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Γ(H→ gg)|PMC∞ = 336.42+7.01
−6.92

Abstract: We  conducted  a  detailed  study  on  the  properties  of  the  total  decay  width  of  the  Higgs  decay  channel
 up to -order QCD corrections by using the newly suggested infinite-order scale-setting approach, which

is based on both the principle of maximum conformality and intrinsic conformality. This approach is called PMC .
By using the PMC  approach,  we observed that  the conventional  renormalization scale  ambiguity in  perturbative
QCD calculation is  eliminated,  and the  residual  scale  dependence due to  unknown higher-order  terms can also  be
highly  suppressed.  We  then  obtained  an  accurate  perturbative  QCD  prediction  on  the  total  decay  width,  e.g.,

 keV,  where  the  errors  are  squared  averages  of  those  from  all  the  mentioned  error
sources.
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In quantum  chromodynamics  (QCD),  the  Higgs  bo-
son  plays  an  important  role  in  the  precision  test  of  the
Standard Model (SM), and it is also helpful for searching
new physics beyond the SM. The Higgs boson decays in-
to two gluons.  This is  an important channel for studying
the Higgs phenomenology [1]. The coupling of the Higgs
to  gluons  is  predominantly  mediated  by  the  top  quark
within  the  SM,  and  the  high-order  QCD  corrections  to
this  process  can  be  evaluated  by  means  of  an  effective
theory  in  which  the  top  quark  is  integrated  out  [2].  At
present,  the  perturbative  QCD (pQCD)  correction  to  the
total  decay  width  of  the  Higgs  decay  channel ,
e.g., ,  is  calculated  up to  next-to-next-to-next-
to-next-to-leading  order  ( )  in  the  limit  of  a  large
top-quark mass [3–11]. Therefore, we face the opportun-
ity of achieving precise pQCD prediction on .

It  is  helpful  to  reduce  the  pQCD  uncertainties  as
much as  possible.  Among  them,  the  error  caused  by  us-

αs

ing  the  conventional  scale-setting  approach  is  usually
treated as an important systematic error for pQCD predic-
tion. Such  an  error  in  making  fixed-order  prediction  oc-
curs  because  one  conventionally  assumes  an  arbitrary
renormalization  scale  to  perform the  numerical  analysis,
which is usually chosen as the typical momentum flow of
the process, the one assumed to be the effective virtuality
of  the  strong  interaction,  the  one  that  eliminates  large
logs to achieve a more convergent series, etc. This ad hoc
assignment  of  renormalization  scale  causes  mismatching
of  and the corresponding coefficients. Thus, the coef-
ficients  of  the  QCD  running  coupling  at  each  order
strongly depend on the choice of renormalization scale as
well as  the  renormalization  scheme.  However,  as  indic-
ated  by  the  renormalization  group invariance,  a  physical
observable must  be  independent  of  the  choice  of  renor-
malization scale. In the literature, the principle of maxim-
um  conformality  (PMC)  [12– 15]  has  been  suggested  to
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αs
{βi}

αs

NC → 0

remove  such  renormalization  scale  ambiguity.  It  is  well
known  that  the -running  behavior  is  governed  by  the
renormalization  group  equation  (RGE).  Then,  the -
terms that  emerged in  the  pQCD series  can  be  inversely
adopted  for  fixing  the  correct -value  of  a  high-energy
process. The purpose of PMC is to rightly determine the
effective coupling  constant  of  the  process  (whose  argu-
ment is  called the PMC scale) with the help of the RGE
[16, 17],  whose prediction is found to be independent of
any choice  of  renormalization  scale  and  satisfies  the  re-
quirement of renormalization group invariance. The PMC
scale-setting procedure agrees with the standard scale-set-
ting  procedure  of  Gell-Mann  and  Low  [18]  in  the  QED
Abelian limit (small number of colors,  [19]).

