeV}(0.326 \mathrm{GeV})$ could be arrived within $\Lambda_{\mathrm{QCD}}^{(5)}=0.225 \mathrm{GeV}$ for the LO (NLO) case. In addition, we set $\mu_{0}=1.0 \mathrm{GeV}$ [64] as the lower cut-off for the hard scale t.

With the amplitudes of each diagrams in Fig. 2, the amplitude of $B^{0} \rightarrow J / \psi f_{q}$ decay could be written as

$$
\begin{align*}
& \xi A^{\sigma}\left(B_{d(s)}^{0} \rightarrow J / \psi f_{n(s)}\right)=F_{J / \psi}^{\sigma}\left\{V_{c b}^{*} V_{c d(s)} \tilde{a}_{2}^{\sigma}\right. \\
& \left.\quad-V_{t b}^{*} V_{t d(s)}\left(\tilde{a}_{3}^{\sigma}+\tilde{a}_{5}^{\sigma}+\tilde{a}_{7}^{\sigma}+\tilde{a}_{9}^{\sigma}\right)\right\} \\
& \quad+M_{J / \psi}^{\sigma}\left\{V_{c b}^{*} V_{c d(s)} C_{2}-V_{t b}^{*} V_{t d(s)}\right. \\
& \left.\quad \times\left(C_{4}-C_{6}-C_{8}+C_{10}\right)\right\} \tag{30}
\end{align*}
$$

with $\xi=\sqrt{2}$ and $\xi=1$ for f_{n} and f_{s}, respectively. The superscript $\sigma(=L, N, T)$ denotes the helicity state of the final states. Combining above amplitude and the quark-flavor mixing scheme as shown in Eq. (1), we finally obtain the amplitudes of the $B^{0} \rightarrow J / \psi f_{1}$ decays,
(1) For $B_{d}^{0} \rightarrow J / \psi f_{1}$ decays,

$$
\begin{align*}
& \mathcal{A}^{\sigma}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)=A^{\sigma}\left(B_{d}^{0} \rightarrow J / \psi f_{n}\right) \cos \varphi, \\
& \mathcal{A}^{\sigma}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1420)\right)=A^{\sigma}\left(B_{d}^{0} \rightarrow J / \psi f_{n}\right) \sin \varphi \tag{31}
\end{align*}
$$

(2) For $B_{s}^{0} \rightarrow J / \psi f_{1}$ decays,

$$
\begin{align*}
& \mathcal{A}^{\sigma}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)=-A^{\sigma}\left(B_{s}^{0} \rightarrow J / \psi f_{s}\right) \sin \varphi \\
& \mathcal{A}^{\sigma}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right)=A^{\sigma}\left(B_{s}^{0} \rightarrow J / \psi f_{s}\right) \cos \varphi \tag{33}
\end{align*}
$$

Now, we turn to the amplitudes of $B^{0} \rightarrow \eta_{c} f_{1}$ decays. Similarly, the amplitudes of $B^{0} \rightarrow \eta_{c} f_{1}$ decays at NLO could be obtained straightforwardly by replacing the information of vector J / ψ with that of pseudoscalar η_{c} in Eqs. (30)-(34). Of course, only the longitudinal contributions of f_{1} mesons contribute to the $B^{0} \rightarrow \eta_{c} f_{1}$ decays, because of the conservation of the angular momentum. Therefore, we have

$$
\begin{align*}
& \xi A\left(B_{d(s)}^{0} \rightarrow \eta_{c} f_{n(s)}\right)=F_{\eta_{c}}\left\{V_{c b}^{*} V_{c d(s)} \tilde{a}_{2}-V_{t b}^{*} V_{t d(s)}\right. \\
& \left.\quad \times\left(\tilde{a}_{3}-\tilde{a}_{5}-\tilde{a}_{7}+\tilde{a}_{9}\right)\right\} \\
& +M_{\eta_{c}}\left\{V_{c b}^{*} V_{c d(s)} C_{2}-V_{t b}^{*} V_{t d(s)}\left(C_{4}-C_{6}-C_{8}+C_{10}\right)\right\} . \tag{35}
\end{align*}
$$

Here, the effective Wilson coefficients \tilde{a}_{i} have included the related vertex corrections with new functions f_{I}^{\prime} and g_{I}^{\prime} that arise from η_{c} emission [30]. The explicit expressions of $f_{I}^{(\prime)}$

Fig. 2 Typical Feynman diagrams for neutral B-meson decays into $J / \psi f_{1}$ and $\eta_{c} f_{1}$ at LO in the PQCD approach

Fig. 3 Vertex corrections to neutral B-meson decays into $J / \psi f_{1}$ and $\eta_{c} f_{1}$
and g_{I}^{\prime} can be found in Refs. [29,30,42,43]. Also, the amplitudes of $B^{0} \rightarrow \eta_{c} f_{1}$ decays could be read as follows,
(1) For $B_{d}^{0} \rightarrow \eta_{c} f_{1}$ decays,

$$
\begin{align*}
& \mathcal{A}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)=A\left(B_{d}^{0} \rightarrow \eta_{c} f_{n}\right) \cos \varphi \tag{36}\\
& \mathcal{A}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)=A\left(B_{d}^{0} \rightarrow \eta_{c} f_{n}\right) \sin \varphi \tag{37}
\end{align*}
$$

(2) For $B_{s}^{0} \rightarrow \eta_{c} f_{1}$ decays,

$$
\begin{align*}
& \mathcal{A}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)=-A\left(B_{s}^{0} \rightarrow \eta_{c} f_{s}\right) \sin \varphi \tag{38}\\
& \mathcal{A}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)=A\left(B_{s}^{0} \rightarrow \eta_{c} f_{s}\right) \cos \varphi \tag{39}
\end{align*}
$$

As a matter of fact, using these decay channels, we can only extract the absolute value $|\varphi|$ of the mixing angle. In order to determine its sign, we have to resort to other decays that the interference between f_{n} and f_{s} is involved, such as $B \rightarrow M f_{1}$ with M being the open-charmed and charmless mesons [41].

3 Numerical results and discussions

In this section, we will perform numerical calculations based on the given analytic expressions to estimate the experimental observables in the $B^{0} \rightarrow M_{c \bar{c}} f_{1}$ decays, such as the branching fractions and the direct CP asymmetries. Furthermore, the results of the polarization fractions in the decays $B^{0} \rightarrow J / \psi f_{1}$ are also discussed.

3.1 Input parameters

In the numerical calculations, the input parameters such as meson masses (GeV), decay constants (GeV) and B-meson lifetimes (ps) will be listed $[4,12,63]$:

$$
\begin{align*}
& m_{W}=80.41, \quad m_{B_{d}^{0}}=5.28, \quad m_{B_{s}^{0}}=5.37 \\
& m_{b}=4.8, \quad m_{c}=1.50 \\
& f_{J / \psi}=0.405 \pm 0.014, \quad f_{\eta_{c}}=0.42 \pm 0.05 \\
& f_{f_{n}}=0.193_{-0.038}^{+0.043}, \quad f_{f_{s}}=0.230 \pm 0.009 \\
& m_{J / \psi}=3.097, \quad m_{f_{1}(1285)}=1.28 \\
& m_{f_{1}(1420)}=1.43, \quad m_{\eta_{c}}=2.98 \\
& \tau_{B_{d}^{0}}=1.519, \quad \tau_{B_{s}^{0}}=1.515 \tag{40}
\end{align*}
$$

For CKM matrix elements, we adopt the Wolfenstein parameterization [65] and the updated parameters [4]: $A=0.790$, $\lambda=0.22650, \bar{\rho}=0.141_{-0.017}^{+0.016}, \bar{\eta}=0.357_{-0.011}^{+0.011}$, in which $\bar{\rho} \equiv \rho\left(1-\frac{\lambda^{2}}{2}\right)$ and $\bar{\eta} \equiv \eta\left(1-\frac{\lambda^{2}}{2}\right)$.

$3.2 B \rightarrow J / \psi f_{1}$

We firstly focus on the $B^{0} \rightarrow J / \psi f_{1}$ decays. The branching fraction of $B^{0} \rightarrow J / \psi f_{1}$ decay can be written as
$\mathcal{B}\left(B^{0} \rightarrow J / \psi f_{1}\right)=\tau_{B} \frac{G_{F}^{2}\left|\mathbf{p}_{\mathbf{c}}\right|}{16 \pi m_{B}^{2}} \sum_{\sigma=L, N, T} \mathcal{A}^{(\sigma) \dagger} \mathcal{A}^{(\sigma)}$,
where τ_{B} is the lifetime of neutral B-meson, $\left|\mathbf{p}_{\mathbf{c}}\right| \equiv\left|\mathbf{p}_{2 \mathbf{z}}\right|=$ $\left|\mathbf{p}_{\mathbf{3 z}}\right|$ is the three-momentum of the two outgoing final states in the center-of-mass frame of B meson and \mathcal{A}^{σ} denotes the helicity amplitudes of $B^{0} \rightarrow J / \psi f_{1}$ modes as given in Eqs. (31)-(34).

