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1 Introduction

Spontaneously broken symmetries may have produced a variety of topological solitons in
the early universe [1]. Cosmic strings are one dimensional topological defects that cannot
have free ends and therefore must either be infinite or form into loops. In 1985, Witten [2]
showed that strings can behave as superconducting wires with either fermionic or bosonic
charge carriers. In the fermionic case, there are trapped zero modes along the string due
to the Yukawa coupling between the fermion and the vortex (string) forming scalar field.
In this paper, we will only consider the bosonic case in which there are two, coupled scalar
fields and the onset of superconductivity is due to the second scalar field developing an
expectation value inside the core of the string.

Strings will form if the first homotopy group of the vacuum manifold is non-trivial [1, 3].
The particular symmetry group of the theory does not matter as long as this condition is
satisfied and as such there is a large class of symmetry breaking processes which have the
potential to produce superconducting strings. The simplest of these is a U(1)×U(1) model
(one breaks to form strings while the other remains unbroken in the vacuum and is usually
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assumed to be associated with electromagnetism) which is typically used in the literature
with the assumption that other models with more complicated group structures will behave
in a similar way. We will also adopt this approach but it is important to remember that
the phenomenon is more general.

It was pointed out in [4] that stable loops of superconducting string may be possible
within this theory and that — due to the very large mass per unit length of GUT scale
strings — they could easily overclose the universe. Early studies [5–10] were focused on the
currents completely cancelling the string tension and producing a “cosmic spring”, however
the current never becomes large enough to significantly reduce the tension [11] due to the ef-
fect of current quenching [9]. Including the effects of the gauge fields allows for a static state
to form in which the tension is balanced by the repulsive magnetic fields, although this only
occurs in a narrow region of the parameter space [6]. It has been conjectured in [12] that
generating the required current is sufficiently difficult that springs will be irrelevant in a cos-
mological context. Spinning, current carrying loops are an extension, proposed in [13, 14],
that carry charge as well as current. Stable loops of this type (known as vortons) are sup-
ported by conservation of angular momentum and require significantly lower currents than
the non-spinning alternative. They are expected to be stable to radial perturbations from
energetic considerations, but their stability to non-axial effects remains an open problem.

We will study a model with a vortex forming scalar field, φ, with a local U(1)φ sym-
metry and a condensate scalar field, σ, with a global U(1)σ symmetry. We will work in the
neutral current limit that was examined in [11, 14] as it simplifies the semi-analytic method
and numerical simulations, but we do not expect this simplification to significantly alter our
conclusions. Additionally, it was shown in [15] that this limit is a very good approximation
for realistic values of the electromagnetic coupling constant. The gauge field associated with
φ plays a crucial role because it is responsible for cancelling the contribution to the energy
from the winding number and therefore preventing the associated logarithmic divergence.

The Lagrangian density for this model is

L = (Dµφ)(Dµφ)∗+∂µσ∂µσ∗−
1
4FµνF

µν−λφ4 (|φ|2−η2
φ)2−λσ4 (|σ|2−η2

σ)2−β|φ|2|σ|2+λσ
4 η4

σ,

(1.1)
where as usual, Dµ = ∂µ − igAµ, Fµν = ∂µAν − ∂νAµ and g is the gauge coupling. The
constant term at the end is a convenient addition that sets the energy of the vacuum state
to zero but otherwise has no impact on the dynamics. The parameters ηφ, ησ, λφ, λσ, β
and g are all real positive constants.

The model consists of a Higgs potential for each field with an additional coupling
term. The parameters will be chosen such that the U(1)φ symmetry is broken in the
vacuum and the U(1)σ symmetry is unbroken everywhere, except along the string core.
This occurs because the coupling term prevents the U(1)σ symmetry from breaking but
this term vanishes along the string core. The broken U(1)φ symmetry sets |φ| = ηφ in the
vacuum, but the phase is undetermined. Along any closed path the topology of the vacuum
manifold ensures that the phase must change by 2πn where n ∈ Z is the winding number.
Any non-zero value of n signals the existence of a string enclosed by the path. Strings with
n > 1 are typically unstable, so we always use n = 1 in this work. If the string forms a

– 2 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
5

closed loop then, as the U(1)σ symmetry is broken along the string, the condensate will
also have an associated winding number, N ∈ Z.

There is a conserved current associated with the global U(1)σ symmetry,

Jµ = 1
2i(σ

∗∂µσ − σ∂µσ∗), (1.2)

due to Noether’s theorem, that satisfies ∂µJ µ = 0. Typically, this 4-current is split into
spatial and temporal components and the word current sometimes refers only to the spatial
part. The time component can be used to define the Noether charge,

Q =
∫
d3xJ0, (1.3)

which is conserved, Q̇ = 0. The winding number of the condensate generates the current
and the phase frequency generates the charge. Both must be non-zero for the loop to have
non-zero angular momentum.

In order to gain some intuition on the physics of superconducting strings, we will briefly
discuss some ideas from non-superconducting cosmic strings. The simplest gauge theory
that can produce cosmic strings is the Abelian-Higgs model (one complex scalar field with a
local U(1) symmetry). The (vacuum) masses of the Higgs and gauge fields are m2

φ = 1
2λφη

2
φ

and m2
A = g2η2

φ respectively. The length scale of each field — defined by the width of the
region in which the field does not take on its asymptotic value — is related to the mass
by r ≈ m−1. Through a series of rescalings it can be shown that the only significant
parameter in the model is the ratio of the two masses. At critical coupling (also known
as the BPS limit) the masses are equal such that g2

BPS = 1
2λφ, which corresponds to the

associated length scales being equal, and the vector and scalar forces cancel. Bogomol’nyi
was able to reduce the second order field equations to two coupled, first order equations
at critical coupling [16]. Working in this limit led to significant advancements in the study
of topological defects, such as a closed form solution to the static field equations of a
monopole by Prasad & Sommerfield [17]. We choose to parameterise our gauge coupling
with G = g/gBPS in order to preserve this intuition. String solutions with G > 1 are
categorised as type I, while those with G < 1 are called type II. There is a clear distinction
between these cases in the Abelian-Higgs model because the force between two parallel
strings is attractive in the type I regime and repulsive in the type II regime (there is no
interaction at critical coupling). This distinction is blurred for superconducting strings, but
we will use the same categorisation nonetheless because it has implications for the length
scales of the fields. The (non-vacuum value) gauge fields of type I strings are confined to
the string, while they extend outside for type II strings.

Much of the literature has been focused on the solutions for a straight, superconducting
string and infering the existence of static loops by attempting to produce sufficient currents
to eliminate the tension or balance it with other effects. Studies that attempt to construct
static loop solutions and investigate the dynamics are less common. Global vorton solutions
have been constructed in [18] by modifying the interaction term to steepen the trapping
potential and using the straight string ansatz to predict the vorton radius. Global vortons
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have also been constructed without this modification in [19] and [20] without the use of the
straight string ansatz. The former found solutions in the sigma model limit and then relaxed
the conditions to construct vortons that are close to this limit. This produces vortons with
a similar width and radius. The latter produced larger, thin vortons (much closer to
those relevant to cosmology1) via a gradient flow algorithm and tested their stability in
full 3D simulations. They found that their solutions were radially stable, but unstable to
non-axial perturbations created either by the boundary conditions or the discretisation of
the simulation grid. A fully gauged spring solution was explored in [21], but no energy
minimising solutions were found. The extension to spinning loops was considered in [22]
who successfully constructed gauged vortons with small N that are very thick, as in [19].
Vorton dynamics were also discussed and it was claimed that the smallest vortons with
large charge were fully stable, although this analysis was performed in the global limit. We
will make comparisons with [18, 20] throughout this paper, but will not directly compare
to [19, 22] since their vortons, being much smaller, are in a different regime to ours.

There has been more substantial progress in the study of kinky vortons — a (2 + 1)
dimensional analogue of vortons. The lower dimensionality allowed for an exact analytic
solution to be found in [23] and an improved numerical treatment. Kinky vortons can natu-
rally form in a system with random initial conditions [24] and the thin string approximation
(TSA) has been successfully applied to predict their radii and stability properties [25].

It is our aim to extend previous work by constructing and simulating the dynamics of
gauged vortons and investigate the parameter space in which solutions can be formed. We
make an ansatz so that the winding number, N, and charge, Q, of the condensate can be
fixed and used as additional parameters. We also use techniques from lattice gauge theory
to preserve the local U(1) symmetry on the lattice and make sure that the additional
unenforced gauge condition is satisfied during dynamical simulations [26]. In particular,
we will predict the existence and stability of vortons with a semi-analytic method [27, 28]
that utilises the solutions for a straight superconducting string and makes a thin string
approximation. This approach was successful when applied to kinky vortons, but, prior to
this work, has yet to be confirmed for vortons.

Vortons can have applications in both condensed matter physics and cosmology. For
the former, numerical studies have shown that stable Skyrmions can exist in two-component
Bose-Einstein condensates [29] that closely resemble vortons, although there has been no
experimental evidence of their existence. For the latter, vortons can potentially be pro-
duced over a large range of energy scales, and the precise details can have a significant
impact on their cosmological consequences. Stable vortons formed at a high energy phase
transition would come to dominate the universe too early, interfering with the successes of
standard cosmology, while those formed at lower energies may be beneficial by contributing
to dark matter. In [30] the mechanics of vorton formation is discussed and estimates are
given for the vorton abundance. They claimed that models with stable vortons cannot
allow superconductivity to become active above ∼ 109GeV or vortons will disrupt nucle-

1This is relevant to the popular ideas on the cosmological effects of vortons in the literature. Thick
vortons could, in principle, be relevant in cosmology if they are produced in large enough quantities, but
this has not, so far, been studied in any detail.
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osynthesis, and that only a small fraction of initial loops survive to become vortons when
superconductivity becomes active at low energies. However, there is some disagreement
about the fate of high energy vortons. In [31, 32] the authors examine chiral vortons and
suggest that there are, in fact, three regimes — high energy strings which produce no
vortons (in contrast with [30]), intermediate strings which produce vortons, but also start
matter domination too early, and low energy strings which could contribute to dark matter
— with electroweak scale vortons able to make approximately 6% of the critical density.

Both analyses assume that vortons are absolutely stable objects, but at the time there
was no conclusive numerical evidence that stable vortons existed. Previous numerical
studies have either found them to be unstable, or they have not sufficiently tested their
stability to be sure. In order to rule out GUT theories which produce vortons, they will
need to last long enough to be problematic (a few minutes if they are to survive until
nucleosynthesis) and they will need to be stable over much longer time scales if they are
to be a component of dark matter. An understanding of vorton stability is clearly crucial
for considering their role in cosmology. We have observed that there are two main types
of instabilities to consider — growing distortions to the shape of the vorton, which we
call extrinsic instabilities, and growing oscillations in the width of the string, which we
call pinching instabilities. In this paper we will thoroughly test the predictions of the
TSA with respect to extrinsic instabilities, but leave an in-depth discussion of the pinching
instabilities to a follow-up paper. We recently presented in [33] our discovery of a fully
stable vorton by making use of the thin string approximation. In this paper we expand
upon the theory and methodology behind this, and discuss the comparisons between TSA
predictions and our field theory simulations in much greater detail.

2 Analytic approaches

Through a series of rescalings the dimensionality of the parameter space can be reduced.
Let x̃ = ηφx, φ̃ = η−1

φ φ, σ̃ = η−1
φ σ and Ãµ = η−1

φ Aµ such that the Lagrangian can be
rewritten as

L = η4
φ

[
(D̃µφ̃)(D̃µφ̃)∗+∂̃µσ̃∂̃µσ̃∗−

1
4 F̃µνF̃

µν− 1
4λφ(|φ̃|2−1)2− 1

4λσ
(
|σ̃|2− η

2
σ

η2
φ

)2
−β|φ̃|2|σ̃|2

]
,

(2.1)
where we have removed the constant term since it has no effect on the string dynamics.
Making the addition rescaling x̄ = gx̃,

L = g2η4
φ

[
(D̄µφ̃)(D̄µφ̃)∗ + ∂̄µσ̃∂̄

µσ̃∗ − 1
4 F̄µνF̄

µν − λφ
4g2 (|φ̃|2 − 1)2

− λσ
4g2

(
|σ̃|2 − η2

σ

η2
φ

)2
− β

g2 |φ̃|
2|σ̃|2

]
, (2.2)

where we have defined D̄µ = ∂̄µ − iÃµ and F̄µν = ∂̄µÃν − ∂̄νÃµ. This reveals that the only
significant parameters in the model are

ζφ := λφ
2g2 , ζσ := λσ

2g2 , ξ := β

g2 , α := ηφ
ησ
. (2.3)
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This is a continuation of the rescaling arguments for the Abelian-Higgs model in which ζφ
is the only significant parameter. A more intuitive, equivalent set of reduced parameters is

G = g

gBPS
,

λσ
λφ
,

β

λφ
,

ησ
ηφ
. (2.4)

where g2
BPS = λφ/2. It is now clear that we can fix both ηφ and λφ with no loss of

generality. This removes a length scale from the problem by fixing the mass of the vortex
field (m2

φ = 1
2λφη

2
φ). For the rest of this paper we choose to set ηφ = λφ = 1, but

comparisons with any other choice can be easily made by rescaling length scales and field
magnitudes in the appropriate way.