Γ(H→ gg)

{βi}

{βi}

{βi}
αs

Many successful  PMC  applications  have  been  ex-
plored in the literature. Previously, the PMC has been ap-
plied  for  dealing  with  the  decay  width 
[20–22]. Note that the PMC was originally introduced as
a multi-scale  approach,  in  which  distinct  effective  coup-
lings (and hence the PMC scales) at each order were de-
rived  because  different  categories  of -terms  occur  at
each  order.  Furthermore,  because  the  same  category  of

-terms  emerges  at  different  orders,  the  determined
PMC  scales  are  in  perturbative  form.  This  leads  to  the
fact that the precision of the PMC scales at higher orders
decreases with the increment of perturbative orders,  giv-
en that fewer -terms are known for fixing the value of
higher-order .  Thus,  the  PMC  multi-scale  approach
shall have explicit residual scale dependence [23], and if
the  convergence  of  the  perturbative  series  of  the  PMC
scale  is  weak,  such  residual  scale  dependence  could  be
large [24].

∞
∞

{βi}

Γ(H→ gg)

By further exploiting the intrinsic conformality (iCF)
property into PMC, a new infinite-order scale-setting ap-
proach,  called  the  PMC  approach,  has  been  recently
proposed in Ref. [25]. The PMC  approach follows from
the PMC, and its resultant conformal coefficients are the
same as those of PMC at each perturbative order but sets
the  effective  PMC  scales  at  each  order  by  requiring  all
the scale-dependent -terms at each order to vanish ex-
actly  and  separately  [25].  Following  this  approach,  the
newly fixed PMC scales at each order are in definite form
and are  no longer  in  perturbative series.  Thus,  the resid-
ual scale dependence of the previous PMC scales, owing
to their previous perturbative nature, can be exactly elim-
inated.  This  indicates  that  the  precision  of  the  previous
PMC  predictions  on  the  total  decay  width 

∞

Γ(H→ gg) ∞

[20–22] may be further improved by applying the PMC
approach. It is thus interesting to conduct a detailed study
on  by using the PMC  approach.

α6
s

Practically,  the  width  of  the  Higgs  decays  into  two
gluons at the -order level can be expressed as
 

Γ(H→ gg) =
M3

HGF

36
√

2π

 4∑
k=0

Ck(µr)ak+2
s (µr)

 , (1)

GF = 1.16638×10−5 GeV−2 as =

αs/4π µr

Ck∈[0,4](µr)
µr = MH MS

ξ ∈ [−1,1]

ξ = 0
Ck(µr)

µr

α6
s

where the Fermi constant , 
,  and  stands  for  an  arbitrary  renormalization

scale.  The perturbative coefficients  at the ini-
tial scale of  under conventional -scheme can
be  read  from Refs.  [2–11].  As  has  been  argued  in  Refs.
[20–22], it is important to first transform them into those
under  a  physical  momentum  space  subtraction  scheme
(mMOM-scheme)  [26– 31]  to  avoid  the  ambiguities  of
fixing  the  PMC  scales  with  the  help  of  the  RGE.  The
mMOM-scheme is  gauge  dependent,  a  detailed  discus-
sion  of  gauge  dependence  after  applying  the  PMC  has
been  done  in  Ref.  [32],  which  shows  that  if  the  gauge
parameter ,  the  mMOM  prediction  will  have
weaker ξ-dependence. Concerning definiteness, we adopt
the Landau gauge ( ) to conduct the analysis, whose
corresponding  coefficients  at  any  renormalization
scale  can  be  achieved  by  recursively  applying  the
RGE. The  explicit  expressions  for  the  required  coeffi-
cients up to -order level can be found in Refs. [21, 22].

N4LOOwing to the iCF property, we can divide the -
level total decay width into five conformal subsets, 

Γ(H→ gg) =
M3

HGF

36
√

2π

V∑
n=I

Γn, (2)

which collect together the same category of non-conform-
al terms  into  each  subset  and  ensure  the  scheme  inde-
pendence of each subset via the commensurate scale rela-
tions among different orders [33]. Each conformal subset
satisfies the scale invariant condition, (

µ2
r
∂

∂µ2
r
+β(αs)

∂

∂αs

)
Γn = 0. (3)