For the mixing angle φ, we take both $\left|\varphi^{\text {Theo }}\right| \sim 15^{\circ}$ and $\left|\varphi^{\operatorname{Exp}}\right| \sim 24^{\circ}$ as typical values to predict the $\mathcal{B}\left(B^{0} \rightarrow\right.$ $\left.J / \psi f_{1}\right)$ and further discuss them phenomenologically. By employing the decay amplitudes and various inputs, the $C P$ averaged branching fractions in the PQCD approach at NLO with uncertainties are presented in Table 1. We acknowledge that there are many uncertainties in our calculations, and four kinds of uncertainties are included here. The first uncertainties are from the wave function of B meson, and we adopt the variations of shape parameters $\omega_{B_{d}^{0}}=0.40 \pm 0.04 \mathrm{GeV}$ and $\omega_{B_{s}^{0}}=0.50 \pm 0.05 \mathrm{GeV}$ for B_{d}^{0} and B_{s}^{0}, respectively. The second uncertainties come from the nonperturbative parameters in the wave functions of the final states, such as decay constants and the Gegenbauer moments, which are given in Appendix A. The third uncertainties arise from the higherorder and higher-power corrections, which are characterized by varying the running hard scale $t_{\max }$ with 20%, namely, from 0.8 to 1.2 t in the hard kernel. The last errors are induced by the variations of $\left|\varphi^{\text {Theo }}\right|=(15.0 \pm 1.5)^{\circ}\left(\left|\varphi^{\operatorname{Exp}}\right|=\right.$ $\left.\left(24.0_{-2.7}^{+3.2}\right)^{\circ}\right)$, respectively. From this table, one finds that all theoretical results agree roughly with the available measurements in 2σ standard deviations. Additionally, the changes induced by the mixing angle $|\varphi|$ are plagued by uncertainties arising from other parameters. In this regard, in order to determine the mixing angle $|\varphi|$, more stringent constraints from other observables are required. We also note that the large branching fractions of the $B^{0} \rightarrow J / \psi f_{1}$ decays are expected to be tested at LHCb and Belle-II experiments [66] in future.

The decays $B_{s}^{0} \rightarrow J / \psi f_{1}(1285,1420)$ have been investigated previously by two of us (Liu and Xiao) in Ref. [20] by including the vertex corrections. Comparing the new results with previous ones, we find all results agree with each other with uncertainties, and the acceptable differences are from the effects from the new ingredients in Sudakov factor. Furthermore, for comparison, we also take the decay $B_{s}^{0} \rightarrow J / \psi f_{1}(1285)$ as an example and calculate its branching fractions for different values of $|\varphi|$ without vertex corrections and new ingredients in Sudakov factor, and the results are given as

$$
\begin{align*}
& \left.\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)\right|_{\varphi \sim 15^{\circ}} \\
& \quad=\left(0.32_{-0.07-0.05-0.05-0.06}^{+0.0}+0.05+0.05+0.06\right. \tag{42}\\
& \left.\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)\right|_{\varphi \sim 24^{\circ}} \\
& \quad=\left(0.78_{-0.17-0.13-0.10+0.16}^{+0.22+0.12+0.12+0.21}\right) \times 10^{-4} . \tag{43}
\end{align*}
$$

It is obvious that the vertex corrections can enhance the branching fractions remarkably, because the Wilson coefficient \tilde{a}_{2} is much larger than a_{2}, which has been also shown in Refs. [28,32]. We also note that the uncertainties from the scale t are declined from 30 and 5%, as we expected.

We also acknowledge that our NLO calculation are incomplete. In principle, the NLO contributions should contain both the vertex corrections and hard spectator scattering (HS) amplitudes. For the charmless B meson decays, the NLO effects of HS have been explored partly [59,67,68]. However, for the decays with charm quark, the calculations of NLO corrections of HS are very complicated because the new scale m_{c} is involved, and we shall left it as our future work.

On the experimental side, $\varphi^{\operatorname{Exp}}= \pm\left(24.0_{-2.6-0.8}^{+3.1+0.6}\right)^{\circ}$ was extracted through partial-wave analysis only with $\mathcal{B}\left(f_{1}\right.$ (1285) $\rightarrow 2 \pi^{+} 2 \pi^{-}$) $=0.109 \pm 0.006$ [27], by assuming the $\mathrm{SU}(3)$ flavor symmetry and neglecting the penguin contributions in $B_{d}^{0} \rightarrow J / \psi f_{1}(1285)$ and $B_{s}^{0} \rightarrow J / \psi f_{1}(1285)$ decays. As aforementioned, $f_{1}(1285)$ state could mix with $f_{1}(1420)$, then it could also be contributed through other partial-wave analysis, for example, $f_{1}(1285) \rightarrow K_{S}^{0} K^{+} \pi^{-}$ [26]. With the theoretical predictions and experimental measurements of $\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)$ and $\mathcal{B}\left(f_{1}(1285) \rightarrow\right.$ $K \bar{K} \pi)=0.090 \pm 0.004$ [4], the magnitude of $\mathcal{B}\left(B_{s}^{0} \rightarrow\right.$ $\left.J / \psi f_{1}(1285)\left(\rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)\right)$ is about $10^{-6} \sim 10^{-5}$, which is measurable in the on-going LHCb and Belle-II experiments. Meanwhile, combining our results and the available experimental data $\mathcal{B}\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right)=0.35_{-0.15}^{+0.15}$ [4] and $\mathcal{B}\left(f_{1}(1420) \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right) \approx 0.64_{-0.06}^{+0.06}$ [25], we then estimate $\mathcal{B}\left(B^{0} \rightarrow J / \psi f_{1}(1285)\left(\rightarrow \eta \pi^{+} \pi^{-}\right)\right)$and $\mathcal{B}\left(B^{0} \rightarrow J / \psi f_{1}(1420)\left(\rightarrow K_{S}^{0} K^{+} \pi^{-}\right)\right)$as

$$
\begin{align*}
& \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi\left(\eta \pi^{+} \pi^{-}\right)_{f_{1}(1285)}\right) \\
& \quad \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right) \\
& \quad \cdot \mathcal{B}\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(1.07_{-0.70}^{+0.84}\right) \times 10^{-5} \\
\left(0.96_{-0.63}^{+0.75}\right) \times 10^{-5}
\end{array}\right. \tag{44}
\end{align*}
$$

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi\left(\eta \pi^{+} \pi^{-}\right)_{f_{1}(1285)}\right) \\
& \quad \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)
\end{aligned}
$$

$$
\begin{align*}
& \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi\left(K_{S}^{0} K^{+} \pi^{-}\right)_{f_{1}(1420)}\right) \tag{46}\\
& \quad \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right) \\
& \quad \cdot \mathcal{B}\left(f_{1}(1420) \rightarrow K_{S}^{0} K^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(0.73_{-0.28}^{+0.36}\right) \times 10^{-3} \\
\left(0.65_{-0.25}^{+0.33}\right) \times 10^{-3}
\end{array}\right.
\end{align*}
$$

$$
\cdot \mathcal{B}\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(0.31_{-0.18}^{+0.21}\right) \times 10^{-4} \\
\left(0.77_{-0.47}^{+0.54}\right) \times 10^{-4}
\end{array}\right.
$$

$$
\begin{align*}
& \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi\left(K_{S}^{0} K^{+} \pi^{-}\right)_{f_{1}(1420)}\right) \tag{45}\\
& \quad \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1420)\right) \\
& \quad \cdot \mathcal{B}\left(f_{1}(1420) \rightarrow K_{S}^{0} K^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(1.27_{-0.68}^{+0.88}\right) \times 10^{-6} \\
\left(3.15_{-1.72}^{+2.24}\right) \times 10^{-6}
\end{array}\right.
\end{align*}
$$

Table 1 The CP-averaged branching ratios for neutral B-meson decays into $J / \psi f_{1}$ in the PQCD approach

Decay modes	$\left\|\varphi^{\text {Theo }}\right\| \sim 15^{\circ}$	$\left\|\varphi^{\text {Exp }}\right\| \sim 24^{\circ}$
$\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)$	$\left(3.05_{-0.56-1.40-0.12-0.04}^{+0.73+1.88+0.09+0.04}\right) \times 10^{-5}$	$\left(2.73_{-0.50-1.26-0.11-0.14}^{+0.65++1.68+0.08+0.11}\right) \times 10^{-5}$
$\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1420)\right)$	$\left(1.99_{-0.37-0.91-0.08-0.37}^{+0.47+1.22+0.06+0.41}\right) \times 10^{-6}$	$\left(4.92_{-0.91-2.26-0.20-1.00}^{+1.16+3.0+0.14+1.29}\right) \times 10^{-6}$
$\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)$	$\left(0.89_{-0.18-0.28-0.04-0.16}^{+0.25+0.36+0.04++.19}\right) \times 10^{-4}$	$\left(2.21_{-0.46-0.71-0.10-0.45}^{+0.61+0.88+0.09+0.58}\right) \times 10^{-4}$
$\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right)$	$\left(1.14_{-0.23-0.35-0.05-0.01}^{+0.32+0.45+0.05+0.02}\right) \times 10^{-3}$	$\left(1.02_{-0.21-0.32-0.04-0.05}^{+0.28+0.40+0.04+0.04}\right) \times 10^{-3}$

where all uncertainties have been added in quadrature. In above results, the upper and the lower entries correspond to the results obtained with $\left|\varphi^{\text {Theo }}\right| \sim 15^{\circ}$ and $\left|\varphi^{\mathrm{Exp}}\right| \sim 24^{\circ}$, respectively. (In the following context, the similar presentation will be adopted implicitly, unless otherwise stated.) The results of Eqs. (44)-(47) are expected to be tested at LHCb and Belle-II experiments in the near future, and they could further provide more additional constraints on $|\varphi|$ and rich information for understanding the nature of f_{1}.