Straight string solutions can be used to approximate a loop of string by identifying the
ends and neglecting the effects of curvature on the field profiles. We can, therefore, gain
some insight into the physics of vortons by examining infinite, straight, superconducting
strings since the equations of motion are much easier to solve because they can be reduced to
a one dimensional problem. For a cylindrically symmetric, infinite, straight string directed
along the z-axis, the vortex field will have the form, φ = einθ|φ|, where n is the winding num-
ber of the vortex and the magnitude of the field only depends on the radial coordinate, ρ.
We make the ansatz σ = ei(ωt+kz)|σ| and look for solutions where the only non-zero compo-
nent of the gauge field is Aθ. The t and z derivatives of the condensate field can be absorbed
into the potential, V → V −χ|σ|2, where χ = ω2−k2. Solutions with χ < 0 are referred to
as magnetic, whereas those with χ > 0 are electric and χ = 0 are chiral. Now the field equa-
tions for a static string reduce to a set of coupled, one dimensional, differential equations

d2|φ|
dρ2 + 1

ρ

d|φ|
dρ
−
[1

2λφ(|φ|2 − η2
φ) + β|σ|2 +

(
n− gAθ

ρ

)2]
|φ| = 0, (2.5)

d2|σ|
dρ2 + 1

ρ

d|σ|
dρ
−
[1

2λσ(|σ|2 − η2
σ) + β|φ|2 − χ

]
|σ| = 0, (2.6)

d2Aθ
dρ2 −

1
ρ

dAθ
dρ

+ 2g|φ|2(n− gAθ) = 0. (2.7)

From these equations it is clear that the field profiles depend only on the combination χ,
not the individual values of ω and k. Along the string, the U(1)φ symmetry is unbroken so
|φ(ρ = 0)| = Aθ(ρ = 0) = 0. Far away from the string, the fields take their vacuum values
so |φ(ρ = ∞)| = ηφ and |σ(ρ = ∞)| = 0. The two remaining boundary conditions are
|σ′(ρ = 0)| = 0 and Aθ(ρ = ∞) = n/g which come from symmetry arguments and the re-
quirement that the total energy is finite, respectively. These equations can be easily solved
numerically for a given parameter set and choice of χ. We use a successive over-relaxation
(SOR) routine, on a grid with ∆ρ = 0.01 and 0 ≤ ρ ≤ 100, to compute the radial profile
functions for each of the fields. Figure 1 shows two examples of superconducting string
solutions, for different sets of parameters. Figure 1a shows an electric string while figure 1b
shows a mildly magnetic one.

However, one should be careful with this method in the electric regime as there is a
maximum value of χ that can be achieved for realistic strings with a fixed charge per unit
length, q, rather than fixed χ— which is merely a convenient construction, not a conserved
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(a) ησ = 0.35, λσ = 36, β = 6.6 and G = 0.2 (pa-
rameter set A) with χ = 1.074.2 This is an example
of an electric string.

(b) ησ = 0.61, λσ = 10, β = 3 and G = 0.5 (pa-
rameter set B) with χ = −0.01. This string is mildly
magnetic, but close to the chiral limit.

Figure 1. Straight string profiles for two different parameter sets. Notice that the length scales
associated with the vortex and condensate fields are roughly the same while the range of the gauge
field is different and can be reduced by increasing G.

quantity. The maximum χ is achieved at a finite value of q and then χ decreases as more
charge is added. The method described above will only find one of the two solutions below
this limit (the one with lower charge, since it has lower energy) and will produce unrealistic
solutions above the limit. To access the full, realistic range of solutions, we can use a Lorentz
boost to transform into the frame with k = 0, χ = ω2 (see section 2.3) and replace χ in
equation (2.6) with (qp/Σ2)2, where the subscript p indicates that it is the charge per unit
length in the purely electric frame (k = 0) which is the smallest possible value that q can
take. Other frames are also valid of course, but require k2 to also be specified, which would
be an arbitrary choice. Here, we have used the fact that, under our ansatz for σ,

q =
∫
ρJ0dρdθ = 2πω

∫
ρ|σ|2dρ, (2.8)

and we have defined,

Σn = 2π
∫
ρ|σ|ndρ. (2.9)

It is the contribution of Σ2 that allows for two solutions at each choice of χ in the electric
regime (which we will often refer to as the higher and lower charge branches) when the
increase in qp is compensated for by the increase in Σ2 at qp > Σ2(qp)/Σ′2(qp). Comparing
the derivatives of both sides of this inequality with respect to qp suggests that it is rea-
sonable to assume that this condition will always apply above some critical charge. In the
magnetic regime, where χ = −k2 in the appropriate frame, there is only a single solution.

2This is equivalent (under a length rescaling) to a parameter set used in [18] except that we do not
modify the potential here (β governs the strength of the β|φ|2|σ|2 interaction, rather than the β′|φ|6|σ|2

interaction) and we have set the gauge coupling to a non-zero value.
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2.1 Parameter space

The existence of superconducting strings is not a generic feature of the parameter space.
There are several conditions that must be satisfied which set constraints on the range of χ
for which solutions exist. In much of the literature, one of the conditions that is enforced
is that the global minimum of the potential must be |φ| = ηφ, σ = 0 to guarantee the
stability of the vacuum. This condition is satisfied if

λφη
4
φ > λση

4
σ. (2.10)

However, if ηφ > ησ the Universe may settle into the vacuum state with a broken U(1)φ
symmetry whether condition (2.10) is satisfied or not, simply because the phase transition
occurs at a higher energy scale (earlier time) and the coupling between the fields will then
prevent the second phase transition. This will still be stable in the classical theory due
to the potential energy barrier between the local and global minima and superconducting
strings are still able to form in such a system. Realistic models may require that condi-
tion (2.10) is satisfied to ensure the stability of the vacuum against quantum effects, but it
is important to make the distinction that it is not a classical requirement, and we will not be
considering quantum effects in this paper. It may also be possible to create models in which
the decay of the false vacuum by quantum tunneling is sufficiently unlikely that it could last
until the present day, or at least long enough to be cosmologically relevant. Parameter set B
(shown in table 1) is the only one that we will be using that does not satisfy this condition.

In the vicinity of a superconducting string, the effective potential is modified by χ [27]
such that

1
4λσ(|σ|2 − η2

σ)2 → 1
4λσ

(
|σ|2 − η2

σ −
2χ
λσ

)2
, (2.11)

where we have left out the constant terms. This changes the position and depth of one of
the minima. Condition (2.10) can be extended to incorporate this change,

λφη
4
φ > λσ

(
η2
σ + 2χ

λσ

)2
. (2.12)

It must be remembered that for any given model, the parameters are fixed while, in general,
χ will be different for each string. As such, this condition is not universal and only serves to
set limits on χ, while equation (2.10) sets limits on the model parameters. Again, it is easy
to find superconducting string solutions that do not satisfy the new condition, but these
may be unstable to quantum effects. As we are only focusing on classical physics in this
paper we will ignore both of these inequalities, however, whether the vacuum state is the
global minima of the potential, or just a local one, will still have important consequences.
In fact, most of the vortons that we have constructed do not satisfy condition (2.12) as
it much easier to find vortons that satisfy the phase condition (discussed at the end of
section 2.2) while remaining numerically feasible in this regime.

Localisation of the condensate to the string and stability of the vacuum requires that
the mass term for the condensate is positive far from the string core,

m2
σ(|φ| = ηφ) = βη2

φ −
1
2λση

2
σ − χ > 0, (2.13)
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while the formation of a condensate at the centre of the string requires the mass there to
be negative,

m2
σ(|φ| = 0) = −1

2λση
2
σ − χ < 0. (2.14)

This sets another upper and lower bound on the allowed values of χ. In practice, the de-
pendence of solutions on χ has a much richer structure than these simple bounds, and we
will denote the more complicated upper and lower limits by χmax and χmin respectively. It
is well known that condition (2.14) is insufficient because the gradient energy cost of con-
densate formation must also be considered. In order to determine when a condensate will
form we can consider small fluctuations of the form δσeiνt around a non-superconducting
string solution — one with σ = 0 everywhere. This results in a Schrödinger-like equation,

− d2δσ

dρ2 −
1
ρ

dδσ

dρ
+ β|φ|2δσ =

(
ν2 + 1

2λση
2
σ + χ

)
δσ, (2.15)

and the perturbation will be unstable if ν2 < 0 and a condensate will form. If the dimen-
sionless strength of the potential is large, defined as the depth times the square of the width
(∼ β/λφ), then χmin can be predicted by comparison with a harmonic oscillator [10, 27].
More generally, we can solve the equations of motion in the absence of the condensate field
to find φ(ρ) and use this to numerically calculate the smallest eigenvalue, γ, of the left
hand side of the Schrödinger-like equation. Since the term in the brackets must be equal
to one of the eigenvalues, χmin = γ − 1

2λση
2
σ (ν2 = 0) is the critical value.

The maximum value of χ is more complicated. For β < 1
2
√
λφλσ, the condensate

becomes delocalised from the string and U(1)σ is broken in the vacuum above χmax =
βη2

φ−
1
2λση

2
σ. However, for β > 1

2
√
λφλσ the vacuum state will become a local, rather than

global minima before reaching this limit (this inequality has previously appeared in other
works on topological defects, such as in [29, 34] where it was called the phase separation
condition). This occurs at χ+

eq = 1
2η

2
φ

√
λφλσ − 1

2λση
2
σ. Although superconducting string

solutions do exist above this critical value, there is another χmax above which they do not,
and attempting to numerically find solutions results in the flipping of the vacuum so that
U(1)σ is broken and U(1)φ is restored. We do not currently have a satisfactory way to
predict this additional limit and it is unclear under what circumstances it will be the lower
of the two limits — it may always be the lower limit when β > 1

2
√
λφλσ. We suspect that

it is caused by the vacuum state having sufficient energy to overcome an energy barrier
(perhaps set by the saddle point of the potential) and relax to the true vacuum.

However, as previously mentioned, χ > χmax is not realistic because χ decreases as
more charge is added to the string, beyond this limit. The phase separation condition still
separates qualitatively different behaviours of strings with large charge per unit length,
which we demonstrate in figure 2. For β < 1

2
√
λφλσ, U(1)σ is not broken everywhere at

large q, (as this would require q →∞) but extends further and further from the core of the
string as more charge is added. The size of the condensate at the string core, and the width
of the string, are only marginally affected. If β > 1

2
√
λφλσ, the condensate always remains

localised to the string and, at large q, the vacuum only flips in the vicinity of the string (not
everywhere because, again, this would require infinite charge). In essence, this widens the
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(a) ησ = 0.15, λσ = 500, β = 10 and G = 0.5
(parameter set H) with qp = 10. The condensate ex-
tends (albeit with only a small magnitude) far from
the core of the string.

(b) ησ = 1, λσ = 2/3, β = 2/3 and G = 0.1 (pa-
rameter set E) with qp = 400. The condensate re-
mains localised to the core of the string but this has
widened significantly.3

Figure 2. Straight string profiles on the higher charge branch. These plots make the qualitative dif-
ferences clear between parameter sets with β < 1

2
√
λφλσ (left) and those with β > 1

2
√
λφλσ (right).

core of the string, with the width increasing with charge. Additionally, the effective mass
of the condensate in the vacuum always remains larger than zero, suppressing tunneling
processes that would lead to the emission of charge from the string. Instead, we expect
that the maximum charge that can be supported by the string will be limited by the onset
of longitudinal instabilities, that we will later suggest should always occur in the regime
where χ′(qp) < 0, under reasonable assumptions. As a result, we often focus purely on the
lower charge solution at a given χ, and ignore the higher charge solution since we expect
that it will not be able to produce a stable vorton.