More explicitly, we have

ΓI =AConf
[
a2

s(µr)+2Bβ0
β0a3

s(µr)+
(
3B2
β0
β2

0+2Bβ0
β1

)
a4

s(µr)+
(
7B2
β0
β1β0+4B3

β0
β3

0

+2Bβ0
β2

)
a5

s(µr)+
(
8B2
β0
β2β0+

47
3

B3
β0
β1β

2
0+5B4

β0
β4

0+2Bβ0
β3+4B2

β0
β2

1
)
a6

s(µr)
]
, (4)

 

ΓII = BConf

[
a3

s(µr)+3Cβ0
β0a4

s(µr)+
(
6C2
β0
β2

0+3Cβ0
β1

)
a5

s(µr)+
(27

2
C2
β0
β1β0+10C3

β0
β3

0+3Cβ0
β2

)
a6

s(µr)
]
, (5)
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ΓIII =CConf

[
a4

s(µr)+4Dβ0
β0a5

s(µr)

+
(
10D2

β0
β2

0+4Dβ0
β1

)
a6

s(µr)
]
, (6)

 

ΓIV = DConf

[
a5

s(µr)+5Eβ0
β0a6

s(µr)
]
, (7)

 

ΓV = EConf

[
a6

s(µr)
]
. (8)

AConf BConf CConf DConf EConf

Bβ0
= lnµ2

r/µ
2
I Cβ0

= lnµ2
r/µ

2
II

Dβ0
= lnµ2

r/µ
2
III Eβ0

= lnµ2
r/µ

2
IV ∞

µI,,··· ,IV

{βi}

∞
∞

Ck

AConf =C0
BConf

n f =
33
2

β0 C1 ∞

µI
AConf BConf {β0} C1

∞

Here, , , , , and  are conformal
coefficients,  and , ,

, .  The  PMC  scales  are
;  they  can  be  fixed  by  using  the  scale  invariant

condition (3). To match the mMOM-scheme perturbative
series,  the -functions  under  the  mMOM-scheme
should  be  adopted;  their  explicit  forms  up  to  five-loop
level  are  available  in  Ref.  [34].  Then,  following  the
standard  PMC  scale-setting  procedures,  the  conformal
coefficients  and  PMC  scales can  be  progressively  de-
rived  from the  known  coefficients  via  a  step-by-step
manner. For examples, we have ; the conform-
al  coefficient  can  be  determined  by  setting

1) to drop off the  terms in ,  and the PMC
scale  can be fixed by using the known conformal coef-
ficients,  i.e., , ,  the -terms  of ,  etc.  For
convenience, we provide all the required conformal coef-
ficients and PMC  scales in the Appendix.

Then,  we  can  transform  the  original  perturbative
series (1) into the following conformal series: 

Γ(H→ gg) =
M3

HGF

36
√

2π

[
AConfa2

s(µI)+BConfa3
s(µII)

+CConfa4
s(µIII)+DConfa5

s(µIV)+EConfa6
s(µV)

]
.

(9)

∞

∞

The  PMC  scales  are  definite  and  have  no  perturbative
nature. Thus, they exactly avoid the residual scale ambi-
guity due to unknown higher-order terms in the perturbat-
ive  series  of  the  original  PMC  scales.  Numerically,  the
first four PMC  scales are 

{µI,µII,µIII,µIV} = {50.1,46.0,63.0,61.3}(GeV), (10)

∞

which are invariant to any choice of renormalization scale
and avoid the conventional renormalization scale ambigu-
ity.  Note  that  these  PMC  scales  are  around

MH exp(−5/6) ∼ 54
exp(−5/6)

∞ µV
{βi}

µV = µIV

EConf

µV

 GeV, which is suggested by the Gell-
Mann Low scheme [18], in which  is a result of
the convention that defines the minimal dimensional reg-
ularization scheme. At present, the PMC  scale  at the
highest order cannot be determined, since there is no -
terms  to  fix  its  magnitude.  As  usual,  we  adopt 
[15], which ensures the scheme independence of the res-
ultant  conformal  series.  Numerically,  we  found  that  due
to  the  coefficient  is  free  of  divergent  renormalon
terms, the magnitude of the final term is negligibly small,
and  the  uncertainty  of  the  total  decay  width  caused  by
different choice of  is negligible.