In PDG [4], the branching fractions of $B_{d}^{0} \rightarrow J / \psi \rho^{0}$ and $B_{s}^{0} \rightarrow J / \psi \phi$ have been well measured as

$$
\begin{align*}
& \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi \rho^{0}\right)=\left(2.55_{-0.16}^{+0.18}\right) \times 10^{-5}, \\
& \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)=\left(1.04_{-0.04}^{+0.04}\right) \times 10^{-3} . \tag{48}
\end{align*}
$$

These branching fractions with high precision can be used for normalizations in studying $B \rightarrow J / \psi f_{1}$ decays. Theoretically, both branching fractions have been calculated in PQCD at NLO [42], and the results are given as

$$
\begin{align*}
& \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi \rho^{0}\right)=\left(2.98_{-0.69}^{+0.81}\right) \times 10^{-5}, \\
& \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)=\left(1.07_{-0.29}^{+0.33}\right) \times 10^{-3}, \tag{49}
\end{align*}
$$

where the uncertainties arising from different sources have been added in quadrature. Considering $\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)=$ 0.492 ± 0.005 and $\mathcal{B}\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right) \sim 100 \%$ [4], we then obtain the branching fractions of $B_{s}^{0} \rightarrow J / \psi \phi\left(\rightarrow K^{+} K^{-}\right)$ and $B_{d}^{0} \rightarrow J / \psi \rho^{0}\left(\rightarrow \pi^{+} \pi^{-}\right)$decays as follows,

$$
\begin{align*}
& \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi\left(K^{+} K^{-}\right)_{\phi}\right) \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right) \\
& \cdot \mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right) \approx\left(0.53_{-0.14}^{+0.16}\right) \times 10^{-3} \tag{50}\\
& \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi\left(\pi^{+} \pi^{-}\right)_{\rho^{0}}\right) \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi \rho^{0}\right) \\
& \cdot \mathcal{B}\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx\left(2.98_{-0.69}^{+0.81}\right) \times 10^{-5} \tag{51}
\end{align*}
$$

Then, four ratios could be defined as follows,

$$
\begin{align*}
& R_{s}^{J / \psi}\left[f_{1}(1420) / \phi\right] \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)} \\
& \quad \approx\left\{\begin{array}{l}
1.07_{-0.25}^{+0.34} \\
0.95_{-0.23}^{+0.31}
\end{array}\right. \tag{52}\\
& R_{d}^{J / \psi}\left[f_{1}(1285) / \rho^{0}\right] \equiv \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi \rho^{0}\right)}
\end{align*}
$$

$$
\approx\left\{\begin{array}{l}
1.02_{-0.42}^{+0.55} \tag{53}\\
0.92_{-0.37}^{+0.49}
\end{array}\right.
$$

and

$$
\begin{align*}
R_{\pi}^{J / \psi} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi\left(K_{S}^{0} K^{+} \pi^{-}\right)_{f_{1}(1420)}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi\left(K^{+} K^{-}\right)_{\phi}\right)} \\
& \approx\left\{\begin{array}{l}
1.38_{-0.34}^{+0.48} \\
1.23_{-0.30}^{+0.41}
\end{array}\right. \tag{54}\\
R_{\eta}^{J / \psi} & \equiv \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi\left(\eta \pi^{+} \pi^{-}\right)_{f_{1}(1285)}\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi\left(\pi^{+} \pi^{-}\right)_{\rho^{0}}\right)} \\
& \approx\left\{\begin{array}{l}
0.36_{-0.21}^{+0.24} \\
0.32_{-0.19}^{+0.22}
\end{array}\right. \tag{55}
\end{align*}
$$

All the above results could be tested in LHCb and BelleII experiments. As far as the central values are concerned, because the behaviors of f_{1} meson are very similar to those of $\rho / \phi[12-15]$, the results indicate that $f_{n}\left(f_{s}\right)$ state should predominately govern the $f_{1}(1285)\left(f_{1}(1420)\right)$ meson, that is, the small $|\varphi|$ is preferred.

In Ref. [27], after neglecting the contributions from penguin operators and assuming the $\mathrm{SU}(3)$ flavor symmetry, LHCb estimated the angle φ with the relation

$$
\begin{align*}
& \tan ^{2} \varphi \\
& \quad \approx \frac{1}{2} \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)} \frac{\tau_{0}}{\tau_{s}} \frac{\left|V_{c d}\right|^{2}}{\left|V_{c s}\right|^{2}} \frac{\Phi\left(m_{B_{d}}, m_{J / \psi}, m_{f_{1}(1285)}\right)}{\Phi\left(m_{B_{s}}, m_{J / \psi}, m_{f_{1}(1285)}\right)} \tag{56}
\end{align*}
$$

where the phase space factor is given as $\Phi(a, b, c)=$ $\left[\left(a^{2}-(b+c)^{2}\right)\left(a^{2}-(b-c)^{2}\right)\right]^{\frac{3}{2}}$. In fact, the corrections from penguin operators are about 15% [33], and $\mathrm{SU}(3)$ asymmetry is particularly estimated to be about 30%. Without above uncertainties, we define two ratios and evaluate them as

$$
\begin{align*}
& R_{d}^{J / \psi} \equiv \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1420)\right)} \\
& \quad=\frac{\Phi\left(m_{B_{d}}, m_{J / \psi}, m_{f_{1}(1285)}\right)}{\Phi\left(m_{B_{d}}, m_{J / \psi}, m_{f_{1}(1420)}\right)} \cdot \cot ^{2} \varphi \approx\left\{\begin{array}{r}
15.33_{-0.14}^{+0.15} \\
5.55_{-0.04}^{+0.06}
\end{array}\right. \tag{57}
\end{align*}
$$

$$
R_{s}^{J / \psi} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)}
$$

$$
=\frac{\Phi\left(m_{B_{s}}, m_{J / \psi}, m_{f_{1}(1420)}\right)}{\Phi\left(m_{B_{s}}, m_{J / \psi}, m_{f_{1}(1285)}\right)} \cdot \cot ^{2} \varphi \approx\left\{\begin{array}{r}
12.81_{-0.18}^{+0.17} \tag{58}\\
4.62_{-0.03}^{+0.08}
\end{array}\right.
$$

Such two ratios with small uncertainties could also be used to determine $|\varphi|$ in future, if $f_{1}(1285)$ and $f_{1}(1420)$ are believed to be two-quark states.

Now we turn to other observables such as the polarization fractions and the direct CP asymmetries in $B^{0} \rightarrow J / \psi f_{1}$ decays. With the helicity amplitudes shown in Eqs. (31)-(34), a set of transversity amplitudes, namely, the longitudinal one \mathcal{A}_{L}, the parallel one $\mathcal{A}_{\|}$, and the perpendicular one \mathcal{A}_{\perp}, can be defined respectively as follows,

$$
\begin{equation*}
\mathcal{A}_{L}=\mathcal{A}_{L}, \quad \mathcal{A}_{\|}=\sqrt{2} \mathcal{A}_{N}, \quad \mathcal{A}_{\perp}=r_{2} r_{3} \sqrt{2\left(\kappa^{2}-1\right)} \mathcal{A}_{T} \tag{59}
\end{equation*}
$$

with the ratio $\kappa=P_{2} \cdot P_{3} /\left(m_{J / \psi} m_{f_{1}}\right)$. The polarization fractions f_{L} and f_{T} in $B^{0} \rightarrow J / \psi f_{1}$ decays can be defined as follows [69],

$$
\begin{align*}
f_{L} & \equiv \frac{\left|\mathcal{A}_{L}\right|^{2}}{\left|\mathcal{A}_{L}\right|^{2}+\left|\mathcal{A}_{\|}\right|^{2}+\left|\mathcal{A}_{\perp}\right|^{2}} \\
f_{T} & \equiv \frac{\left|\mathcal{A}_{\|}\right|^{2}+\left|\mathcal{A}_{\perp}\right|^{2}}{\left|\mathcal{A}_{L}\right|^{2}+\left|\mathcal{A}_{\|}\right|^{2}+\left|\mathcal{A}_{\perp}\right|^{2}}=f_{\|}+f_{\perp} \tag{60}
\end{align*}
$$

which satisfy the relation of $f_{L}+f_{T}=1$. The relative phases $\phi_{\|}$and ϕ_{\perp} (in units of rad) are thus obtained as follows,
$\phi_{\|}=\arg \frac{\mathcal{A}_{\|}}{\mathcal{A}_{L}}, \quad \phi_{\perp}=\arg \frac{\mathcal{A}_{\perp}}{\mathcal{A}_{L}}$.
In PQCD, these observables of $B^{0} \rightarrow J / \psi f_{1}$ decays are calculated, and the results are given as

$$
\begin{align*}
f_{L}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right) & =\left(44.6_{-10.4}^{+13.9}\right) \%, \\
f_{L}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1420)\right) & =\left(45.8_{-10.4}^{+13.8}\right) \%, \\
f_{L}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right) & =\left(45.1_{-10.7}^{+14.1}\right) \%, \\
f_{L}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right) & =\left(46.2_{-10.9}^{+14.0}\right) \%, \tag{62}
\end{align*}
$$

and

$$
\begin{align*}
& \phi_{\|}\left(B_{d}^{0} \rightarrow J / \psi f_{1}\right)=2.11_{-0.05}^{+0.05} \\
& \phi_{\perp}\left(B_{d}^{0} \rightarrow J / \psi f_{1}\right)=1.99_{-0.07}^{+0.05} \\
& \phi_{\|}\left(B_{s}^{0} \rightarrow J / \psi f_{1}\right)=2.15_{-0.06}^{+0.09} \\
& \phi_{\perp}\left(B_{s}^{0} \rightarrow J / \psi f_{1}\right)=2.01_{-0.06}^{+0.06} \tag{63}
\end{align*}
$$

in which various errors have been added in quadrature. Though these quantities are the ratios of (squared) decay amplitudes, the nonperturbative parameters, especially the Gegenbauer moment a_{1}^{\perp} in the distribution amplitudes of f_{n} and f_{s} and the charm quark mass m_{c}, take large theoretical uncertainties. We also note that the longitudinal polarization fractions and transverse ones are almost equal, due to the helicity flip. Such phenomenon has been confirmed in
$B_{s} \rightarrow J / \psi \phi$ and $B_{d} \rightarrow J / \psi K^{*}$ decays [42,70,71]. All these observables will also be tested in experiments.