In figure 3 we demonstrate how the limits on χ vary with each parameter (and all others
kept fixed), ignoring the new upper limit when β > 1

2
√
λφλσ as we have been unable to

predict how this behaves. Of particular interest is the effect of ησ, which is useful for
modifying the stability properties of vortons. Both λσ and ησ have the effect of shifting
the accessible range of χ, but ησ has the additional benefit of not changing the shape of
the integrated quantities (as a function of χ) that are introduced in section 2.2 for use
in the semi-analytic method. This is because only the combination χ + 1

2λση
2
σ enters the

equations of motion which can be kept constant by adjusting both χ and ησ simultaneously
(for fixed λσ). Since the sound speeds, which are introduced in section 2.3, are the only
relevant quantity that depend on χ separately from ησ, this provides a useful technique for
scanning the parameter space for potentially stable vortons.

In table 1 we list the parameter sets that we will be using throughout this paper. We
also give the χeq points and the approximate values of χmin (determined by solving the
eigenvalue equation of (2.15) numerically) and χmax (often determined by trial and error

3These field profiles are very similar to those of the large charge Q-Monopole-Ball recently presented
in [35], except for a string rather than a monopole.
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χ

β

(a) χ range as β is varied.

χ

G

(b) χ range as G is varied.

χ

λσ

(c) χ range as λσ is varied.

χ

ησ

(d) χ range as ησ is varied.

Figure 3. Plots showing (qualitatively) how the range of χ for which superconducting strings
can form changes with each parameter while the others are kept fixed. The red and blue lines
respectively show the dependency of χmax and χmin on each parameter and the shaded area shows
the region of the parameter space in which superconducting strings can form. Note that we have
not attempted to include the behaviour of χmax when the vacuum is a local minima of the potential
as we do not know the exact dependence of the new upper limit on each parameter. The upper
plots demonstrate that the width of the χ range changes with β and (to a lesser extent) G, while
it is clear from the lower two plots that λσ and ησ only shift the range — linearly for the former
and quadratically for the latter.

as most of the parameter sets we use are limited by the constraint described above, that
is not fully understood). The strength of the modified interaction term β′|φ|6|σ|2 is also
included here. Sets A, C and F are similar to one of the parameter sets used in [18] —
the differences are that sets A and C do not have the modified interaction term and all
sets have been rescaled and given a non-zero gauge coupling. Set B is an interesting choice
as it does not respect condition (2.10). Consequently, there will be a lower energy ground
state even in a Universe with no superconducting strings (or far from a string so that the
effect of χ is cut off). Since we are neglecting quantum effects we will not consider this a
problem as it is a convenient set of parameters for studying the classical physics. Set D
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χ

χ1

χ2

χ3

χ−eq

χ+
eq

(a) β < 1
2

√
λφλσ.

χ

χ1

χ2
χ3

χ−eq

χ+
eq

(b) β > 1
2

√
λφλσ with χ2 < χ3.

χ

χ1

χ2

χ3

χ−eq

χ+
eq

(c) β > 1
2

√
λφλσ with χ2 > χ3.

Figure 4. The constraints on χ for three different illustrative cases. Here, we have defined χ1 =
γ− 1

2λση
2
σ, χ2 = βη2

φ− 1
2λση

2
σ and χ3 is the additional constraint that is not yet understood. Lower

limits are coloured blue, upper limits are coloured red and the range of χ for which superconducting
strings exist is marked with wider and thicker lines. Additionally, we have marked the points
χ±eq = ± 1

2η
2
φ

√
λφλσ − 1

2λση
2
σ inside which the vacuum lies at the global minima of the effective

potential. For β < 1
2
√
λφλσ the vacuum is always at the global minima within the χ range. For

β > 1
2
√
λφλσ, strings in part of the χ range will have a vacuum that is only a local minima of

the effective potential. The χ range may either remain bounded from above by χ2 or by a new
constraint, χ3. The former corresponds to requiring that U(1)σ remains unbroken in the vacuum
so that the condensate remains localised to the string and we believe the latter constraint prevents
the local minima vacuum state from climbing over the potential barrier and reaching the global
minima vacuum state (which has U(1)φ unbroken and U(1)σ broken).

Set λφ λσ ηφ ησ β β′ G χmin χmax χ−eq χ+
eq

A 1 36 1 0.35 6.6 0 0.2 −0.182 1.24 −5.21 0.795
B 1 10 1 0.61 3 0 0.5 −0.423 0.01 −3.44 −0.279
C 1 36 1 0.35 6.6 0 1 0.421 1.54 −5.21 0.795
D 1 2

3 1 1 2
3 0 0 0.124 0.134 −0.742 0.075

E 1 2
3 1 1 2

3 0 0.1 0.137 0.144 −0.742 0.075
F 1 36 1 0.35 0 6.6 0.2 −1.37 0.12 −5.21 0.795
G 1 900 1 0.1825 20 0 0.2 −11.3 0.79 −30 0.012
H 1 500 1 0.15 10 0 0.5 −2.74 4.38 −16.8 5.56

Table 1. The sets of parameters used in this paper. The range of χ for which localised supercon-
ducting strings exist and the range for which the vacuum state is the global minima of the effective
potential are also listed. Set D has been studied in [20] (and set E is the gauged extension of this),
while set F is the gauged extension of a parameter set that was studied in [18] (with A and C being
related parameter sets).
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is equivalent to the set used in [20] after rescaling, and set E is just the gauged extension
of this. Set G was chosen so that chiral vortons with a global minima vacuum state are
possible while satisfying the phase frequency condition (discussed at the end of section 2.2).
We will not discuss this parameter set much because it is inconvenient to run dynamical
simulations, due to the large winding numbers required, but we mention it as a proof of
principle that potentially stable vortons are possible to construct in parameter sets that
are more realistic than set B. Finally, set H is the only parameter set that we have used
which has β < 1

2
√
λφλσ.

2.2 Semi-analytic method

By assuming that the fields of a vorton solution are well approximated by a piece of straight,
superconducting string that is wrapped into a loop, we can gain valuable insights into
vorton dynamics. Using the energy of the string, the radii of vortons can be predicted [27]
and from the equation of state we can predict the intervals of stability to perturbations of
different Fourier modes [28].

From the Lagrangian, the energy density of a static string is easily calculated. By
inserting our ansatz for the fields, the total energy can be expressed as

E = µL+2πL
∫
ρdρ

{∣∣∣∣dσdρ
∣∣∣∣2 +(ω2 +k2)|σ|2 + 1

4λσ(|σ|2−η2
σ)2 +β|φ|2|σ|2− 1

4λση
4
σ

}
, (2.16)

where L is the length of string and µ is the mass per unit length of the string which is
defined by

µ = 2π
∫
ρdρ

{∣∣∣∣∂φ∂ρ
∣∣∣∣2 +

(
n− gAθ

ρ

)2
|φ|2 + 1

2ρ2

(
dAθ
dρ

)2
+ 1

4λφ(|φ|2 − η2
φ)2
}
. (2.17)

The energy can be greatly simplified by using the static equation of motion (2.6). Multiply-
ing this equation by |σ|, integrating over the entire volume and simplifying the derivatives
with integration by parts gives,

2πL
∫
ρdρ

{∣∣∣∣dσdρ
∣∣∣∣2 +

[1
2λσ(|σ|2 − η2

σ) + β|φ|2 − χ
]
|σ|2

}
= 0. (2.18)

Now this can be substituted into the energy so that

E = µL+ 2πL
∫
ρdρ

{
2ω2|σ|2 − 1

4λσ|σ|
4
}
. (2.19)

At this point, we have managed to split the energy per unit length into the contribution
due to φ and its associated gauge field — which is all contained within µ — and the
contribution made by the condensate field — which is the rest of the expression. The
energy can be written in a more convenient form by recognising that, under our ansatz,
the Noether charge can be written as Q = ωΣ2L and therefore,

E =
(
µ− 1

4λσΣ4

)
L+ 2Q2

Σ2L
. (2.20)
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For a given parameter set, µ and Σn are functions of χ only. The wavenumber k is related
to the winding number of a vorton by kL = 2πN , so that

χ =
(

Q

Σ2L

)2
−
(2πN

L

)2
. (2.21)

Now a radial profile solution can be calculated and µ, Σ2 and Σ4 can be computed for each
value of χ. It is easy to show that the minima of the energy only depends on the ratio
R = N

Q and χ by dividing equation (2.20) by Q

E

Q
=
(
µ− 1

4λσΣ4

)
L

Q
+ 2

Σ2
L
Q

, (2.22)

and rearranging equation (2.21) we find

L

Q
=
√

Σ−2
2 − (2πR)2

χ
. (2.23)

Note that magnetic, chiral and electric vortons must have Σ−1
2 < 2πR, Σ−1

2 = 2πR and
Σ−1

2 > 2πR respectively. Since R is a conserved quantity, vortons form when the partial
derivative of equation (2.22) with respect to χ is zero. There are two approaches for
finding the minima of this function. The first is to specify R and then use an algorithm
to iteratively approach the minima by changing χ and calculating the energy. Once the
minima is found, the radii of vortons can be predicted and this scales linearly with N

(and Q) if the ratio is kept constant. The energy minimisation algorithm will need to be
performed again if a different value of R is specified.

The second approach uses an analytic formula and approaches the problem slightly
differently. Instead of specifying R and finding the energy minimising value of χ, this
method finds the value of R that will make a given value of χ be the energy minimising
solution. As pointed out in [11] the Lagrangian can be written as

2π
∫
ρL dρ = −

(
µ− 1

4λσΣ4

)
, (2.24)

which can be derived using the same technique (substituting the static equations of motion)
that was used to simplify the energy in equation (2.19). The only explicit χ dependence
in the Lagrangian density comes from the t and z derivatives that were absorbed into the
potential. Therefore, ∂L∂χ = |σ|2 and we can differentiate with respect to χ on both sides of
equation (2.24) to get

− Σ2 = µ′ − 1
4λσΣ′4, (2.25)

where ′ denotes a derivative with respect to χ, unless otherwise implied. This is a very
useful piece of information because it means that µ′ and Σ′4 are not required to calculate
the derivative of E

Q with respect to χ. Setting this derivative to zero yields a quadratic
equation for (LQ

)2, (
L

Q

)4
+ c1

(
L

Q

)2
+ c2 = 0, (2.26)
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where
c1 = 2

Σ2

[Σ′2
Σ2

2
− 1

2χΣ2 + µ− 1
4λσΣ4

]
, (2.27)

and
c2 = − 4Σ′2

Σ4
2(2χΣ2 + µ− 1

4λσΣ4)
. (2.28)

The two solutions to this quadratic are(
L

Q

)2
= 2

Σ2(2χΣ2 + µ− 1
4λσΣ4)

and
(
L

Q

)2
= −2Σ′2

Σ3
2
, (2.29)

which picks a single frame in which the string can be wrapped into an energy minimising
vorton state by specifying its charge per unit length. The second solution initially appears
as though it may be a physical solution along the higher charge branch, where Σ′2 < 0.
However, rewriting Σ′2(χ) in terms of Σ′2(qp) reveals that this solution requires a frame in
which q < qp, which is not possible. We will show in the next section that it is reasonable
to assume that the other solution is positive because the quantity in the brackets is the
energy per unit length in the electric regime, and the tension in the magnetic regime. Using
this result we can see that wrapping each string solution into a loop will produce a vorton
as long as the ratio between the winding number and charge satisfies

R = 1
2πΣ2

√
1− 2χΣ2

2χΣ2 + µ− 1
4λσΣ4

. (2.30)

There are a few caveats to this method. It assumes that the vorton core is small compared
to the radius and curvature effects on the field profiles and interactions between opposite
ends of the loops can be neglected. For a straight string, χ is constant across all space, but
for a vorton χ(ρ) = ω2− (N/ρ)2, therefore the string must be thin enough that χ does not
significantly vary across its cross section. Perhaps most importantly, this also changes the
condition for the vacuum state to be stable. As ρ→∞, the σ mass term becomes

m2
σ(ρ =∞) = βη2

φ −
1
2λση

2
σ − ω2, (2.31)

which must be greater than zero. This condition is more strict than equation (2.13) because
ω2 ≥ χ. If the energy minimising stright string solution predicts a value for ω that is greater
than this limit, then we should not expect to find a vorton solution at the corresponding
predicted radii. It is possible to create artificial solutions that violate this condition if
the boundaries are placed too close to the vorton, but a larger simulation will show that
these are unphysical. Using equations (2.29) and Q = ωΣ2L we can show that the vorton
will have

ω2 = χ+
µ− 1

4λσΣ4

2Σ2
, (2.32)

and then from the definition of χ is it clear that k2 is equal to the second term. Note that
for our parameter sets we have found that, although slightly counter-intuitive, ω2 typically
gets smaller as the strings becomes more electric.
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2.3 Stability to extrinsic oscillations

Predicting the stability of vortons to different vibrational modes can be achieved by deter-
mining the equation of state of the superconducting string solutions. This stability analysis
gave accurate results for kinky vortons and we will closely follow the approach taken in [25],
albeit without the benefits of an analytic solution. The energy momentum tensor is given by

T µν = 2gµα ∂L
∂gαν

− δµνL, (2.33)

and substituting in the Lagrangian gives

T µν = 2(Dµφ)(Dνφ)∗ + 2∂µσ∂νσ∗ − FµαF να − gµνL. (2.34)

The macroscopic energy-momentum tensor, T ab with a, b ∈ t, z is calculated by integrat-
ing T ab over the string cross-section. Using our ansatz for a static string gives the four
components as

T tt = 2ω2Σ2 + µ− 1
4λσΣ4, (2.35)

T tz = T zt = 2kωΣ2, (2.36)

T zz = 2k2Σ2 − µ+ 1
4λσΣ4. (2.37)

The tension and energy per unit length are the eigenvalues of T ab. In the frame in which
the macroscopic tensor is diagonal, the tension per unit length is T = −T zz and the energy
per unit length is U = T tt. From (2.36), this is achieved if either ω or k is zero.