Mt = 172.5±0.7 GeV MH = 125.25±
0.17 GeV

αs MZ
αs(MZ) = 0.1179±0.0009

MS

To do the numerical calculation, we set the top-quark
pole  mass ,  and 

  [35]. The QCD asymptotic scale Λ can be de-
termined  by  using  the  world  average  of  at  the  
scale,  e.g.,  [35].  As  a  subtle
point, note that we need to transform the asymptotic scale
from the -scheme to the mMOM-scheme by using the
Celmaster-Gonsalves relation [26–29].

Γ(H→ gg)
αs ∞

O(α2
s) Γ(H→ gg)

{βi} µI ∞

Γ(H→ gg)

µr

Γ(H→ gg) O(α3
s)

∞

By setting all input parameters to their central values,
we first obtained the decay width  up to differ-
ent -orders  under  conventional  (Conv.)  and  PMC
scale-setting  approaches,  as  shown  in Fig.  1.  At  the

-order  level,  the  perturbative  series  of 
does  not  have -terms  to  fix ,  and  the  PMC  and
conventional predictions  are  the  same and scale  depend-
ent. Figure  1 shows that  the  decay width  un-
der conventional  scale-setting  approach  has  a  strong  de-
pendence on , which becomes progressively smaller as
more  loop  terms  are  included. Figure  1 also  shows  that
the decay width  at -order and higher or-
ders  under  PMC  scale-setting  are  independent  of  any
choice of renormalization scale owing to the fact that the
scale-dependent  noconformal  terms  have  been  exactly
eliminated.

Γ(H→ gg)

∞

Next,  we  present  the  decay  width  up  to
different  loop  QCD  corrections  under  conventional  and
PMC  scale-setting approaches in Table 1. To show the
perturbative property, we define a ratio 

κn =

∣∣∣∣∣∣ΓO(αn+2
s )−ΓO(αn+1

s )

ΓO(αn+1
s )

∣∣∣∣∣∣ , (11)

ΓO(αn+1
s )

∞
κ1 > κ2 > κ3 > κ4 µr

which indicates how the "known" prediction  is af-
fected  by  the  one-order-higher  terms.  As  for  the  PMC
series, we have  for any choice of , in-
dicating  that  the  relative  difference  between  the  two
nearby orders becomes smaller when more loop terms are
included.  This  feature  is  consistent  with  the  perturbative
nature of the series and indicates that one can obtain more
precise predictions  by  including  more  loop  terms.  Con-

H→ ggTotal decay width of  using the infinite-order scale-setting approach based... Chin. Phys. C 46, 123109 (2022)

β0 = 11− 2
3

n f β0 Ci n f =
33
2

1) Due to the , to remove the -dependent terms from the coefficients  is equivalent to set .
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κ2,3,4
µr ∈ [MH/2,2MH] 0 13%
4.8% 1.0% κ2 κ3 κ4

cerning the conventional series, as shown in Fig. 2, there
are  crossovers  for  within  the  range  of

,  and  the  ratios  vary  from  to ,
, and  for , , and , respectively.

ΓO(α6
s )

2 3

4

Moreover, to show the convergence of the perturbat-
ive  series  explicitly,  we  present  the  magnitude  of  each
loop  term  for  the  four-loop  approximants  in
Table 2, which shows that the relative importance of the
LO-terms:  NLO-terms:  N LO-terms:  N LO-terms:
N LO-terms for the conventional series is 

1 : +53.3+13.5
−16.7% : +6.6+15.7

−16.4% : −4.0+6.9
−2.1% : −1.6+0.6

−2.7%,

µr = MH

µr ∈ [ 1
2 MH ,2MH]

where  the  central  values  are  those  for ,  and  the
errors  are  those  for . The  scale  depend-

(+0.6%
−0.3%)

µr ∈ [ 1
2 MH ,2MH]

∞
ΓO(α6

s )

2 3 4

ΓO(α6
s ) ∞

∞

2 3

4

ence for  each loop term is  large.  However,  owing to the
cancellation of scale dependence among different orders,
the  net  scale  dependence  is  small,  e.g.,  for