The direct CP asymmetry $A_{\mathrm{CP}}^{\mathrm{dir}}$ of $B^{0} \rightarrow J / \psi f_{1}$ decays is defined as
$A_{\mathrm{CP}}^{\mathrm{dir}} \equiv \frac{\left|\overline{\mathcal{A}}\left(\bar{B}^{0} \rightarrow \bar{f}\right)\right|^{2}-\left|\mathcal{A}\left(B^{0} \rightarrow f\right)\right|^{2}}{\left|\overline{\mathcal{A}}\left(\bar{B}^{0} \rightarrow \bar{f}\right)\right|^{2}+\left|\mathcal{A}\left(B^{0} \rightarrow f\right)\right|^{2}}$,
where \mathcal{A} stand for the decay amplitudes of $B^{0} \rightarrow J / \psi f_{1}$, while $\overline{\mathcal{A}}$ describe the corresponding charge conjugation ones. With the obtained amplitudes, we calculate the direct CP asymmetries and present the results as

$$
\begin{align*}
& A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d}^{0} \rightarrow J / \psi f_{1}\right)=A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d}^{0} \rightarrow J / \psi f_{n}\right) \\
& \quad=\left(-5.86_{-5.52}^{+4.54}\right) \times 10^{-3}, \tag{65}\\
& A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s}^{0} \rightarrow J / \psi f_{1}\right)=A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s}^{0} \rightarrow J / \psi f_{s}\right) \\
& \quad=\left(2.24_{-1.97}^{+2.41}\right) \times 10^{-4} . \tag{66}
\end{align*}
$$

Meanwhile, the direct CP asymmetries in each polarization can also be studied as [72]
$A_{\mathrm{CP}}^{\mathrm{dir}, \alpha}=\frac{\bar{f}_{\alpha}-f_{\alpha}}{\bar{f}_{\alpha}+f_{\alpha}} \quad(\alpha=L, \|, \perp)$,
where \bar{f}_{α} is the polarization fraction for the corresponding \bar{B} decays in Eq. (60). In this work, the direct CP asymmetries for $B^{0} \rightarrow J / \psi f_{1}$ decays at each polarization are collected as follows,

- for $B_{d}^{0} \rightarrow J / \psi f_{1}$ modes (in units of 10^{-3}),

$$
\begin{align*}
& A_{\mathrm{CP}}^{\mathrm{dir}, \mathrm{~L}}=-5.05_{-7.83}^{+5.82}, \quad A_{\mathrm{CP}}^{\mathrm{dir}, \|}=-6.38_{-4.46}^{+4.02} \\
& A_{\mathrm{CP}}^{\mathrm{dir}, \perp}=-6.78_{-4.07}^{+3.55} \tag{68}
\end{align*}
$$

- for $B_{s}^{0} \rightarrow J / \psi f_{1}$ modes (in units of 10^{-4}),

$$
\begin{align*}
& A_{\mathrm{CP}}^{\mathrm{dir}, \mathrm{~L}}=1.69_{-2.17}^{+2.86}, \quad A_{\mathrm{CP}}^{\mathrm{dir}, \|}=2.58_{-2.03}^{+2.35} \\
& A_{\mathrm{CP}}^{\mathrm{dir}, \perp}=2.89_{-1.72}^{+2.05} \tag{69}
\end{align*}
$$

All uncertainties from various parameters in above results have been added in quadrature. It is obvious that the direct CP violations for $B_{d}^{0} \rightarrow J / \psi f_{1}$ decays are a few percent within errors, however, which are still too small to be detected in the running LHCb and Belle-II experiments.

$3.3 B^{0} \rightarrow \eta_{c} f_{1}$

Different from the decays of $B^{0} \rightarrow J / \psi f_{1}, B^{0} \rightarrow \eta_{c} f_{1}$ decays have only the longitudinal contributions because of the conservation of the angular momentum. By employing
the decay amplitudes as presented in Eqs. (36)-(39), the corresponding branching ratio can be expressed as follows,
$\mathcal{B}\left(B^{0} \rightarrow \eta_{c} f_{1}\right)=\tau_{B} \cdot \frac{G_{F}^{2}}{32 \pi m_{B}}\left(1-r_{\eta_{c}}^{2}\right)\left|\mathcal{A}\left(B^{0} \rightarrow \eta_{c} f_{1}\right)\right|^{2}$,
with $r_{\eta_{c}}=m_{\eta_{c}} / m_{B^{0}}$. Similar to $\mathcal{B}\left(B^{0} \rightarrow J / \psi f_{1}\right)$, the theoretical predictions of $\mathcal{B}\left(B^{0} \rightarrow \eta_{c} f_{1}\right)$ at both $\left|\varphi^{\text {Theo }}\right|$ and $\left|\varphi^{\mathrm{Exp}}\right|$ in PQCD approach are presented in Table 2, where the sources of errors are also similar to those in $B^{0} \rightarrow J / \psi f_{1}$ modes but with $f_{\eta_{c}}=0.42 \pm 0.05 \mathrm{GeV}$. Within the large theoretical errors, the $B^{0} \rightarrow \eta_{c} f_{1}$ decay rates at $\left|\varphi^{\text {Theo }}\right| \sim 15^{\circ}$ are generally consistent with those at $\left|\varphi^{\operatorname{Exp}}\right| \sim 24^{\circ}$. These decays have not been measured yet currently, and are expected to be tested in the near future.

Comparing $B^{0} \rightarrow J / \psi f_{1}$ and $B^{0} \rightarrow \eta_{c} f_{1}$ decays, we have

$$
\begin{align*}
& \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)} \approx 4.00_{-0.85}^{+1.29}, \\
& \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1285)\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)} \approx 4.14_{-0.90}^{+1.48}, \\
& \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi f_{1}(1420)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)} \approx 3.86_{-0.82}^{+1.27}, \\
& \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{1}(1420)\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)} \approx 4.01_{-0.90}^{+1.51} . \tag{71}
\end{align*}
$$

It is noticeable that these ratios are all about 4, which attributes to the large contributions from the transverse polarization. The measurements of such kinds of ratios in future could help us to test the polarization mechanism.

Analogous to the decays $B^{0} \rightarrow J / \psi f_{1}$, we also define four ratios in $B^{0} \rightarrow \eta_{c} f_{1}$ modes as follows,

$$
\begin{align*}
& R_{d}^{\eta_{c}} \equiv \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)} \\
& =\frac{\Phi\left(m_{B_{d}}, m_{\eta_{c}}, m_{f_{1}(1285)}\right)}{\Phi\left(m_{B_{d}}, m_{\eta_{c}}, m_{f_{1}(1420)}\right)} \cdot \cot ^{2} \varphi \tag{72}\\
& R_{s}^{\eta_{c}} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)} \\
& \quad=\frac{\Phi\left(m_{B_{s}}, m_{\eta_{c}}, m_{f_{1}(1420)}\right)}{\Phi\left(m_{B_{s}}, m_{\eta_{c}}, m_{\left.f_{1}(1285)\right)} \cdot \cot ^{2} \varphi,\right.} \tag{73}\\
& R_{s d}^{\eta_{c}}\left[f_{1}(1285)\right] \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)} \tag{79}\\
& \quad=\frac{\tau_{B_{s}^{0}}^{\tau_{B_{d}^{0}}^{0}} \cdot \frac{\Phi\left(m_{B_{s}}, m_{\eta_{c}}, m_{f_{1}(1285)}\right.}{\Phi\left(m_{B_{d}}, m_{\eta_{c}}, m_{f_{1}(1285)}\right)}}{\quad \cdot \frac{\left|\mathcal{A}\left(B_{s}^{0} \rightarrow \eta_{c} f_{s}\right)\right|^{2}}{\left|\mathcal{A}\left(B_{d}^{0} \rightarrow \eta_{c} f_{n}\right)\right|^{2}} \cdot \tan ^{2} \varphi} \tag{80}\\
& R_{s d}^{\eta_{c}}\left[f_{1}(1420)\right] \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)} \tag{74}
\end{align*}
$$

$$
\begin{align*}
= & \frac{\tau_{B_{s}^{0}}}{\tau_{B_{d}^{0}}} \cdot \frac{\Phi\left(m_{B_{s}}, m_{\eta_{c}}, m_{f_{1}(1420)}\right)}{\Phi\left(m_{B_{d}}, m_{\eta_{c}}, m_{f_{1}(1420)}\right)} \tag{75}\\
& \cdot \frac{\left|\mathcal{A}\left(B_{s}^{0} \rightarrow \eta_{c} f_{s}\right)\right|^{2}}{\left|\mathcal{A}\left(B_{d}^{0} \rightarrow \eta_{c} f_{n}\right)\right|^{2}} \cdot \cot ^{2} \varphi, \tag{70}
\end{align*}
$$

which can be used to constrain the absolute value of the mixing angle φ. In PQCD, these above ratios could be calculated from Table 2, and the results are given as
where all uncertainties are added in quadrature.
Since the branching fractions of $B_{d, s}^{0} \rightarrow J / \psi f_{1}(1285)$ decays were measured with $\mathcal{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right)=$ $0.109_{-0.006}^{+0.006}$, we also propose the analogous measurements on $B_{d, s}^{0} \rightarrow \eta_{c} f_{1}(1285)\left(\rightarrow 2 \pi^{+} 2 \pi^{-}\right)$, whose branching fractions are estimated to be

$$
\begin{gather*}
\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c}\left(2 \pi^{+} 2 \pi^{-}\right)_{f_{1}(1285)}\right) \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right) \\
\cdot \mathcal{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(0.84_{-0.54}^{+0.71}\right) \times 10^{-6} \\
\left(0.75_{-0.48}^{+0.64}\right) \times 10^{-6}
\end{array}\right. \tag{77}
\end{gather*}
$$

$$
\begin{gather*}
\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c}\left(2 \pi^{+} 2 \pi^{-}\right)_{f_{1}(1285)}\right) \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right) \\
\cdot \mathcal{B}\left(f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(0.24_{-0.14}^{+0.19}\right) \times 10^{-5} \\
\left(0.58_{-0.36}^{+0.49}\right) \times 10^{-5}
\end{array}\right. \tag{78}
\end{gather*}
$$