Under a Lorentz boost of velocity v in the z direction, ω → γ(ω−vk) and k → γ(k−vω),
and hence for χ < 0, v = ω/k will set ω → 0 (χ = −k2), while for χ > 0, v = k/ω sets
k → 0 (χ = ω2), allowing the diagonalisation of T ab. Therefore, the tension and energy
per unit length are given by

T =

µ−
1
4λσΣ4 if χ > 0,

2χΣ2 + µ− 1
4λσΣ4 if χ < 0,

(2.38)

U =

2χΣ2 + µ− 1
4λσΣ4 if χ > 0,

µ− 1
4λσΣ4 if χ < 0,

(2.39)

with the two clearly equal in the chiral limit, χ = 0, where T = U .
We see that the equation of state is U − T = 2|χ|Σ2. We can use this result to further

investigate our claim that it is reasonable to assume the first solution in equation (2.29)
will be positive. The solution can now be rewritten as

(
L

Q

)2
=


2

UΣ2
if χ > 0,

2
TΣ2

if χ < 0.
(2.40)

Therefore, it is guaranteed to be positive in the electric regime and will be positive in the
magnetic regime so long as the tension is positive. This is a reasonable thing to assume
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(a) ησ = 0.35, λσ = 36, β = 6.6 and G = 0.2
(parameter set A).

(b) ησ = 0.61, λσ = 10, β = 3 and G = 0.5 (param-
eter set B).

Figure 5. The tension and energy per unit length of string as a function of χ. The functions
converge at small χ because there is no condensation onto the string, while at χ = 0 they are equal
and discontinous.

and any negative tension strings will be unstable anyway [36]. In figure 5 the energy per
unit length and tension are plotted as a function of χ for parameter sets A and B. The
range of χ is set by the approximate values of χmin and χmax as discussed in section 2.1.
Note that both of these parameter sets have β > 1

2
√
λφλσ and, therefore, the upper limit

on χ is determined by trial and error.
Having an expression for the equation of state allows both the transverse speed, cT ,

and the longitudinal speed, cL, to be calculated from

c2
T = T

U
c2
L = −dT

dU
. (2.41)

These determine the propagation speeds of perturbations through the string and are, there-
fore, clearly important quantities for determining the stability of vorton solutions. If either
c2
T or c2

L are negative the string will be unstable, and they must also be less than 1 or
causality will be violated. Substituting in the expressions for tension and energy per unit
length allows the sound speeds to be written as

c2
T =

(
1 + 2χΣ2

µ− 1
4λσΣ4

)−sgn(χ)
, (2.42)

c2
L =

(
1 + 2χΣ′2

Σ2

)−sgn(χ)
, (2.43)

where we have used equation (2.25) to simplify the longitudinal sound speed. At χmax, Σ′2
is undefined due to the turning point and Σ′2(χ) < 0 along the higher charge branch of
solutions. Additionally, we can write

2χΣ′2(χ)
Σ2

= qpΣ′2(qp)
Σ2 − qpΣ′(qp)

, (2.44)
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which is always less than −1 when qpΣ′2(qp) > Σ2, which is also the condition to be on
the higher charge branch. Therefore, all solutions on the higher charge branch should be
unstable to longitudinal perturbations, since c2

L < 0, and we can focus solely on the lower
charge branch when searching for stable vortons. The accuracy of this prediction is another
test of the TSA which we will not specifically address in this work, but will be discussed
in our follow-up paper on pinching instabilities. The quantity, Σ′2(χ), may be calculated
by varying χ, solving the static equations of motion and using a finite difference method.
Alternatively, taking the derivative of equation (2.9) with respect to χ gives

Σ′2 = 4π
∫
ρ|σ|∂|σ|

∂χ
dρ. (2.45)

Now if we perturb the equations of motion by taking χ→ χ+ δχ, we discover another set
of coupled differential equations,

∂2

∂ρ2

(
∂|φ|
∂χ

)
+ 1
ρ

∂

∂ρ

(
∂|φ|
∂χ

)
−
[1

2λφ(3|φ|2 − η2
φ) + β|σ|2 +

(
n− gAθ

ρ

)2]∂|φ|
∂χ

(2.46)

−2β|φ||σ|∂|σ|
∂χ

+ 2g
ρ2 (n− gAθ)

∂Aθ
∂χ

= 0,

∂2

∂ρ2

(
∂|σ|
∂χ

)
+ 1
ρ

∂

∂ρ

(
∂|σ|
∂χ

)
−
[1

2λσ(3|σ|2 − η2
σ) + β|φ|2 − χ

]
∂|σ|
∂χ

(2.47)

−2β|φ||σ|∂|φ|
∂χ

+ |σ| = 0,

∂2

∂ρ2

(
∂Aθ
∂χ

)
− 1
ρ

∂

∂ρ

(
∂Aθ
∂χ

)
− 2g2|φ|2∂Aθ

∂χ
+ 4g|φ|(n− gAθ)

∂|φ|
∂χ

= 0. (2.48)

For each string solution we can also solve this perturbed equation of motion to find the
derivatives of each field with respect to χ as a function of the radial coordinate and sub-
sequently calculate Σ′2. Figure 6 shows the sound speeds as a function of χ for parameter
sets A and B.

The sound speeds in these parameter sets agree with the observation made in [11] that
the longitudinal speed appears to be, in general, less than the transverse speed. String
loops with c2

L > c2
T are stable to all perturbative modes (as will be shown later), but this

is not true for the converse. The consequence of this is that stable vorton solutions are
less likely to be produced, although it is by no means impossible as there remain pairs of
sound speeds that are completely stable — see figures 7 and 8.

The radial (but not axially symmetric) transverse perturbations of an infinitely thin
loop of string can be decomposed into the real part of the Fourier modes

δr(t, θ) =
∑
m,j

Amje
i(Ωmjt−mθ), (2.49)

wherem is the Fourier mode of the perturbation, Ωmj is its frequency and j labels the three
possible frequencies and amplitudes for each m. The radial perturbations are coupled to
two additional longitudinal perturbations that can be similarly decomposed. The system
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(a) ησ = 0.35, λσ = 36, β = 6.6 and G = 0.2
(parameter set A).

(b) ησ = 0.61, λσ = 10, β = 3 and G = 0.5 (param-
eter set B).

Figure 6. The sound speeds as a function of χ. Again, the functions are equal and discontinous at
χ = 0. Notice that in both cases c2L ≤ c2T , ∀χ. This appears to always be true for superconducting
strings, although we have not found an analytic argument to prove it.

of equations satisfied by these three variables is an eigenvalue equation,
2 c2

T + c2
L (1 + c2

L)νm − 2m
(1 + c2

T )νm − 2m c2
T (c2

L + 1)νm − (c2
T + c2

L)m 2
(1− c2

T )νm c2
T (c2

L − 1)νm + (c2
T − c2

L)m 0



cT ε

α

iβR

 = 0, (2.50)

where ε and α are the two longitudinal perturbation variables previously mentioned and
β corresponds to the transverse perturbation. Vanishing of the determinant results in the
cubic equation (for more detail see [28])

a3ν
3
m + a2ν

2
m + a1νm + a0 = 0, (2.51)

with νm = ΩmR/cT and

a0 = 2(c2
L − c2

T )(m2 − 1)m, (2.52)
a1 = 4c2

T (1− c2
L)(m2 − 1)− (1 + c2

T )(c2
L − c2

T )(m2 + 1), (2.53)
a2 = 2c2

T [c2
L − c2

T − 2(1− c2
Lc

2
T )]m, (2.54)

a3 = c2
T (1 + c2

T )(1− c2
Lc

2
T ). (2.55)

Due to the definition of the radial perturbations, real roots to this cubic equation describe
stable oscillations, complex roots with a positive imaginary component describe expo-
nentially decaying oscillations while complex roots with a negative imaginary component
describe exponentially growing oscillations. Complex roots to cubic polynomials always
come in complex conjugate pairs so one of the complex roots will always describe an un-
stable oscillation. Therefore, all of the roots to the cubic must be real and distinct for the
string to be stable to perturbations of that mode. This can be assessed by either directly
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(a) ησ = 0.35, λσ = 36, β = 6.6 and G = 0.2
(parameter set A).

(b) ησ = 0.61, λσ = 10, β = 3 and G = 0.5 (param-
eter set B).

Figure 7. The black regions show the range of χ for which vortons are expected to be unstable for
modes betweenm = 2 andm = 40. Only the regions χ > 1.02 (left) and χ > −0.042 (right) are rele-
vant due to the critical phase frequency. The right-hand figure indicates that vortons which are close
to chiral are the most likely to be stable to all modes. The bottom left corner displays a zoomed in
image of the region −5× 10−3 ≤ χ ≤ 5× 10−3 for modes 15 ≤ m ≤ 30 and demonstrates that there
is a region (approximately −4× 10−4 < χ < 8× 10−4) which is predicted to be completely stable.

calculating the roots (either numerically or using the Cardano formula) or by computing
the discriminant

∆ = a2
1a

2
2 − 4a3

1a3 − 4a0a
3
2 − 27a2

0a
2
3 + 18a0a1a2a3, (2.56)

which has the property that when ∆ > 0 all of the roots are real and distinct, when ∆ = 0
all of the roots are real, but there is a repeated root, and when ∆ < 0 there are two
complex roots and one real root. Therefore, a vorton will have an instability to a mode if
the discriminant is less than or equal to zero. The m = 0 and m = 1 modes are axially
symmetric oscillations and translations respectively, which are stable if 0 < c2

L, c
2
T ≤ 1.

The m = 2 mode is a quadrupolar stretching and squeezing, elliptical oscillation, while the
higher modes correspond to rotating regular m sided shapes. Modes with m ≥ 2 require
the calculation of the discriminant to determine whether they are stable or not. We can use
our computation of the sound speeds as function of χ to predict the range of χ for which
there will be an instability to each mode. The intervals of instability for modes between
m = 2 and m = 40 are shown in figure 7 for parameter sets A and B.

Although the parameter sets used are not drastically different, the intervals of insta-
bility are clearly very different. Prima facie these plots encourage hope for a completely
stable (stable to each individual mode) loop in both cases when the vorton is close to
chiral, albeit for a very small range of χ in parameter set B. However, this is not the case
for the first parameter set because only strings with χ > 1.02 satisfy the additional vorton
formation constraint given in equation (2.31). Chiral vortons do appear to be accessible
in the second parameter set as the additional constraint is satisfied for χ > −0.042 and
there is in fact a fully stable region in that case. The bottom left corner of figure 7b zooms
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Figure 8. The regions of instability (black) for modes between m = 2 and m = 100, determined by
finding the values of the sound speeds which give a negative discriminant. The large stable region
corresponds to the region where ∆(m) = 0 has no real roots while the thin, stable slices are caused
by m being an integer. There are an infinite number of these regions as the limit c2L = c2T = 1 is
approached and we show a few more stable slices by zooming into the region with 0.96 ≤ c2T ≤ 1 and
0.9 ≤ c2L ≤ 1. This makes it very likely that any parameter sets which admit chiral, superconducting
strings will pass through stable regions.

into the vicinity of the chiral limit. This makes it clear that there is a very small region
(approximately −4× 10−4 < χ < 8× 10−4) which is expected to be completely stable to
all modes of perturbation. This would imply the existence of completely stable (at least
classically) vorton solutions. It has long been the expectation in the literature that chiral
vortons are the most likely to be stable [28, 37], and that strongly magnetic or electric
vortons would not be stable, so it’s not particularly surprising that this is what we have
found. However, since the region is so narrow, there could be significant corrections to the
thin string approximation. See the conclusion section for further discussion of this point.