.  In contrast,  there is no renormalization
scale  dependence  for  each  loop  term  of  the  PMC  pre-
diction .  More explicitly,  we also present the value
of each loop-term (LO, NLO, N LO, N LO, or N LO)
for  under  the  PMC  approach  in Table  2.  At  the
four-loop level, the PMC  series already represents good
convergent  behavior,  and  the  relative  importance  of  the
LO-terms:  NLO-terms:  N LO-terms:  N LO-terms:
N LO-terms becomes 

1 : +31.8% : −14.0% : −6.5% : +1.0%,

∞
Γ(H→ gg)

whose magnitudes are scale invariant,  indicating that the
PMC  perturbative series represents the intrinsic perturb-
ative  behavior  of .  For  comparison,  we  also
show  the  numerical  results  under  the  PMC  multi-scale
approach (PMCm) in Table 2, which still has some resid-
ual  scale-dependence.  However,  its  numerical  effect  is
smaller  than  that  of  the  conventional  approach.  Detailed
formulas  for  the  PMCm  approach  can  be  found  in  Ref.
[22].

αs

∆αs(MZ)
∆MH ∆Mt

α6
s

Now, after  eliminating the renormalization scale am-
biguities,  there  are  still  some  other  error  sources  for  the
pQCD prediction of the total decay width, such as the 
fixed-point  error ,  the  Higgs  mass  uncertainty

,  and the  top-quark pole  mass  uncertainty .  Up
to -order, we have 

Γ(H→ gg) κn ∞

∞

µr = MH µr ∈ [MH/2,2MH].

Table 1.    Results for the decay width  (unit: keV) and  for different loop corrections under conventional and PMC  scale-
setting approaches,  respectively.  The NLO and higher order PMC  predictions are scale independent,  while,  under the conventional
scale-setting approach, the central values are those for , and the errors are those for 

n = 2 n = 3 n = 4 n = 5 n = 6 κ1 κ2 κ3 κ4

ΓO(αn
s ) |Conv. 219.86+54.05

−39.50 335.46+41.34
−38.59 349.71+2.52

−13.68 340.95+1.00
−7.67 337.45+1.94

−1.18 [38%,65%] [0,13%] [0,4.8%] [0,1.0%]

ΓO(αn
s ) |PMC∞ 219.86+54.05

−39.50 389.86 342.09 334.05 336.42 [53%,95%] 12% 2.4% 0.7%

 

Γ(H→ gg)

O(α2
s ) O(α3

s ) O(α4
s ) O(α5

s )

O(α6
s )

Fig. 1.    (color online) Decay width  under conven-
tional  and  PMC  scale-setting  approaches,  respectively.  The
solid line with big dot, dash-dot line, dotted line, dashed line,
and solid line are predictions up to , , , ,
and , respectively.

 

κn

µr

∞

Fig.  2.    (color online) Results  for  the  ratio  versus renor-
malization scale  under conventional scale-setting approach
for  different  loop  corrections.  The  ratios  under  PMC  ap-
proach are scale invariant.
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Γ(H→ gg)|Conv. = 337.45+6.27+1.21+0.02
−6.20−1.21−0.02 keV, (12)

 

Γ(H→ gg)|PMC∞ = 336.42+6.21+1.22+0.03
−6.14−1.20−0.01 keV, (13)

∆αs(MZ) = ±0.0009
Λ

n f=5
mMOM = 362.0+36.6

−18.0 ∆MH = ±0.17
∆Mt = ±0.7

µr = MH

where  the  errors  are  (which  leads  to
 MeV),  GeV,  and

 GeV,  respectively.  Here,  the  conventional
predictions are achieved by fixing .