Meanwhile, with the large widths of $f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}$ and $f_{1}(1420) \rightarrow K_{S}^{0} K^{+} \pi^{-}$, the branching fractions of $B^{0} \rightarrow \eta_{c} f_{1}(1285)\left(\rightarrow \eta \pi^{+} \pi^{-}\right)$and $B^{0} \rightarrow \eta_{c} f_{1}(1420)(\rightarrow$ $K_{s}^{0} K^{+} \pi^{-}$) decays are also calculated to be

$$
\begin{aligned}
& \mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c}\left(\eta \pi^{+} \pi^{-}\right)_{f_{1}(1285)}\right) \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right) \\
& \cdot \mathcal{B}\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(2.67_{-2.06}^{+2.54}\right) \times 10^{-6} \\
\left(2.39_{-1.84}^{+2.27}\right) \times 10^{-6}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c}\left(\eta \pi^{+} \pi^{-}\right)_{f_{1}(1285)}\right) \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right) \\
\cdot \mathcal{B}\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(0.75_{-0.56}^{+0.68}\right) \times 10^{-5} \\
\left(1.86_{-1.37}^{+1.71}\right) \times 10^{-5},
\end{array}\right.
\end{gathered}
$$

$$
\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c}\left(K_{S}^{0} K^{+} \pi^{-}\right)_{f_{1}(1420)}\right) \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)
$$

$$
\cdot \mathcal{B}\left(f_{1}(1420) \rightarrow K_{S}^{0} K^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(3.30_{-2.22}^{+2.90}\right) \times 10^{-7} \\
\left(0.82_{-0.56}^{+0.72}\right) \times 10^{-6}
\end{array}\right.
$$

$$
\begin{align*}
& R_{d}^{\eta_{c}} \approx\left\{\begin{array} { c }
{ 1 4 . 8 1 _ { - 2 . 3 6 } ^ { + 3 . 1 2 } } \\
{ 5 . 3 4 _ { - 0 . 9 2 } ^ { + 1 . 0 2 } , }
\end{array} \quad R _ { s } ^ { \eta _ { c } } \approx \left\{\begin{array}{c}
13.21_{-2.13}^{+2.73} \\
4.78_{-0.84}^{+0.91}
\end{array},\right.\right. \\
& R_{s d}^{\eta_{c}}\left[f_{1}(1285)\right] \approx\left\{\begin{array}{l}
2.81_{-0.94}^{+1.32} \\
7.77_{-2.56}^{+3.76}
\end{array},\right. \\
& R_{s d}^{\eta_{c}}\left[f_{1}(1420)\right] \approx\left\{\begin{array}{l}
\left(5.50_{-1.83}^{+2.64}\right) \times 10^{2}, \\
\left(1.98_{-0.72}^{+0.99}\right) \times 10^{2},
\end{array}\right. \tag{76}
\end{align*}
$$

Table 2 The CP-averaged branching ratios $B^{0} \rightarrow \eta_{c} f_{1}$ in PQCD approach

Decay modes	$\left\|\varphi^{\text {Theo }}\right\| \sim 15^{\circ}$	$\left\|\varphi^{\text {Exp }}\right\| \sim 24^{\circ}$
$\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)$	$\left(7.64_{-1.78-4.49-0.66-0.11}^{+2.42+5.95+0.58+0.10}\right) \times 10^{-6}$	$\left(6.83_{-1.59-4.02-0.58-0.35}^{+2.16+5.34+0.52+0.28}\right) \times 10^{-6}$
$\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)$	$\left(5.16_{-1.20-3.03-0.44+0.06}^{+1.64+4.04+0.40+1.06}\right) \times 10^{-7}$	$\left(1.28_{-0.30-0.76-0.11-0.26}^{+0.40+0.99+0.09+0.33}\right) \times 10^{-6}$
$\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)$	$\left(2.15_{-0.58-1.08-0.18-0.40}^{+0.81+1.42+0.18+0.44}\right) \times 10^{-5}$	$\left(5.31_{-1.43-2.68-0.46-1.08}^{+2.00+3.45+0.45+1.39}\right) \times 10^{-5}$
$\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)$	$\left(2.84_{-0.77-1.43+0.25-0.05}^{+1.07+1.88+0.24+0.03}\right) \times 10^{-4}$	$\left(2.54_{-0.69+1.28+0.22}^{+0.96+1.68+0.22+0.10}\right) \times 10^{-4}$

$$
\begin{align*}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c}\left(K_{S}^{0} K^{+} \pi^{-}\right)_{f_{1}(1420)}\right) \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right) \\
& \quad \cdot \mathcal{B}\left(f_{1}(1420) \rightarrow K_{S}^{0} K^{+} \pi^{-}\right) \approx\left\{\begin{array}{l}
\left(1.82_{-1.07}^{+1.40}\right) \times 10^{-4} \\
\left(1.63_{-0.96}^{+1.26}\right) \times 10^{-4}
\end{array}\right. \tag{82}
\end{align*}
$$

It is obvious that the decays $B_{s}^{0} \rightarrow \eta_{c} f_{1}(1285)(\rightarrow$ $\left.2 \pi^{+} 2 \pi^{-}\right), B^{0} \rightarrow \eta_{c} f_{1}(1285)\left(\rightarrow \eta \pi^{+} \pi^{-}\right)$and $B_{s}^{0} \rightarrow$ $\eta_{c} f_{1}(1420)\left(\rightarrow K_{S}^{0} K^{+} \pi^{-}\right)$with large decay rates could be observed in the running LHCb and Belle-II experiments. Once these predictions would be confirmed experimentally, then the mixing angle φ between the $f_{1}(1285)$ and $f_{1}(1420)$ mixing could receive more constraints, though they still suffer from large theoretical uncertainties induced by the hadronic parameters in the f_{n} and f_{s} light-cone distribution amplitudes.

In measuring the branching fractions of $B_{d, s}^{0} \rightarrow \eta_{c} f_{1}$ decays, we can also select the modes $B_{d}^{0} \rightarrow \eta_{c} \rho^{0}$ and $B_{s}^{0} \rightarrow$ $\eta_{c} \phi$ for normalization. Theoretically, the $\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} \rho^{0}\right)$ and $\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} \phi\right)$ in Ref. [43] are updated, and the results are presented as follows,

$$
\begin{align*}
& \mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} \rho^{0}\right)=\left(7.92_{-3.04}^{+3.67}\right) \times 10^{-6} \\
& \mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} \phi\right)=\left(3.57_{-1.41}^{+1.81}\right) \times 10^{-4} \tag{83}
\end{align*}
$$

which are slightly smaller than but consistent with previous predictions [43]. The updated $\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} \phi\right)$ still agrees well with data $\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} \phi\right)=(5.0 \pm 0.9) \times 10^{-4}$ [4] within errors, but the branching fraction of $B_{d}^{0} \rightarrow \eta_{c} \rho^{0}$ have not been measured so far. Within $\rho^{0} \rightarrow \pi^{+} \pi^{-}$and $\phi \rightarrow$ $K^{+} K^{-}$, we then obtain the following results as,

$$
\begin{gather*}
\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c}\left(\pi^{+} \pi^{-}\right)_{\rho^{0}}\right) \equiv \mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} \rho^{0}\right) \\
\cdot \mathcal{B}\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx\left(7.92_{-3.04}^{+3.67}\right) \times 10^{-6} \tag{84}\\
\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c}\left(K^{+} K^{-}\right)_{\phi}\right) \equiv \mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} \phi\right) \\
\cdot \mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right) \approx\left(1.76_{-0.69}^{+0.89}\right) \times 10^{-4} \tag{85}
\end{gather*}
$$

In order to search for $B^{0} \rightarrow \eta_{c} f_{1}$ decays, we also calculate the following ratios

$$
\begin{align*}
& R_{d}^{\eta_{c}}\left[f_{1}(1285) / \rho^{0}\right] \equiv \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}(1285)\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c} \rho^{0}\right)} \\
& \quad \approx\left\{\begin{array}{l}
0.96_{-0.31}^{+0.39} \\
0.86_{-0.27}^{+0.35}
\end{array}\right. \tag{86}
\end{align*}
$$

$$
\begin{align*}
& R_{s}^{\eta_{c}}\left[f_{1}(1420) / \phi\right] \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}(1420)\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c} \phi\right)} \\
& \quad \approx\left\{\begin{array}{l}
0.80_{-0.08}^{+0.08} \\
0.71_{-0.06}^{+0.06}
\end{array}\right. \tag{87}
\end{align*}
$$

and

$$
R_{\pi}^{\eta_{c}} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c}\left(K_{S}^{0} K^{+} \pi^{-}\right)_{f_{1}(1420)}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \eta_{c}\left(K^{+} K^{-}\right)_{\phi}\right)} \approx\left\{\begin{array}{l}
1.03_{-0.13}^{+0.14} \tag{88}\\
0.93_{-0.12}^{+0.11}
\end{array}\right.
$$

$R_{\eta}^{\eta_{c}} \equiv \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c}\left(\eta \pi^{+} \pi^{-}\right)_{f_{1}(1285)}\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow \eta_{c}\left(\pi^{+} \pi^{-}\right)_{\rho^{0}}\right)} \approx\left\{\begin{array}{l}0.34_{-0.18}^{+0.20} \\ 0.30_{-0.16}^{+0.18}\end{array}\right.$.