We will briefly comment on the required condition to create a string loop that is stable
to all modes of perturbation. It is easy to confirm that the discriminant is a polynomial of
degree six in m, but only even powers of m appear. Therefore it can be viewed more simply
as a cubic polynomial in m2. The important features of the discriminant are that ∆→∞
as m→ ±∞ and that it is positive when m = 0 (for physical values of the sound speeds).
This clearly means that the curve must cross ∆ = 0 to become negative at any point so the
loop will be stable to all modes if the sextic equation has no real roots or — equivalently —
if the cubic equation has no real and positive roots. However, the discrete nature of m will
allow this rule to be mildly broken if the discriminant changes sign twice without crossing an
integer value ofm. In practice we have found this method to be of limited use and the brute
force method used in [37] (the results of which are presented in figure 8) is much more con-
venient for illustrating the stable regions. Nonetheless, it is a useful picture to have in mind.
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It appears that complete stability with c2
L < c2

T is only possible when the longitudinal
speed is not significantly less than the transverse speed, or in the narrow regions which
approach the limit c2

L = c2
T = 1. The narrow zones of stability can be eliminated by allowing

m to take non-integer values, suggesting that they are the regions of the parameter space
that evade our analysis in the previous paragraph. The largest narrow zone corresponds to
the region where the discriminant dips below zero and goes back above inbetween m = 2
and m = 3, the next largest zone does the same between m = 3 and m = 4 and so on. It
is these areas which enable the small region of stability shown in figure 7b.

For any set of sound speeds equation (2.51) can be solved for the frequency, Ωm of
perturbations of Fourier mode m. The real part of this frequency determines the oscillation
frequency, while the imaginary part determines the growth rate of the amplitude of the
perturbations. In the next section we will construct vorton solutions and compare their
radii to our predicted values. We will then compare our predictions for the stability and
frequency of each mode of oscillation to the simulated dynamics of vortons.

3 Vorton construction and dynamics

In this section we will construct vortons, simulate their dynamical evolution and test the
predictions of the thin string approximation. Initially, we take advantage of the cylindrical
symmetry of vortons by either using the cartoon method [20, 38], or the cut-off method (see
appendices A.2 and A.3 for details). Both of these methods allow the numerical relaxation
to be performed in only 2 dimensions and we also only need to consider z > 0 due to the
additional reflection symmetry. This is particularly useful for vorton construction and can
also be used to test radial stability and the zero mode frequencies, but it will provide no
insight into the stability or frequencies of higher order modes. This requires the simulation
of the full three dimensional dynamics which we discuss in section 3.3.

3.1 Construction

We will be constructing vortons using a gradient flow algorithm with an initial field con-
figuration that comes from either an extension of the analytical solution of kinky vortons
found in [23] or, more commonly, the straight string solutions discussed in the previous
section. The equations of motion for the fields are

DµDµφ+ λφ
2 (|φ|2 − η2

φ)φ+ β|σ|2φ = 0, (3.1)

∂µ∂
µσ + λσ

2 (|σ|2 − η2
σ)σ + β|φ|2σ = 0, (3.2)

∂νF
µν = ig[φ∗Dµφ− φ(Dµφ)∗]. (3.3)

The gradient flow algorithm replaces the second order time derivatives in these equa-
tions with first order time derivatives, which results in the energy of the system being
driven towards a nearby minima rather than oscillating around it. We make the ansatz
σ = ei(ωt+Nθ)ψ, but leave the winding of φ to be enforced by the initial field configuration.
The time dependence of the magnitude and phase of ψ are separated so that the gradient

– 22 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
5

flow algorithm reaches the pseudo-stationary state in which |ψ| does not change with time.
The resulting ω2 term is replaced with the conserved Noether charge using Q = ω

∫
|σ|2d3x.

Within the cut-off method the winding of the condensate is treated exactly, but within the
cartoon method it is approximated by interpolation. Techniques from lattice gauge theory
(see appendix A.1) must be used to discretise this system for non-zero gauge couplings.
Without implementing this approach, the condition set by the time component of equa-
tion (3.3) (Gauss’s law) is violated when the system is evolved under the equations of
motion and the numerical evolution quickly diverges from the continuum equations.

3.1.1 Solutions for parameter sets A and B

Figure 9 displays vorton solutions with N = 50 for parameter sets A and B in the z = 0
plane. We also plot the differences between these solutions and the field profiles produced
by placing the straight string solutions (figure 1) at the vorton radius. In both cases
the grid spacing is the same in the x and z directions and we advance with timesteps of
∆t = 0.1(∆x)2 until the system reaches the stationary state. Care must be taken to choose
a timestep that satisfies the Courant-Friedrichs-Lewy (CFL) condition, ∆t∑d

i=1 ∆x−2
i . 1

2 ,
in d dimensions (the exact condition depends upon the numerical scheme, but this is a useful
guide), so that the algorithm is numerically stable. For parameter set B we use ∆x = 0.5
and the size of the grid is 0 ≤ x ≤ 200 (likewise for the z direction), while for parameter
set A we use ∆x = 0.25, so that the winding is properly resolved, and 0 ≤ x ≤ 100 —
although we have increased this for some of the larger vortons where this would clearly not
be appropriate.

The predicted radii are R = 29.7 and R = 56.9 respectively which corresponds to less
than a 3% difference in set A and much lower for set B. Figures 10 and 11 compare the radii
of vortons constructed via gradient flow to the predicted radii from the associated straight
string solution, for a range of N . We keep the ratio of N to Q as a constant in this plot so
that the initial conditions for each vorton can be produced by wrapping the same straight
string solution into loops of different sizes. All results are obtained using the cartoon
method since these vortons are small enough for this to be numerically feasible and there
is no need to introduce an additional boundary condition that will make the solutions less
accurate. There is clearly a very good agreement between the predictions of the TSA and
the vortons that we have constructed. The relationship between the radius and the winding
number is evidently linear as predicted by the theory and the percentage error decreases
as the size of the vorton increases, due to the effects of curvature becoming less important.

Additionally, we should expect more localised strings to have more accurate predictions
as they rely on the approximation that all components of the energy are confined to an
infinitesimally thin string, despite the reality being that the energy is spread over some
region. In particular, the mass per unit length of the string (without considering the effects
of the condensate), µ, is logarithmically divergent in the zero gauge coupling (global) limit
of the theory. This divergence introduces infinities into the semi-analytic calculations and
the straight string analysis may no longer produce useful predictions, something which was
commented on in [20]. In reality, there will be a cut off scale set by the radius of the vorton
and straight strings can still make predictions if we know this scale. We should, therefore,
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(a) Q = 749 and N = 50 vorton with a radius of
R = 28.8 in the parameter set ησ = 0.35, λσ = 36,
β = 6.6 and G = 0.2 (parameter set A). Associated
with the straight string shown in figure 1a.

(b) Q = 1594 and N = 50 vorton with a radius of
R = 56.6 in the parameter set ησ = 0.61, λσ = 10,
β = 3 and G = 0.5 (parameter set B). Associated
with a straight string that has χ = 2× 10−4 (similar
to the one shown in figure 1b).

(c) Differences between the solution (shown above)
and the field profiles generated from placing the
straight string solution at R = 28.8.

(d) Differences between the solution (shown above)
and the field profiles generated from placing the
straight string solution at R = 56.6.

Figure 9. The field profiles of two energy minimising vorton solutions (top) with the difference
between them and the associated straight string profiles shown (bottom). It is important to note
that the straight string profiles are placed at the correct vorton radius for comparison purposes
and not at the predicted radius from the semi-analytic approach, which is slightly different. Only
the z component of the gauge field is non-zero in the z = 0 plane. Notice that, although there are
differences between the straight string profiles and the vorton solutions, the differences are small —
a few percent. These differences can be broadly explained by three effects. The gauge field is most
notably modified due to the axial symmetry forcing its first derivative to be zero at the centre, which
is not the case in the straight string approximation. There is also a splitting between the radius as
measured by the core of the string and the radius defined by the peak of the condensate, although,
as illustrated in figure 13, this effect is small. Finally, there is a slight kink at the core of the string
which is enhanced in the vorton solution. The small differences between the straight string approx-
imation and the solutions suggests that the prediction of the radius should be reasonably accurate.
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Figure 10. A comparison of the predicted radii from the TSA to the radii of solutions found via
gradient flow with model parameters ησ = 0.35, λσ = 36, β = 6.6 and G = 0.2 (parameter set A)
with Q/N = 14.98 kept constant.

Figure 11. A comparison of the predicted radii from the TSA to the radii of solutions found via
gradient flow with model parameters ησ = 0.61, λσ = 10, β = 3 and G = 0.5 (parameter set B)
with Q/N = 31.89 kept constant.
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Figure 12. A comparison of the predicted radii to the radii of vorton solutions in parameter set
C, to be compared with figure 10, where the parameter set is the same, except set C has a stronger
gauge coupling of G = 1. The ratio Q/N = 31.89 is kept fixed. This has improved the accuracy of
the predictions and increased the energy minimising radii.

expect that the predictions improve as the gauge coupling increases — at least up to the
BPS limit at which point the limiting factor switches from the gauge field mass to the mass
of the vortex field.

To illustrate this improvement we have constructed vortons in parameter set C, which
is very similar to set A, except that it uses G = 1 rather than G = 0.2. The change to
the gauge coupling modifies the range of χ for which straight string solutions exist, so
unfortunately we are unable to make the same choice of χ for the sake of comparison.
Instead, we have chosen to use χ = 1.514 which sets the ratio Q/N to the value used
previously. We compare the radius predictions to the radii of constructed vortons for this
parameter set in figure 12. This shows that the effect of a stronger gauge coupling is to
increase the radii of vortons and, by comparing the percentage error of the predictions, it
is clear that it has improved their accuracy, due to the improved localisation of the energy.

There are some subtle differences (which are to be expected) between the predicted
field profiles and the true solutions. We have noticed two main areas in which they differ.
The first, and most obvious from figure 9, is that the axial symmetry of the vorton forces
the derivative of Az to zero at the centre. In the profiles produced from the straight string,
Az ∝ 1/ρ at large (gauge coupling dependent) distances from the string core and obviously
this does not change at the centre of the loop.

The second effect that we have noticed is a splitting between the radius defined by the
core of the string and the radius defined by the peak of the condensate. Qualitatively, this is
caused by the competition between the angular momentum of the condensate, which wants
to cause expansion, and the tension of the string loop, which wants to cause contraction.
There is a force between the condensate and the string which grows as the splitting between
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Figure 13. The radius splitting as a function of the radius (as measured by the core of the string)
using parameter set B, with Q/N = 31.89 kept constant. The effect is reduced for larger vortons
(higher N) and appears to be inversely proportional to the radius. This is consistent with there
being a curvature correction to the thin string approximation.

them increases. At some level of splitting, this force balances the competition between the
angular momentum and tension. Figure 13 shows how this splitting is reduced for larger
vortons as the curvature effects become less important and that the splitting is consistent
with a 1/R curve. The shape of the string core also tends toward the straight string
prediction for larger vortons, suggesting that this effect is a curvature correction to the
thin string approximation.

Finally, there is a slight enhancement of the kink in φ at the string core. To make
this effect more apparent, in figure 14 we plot the radial derivative of φ for a few vortons
with different winding numbers (fixed Q/N ratio). The radius of each vorton corresponds
to the local minima inside the peak. There is an asymmetry around this minima that
enhances the kink and is not present in the straight string profiles. Note that the double
peak structure is expected from the straight string analysis, but both peaks should be the
same size and shape. The effect is clearly reduced for the larger vortons, suggesting that
this is also a curvature correction and we believe this may be caused by the splitting effect
already alluded to.