∞

∞
MH exp(−5/6) ∼ 54

n+1th ∞ µn

∞
µn−1 µn ∈ [µn−1/2,2µn−1] ∆ΓO(αi+1

s )|PMC∞ =

± M3
HGF

36
√

2π
|Ci,Confai+2

s (µi+1)|MAX i = I, II, III, IV,V
∆ΓO(α2

s )|PMC∞ =

±2.99 ∆ΓO(α3
s )|PMC∞ = ±1.80 ∆ΓO(α4

s )|PMC∞ =

±1.25 ∆ΓO(α5
s )|PMC∞ = ±0.47 ∆ΓO(α6

s )|PMC∞ = ±
0.09

{57,27,6,5}
∆ΓO(α6

s )|PMC∞ 5

±11.98 ±4.60 ±1.40 ±0.73
±0.14

{10,3,6,5}
∆ΓO(α6

s )|Conv. 5
∞

Ck

αs

Using  the  PMC  approach,  the  PMC  scales  at  each
order  are  no  longer  evaluated  as  a  perturbative  series,
thus avoiding the first type of residual scale dependence.
As  mentioned  above,  all  the  PMC  scales  are  around

 GeV,  so  the second  type  of  residual
scale dependence is small owing to the convergent beha-
vior at higher orders. As a further step of making a con-
servative estimation on the contributions from the uncal-
culated -order  terms,  we set  its  PMC  scale  to
be within the region of the latest determined PMC  scale

,  e.g., ,  and  set 
 with , re-

spectively.  Numerically,  we  obtained 
 keV,  keV, 
 keV,  keV, and 

 keV. Note that the estimated errors may underestim-
ate  the  contributions  listed  in Table  1,  which  need to  be
multiplied by , respectively. Thus, the numer-
ical results for  need to be multiplied by  as
analogy. Similarly, one can obtain the corresponding val-
ues for the conventional scale-setting approach, which are

 keV,  keV,  keV,  keV,  and
 keV,  respectively.  To  match  the  center  values

shown in Table  1,  these values  need to  be multiplied by
.  Moreover,  the  numerical  results  for

 need to be multiplied by  as analogy. Those
values are slightly larger than those of PMC   owing to a
larger perturbative coefficient  than the conform coef-
ficient at each order, even if it is compensated by a smal-
ler  value.

H→ gg α6
s

As a summary, we have presented a detailed analysis
of the Higgs-boson decay  up to -order, and we
obtain 

Γ(H→ gg)|Conv. = 337.45+6.67
−6.43 keV, (14)

 

Γ(H→ gg)|PMC∞ = 336.42+6.33
−6.26 keV, (15)

∆αs(MZ) ∆MH ∆Mt

[MH/2,2MH]
∆αs(MZ)

αs(MZ)
∆αs(MZ)

where  the  errors  are  squared  averages  of  those  from
, , , and  the  uncertainty  of  the  renor-

malization  scale  within  the  region  of .  The
errors are dominated by , followed by the choice
of  renormalization  scale  and  accuracy  of  Higgs  mass.  If
the value of  can be measured accurately to avoid
the error from , we will obtain 

Γ(H→ gg)|Conv. = 337.45+2.29
−1.69 keV, (16)

 

Γ(H→ gg)|PMC∞ = 336.42+1.22
−1.20 keV. (17)

H→ gg
∞

4

∞

1% µr

[ 1
2 MH ,2MH] ∞ αs

The Higgs-boson decay  provides another suc-
cessful  example  for  the  application  of  the  PMC  scale-
setting  method  to  high-energy  processes.  Up  to  N LO
QCD  corrections,  the  pQCD  predictions  under  PMC
and  conventional  scale-setting  approaches  are  consistent
with each other. However, the conventional renormaliza-
tion scale  uncertainties  are  still  sizable,  i.e.,  approxim-
ately  when varying the renormalization scale  with-
in the range of .  By applying PMC , the 
values at lower orders are definitely fixed by the require-
ment of  intrinsic  conformality,  the  conventional  renor-
malization scale ambiguity is eliminated, and the residual
scale dependence from the original PMC multi-scale-set-
ting  approach  is  also  highly  suppressed.  Thus,  a  more
precise test of the SM can be achieved. 

∞ α6
s

APPENDIX: CONFORMAL COEFFICIENTS AND
PMC  SCALES UP TO -ORDER LEVEL

∞

Γ(H→ gg)

Applying  the  PMC  scale-setting  approach  together
with the general "degeneracy" pattern of the QCD theory
[36], the perturbative series of the decay width 
under the mMOM-scheme is 

2 3 ΓO(α6
s )

∞ ∞

µr = MH
µr ∈ [MH/2,2MH].