These ratios are also expected to be examined in future.
Lastly, we shall study the direct CP asymmetries of $B^{0} \rightarrow$ $J / \psi f_{1}$ decays. Based on the definition in Eq. (64), the numerical results can be given as

$$
\begin{align*}
& A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d}^{0} \rightarrow \eta_{c} f_{1}\right)=A_{\mathrm{CP}}^{\operatorname{dir}}\left(B_{d}^{0} \rightarrow \eta_{c} f_{n}\right) \\
& \quad=\left(7.53_{-0.98}^{+1.07}\right) \times 10^{-2} \tag{90}\\
& A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s}^{0} \rightarrow \eta_{c} f_{1}\right)=A_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s}^{0} \rightarrow \eta_{c} f_{s}\right) \\
& \quad=\left(-4.33_{-0.66}^{+0.60}\right) \times 10^{-3} . \tag{91}
\end{align*}
$$

It is shown that the direct CP asymmetries of $B \rightarrow \eta_{c} f_{1}$ are as large as a few percent, and are an order of magnitude larger than those of $B^{0} \rightarrow J / \psi f_{1}$ decays. The measurements of such asymmetries in the running LHCb and Belle-II experiments are helpful for understanding the nature of f_{1} states and testing the PQCD approach.

4 Summary

We have made reexaminations on $B^{0} \rightarrow J / \psi f_{1}$ and the first time studies on $B^{0} \rightarrow \eta_{c} f_{1}$ decays in the framework of PQCD, where $f_{1}=f_{1}(1280)$ and $f_{1}(1420)$ are viewed as the mixtures of f_{n} and f_{s} with mixing angle φ. In this work, the contributions of vertex corrections, nonfactorizable diagrams and penguin operators are all included. It is found that the branching fractions of these decays are large enough to be measured in the running LHCb and BelleII experiments. We also note that the $B^{0} \rightarrow \eta_{c} f_{1}(1285)$ and $B_{s}^{0} \rightarrow\left(J / \psi, \eta_{c}\right) f_{1}(1420)$ decays could be analyzed
within the secondary decay chains $f_{1}(1285) \rightarrow 2 \pi^{+} 2 \pi^{-}$, $f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}$and $f_{1}(1420) \rightarrow K_{S}^{0} K^{+} \pi^{-}$. In addition, we proposed several ratios that could be used to constrain the mixing angle φ, but its sign cannot be determined in these decays. We also studied the direct CP asymmetries in these decays, and results indicate the large penguin pollution in the $B_{d}^{0} \rightarrow\left(J / \psi, \eta_{c}\right) f_{1}$ decays. It should be emphasized that there are large theoretical uncertainties arising from the nonperturbative parameters, especially from the distribution amplitudes of axial-vector mesons and charmonium states, and more precise parameters from nonperturbative QCD approaches are needed. The comparisons between our results and future experimental data would help us to understand the nature of f_{1} states and to test the PQCD approach.

Acknowledgements D.Y. thanks Z.J. for his helpful discussions. This work is supported by the National Natural Science Foundation of China under Grants nos. 11875033, 11975195 and 11775117, by the Qing Lan Project of Jiangsu Province under Grant No. 9212218405, by the Natural Science Foundation of Shandong province under the Grants nos. ZR2019JQ04, ZR2022MA035 and ZR2022ZD26, by the Project of Shandong Province Higher Educational Science and Technology Program under Grant no. 2019KJJ007, and by the Research Fund of Jiangsu Normal University under Grant no. HB2016004. D.Y. is supported by Postgraduate Research Practice Innovation Program of Jiangsu Normal University under Grant no. 2020XKT775.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data analyzed in this manuscript are available from the corresponding author on reasonable request.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecomm ons.org/licenses/by/4.0/.
Funded by SCOAP 3. SCOAP ${ }^{3}$ supports the goals of the International Year of Basic Sciences for Sustainable Development.

Appendix A: Distribution amplitudes

In the conjugate \mathbf{b} space of transverse momentum \mathbf{k}_{T}, the related B meson distribution amplitude $\phi_{B}(x, \mathbf{b})$ could be given as
$\phi_{B}(x, \mathbf{b})=N_{B} x^{2}(1-x)^{2} \exp \left[-\frac{1}{2}\left(\frac{x m_{B}}{\omega_{B}}\right)^{2}-\frac{\omega_{B}^{2} \mathbf{b}^{2}}{2}\right]$,
where ω_{B} is the shape parameter of $\phi_{B}(x, \mathbf{b}) . N_{B}$ is the normalization factor, which is correlated with the decay constant f_{B} satisfying the following relation,
$\int_{0}^{1} d x \phi_{B}(x, \mathbf{b}=0)=\frac{f_{B}}{2 \sqrt{2 N_{c}}}$.
The shape parameter ω_{B} has been well constrained as $\omega_{B}=$ 0.4 GeV [73] for the B_{d}^{0} meson and $\omega_{B}=0.5 \mathrm{GeV}$ [46] for the B_{s}^{0} meson, respectively. With the decay constants $f_{B_{d}^{0}}=0.21 \mathrm{GeV}$ and $f_{B_{s}^{0}}=0.23 \mathrm{GeV}$, the normalization factors could be obtained as $N_{B_{d}^{0}}=101.445$ and $N_{B_{s}^{0}}=$ 63.67 correspondingly. The recent developments on the B meson distribution amplitude with high twists can be found in [74-78]. The effects induced by these newly developed distribution amplitudes will be left for future investigations together with highly precise measurements.

For J / ψ meson, the explicit forms for the distribution amplitudes of twist-2 $\phi_{J / \psi}^{L, T}(x)$ and twist- $3 \phi_{J / \psi}^{t, v}(x)$ could be read as [61],
$\phi_{J / \psi}^{L}(x)=\phi_{J / \psi}^{T}(x)=9.58 \frac{f_{J / \psi}}{2 \sqrt{2 N_{c}}} x(1-x)$

$$
\times\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}
$$

$\phi_{J / \psi}^{t}(x)=10.94 \frac{f_{J / \psi}}{2 \sqrt{2 N_{c}}}(1-2 x)^{2}\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}$,
$\phi_{J / \psi}^{v}(x)=1.67 \frac{f_{J / \psi}}{2 \sqrt{2 N_{c}}}\left[1+(2 x-1)^{2}\right]\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}$,
where x describes the distribution of charm quark momentum in J / ψ meson and $f_{J / \psi}$ is the decay constant.

And the twist-2 $\phi_{\eta_{c}}^{v}(x)$ and the twist- $3 \phi_{\eta_{c}}^{s}(x)$ distribution amplitudes for η_{c} meson are collected as follows [61],
$\phi_{\eta_{c}}^{v}(x)=9.58 \frac{f_{\eta_{c}}}{2 \sqrt{2 N_{c}}} x(1-x)\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}$,
$\phi_{\eta_{c}}^{s}(x)=1.97 \frac{f_{\eta_{c}}}{2 \sqrt{2 N_{c}}}\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}$,
with the η_{c} decay constant $f_{\eta_{c}}$ and x being the momentum fraction of charm quark in η_{c} meson.

For the axial-vector meson f_{1}, the twist- 2 light-cone distribution amplitudes, i.e., $\phi_{f_{q}}(x)$ and $\phi_{f_{q}}^{T}(x)$, can be expanded as the Gegenbauer polynomials [62]:
$\phi_{f_{q}}(x)=\frac{f_{f_{q}}}{2 \sqrt{2 N_{c}}} 6 x(1-x)\left[1+a_{2}^{\|} \frac{3}{2}\left(5(2 x-1)^{2}-1\right)\right]$,
$\phi_{f_{q}}^{T}(x)=\frac{f_{f_{q}}}{2 \sqrt{2 N_{c}}} 6 x(1-x)\left[3 a_{1}^{\perp}(2 x-1)\right]$.

And the twist- 3 light-cone distribution amplitudes will be used in the following form [62],

$$
\begin{align*}
\phi_{f_{q}}^{s}(x) & =\frac{f_{f_{q}}}{4 \sqrt{2 N_{c}}} \frac{d}{d x}\left[6 x(1-x)\left(a_{1}^{\perp}(2 x-1)\right)\right], \\
\phi_{f_{q}}^{t}(x) & =\frac{f_{f_{q}}}{2 \sqrt{2 N_{c}}}\left[\frac{3}{2} a_{1}^{\perp}(2 x-1)\left(3(2 x-1)^{2}-1\right)\right], \\
\phi_{f_{q}}^{v}(x) & =\frac{f_{f_{q}}}{2 \sqrt{2 N_{c}}}\left[\frac{3}{4}\left(1+(2 x-1)^{2}\right)\right], \\
\phi_{f_{q}}^{a}(x) & =\frac{f_{f_{q}}}{8 \sqrt{2 N_{c}}} \frac{d}{d x}[6 x(1-x)], \tag{99}
\end{align*}
$$

where $f_{f_{q}}$ is the decay constant of quark-flavor state f_{q} [62] and $a_{2}^{\|}$and a_{1}^{\perp} are the Gegenbauer moments in the f_{q} distribution amplitudes [12].

Appendix B: Related functions in the PQCD approach

The threshold resummation function is universal and is usually parameterized in a simplified form as [56]
$S_{t}(x)=\frac{2^{1+2 c} \Gamma(3 / 2+c)}{\sqrt{\pi} \Gamma(1+c)}[x(1-x)]^{c}$,
with $c=0.4 \pm 0.1$ and this factor is normalized to unity.
In the calculation, the Sudakov factor for (a) and (b) in Fig. 2 is symbolled as $S_{a b}(t)$, and one for (c) and (d) is $S_{c d}(t)$. The expression are given as the following,

$$
\begin{align*}
& S_{a b}(t)=s\left(x_{1} P_{1}^{+}, b_{1}\right)+s\left(x_{3} P_{3}^{-}, b_{3}\right) \\
& \quad+s\left(\left(1-x_{3}\right) P_{3}^{-}, b_{3}\right)-\frac{1}{\beta_{1}} \\
& \quad \times\left[\frac{5}{6} \ln \frac{\ln (t / \Lambda)}{-\ln \left(b_{1} \Lambda\right)}+\ln \frac{\ln (t / \Lambda)}{-\ln \left(b_{3} \Lambda\right)}\right], \tag{101}\\
& S_{c d}(t)=s\left(x_{1} P_{1}^{+}, b_{1}\right)+s_{c}\left(x_{2} P_{2}^{+}, b_{2}\right) \\
& \quad+s_{c}\left(\left(1-x_{2}\right) P_{2}^{+}, b_{2}\right)+s\left(x_{3} P_{3}^{-}, b_{1}\right) \\
& \quad+s\left(\left(1-x_{3}\right) P_{3}^{-}, b_{1}\right)-\frac{1}{\beta_{1}} \\
& \quad \times\left[\frac{11}{6} \ln \frac{\ln (t / \Lambda)}{-\ln \left(b_{1} \Lambda\right)}+\ln \frac{\ln (t / \Lambda)}{-\ln \left(m_{c} \Lambda\right)}\right], \tag{102}
\end{align*}
$$

where the functions $s(q, b)$ and $s_{c}(q, b)$ could be found in Refs. [45] and [47], respectively.