3.1.2 Comparison with Battye & Sutcliffe [20]

Figure 15a displays the global vorton solution with Q = 9000, N = 10 and R = 25.7 in
parameter set D that was constructed in [20] (although using rescaled parameters). This
is in good agreement with the previously constructed vorton with R = 15.5, after rescaling
lengths by the required factor of

√
3 due to the rescaling of λφ = 3 to λφ = 1. We also

present a vorton in a gauged extension of this model with G = 0.1 (parameter set E) in
figure 15b — it has the same charge and winding number but a larger radius of R = 32.5.
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Figure 14. The radial derivative of the vortex field for vortons with various winding numbers
(but fixed Q/N) using parameter set B. There is an asymmetry around the vorton radius (the
local minima inside each peak) which is reduced for larger vortons. Again, this is consistent with
curvature corrections to the thin string approximation.

(a) Global vorton field profiles with R = 25.7. (b) Gauged vorton (G = 0.1) field profiles with R =
32.5.

Figure 15. Q = 9000, N = 10 vortons with ησ = 1 and λσ = β = 2/3 (parameter sets D and E
respectively). There is a significant kink in the vortex field at the string core which is reduced in
the gauged model and the inclusion of the gauge fields also act to increase the vorton radius.

Both of these vortons correspond to strings on the higher charge branch. In the global
case, a string with qp = 38 predicts the existence of a vorton with N = 10, Q = 8998.5 and
R = 25.1 while in the gauged case, a string with qp = 33.38 predicts the existence of a vorton
with N = 10, Q = 9000.5 and R = 33.19. There are no strings that satisfy ω < ωc — see
equation (2.32) — on the lower charge branch which indicates that there are no vortons
that can be constructed with strings on the lower charge branch in this parameter set.
Therefore, we should not expect any fully stable vortons due to the inevitable longitudinal
instability experienced by the higher charge strings.
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Figure 16. The predicted regions of instability for a model with ηφ = 1, ησ = 0.35, λφ = 1,
λσ = 36, β′ = 6.6, G = 0.2 (parameter set F) and a modified interaction term Vint = β′|σ|2|φ|6.
There isn’t a clear improvement in the stability of the predicted vorton, but this is a difficult
comparison to make because the modified interaction term has drastically changed the range of χ
for which there are superconducting solutions.

In fact, the global vorton was found to be unstable to both square and triangular
modes in [20] which is not the pinching instability expected when c2

L < 0, and we find
similar results for our gauged vorton with the same parameters. We expect that this mode
simply had a larger growth rate of instability than the pinching mode and that larger
vortons will be destroyed by the pinching instability instead, as the growth rate for the
square and triangular modes is inversely proportional to R and the growth rate for the
pinching instability is independent of R. We will discuss this in more detail and test our
prediction in a subsequent paper on the pinching instability.

3.1.3 Comparisons to Lemperiere & Shellard [18]

In [18] a global vorton was constructed in a model with a modified interaction term,
β|φ|2|σ|2 → β′|φ|6|σ|2. This was done to increase the strength of the potential seen by
the condensate and make it more difficult for the condensate to split off from the string.
They claim to have used the thin string approximation to construct a global vorton and
additionally found that it was stable to the n = 2 (elliptical) mode. We have been unable
to reproduce their global vorton, but we have found vortons, using the TSA, in a gauged
version of their parameter set — which we call parameter set F. This is very similar to
parameter set A except that it uses the modified potential. It is perhaps not surprising that
there are difficulties in the global case as the strings are less localised than in the gauged
case. The string mass per unit length is logarithmically divergent so any predictions will
depend upon the cut-off applied during integration. Nevertheless, we have managed to use
the TSA to construct global vortons in parameter set D so it is not clear why we could not
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manage it here. The modified potential does have the effect of widening the condensate,
thereby making the string less localised (the core width and the width of the condensate
have approximately doubled when compared to parameter set A), so perhaps the effects of
the global limit and the modified potential combine to decrease the accuracy of the TSA
enough to cause problems with our energy minimisation algorithm. Unfortunately, there
does not appear to be sufficient information (e.g. the charge, Q and the winding number,
N , of their vorton) in [18] to be completely sure.

In figure 16 we show the intervals of instability in parameter set F. There does not
seem to be an obvious improvement in the predicted stability of the vorton, compared to
parameter set A. However, this may be largely due to the drastic shift in the allowed range
of χ. It should be noted that there is a region of stability near the chiral state, but this is a
generic feature of near-chiral strings and not necessarily a result of the modified interaction.

3.2 Radial dynamics

Vortons constructed via energy minimisation in this way should be approximately station-
ary solutions of the equations of motion. This can be tested with dynamical simulations
that evolve the system under the full equations of motion. As an initial test, in this section
we will continue to impose axial symmetry and, therefore, test the stability to radial per-
turbations. In section 3.3 we will discuss non-radial perturbations whose stability is a more
stringent test. We use initial field configurations that are the result of the gradient flow
algorithm discussed in section 3 for parameter sets A and B. At the initial time step, the
phase of the condensate field is rotated by ω∆t, and all other fields are left the same. We
use the value of ω calculated during gradient flow here, not the predicted value from the
straight string analysis which is slightly different. After this, the system is evolved under
the equations of motion, but with radial symmetry imposed. We use the same grid spacing
and grid size that was used for gradient flow, but we change the time step to ∆t = 0.1∆x
since the CFL condition is significantly weaker, ∆t∑d

i=1 ∆x−1
i . 1.

Figure 17 shows the evolution of the radius and energy for the static vorton solution
presented in figure 9a and also one in which we have artificially increased the initial phase
frequency by 1% (from ω = 1.99 to ω = 2.01) to create a larger oscillation about a larger
energy minimising radius, similar to what was presented for global vortons in [20] with pa-
rameter set D. We calculate the radius by finding where |φ| = 0 along the y = z = 0 slice.
The energy in figure 17d is increased due to the smaller phase frequency and does not remain
exactly constant during radial dynamics due to numerical effects, but it is only a variation
of less than ±0.1% about the average energy. The static vorton also has a slight oscillation
which is due to the phase frequency being treated exactly in gradient flow, while it is approx-
imated with finite difference operators in the dynamical code. This is visible in figure 17c
as a reduction in the energy of less than 0.01%. The violation of the constraint equation
remains very small during the radial time evolution — see appendix A.1 for more details.

All vortons that we have tested are stable to axially symmetric dynamics which sug-
gests that the n = 0 mode is always stable, as predicted by the thin string analysis. In
figure 18 we compare the predicted frequency of the zero mode to the frequency of the radial
oscillations during our simulations. This shows a good agreement between the predictions
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(a) Evolution of the radius for a static vorton. (b) Evolution of the radius for an oscillating vorton.

(c) Evolution of the energy for a static vorton. (d) Evolution of the energy for an oscillating vorton.

Figure 17. The evolution of the radius is shown in figures 17a and 17b while the evolution of
the energy is shown in figures 17c and 17d during both the gradient flow process and full radial
dynamics simulations. This vorton is the one displayed in figure 9a (parameter set A). The static
vorton oscillates slightly around its equilibrium radius, while the perturbed vorton oscillates more
dramatically around a larger equilibrium radius. There is a very small reduction in the energy of
the static vorton due to the numerical approximations. The perturbed vorton has a significantly
increased energy and it slightly oscillates although at far less than the percent level.

and simulated dynamics, although with a larger percentage error than the predicted radius
and no improvement for larger vortons. This appears to be a good quantitative test of the
thin string approximation. It should be noted that for the calculation of these frequencies
we simulated the dynamics up to t = 60000 and t = 100000 respectively and, therefore,
the frequency resolutions are ∆f = 1.67× 10−5 and ∆f = 10−5, respectively.

3.3 3D dynamics

In order to test our predictions for the stability to non-axial perturbations and the oscil-
lation frequencies of higher order modes, a fully three-dimensional simulation is necessary.
To achieve this we can either interpolate the solution found using the cartoon method to
create a three dimensional Cartesian grid solution, or use the cut-off method for which
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(a) ησ = 0.35, λσ = 36, β = 6.6 and G = 0.2
(parameter set A) with Q/N = 14.98 kept constant.

(b) ησ = 0.61, λσ = 10, β = 3 and G = 0.5 (param-
eter set B) with Q/N = 31.89 kept constant.

Figure 18. A comparison of the predicted zero mode frequencies to the zero mode frequencies
calculated from the radial oscillations produced when the dynamics of vortons is simulated with
axial symmetry imposed. This provides a good quantitative test of the thin string approximation.
We have used the frequency defined by fm = Ωm/2π.

extending the solution to 3D is trivial. Care must be taken with the lattice spacing used
so that the variation due to the winding of the condensate is accurately resolved. The dy-
namics in 3D are significantly more numerically demanding and, as such, our simulations
are run over a shorter time period than the radial dynamics. Some videos of the vortons
shown in figures 19, 22 and 24 can be viewed in the supplementary material.

Initially, we will consider parameter set B and discuss the fully stable, chiral vorton
that we presented in [33]. In figure 19 we show the isosurfaces of the vorton shown in
figure 9b (Q = 1594, N = 50 and R = 56.57) at a few snapshots. During the simulation,
energy was conserved to within less than 0.1% and the average violation of the gauge
condition reaches a maximum of ∼ 10−3. No obvious instability is apparent in these plots
and since we expect that only the square mode (due to the grid) and the zero mode (due
to the initial numerical solution not being exactly perfect) are excited in this simulation
it supports the prediction of figure 7b that the square mode is stable. Of course, it’s
not possible to prove by simulation that a given vorton is stable, these results only place
an upper limit on the growth rate of any instabilities. We have run the simulation until
t = 10000 which is longer than any other presently published in the literature. The current
completes around 28 full rotations during this period. Figure 20 shows how the radius of
the vorton changes over time and demonstrates that it is stable for a long period, with
no evidence for any instability. The Fourier transform shows that this is predominantly
the superposition of a radial oscillation, f0 = 2.8× 10−3, (with f0 = 2.79× 10−3 predicted
by the thin string approximation) and another, unexplained, low frequency component of
f ≈ 1.4× 10−4 (note that this is calculated by eye rather than by the Fourier transform as
the value is very close to the resolution limit). We think that this unexplained component
is a perturbation away from f0 = 0 that is caused by curvature effects. This is supported
by the fact that this frequency decreases much faster than 1/R as the radius is increased.
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(a) t = 0. (b) t = 1500. (c) t = 3000.

Figure 19. Isosurfaces of a vorton with Q = 1594 and N = 50 in the parameter set ησ = 0.61,
λσ = 10, β = 3 and G = 0.5 (parameter set B). |φ| = 3

5 is shown in red and Re(σ) = 1
5ησ is shown

in yellow. There are no signs of any instabilities, but this does not yet indicate that the vorton is
completely stable — only that the modes it could be unstable to are not excited in this simulation,
or that the growth rate is small enough so that the instability has not significantly grown by the
end of the simulation.

Figure 20. The evolution of the position of the core of the string along y = z = 0 during 3D dynam-
ics. There is no evidence of any growing frequencies of oscillation. There are two main frequency
components, a high frequency component which agrees well with the prediction for the zero mode
frequency and another unexplained, low frequency oscillation, which we believe to be caused by
curvature effects that have induced a small departure from the expected third frequency of f0 = 0.

For example the N = 20 version of this vorton (with a smaller radius by a factor of ∼ 2/5)
has frequency components f0 = 7.3× 10−3 and 2.7× 10−3 — the frequency that is not
predicted by the TSA. The former has increased by ∼ 5/2 as expected from the 1/R
scaling, while the latter is an order of magnitude larger than 1/R scaling would predict.

We can test the stability to other (non-axial) modes by applying a perturbation to the
initial field configuration and then dynamically evolving, as before. We do this by making
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Figure 21. A comparison of the dominant frequency components to the predicted frequencies
of oscillation for modes 2 to 10, all excited with ε = 0.1, in parameter set B. They show a very
good level of agreement for the higher and lower frequencies, with the intermediate frequency not
appearing because it is very close to a purely longitudinal oscillation for vortons near the chiral limit.

the modification, σ → σ(1 + ε sin(mθ)), where ε is the amplitude of the perturbation and
m is the mode we wish to excite [20]. We have used this to test the prediction that this
vorton solution is stable, as predicted in figure 7b. We artificially excite, individually, the
modes between m = 2 and m = 10, each with an amplitude of ε = 0.1, and evolve the
system up to t = 3000 using our 3D dynamics code.