Table 2.    Values (unit: keV) of each loop-term (LO, NLO, N LO, and N LO) for the four-loop prediction  under the conven-
tional,  PMC  scale-setting,  and PMCm scale-setting approaches,  respectively.  The PMC  predictions  are  scale  independent,  while,
under  the  conventional  and  PMCm  scale-setting  approaches,  the  central  values  are  those  for ,  and  the  errors  are  those  for

LO NLO N2LO N3LO N4LO Total

ΓO(α6
s ) |Conv. 218.66−40.95

+57.39 116.62+2.08
−15.59 14.44+25.23

−41.60 −8.70+13.84
−8.02 −3.57+1.74

+6.64 337.45+1.94
−1.18

ΓO(α6
s ) |PMC∞ 299.57 95.22 −41.82 −19.59 3.04 336.42

ΓO(α6
s ) |PMCm +0.96

−0.24289.83 −0.51
+0.2991.19 − +0.30

−0.1131.78 −13.36 1.92 +0.75
−0.06337.80
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Γ(H→ gg) =
M3

HGF

36
√

2π

[
AConfa2

s(µr)+
(
BConf +2AConf Bβ0

β0
)
a3

s(µr)+
(
CConf +3BConfCβ0

β0+3AConf B2
β0
β2

0

+2AConf Bβ0
β1

)
a4

s(µr)+
(
DConf +7AConf B2

β0
β1β0+4CConf Dβ0

β0+6BConfC2
β0
β2

0+4AConf B3
β0
β3

0

+2AConf Bβ0
β2+3BConfCβ0

β1

)
a5

s(µr)+
(
EConf +8AConf B2

β0
β2β0+

27
2

BConfC2
β0
β1β0+5DConf Eβ0

β0

+
47
3

AConf B3
β0
β1β

2
0+10CConf D2

β0
β2

0+10BConfC3
β0
β3

0+5AConf B4
β0
β4

0+2AConf Bβ0
β3+3BConfCβ0

β2

+4AConf B2
β0
β2

1+4CConf Dβ0
β1

)
a6

s(µr)
]
+O[a7

s(µr)]. (A1)

∞

Γ(H→ gg) α6
s

To compare Eq. (1) with Eq. (18), one can systemat-
ically  determine  the  conformal  coefficients  and  PMC
scales for  up to the -order level as follows:
 

AConf =C0, (A2)

 

BConf =C1

(
n f =

33
2

)
, (A3)

 

CConf =C2

(
n f =

33
2

)
−2AConf Bβ0

β̄1, (A4)

 

DConf =C3

(
n f =

33
2

)
−2AConf Bβ0

β̄2−3BConfCβ0
β̄1,

(A5)

 

EConf =C4

(
n f =

33
2

)
−2AConf Bβ0

β̄3−3BConfCβ0
β̄2

−4AConf B2
β0
β̄2

1−4CConf Dβ0
β̄1

(A6)

and
 

ln
µ2

r

µ2
I

=
C1−BConf

2AConfβ0
, (A7)

ln
µ2

r

µ2
II

=
C2−CConf −3AConf B2

β0
β2

0−2AConf Bβ0
β1

3BConfβ0
, (A8)

 

ln
µ2

r

µ2
III

=
C3−DConf −7AConf B2

β0
β1β0−6BConfC2

β0
β2

0−4AConf B3
β0
β3

0−2AConf Bβ0
β2−3BConfCβ0

β1

4CConfβ0
, (A9)

 

ln
µ2

r

µ2
IV

=(C4−EConf −8AConf B2
β0
β2β0−

27
2

BConfC2
β0
β1β0−

47
3

AConf B3
β0
β1β

2
0−10CConf D2

β0
β2

0−10BConfC3
β0
β3

0

−5AConf B4
β0
β4

0−2AConf Bβ0
β3−3BConfCβ0

β2−4AConf B2
β0
β2

1−4CConf Dβ0
β1)/5DConfβ0, (A10)

β̄1 = β1(n f =
33
2

) = −107 β̄2 = β2(n f =
33
2

) = −2001.29 Ckwhere , , and  are the perturbative coefficients.
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