References

1. H.-Y. Cheng, Revisiting axial-vector meson mixing. Phys. Lett. B 707, 116-120 (2012). arXiv:1110.2249
2. L. Burakovsky, J.T. Goldman, Constraint on axial-vector meson mixing angle from nonrelativistic constituent quark model. Phys. Rev. D 56, R1368-R1372 (1997). arXiv:hep-ph/9703274
3. K. Chen, C.-Q. Pang, X. Liu, T. Matsuki, Light axial vector mesons. Phys. Rev. D 91(7), 074025 (2015). arXiv:1501.07766
4. Particle Data Group Collaboration, R.L. Workman et al., Review of particle physics. PTEP 2022, 083C01 (2022)
5. HFLAV Collaboration, Y. Amhis et al., Averages of b-hadron, c hadron, and τ-lepton properties as of 2021. arXiv:2206.07501
6. M.-C. Du, Y. Cheng, Q. Zhao, Vertex corrections due to the triangle singularity mechanism in the light axial vector meson couplings to $K^{*} \bar{K}+$ c.c.. Phys. Rev. D 106(5), 054019 (2022). arXiv:2206.05211
7. G. Gidal et al., Observation of spin 1 F 1 (1285) in the reaction $\gamma \gamma^{*} \rightarrow \operatorname{Eta} 0 \pi^{+} \pi^{-}$. Phys. Rev. Lett. 59, 2012 (1987)
8. F.E. Close, A. Kirk, Implications of the glueball $q \bar{q}$ filter on the 1^{++}nonet. Z. Phys. C 76, 469-474 (1997). arXiv:hep-ph/9706543
9. D.-M. Li, H. Yu, Q.-X. Shen, Is $f_{1}(1420)$ the partner of $f_{1}(1285)$ in the ${ }^{3} P_{1} q \bar{q}$ nonet? Chin. Phys. Lett. 17, 558-559 (2000). arXiv:hep-ph/0001011
10. W.S. Carvalho, A.S. de Castro, A.C.B. Antunes, SU(3) mixing for excited mesons. J. Phys. A 35, 7585-7596 (2002). arXiv:hep-ph/0207372
11. D.-M. Li, B. Ma, H. Yu, Regarding the axial-vector mesons. Eur. Phys. J. A 26, 141-145 (2005). arXiv:hep-ph/0509215
12. K.-C. Yang, Light-cone distribution amplitudes of axial-vector mesons. Nucl. Phys. B 776, 187-257 (2007). arXiv:0705.0692
13. H.-Y. Cheng, K.-C. Yang, Hadronic charmless B decays B \rightarrow AP. Phys. Rev. D 76, 114020 (2007). arXiv:0709.0137
14. K.-C. Yang, Form-factors of $\mathrm{B}(\mathrm{u}, \mathrm{d}, \mathrm{s})$ decays into P-wave axialvector mesons in the light-cone sum rule approach. Phys. Rev. D 78, 034018 (2008). arXiv:0807.1171
15. H.-Y. Cheng, K.-C. Yang, Branching ratios and polarization in $B \rightarrow V V, V A, A A$ decays. Phys. Rev. D 78, 094001 (2008). arXiv:0805.0329. [Erratum: Phys. Rev. D 79, 039903 (2009)]
16. K.-C. Yang, 1^{++}Nonet singlet-octet mixing angle, strange quark mass, and strange quark condensate. Phys. Rev. D 84, 034035 (2011). arXiv: 1011.6113
17. J.J. Dudek, R.G. Edwards, B. Joo, M.J. Peardon, D.G. Richards, C.E. Thomas, Isoscalar meson spectroscopy from lattice QCD. Phys. Rev. D 83, 111502 (2011). arXiv:1102.4299
18. S. Stone, L. Zhang, Use of $B \rightarrow J / \psi f_{0}$ decays to discern the $q \bar{q}$ or tetraquark nature of scalar mesons. Phys. Rev. Lett. 111(6), 062001 (2013). arXiv:1305.6554
19. Hadron Spectrum Collaboration, J.J. Dudek, R.G. Edwards, P. Guo, C.E. Thomas, Toward the excited isoscalar meson spectrum from lattice QCD. Phys. Rev. D 88(9), 094505 (2013). arXiv: 1309.2608
20. X. Liu, Z.-J. Xiao, Axial-vector $f_{1}(1285)-f_{1}(1420)$ mixing and $B_{S} \rightarrow J / \psi\left(f_{1}(1285), f_{1}(1420)\right)$ decays. Phys. Rev. D 89(9), 097503 (2014). arXiv: 1402.2047
21. X. Liu, Z.-J. Xiao, J.-W. Li, Z.-T. Zou, Charmless hadronic $B \rightarrow$ $\left(f_{1}(1285), f_{1}(1420)\right) P$ decays in the perturbative QCD approach. Phys. Rev. D 91(1), 014008 (2015). arXiv:1410.2345
22. F.E. Close, A. Kirk, Interpretation of scalar and axial mesons in LHCb from a historical perspective. Phys. Rev. D 91(11), 114015 (2015). arXiv:1503.06942
23. R. Molina, M. Döring, E. Oset, Determination of the compositeness of resonances from decays: the case of the $B_{s}^{0} \rightarrow J / \psi f_{1}(1285)$. Phys. Rev. D 93(11), 114004 (2016). arXiv:1604.02574
24. X. Liu, Z.-J. Xiao, Z.-T. Zou, Nonleptonic decays of $B \rightarrow$ $\left(f_{1}(1285), f_{1}(1420)\right) V$ in the perturbative QCD approach. Phys. Rev. D 94(11), 113005 (2016). arXiv: 1609.01024
25. Z. Jiang, D.-H. Yao, Z.-T. Zou, X. Liu, Y. Li, Z.-J. Xiao, $B_{d, s}^{0} \rightarrow$ $f_{1} f_{1}$ decays with $f_{1}(1285)-f_{1}(1420)$ mixing in the perturbative QCD approach. Phys. Rev. D 102(11), 116015 (2020). arXiv:2008.05366
26. D. He, X. Luo, Y. Xie, H. Sun, Theoretical study in the $\bar{B}^{0} \rightarrow$ $J / \psi \bar{K}^{* 0} K^{0}$ and $\bar{B}^{0} \rightarrow J / \psi f_{1}(1285)$ decays. Phys. Rev. D 103(9), 094007 (2021). arXiv:2104.01047
27. LHCb Collaboration, R. Aaij et al., Observation of $\bar{B}_{(s)} \rightarrow$ $J / \psi f_{1}(1285)$ decays and measurement of the $f_{1}(1285)$ mixing angle. Phys. Rev. Lett. 112(9), 091802 (2014). arXiv: 1310.2145
28. H.-Y. Cheng, K.-C. Yang, $B \rightarrow J / \psi K$ decays in QCD factorization. Phys. Rev. D 63, 074011 (2001). arXiv:hep-ph/0011179
29. H.-Y. Cheng, Y.-Y. Keum, K.-C. Yang, $B \rightarrow J / \psi K^{*}$ decays in QCD factorization. Phys. Rev. D 65, 094023 (2002). arXiv:hep-ph/0111094
30. Z.-Z. Song, C. Meng, K.-T. Chao, $B \rightarrow \eta_{c} K\left(\eta_{c}^{\prime} K\right)$ decays in QCD factorization. Eur. Phys. J. C 36, 365-370 (2004). arXiv:hep-ph/0209257
31. C. Meng, Y.-J. Gao, K.-T. Chao, $b \rightarrow \chi_{c 1}(1 p, 2 p) k$ decays in qcd factorization and x (3872). Phys. Rev. D 87(7), 074035 (2013). arXiv:hep-ph/0506222
32. C.-H. Chen, H.-N. Li, Nonfactorizable contributions to B meson decays into charmonia. Phys. Rev. D 71, 114008 (2005). arXiv:hep-ph/0504020
33. H.-N. Li, S. Mishima, Penguin pollution in the $B^{0} \rightarrow J / \psi K_{S}$ decay. JHEP 03, 009 (2007). arXiv:hep-ph/0610120
34. J.-W. Li, D.-S. Du, The Study of $B \rightarrow J / \psi \eta^{\prime}$ decays and determination of $\eta-\eta^{\prime}$ mixing angle. Phys. Rev. D 78, 074030 (2008). arXiv:0707.2631
35. M. Beneke, L. Vernazza, $B \rightarrow \chi_{c J} K$ decays revisited. Nucl. Phys. B 811, 155-181 (2009). arXiv:0810.3575
36. X. Liu, Z.-Q. Zhang, Z.-J. Xiao, $B \rightarrow\left(J / \psi, \eta_{c} K\right.$ decays in the perturbative QCD approach. Chin. Phys. C 34, 937-943 (2010). arXiv:0901.0165
37. P. Colangelo, F. De Fazio, W. Wang, Nonleptonic B_{s} to charmonium decays: analyses in pursuit of determining the weak phase β_{s}. Phys. Rev. D 83, 094027 (2011). arXiv:1009.4612
38. X. Liu, H.-N. Li, Z.-J. Xiao, Implications on $\eta-\eta^{\prime}$-glueball mixing from $B_{d / s} \rightarrow J / \Psi \eta^{()}$decays. Phys. Rev. D 86, 011501 (2012). arXiv:1205.1214
39. J.-W. Li, D.-S. Du, C.-D. Lu, Determination of $f_{0}-\sigma$ mixing angle through $B_{s}^{0} \rightarrow J / \Psi f_{0}(980)(\sigma)$ decays. Eur. Phys. J. C 72, 2229 (2012). arXiv:1212.5987