We use these simulations to test our predictions of the frequencies of oscillation, as
presented in figure 21. Clearly, the predictions of the smallest and largest frequencies of
oscillation are very good, but it is interesting that the intermediate frequency either has a
much smaller peak, or doesn’t appear to be there at all. We believe that this is because the
frequency is associated with almost purely longitudinal oscillations, which are not picked
up by the position of the string, and there is only a very small coupling to transverse
oscillations. This effect is caused by the vorton being close to the chiral limit and we
expect that it wouldn’t occur, in general, for the rest of the parameter space. Near the
chiral limit, there is an eigenvector solution with a transverse component that is very small
(and two much larger, approximately equal, longitudinal components) when the associated
frequency is νm ≈ m(c2

T − c2
L)/(1 − c2

T c
2
L) — see equation (2.50). Note also that we have

performed similar simulations for the N = 20 vorton and we get a similar level of agreement.
All of the modes that we excited on the N = 50 vorton were stable during this time

period, except for m = 6, which develops a pinching instability that destroys the vorton at
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(a) t = 900. (b) t = 950. (c) t = 1000.

Figure 22. Isosurfaces of a vorton with Q = 637.7 and N = 20 in the parameter set ηφ = 1,
ησ = 0.61, λφ = 1, λσ = 10, β = 3 and G = 0.5 (parameter set B). |φ| = 3

5ηφ is shown in red and
Re(σ) = 1

5ησ is shown in yellow. We have excited all of the modes between m = 2 and m = 30 with
an amplitude of 0.001. At t ∼ 950 the pinching instability to the m = 10 mode becomes clear. There
may be instabilities due to additional modes which will not appear because the rate of growth is
smaller. The vorton is ultimately destroyed by the pinching instability — with a ten-fold symmetry
— developing into a bubble of the true vacuum, as seen in figure 22c, which quickly expands. Note
that it is visually very different to the vorton destruction mechanism seen later in figure 24.

t ∼ 2700. This pinching instability does not exist in corresponding simulations of straight
strings with periodic boundary conditions, indicating that it is caused by curvature effects.
As such, we might expect that larger vortons, with the same ratio of Q/N , will experience a
weaker pinching instability, or possibly none at all, while smaller vortons will be less stable.
Our simulations suggest that this is exactly what happens, and actually the N = 20 vorton
is unstable to many modes, and it is destroyed by these instabilities much earlier.

To illustrate, we have performed a simulation of the N = 20 vorton and perturbed all
the modes between m = 2 and m = 30 at once, all with the amplitude ε = 10−3. From the
isosurfaces in figure 22 it is very clear that there is a pinching instability to the m = 10
mode, which didn’t appear in the case of the N = 50 vorton, and the vorton is destroyed
by t ∼ 1000 which is much earlier than for N = 50. The perturbations grow in a way that
is visually very different from extrinsic instabilities, which we will present later in figure 24.
The instability clearly manifests itself as oscillations in the width of the string as opposed
to distortions in the shape of the vorton. Notice that the instability causes the condensate
to unwind (from N = 20 initially, to N = 10 by t = 950) which then results in the collapse
of the vorton. By individually exciting the modes, we can also see that m = 10 is not the
only one that has a pinching instability — in fact all of the modes from m = 2 up to at
least m = 20 are unstable and the vorton is destroyed before t = 3000, often much earlier.
The growth rate is simply largest for m = 10 which causes it to dominate.

Since the pinching instability is an internal instability (not dependant upon the posi-
tional oscillations of the string for small curvatures), we should expect that, if the pinching
instability is not caused by curvature effects, then vortons of different radii will be destroyed
at roughly the same time. Instead, we have shown in figure 23 that the pinching instability
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Figure 23. The evolution of the position of the core of the string along y = z = 0 for vortons
with different values of the winding number, N , in parameter set B, with the ratio of N to Q

kept fixed, and using a fourth order stencil for the spatial derivatives — higher than the previous
simulations. The N = 20 vorton is the same one shown in figure 22, although here it is excited with
only the m = 4 mode with an amplitude of 0.1. All the vortons in this plot are excited with the
m = N/5 mode (so that the wavenumber m/R remains roughly constant) with an initial amplitude
of 0.1. Note that the bottom four plots have been cut off at roughly the point where the vortons
are destroyed, while the top three survive until the end of the simulation at t = 3000.

either no longer exists, or at least takes significantly longer to develop for the vortons with
N ≥ 40. This indicates that the pinching instability disappears when curvature effects
become negligible.4 Note that it is the wavelength of the perturbation that is important
for the sake of comparison, which means that we need to increase m proportionally with
N if we are to examine the same instability.

In simulations of straight strings with periodic boundary conditions, we find that it
is necessary to be very careful with the resolution because spurious pinching instabilities
can appear in simulations with larger grid spacings, and the same problem applies to
vortons as well. Pinching instabilities can therefore be categorised as being caused by
insufficient resolution (not a real instability), curvature effects which stop being relevant
for larger vortons or instabilities in the underlying straight string solutions — which will be
examined in more detail in an upcoming paper. We have performed thorough convergence
tests that confirm that the instabilities in our vorton simulations are real effects and have
also upgraded to a fourth order stencil for the simulations in figure 23.

The evidence in figure 23 suggests that the slight m = 6 pinching instability that
the N = 50 vorton suffers from is a left-over effect of curvature and will disappear, like

4We have also performed simulations of straight strings that show no signs of a pinching instability for
this particular case, although there are instabilities for other choices of χ. We will be investigating the
onset of pinching instabilities in more detail in an upcoming paper.
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the instabilities to the other modes did, at larger radii. Our simulations of a vorton with
N = 60 confirm these expectations as the modes m = 6,7 and 8 with ε = 0.1 are all stable
up to t = 3000. Similarly, the vorton shows no signs of instability when all the modes
between m = 2 and m = 30 are excited with ε = 10−3, up to t = 3000, whereas the N = 20
vorton was destroyed by these perturbations at t ∼ 1000. In addition, we have performed
simulations that excite the m = 21 and m = 22 modes, which are the most likely to be
unstable to extrinsic oscillations rather than the pinching instability (according to the TSA
— see figure 7b), and there are no signs of an instability by t = 3000. It is, therefore, very
likely that larger vortons of this type will be fully stable.

Next, we will consider parameter set A which was predicted to be unstable to modes
with 3 ≤ m ≤ 6 in figure 7a. In figure 24 we show isosurfaces at six different snapshots in
time when the vorton (shown in figure 9a with Q = 749, N = 50 and R = 28.8) is evolved
under 3D dynamics, with no perturbations applied, on a grid with ∆x = 0.3, −75 ≤ x ≤ 75,
in all directions, and ∆t = 0.03. The first set of three were chosen to display the instability
to square modes (m = 4) that was predicted, while the second set were chosen to show how
the vorton is destroyed. We believe that a small excitation of this mode is produced either
by small scale effects of discretisation onto a Cartesian grid or the boundary conditions
imposed at the edges. A similar outcome was seen in [20] when evolving global vortons in
parameter set D. Notice that this is clearly a different type of instability to that shown in
figure 22 as there are only slight changes to the width of the string.

In figure 25 we plot the radius of the vorton (the position of the core of the string
along the y = z = 0 slice) as a function of time which appears to be a superposition of a
stable radial oscillation and the oscillation caused by the growing square mode. A spectral
analysis of the radius evolution up to t = 750 shows that the evolution of the radius is
primarily composed of two frequencies, f0 = 0.003 and f4 = 0.015, which we assume to be
the zero mode and (the growing) square mode frequencies respectively. For comparison, the
predicted frequencies are f0 = 0.0045 and f4 = 0.013. It is interesting that the zero mode
frequency is not the same in the 2D and 3D simulations. The frequency resolution here is
∆f = 1.3× 10−3, comparable to the discrepancy between the simulation and predictions,
and worse than in the 2D dynamics as we are only analysing the signal up to t = 750,
rather than to t = 60000. This could be improved upon, in principle, by reducing the size
of the initial excitation (caused by numerical approximations) so that the vorton survives
for a longer period of time

The imaginary part of the m = 4 frequency provides an estimate for the rate of growth
of the unstable mode. By filtering the Fourier transform to isolate only the square mode
and then performing an inverse Fourier transform, the effect of this mode on the position
of the string can be seen more clearly. We choose to filter with a top-hat function that
is only non-zero when 0.01 ≤ f ≤ 0.022. The inverse Fourier transform is displayed in
figure 26 with the predicted growth — AeIm(Ω4)t with Im(Ω4) = 0.0072 — overlaid. The
initial amplitude of the mode, A, is chosen such that it intersects the largest peak. There
is clearly a very good agreement between the predicted growth rate of the mode and the
dynamical growth rate. We consider this to be a good quantitative test of the thin string
model in the unstable regime.
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(a) t = 0. (b) t = 300. (c) t = 600.

(d) t = 780. (e) t = 810. (f) t = 840.

Figure 24. Isosurfaces of a vorton with Q = 749 and N = 50 in the paramater set ησ = 0.35, λσ =
36, β = 6.6 and G = 0.2 (parameter set A). |φ| = 3

5ηφ is shown in red and Re(σ) = 1
5ησ is shown in

yellow. By the end of the simulation, it is clear that the vorton is unstable to square perturbations,
probably sourced by the discretized grid, and that this instability eventually destroys the vorton.
The development of an unstable square mode is similar to what is seen in parameter set D in [20].
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Figure 25. The evolution of the position of the core of the string along y = z = 0 during 3D
dynamics. We have stopped the simulation at t = 750, at which point the unstable vorton begins
to break apart and collapse. This plot is predominantly described by a superposition of the zero
mode and an exponentially growing square mode.

Figure 26. Comparison of the approximate oscillations caused by the square mode and the rate of
growth predicted by the semi-analytic method, in parameter set A. The square mode was isolated by
using a top hat function to select a small frequency range (that it lies within) and then performing
an inverse Fourier transform, which has been cut off at early times when the square mode was not
the dominant oscillation. The predicted growth of AeIm(Ω4)t with Im(Ω4) = 0.0072 fits the envelope
of this signal well, where A is chosen so that the envelope intersects the largest peak.
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4 Conclusions

We have shown that it is possible to predict the existence and properties of vortons from
straight, superconducting string solutions to a good degree of accuracy, albeit with a new
constraint on the phase frequency that has not been previously recognised. We have used
a gradient flow algorithm and techniques from lattice gauge theory to construct gauged
vortons and simulate their dynamics. Using this, we have shown that the thin string
approximation reliably predicts the frequencies and stability of each mode of oscillation.
We have also found regions of the parameter space that admit completely stable vorton
solutions, and have provided strong numerical evidence that they are indeed stable once
the vortons are large enough to sufficiently reduce the effects of curvature — as would be
the case for vortons that are relevant in cosmology.

The thin string approximation and straight string analysis is a powerful tool for future
studies on vortons because the parameter space can be explored with much more ease than
by constructing individual vortons — which is both more numerically challenging and less
general. For a given set of parameters the allowed vorton solutions can quickly be assessed
though the following process:

• Calculating the χ range for which there are superconducting string solutions. The
lower limit will always be set by equation (2.15) which can be solved numerically after
finding a non-superconducting string solution. The upper limit will either be set by
condition (2.13), or by another limit, related to the existence of a lower energy vacuum
state where the U(1)σ symmetry is broken and the U(1)φ symmetry is unbroken,
that must be determined by trial and error. In the electric regime, this process
will only find one of two possible solutions — the one that has lower charge and
energy — however this shouldn’t be important when searching for stable vortons
because we expect that those constructed from strings on the higher charge branch
(see equation (2.44) for more detail) will always be unstable to pinching instabilities.

• By sweeping through the χ range and solving equations (2.5)–(2.7), which is relatively
quick and easy to do as they are just a system of 1D ODEs, a few useful integrated
quantities can be calculated which allow for the properties of a vorton formed with
each string solution to be determined. In particular, the required ratio of the winding
number, N , to the Noether charge, Q, and the radius (for a specific choice of N and
Q) can be calculated.

• The solutions must also satisfy condition (2.31) on the phase frequency, otherwise
the condensate can delocalise from the string. This can also be assessed using the
integrated quantities from the straight string solutions. This is everything that is
required to construct vorton solutions.

• The stability properties of each vorton solution to oscillations in the position of the
string can be investigated by calculating the transverse and longitudinal sound speeds
of the straight string solutions. All tested parameter sets have supersonic sound
speeds — meaning that the transverse speed is greater than the longitudinal speed.
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All loops with subsonic sound speeds are fully stable, while those with supersonic
sound speeds, which are relevant for the case of vortons, have a complex structure
of stability to different modes of oscillation. There are, however, still regions of
complete stability to extrinsic perturbations — see figure 8. In particular, vortons
that are very close to the chiral limit are typically predicted to be stable. The growth
rate of unstable oscillations can also be predicted which allows for the typical lifetime
of unstable vortons to be estimated. Note that, by itself, this does not give the full
picture of vorton stability because it does not include intrinsic instabilities, such as
the pinching instability.

• We will discuss the stability of vortons to pinching instabilities in more detail in a
follow up paper, but we believe that all of the pinching instabilities presented here
are caused by curvature effects. It should be noted that insufficient resolution can
also cause spurrious pinching instabilities.

We have verified that the predictions made by the thin string approximation are in
good quantitative agreement by constructing and simulating the dynamics of vortons. The
errors in our predictions can be partially explained by curvature corrections and we have
provided evidence that (with the exception of the frequencies of oscillation) this effect is
diminished for larger vortons. We have also shown that the TSA predictions are more
accurate with larger gauge couplings (due to the increased localisation of the string) but
this does not significantly improve the stability of the vortons, which is much more strongly
affected by the chosen parameter set and, in particular, whether chiral vortons are allowed.

Whether vortons are a cosmologically relevant phenomenon has been an unanswered
question since they were proposed. The answer crucially depends on how they form, their
stability and how ubiquitous they are within the parameter space. It is important to stress
that, although fully stable vortons are perhaps the most interesting solution, unstable vor-
tons with a small rate of growth may last for long enough to have an impact on cosmology.
Additionally, the growth rate of extrinsic oscillations is inversely proportional to the vorton
radius which means that large vortons (as are relevent to cosmology) will decay more slowly
than the ones that we have presented, unless they suffer from a pinching instability that is
not caused by curvature corrections. We believe that the methods presented in this paper,
and the confirmation that fully stable vortons exist, represents a significant step forward
in answering this question.

A Numerical methods

Here, we will discuss in more detail the techniques that we have employed to simulate
vortons. In order to discretise a system with a local symmetry group we used methods
from lattice gauge theory (see [39] for a review and [26] for an example of implementation
for the Abelian-Higgs model). Furthermore, a vorton has a cylindrical symmetry which
can be taken advantage of. The natural coordinate system to choose is clearly cylindrical
polar coordinates, however these are numerically unstable due to the coordinate singularity
at the origin. We can avoid this problem by either using the cartoon method [38] which
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uses a single 2D plane in Cartesian coordinates and calculates the perpendicular derivative
by symmetry arguments, or by cutting out a cylinder which includes the origin and then
using cylindrical coordinates. The latter method relies on the fields being well localised
because it introduces a new boundary upon which we must set a boundary condition.
Numerical errors will be introduced in the cartoon method by the interpolations necessary
for calculated the normal derivative and by the additional boundary in the cut-off method.

A.1 Lattice gauge theory

In order to retain the local U(1)φ symmetry during simulations on a discretised grid, we
cannot rely on the continuum form of the covariant derivative. Attempting to run dynam-
ical simulations with regular gauge fields results in the violation of the gauge condition.
Comparisons between neighbouring points can only be performed by mapping between
neighbouring fibres, using an element of the symmetry group. This is analogous to the role
of Christoffel symbols in General Relativity. We will assume from now on that the lattice
spacing, a, is the same in all directions as it simpler to write and easy to generalise. We
also work in the temporal gauge (At = 0) so that the time derivatives can be treated as
regular finite difference operators and then At provides no contribution to the Yang-Mills
term. We define our covariant finite difference operators as

∆iφ(x) = φ(x + aî)− Ui(x)φ(x)
a

, (A.1)

where we define Ui = eigAia such that the usual covariant derivative is recovered in the
continuum limit. It is convenient to define the lattice link variables as θi = gAia and use
these as the dynamical variables. The only part of the Lagrangian that cannot be replaced
with finite difference operators is the Yang-Mills term because it would not result in a gauge-
invariant quantity. Furthermore, we do not want to be restricted to the continuum limit so
it is better to express it in terms of group elements rather than gauge fields. The only gauge
invariant quantity that can be constructed on a lattice, purely from group elements, is the
trace of a closed loop — known as a Wilson loop. This “plaquette action” is defined as

Pij(x) = Ui(x)Uj(x + aî)U−1
i (x + aĵ)U−1

j (x), (A.2)

which is related to the discrete version of the field strength tensor by

Pij = exp(igFija2). (A.3)

Taking the taylor expansion of this gives

Pij = 1 + igFija
2 − 1

2(gFija2)2 +O(g3), (A.4)

which allows the Yang-Mills term to be expressed in a gauge invariant way as

1
4F

2
ij ≈

1
2(ga2)2 [1− Re(Pij)]. (A.5)
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x x+ δx
y

y + δy

Ux(x, y)

Uy(x+ δx, y)

U−1
x (x, y + δy)

U−1
y (x, y) Pxy(x, y)

Figure 27. A diagram of a Wilson loop.

Now the Lagrangian can be completely expressed using discrete, lattice quantities that do
not break the symmetry of the model, [26]

L = a3∑
x

{
|φ̇(x)|2 −

∑
i

(
φ(x + aî)− eiθi(x)φ(x)

a

)(
φ∗(x + aî)− e−iθi(x)φ∗(x)

a

)

+ |σ̇(x)|2 −
∑
i

(
σ(x + aî)− σ(x)

a

)(
σ∗(x + aî)− σ∗(x)

a

)

+ 1
2
∑
i

(
θ̇i(x)
ag

)2
− 1

2g2

∑
i,j

1− cos[θi(x) + θj(x + aî)− θi(x + aĵ)− θj(x)]
a4

− λφ
4 (|φ(x)|2 − η2

φ)2 − λσ
4 (|σ(x)|2 − η2

σ)2 − β|φ(x)|2|σ(x)|2 + λσ
4 η4

σ

}
. (A.6)

The equations of motions are then derived by varying the fields at each lattice site and
requiring the action to be minimised, as usual. This must be done with some care because
the contributions from neighbouring lattice sites are easy to miss since they are implicit in
the summations.

φ̈(x) =
∑
i

e−iθi(x)φ(x + aî)− 2φ(x) + eiθi(x−aî)φ(x− aî)
a2

−
[
λφ
2 (|φ(x)|2 − η2

φ) + β|σ(x)|2
]
φ(x), (A.7)

σ̈(x) =
∑
i

σ(x + aî)− 2σ(x) + σ(x− aî)
a2 −

[
λσ
2 (|σ(x)|2 − η2

σ) + β|φ(x)|2
]
σ(x), (A.8)
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θ̈i(x) = −ig2
[
e−iθi(x)φ∗(x)φ(x + aî)− eiθi(x)φ(x)φ∗(x + aî)

]
−
∑
j

1
a2

(
sin
[
θi(x) + θj(x + aî)− θi(x + aĵ)− θj(x)

]
− sin

[
θi(x− aĵ) + θj(x + aî− aĵ)− θi(x)− θj(x− aĵ)

])
. (A.9)

As we are working in the temporal gauge, the gauge fields do not cause any issues with the
time discretisation and it can be done with standard methods, which is why we have left it
implicit in these equations; the simulations performed in this paper use the forward Euler
method. The additional gauge condition can be derived by reintroducing At back into the
Lagrangian by taking

|φ̇(x)|2 → |φ̇(x)−igAt(x)φ(x)|2
(
θ̇i(x)
ag

)2
→
(
θ̇i(x)
ag
−At(x + aî)−At(x)

a

)2
, (A.10)

and then minimising the action with respect to variations in At(x).

∑
i

θ̇i(x)− θ̇i(x− aî)
a2g

+ ig
[
φ∗(x)φ̇(x)− φ(x)φ̇∗(x)

]
= 0. (A.11)

This condition is never directly enforced by our code but should remain approximately
satisfied if the system is evolved according to the equations of motion above. We define
the deviation parameter, δ, to be the absolute value of the left hand side of this equation,
averaged over all grid points. Figure 28 shows how this deviation parameter evolves during
some of our simulations. It is exactly zero initially because, except for the condensate, all
of the fields are set to be equal for the first two time steps.

A.2 Cartoon method

This is a technique developed in [38] for simulating axisymmetric systems using cartesian
coordinates in only one plane (which we usually choose to be y = 0). In order to get
derivatives in the y direction, the neighbouring planes are considered but not evolved. By
assuming cylindrical symmetry, the fields on each point in the neighbouring planes will be
equal to some point in the y = 0 plane. Typically this requires interpolation because the
corresponding position in the y = 0 plane is not included in the simulation grid. For the
case of a vorton, all fields are cylindrically symmetric except for the condensate field due
to the winding of the phase around the loop. However, the magnitude is symmetric and
can be interpolated. Then the value of the field can be deduced using the phase factor
exp(iNθ). Furthermore, only one quadrant of the x, z plane needs to be used as the x < 0
and z < 0 sectors are related to the x ≥ 0, z ≥ 0 region by reflection symmetries.

However, this method is not obviously compatible with lattice gauge theory. The fields
are easy to interpolate because they are defined at a single point. The link variables on the
other hand, are mappings between two points. Rotating these mappings will only provide
information about radial mappings — not the Cartesian mappings required in the cartoon
method. A coordinate transformation is required to relate the polar link variables to the
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(a) The evolution of the deviation parameter during
radial dynamics.

(b) The evolution of the deviation parameter during
3D dynamics.

Figure 28. Examples of how the deviation parameter evolves during both radial and full 3D
dynamics. Both of these show the evolution of vortons constructed in parameter set A with Q = 749
and N = 50. It remains incredibly small during radial dynamics and grows smoothly. This is in
contrast to the 3D dynamics where it is nearly 10 orders of magnitude larger (although still within
acceptable limits) and varies more wildly, growing particularly quickly after the vorton starts to
break apart at t ≈ 750, but remaining sufficiently small before this point.

a b

dc

P Q
O

Figure 29. The link variable required is the one that maps c → d. This can be calculated from
the upper red link, which is equal to the lower one by cylindrical symmetry. The lower red link is
given by θPQ = −θaP + θab + θbQ where interpolation is used to approximate the mapping from
a→ P and b→ Q.

Cartesian ones. Since Ax = Aρ cos(φ) and ∆x = ∆ρ cos(φ) then θx = θρ cos2(φ). The
value of θρ can be calculated by interpolation although care must be taken to be mapping
between the correct two points.

There are severe limitations placed on the parameter space due to the numerical fea-
sibility of this method. If the ratio of the vorton radius to string width is too large, the
number of grid points required to run accurate simulations will become too large for the
available computing resources. In particular, this is an issue for predicting vortons using
the semi-analytic method because the cartoon method operates in precisely the regime in
which the straight string approximation breaks down.
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Figure 30. A comparison of the radii of vortons produced by gradient flow using the cut off method
and the cartoon method in parameter set B with Q/N = 31.89 kept constant. The predicted radii
from the thin string analysis has also been displayed. The cartoon method is in better agreement
with the predicted radii than the cut off method. Both of the percentage error plots decrease with
N , with the cut off method approaching the accuracy of the cartoon method at larger radii.

A.3 Cut off method

This method uses cylindrical coordinates, but with a minimum ρ at which we impose
boundary conditions to avoid the coordinate singularity at the origin. We usually either
use fixed boundary conditions or set the radial derivative (covariant for gauged fields) to be
zero. Clearly, for the latter to be a valid approximation, ρmin must be far from the string
core and the fields must be well localised to it. Both the vortex field and the condensate are
likely to be well localised to the string as this is the nature of a soliton, however the gauge
field is long range. The extent of this issue can be assessed by comparison with the straight
string solutions. At some distance from the core, Aθ → n/g, so we can expect that (so long
as the straight string profiles are a good approximation to a vorton) that Az ∝ ρ−1 beyond
this distance. Of course, this does not guarantee that this is the case outside the plane of
the vorton where other field components are non-zero and the phase of φ varies with ρ.

The benefits of this technique are that the winding of the condensate can be treated
exactly (in 2D simulations) and it allows vortons with a much larger radius to be simulated.
There is no need for any interpolation which means that the code can also run faster. The
method is quite complementary with the cartoon method as the small vortons that are not
accessible to this method are perfect for the cartoon method and vice versa. Additionally,
fully 3D simulations will be limited by the winding number, N , (since larger values will
require more sampling of the angular variations) rather than the size of the vorton. We
therefore expect that this method will scale better than the cartoon method for larger
vortons (with the ratio of N to Q fixed) as the number of grid points only increases
linearly with the size of the vorton, rather than quadratically.
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Which method is more accurate depends on the trade off between errors introduced by
the boundary at ρmin, and errors introduced by interpolation. From figure 30 it appears
that the results agree with the TSA better when the cartoon method is used. Nevertheless,
the cut off method may still prove to be a valuable technique for investigating very large
vortons, particularly if improvements can be made to the boundary conditions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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