40. W.-F. Wang, H.-N. Li, W. Wang, C.-D. Lü, S-wave resonance contributions to the $B_{(s)}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$and $B_{s} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ decays. Phys. Rev. D 91(9), 094024 (2015). arXiv:1502.05483
41. X. Liu, Z.-T. Zou, Y. Li, Z.-J. Xiao, Phenomenological studies on the $B_{d, s}^{0} \rightarrow J / \psi f_{0}(500)$ [$\left.f_{0}(980)\right]$ decays. Phys. Rev. D 100(1), 013006 (2019). arXiv:1906.02489
42. X. Liu, W. Wang, Y. Xie, Penguin pollution in $B \rightarrow J / \psi V$ decays and impact on the extraction of the $B_{s}-\bar{B}_{s}$ mixing phase. Phys. Rev. D 89(9), 094010 (2014). arXiv: 1309.0313
43. Z.-J. Xiao, D.-C. Yan, X. Liu, $B_{(s)} \rightarrow \eta_{c}(P, V)$ decays and effects of the next-to-leading order contributions in the perturbative QCD approach. Nucl. Phys. B 953, 114954 (2020). arXiv:1909.10907
44. Y.-Y. Keum, H.-N. Li, A.I. Sanda, Fat penguins and imaginary penguins in perturbative QCD. Phys. Lett. B 504, 6-14 (2001). arXiv:hep-ph/0004004
45. C.-D. Lu, K. Ukai, M.-Z. Yang, Branching ratio and CP violation of $B \rightarrow \pi \pi$ decays in perturbative QCD approach. Phys. Rev. D 63, 074009 (2001). arXiv:hep-ph/0004213
46. A. Ali, G. Kramer, Y. Li, C.-D. Lu, Y.-L. Shen, W. Wang, Y.M. Wang, Charmless non-leptonic B_{s} decays to $P P, P V$ and $V V$ final states in the pQCD approach. Phys. Rev. D 76, 074018 (2007). arXiv:hep-ph/0703162
47. X. Liu, H.-N. Li, Z.-J. Xiao, Improved perturbative QCD formalism for B_{c} meson decays. Phys. Rev. D 97(11), 113001 (2018). arXiv:1801.06145
48. X. Liu, H.-N. Li, Z.-J. Xiao, Next-to-leading-logarithm k_{T} resummation for $B_{c} \rightarrow J / \psi$ decays. Phys. Lett. B 811, 135892 (2020). arXiv:2006.12786
49. Belle Collaboration, K. Abe et al., Observation of $\mathrm{B} \rightarrow$ J / psi K(1)(1270). Phys. Rev. Lett. 87, 161601 (2001). arXiv:hep-ex/0105014
50. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125-1144 (1996). arXiv:hep-ph/9512380
51. Z.-T. Zou, A. Ali, C.-D. Lu, X. Liu, Y. Li, Improved estimates of the $B_{(s)} \rightarrow V V$ decays in perturbative QCD approach. Phys. Rev. D 91, 054033 (2015). arXiv:1501.00784
52. Y.Y. Keum, H.-N. Li, A.I. Sanda, Penguin enhancement and $B \rightarrow$ $K \pi$ decays in perturbative QCD. Phys. Rev. D 63, 054008 (2001). arXiv:hep-ph/0004173
53. C.-D. Lu, M.-Z. Yang, B to light meson transition form-factors calculated in perturbative QCD approach. Eur. Phys. J. C 28, 515523 (2003). arXiv:hep-ph/0212373
54. J. Botts, G.F. Sterman, Sudakov effects in hadron hadron elastic scattering. Phys. Lett. B 224, 201 (1989). [Erratum: Phys. Lett. B 227, 501 (1989)]
55. H.-N. Li, G.F. Sterman, The perturbative pion form-factor with Sudakov suppression. Nucl. Phys. B 381, 129-140 (1992)
56. H.-N. Li, Threshold resummation for exclusive B meson decays. Phys. Rev. D 66, 094010 (2002). arXiv:hep-ph/0102013
57. H.-N.Li, K. Ukai, Threshold resummation for nonleptonic B meson decays. Phys. Lett. B 555, 197-205 (2003). arXiv:hep-ph/0211272
58. H.-N. Li, QCD aspects of exclusive B meson decays. Prog. Part. Nucl. Phys. 51, 85-171 (2003). arXiv:hep-ph/0303116
59. S. Cheng, Z.-J. Xiao, The PQCD approach towards to next-toleading order: a short review. Front. Phys (Beijing) 16(2), 24201 (2021). arXiv:2009.02872
60. J. Hua, H.-N. Li, C.-D. Lu, W. Wang, Z.-P. Xing, Global analysis of hadronic two-body B decays in the perturbative QCD approach. Phys. Rev. D 104(1), 016025 (2021). arXiv:2012.15074
61. A.E. Bondar, V.L. Chernyak, Is the BELLE result for the cross section $\sigma\left(e^{+} e^{\rightarrow} J / \psi+\eta_{c}\right.$ a real difficulty for QCD? Phys. Lett. B 612, 215-222 (2005). arXiv:hep-ph/0412335
62. R.-H. Li, C.-D. Lu, W. Wang, Transition form factors of B decays into p-wave axial-vector mesons in the perturbative QCD approach. Phys. Rev. D 79, 034014 (2009). arXiv:0901.0307
63. R.C. Verma, Decay constants and form factors of s-wave and pwave mesons in the covariant light-front quark model. J. Phys. G 39, 025005 (2012). arXiv: 1103.2973
64. Z.-J. Xiao, Z.--Q. Zhang, X. Liu, L.-B. Guo, Branching ratios and CP asymmetries of $B \rightarrow K \eta^{(1)}$ decays in the pQCD approach. Phys. Rev. D 78, 114001 (2008). arXiv:0807.4265
65. L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 51, 1945 (1983)
66. Belle-II Collaboration, W. Altmannshofer et al., The Belle II physics book. PTEP 2019(12), 123C01 (2019). arXiv:1808.10567. [Erratum: PTEP 2020, 029201 (2020)]
67. H.-N. Li, Y.-L. Shen, Y.-M. Wang, Next-to-leading-order corrections to $B \rightarrow \pi$ form factors in k_{T} factorization. Phys. Rev. D 85, 074004 (2012). arXiv: 1201.5066
68. S. Cheng, Y.-Y. Fan, X. Yu, C.-D. Lü, Z.-J. Xiao, The NLO twist-3 contributions to $B \rightarrow \pi$ form factors in k_{T} factorization. Phys. Rev. D 89(9), 094004 (2014). arXiv: 1402.5501
69. BaBar Collaboration, B. Aubert et al., Amplitude analysis of the $B^{ \pm} \rightarrow \phi K *(892)^{ \pm}$decay. Phys. Rev. Lett. 99, 201802 (2007). arXiv:0705.1798
70. LHCb Collaboration, R. Aaij et al., Measurement of the polarization amplitudes in $B^{0} \rightarrow J / \psi K^{*}(892)^{0}$ decays. Phys. Rev. D 88, 052002 (2013). arXiv:1307.2782
71. LHCb Collaboration, R. Aaij et al., Measurement of the CPviolating phase ϕ_{s} in the decay $B_{s}^{0} \rightarrow J / \psi \phi$. Phys. Rev. Lett. 108, 101803 (2012). arXiv:1112.3183
72. M. Beneke, J. Rohrer, D. Yang, Branching fractions, polarisation and asymmetries of $B \rightarrow V V$ decays. Nucl. Phys. B 774, 64-101 (2007). arXiv:hep-ph/0612290
73. T. Kurimoto, H.-N. Li, A.I. Sanda, Leading power contributions to $B \rightarrow \pi, \rho$ transition form-factors. Phys. Rev. D 65, 014007 (2002). arXiv:hep-ph/0105003
74. G. Bell, T. Feldmann, Y.-M. Wang, M.W.Y. Yip, Light-cone distribution amplitudes for heavy-quark hadrons. JHEP 11, 191 (2013). arXiv:1308.6114
75. T. Feldmann, B.O. Lange, Y.-M. Wang, B-meson light-cone distribution amplitude: perturbative constraints and asymptotic behavior in dual space. Phys. Rev. D 89(11), 114001 (2014). arXiv:1404.1343
76. V.M. Braun, Y. Ji, A.N. Manashov, Higher-twist B-meson distribution amplitudes in HQET. JHEP 05, 022 (2017). arXiv: 1703.02446
77. W. Wang, Y.-M. Wang, J. Xu, S. Zhao, B-meson light-cone distribution amplitude from Euclidean quantities. Phys. Rev. D 102(1), 011502 (2020). arXiv: 1908.09933
78. A.M. Galda, M. Neubert, Evolution of the B-meson light-cone distribution amplitude in Laplace space. Phys. Rev. D 102, 071501 (2020). arXiv:2006.05428

[^0]: ${ }^{\mathrm{a}} \mathrm{e}-\mathrm{mail}$: liuxin@jsnu.edu.cn (corresponding author)
 be-mail: liying@ytu.edu.cn (corresponding author)

