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In this work we develop a re-formulation of quantum field theory through the more general weighted 
measures that the definition of quantum fields allows, and that violate explicitly the Lorentz symmetry; 
this approach provides finite answers for the long-live problems of the traditional formulations of 
quantum field theories, namely, smooth distributions for the field commutators that are finite a 
short distances, finite vacuum expectation values for the energy (without invoking normal ordering of 
operators), and finite fluctuations for the field operators. We shall show that the present scheme will 
allow us to construct an infinite family of noncommutative field theories that are compared with other 
formulations. Our regularization scheme breaks down for a massless field, which will be considered in 
future explorations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Antecedents, motivations, and results

The origin of the divergences in QFT can be traced to the construction of the canonical commutation relations for the quantum 
fields and the requirement of Lorentz symmetry; hence, the creation of a finite quantum field theory would require the modification of 
the former and/or the abandonment of the later. Many different theoretical frameworks have been developed by exploring the Lorentz 
symmetry breaking as a quantum field theory regulator; additionally this idea is largely motivated by the theoretical predictions coming 
from quantum gravity and string theory frameworks, namely, that the Lorentz symmetry is not an exact symmetry at high energies (see 
for example [1], and [2]). Furthermore, the canonical commutation relations for quantum fields can be modified by the appearance of non-
commutative spaces in string theory frameworks, and recent developments in non-commutative quantum mechanics [3–5]; the resulting 
theories violate relativistic invariance, but they suffer still of ultraviolet divergences (see for example [6]); hence the problem is far from 
to be solved.

In this manuscript we discuss whether actually the quantum gravity and/or string theory inspired frameworks are necessary for pro-
viding the clues for a finite quantum field theory; rather, we shall show that the conventional scheme may have the seeds for the possible 
creation of finite quantum field theories; the key observation is that the canonical hypothesis of promoting the commutation relations 
(of the dynamical variables) in quantum mechanics, to the commutation relations (for the dynamical variables) in quantum field theory, 
through the transition to the continuum through δi j → δDirac(�x − �y), allows to incorporate smooth distributions that will lead to smooth 
away the singularities that originate the divergences; this is achieved by introducing Lorentz-breaking weighted measures. As we shall 
see, the Dirac delta function is only one element (in fact the only divergent one in all dimensions that respects the Lorentz symmetry) 
of an infinite family of distributions available for describing finite quantum field theories, and thus we shall be able to construct the field 
commutators in terms of smooth distributions that will maintain the symmetries of the Dirac delta function, but will be also dependent 
on the background dimension, on the mass, and will be finite at short distances (section 2.1).

Once we have regularized the field commutators, the consequence direct is the regularization of the vacuum energy (section 3), one of 
the most famous long-live problems of quantum field theory; our regularization scheme does not require to invoke the normal ordering of 
operators for extracting the infinite vacuum energy, and thus it is consistent with general relativity. Additionally the vacuum expectation 
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values for field operators, their fluctuations at fixed points, will be finite, as opposed to the traditional belief (section 4). We finalize the 
manuscript with some concluding remarks, on some extensions and future developments of our results.

As preliminary element, we recall that quantum field theories are constructed by imposing the canonical relations used in ordinary 
quantum mechanics, namely,

[xi, p j] = iδi j, (1)[
xi, x j] = 0, [pi, p j] = 0, (2)

on the field commutation relations, by considering the transition to the continuum δi j → δ(�x − �y). For concreteness, for a complex scalar 
field we have

[ψ̂(�x), �̂ψ (�y)] = iδ(�x − �y); (3)[
ψ̂(�x), ψ̂†(�y)

] = 0,
[
�̂ψ(�x), �̂†

ψ(�y)
] = 0; (4)[

ψ̂(�x), �̂†
ψ(�y)

] = 0; (5)

where �̂ψ stands for the conjugate momentum for ψ ; these relations are evaluated at the same time, at different spatial locations �x, and �y. 
These commutation relations described by Dirac delta functions are valid for arbitrary background dimensions, apply indistinctly for the 
massless or massive case, and are divergent at short distances (�x − �y) → 0; by depending on the difference (�x − �y), they are translational 
invariant and symmetric under (�x − �y) → −(�x − �y). In the next section, we smear the field commutator (3) over space, by relaxing 
the transition to the continuum through δi j → D(�x − �y), where D(�x − �y) is a smooth distribution that will be obtained by choosing all 
convergent Lorentz-breaking measures in the momenta space that the definition of field operators admits; this simple criterion will allow 
construct the infinite family of distributions commented above.

2. Weighted measures with broken Lorentz symmetry

We study for simplicity a complex scalar field in D + 1 dimensions with Lagrangian L = ∂μϕ∂μϕ − m2ϕϕ , with equations of motion 
given by (� + m2)ϕ = 0; our results with global U (1) symmetry can be generalized to local U (1) gauge symmetry in a direct way. With 
the decompositions for the quantum field and its conjugate momentum,

ϕ̂(�x, t) = 1√
2
√

(2π)D

∫
d�k
w

s
2
k

[
âke−iwktei�k·�x + b̂†

keiwkte−i�k·�x]; (6)

π̂ (�x, t) = i√
2
√

(2π)D

∫
d�k

w
s
2 −1
k

[
â†

keiwkte−i�k·�x − b̂ke−iwktei�k·�x]; (7)

the equations of motion are satisfied provided that the (Lorentz invariant) dispersion relation w2
k = m2 + �k2 holds; the weight s of the 

measure 
∫ d�p

w
s
2

k

is in general a real quantity. Typically with the choice s = 1, one is enforcing the transition to the continuum with 

[ϕ̂, π̂ ] → δ(�x − �y), respecting the Lorentz symmetry. Now, the expression (w2
k)s = (m2 + �k2)s breaks explicitly the Lorentz symmetry; as a 

function on s can be expanded around s = 1,

(w2
k )s = (m2 + �k2)s = (m2)s(1 +

�k2

m2
)

+∞∑
n≥0

(s − 1)n lnn(1 + �k2

m2 )

n! ; (8)

as we shall see, by sacrificing the Lorentz invariance for arbitrary s, we shall be able to construct finite quantum field theories. In 
order to gain insight into the physical content of the above expression, we consider as an example the case with s = 2; with the IR 
restriction �k2

m2 < 1, one has the approximation ln
(

1 + �k2

m2

)
≈ �k2

m2 , and the sum reduces to an exponential function on �k2

m2 , and thus, 

(w2
k )2 ≈ (m4 + m2�k2)e

�k2

m2 . Moreover, for the same IR approximation, but for s arbitrary, the expression will have the form (w2
k )s ≈ (m2)s +

s(m2)s−1�k2 + (s − 1)(m2)s−2�k4 + · · · .
Furthermore, the (nonvanishing) commutation relations for the annihilation/creation operators read

[âk, â†
k′ ] = αδ(k − k′), [b̂k, b̂†

k′ ] = βδ(k − k′), (9)

where α and β are real parameters, and will play a nontrivial role in the approach at hand; the traditional choice α = 1 = β is only a 
possible election. In fact our present criticism on the textbook statements includes the commutation relations between annihilation/cre-
ation operators, but we restricted ourselves to the deformation described in (9), and we shall develop a more general deformation scheme 
elsewhere.

With the commutators (9), the general transition will be achieved through [ϕ̂, π̂ ] → Ds(�x − �y), where Ds are smeared versions of the 
Dirac delta, that will depend on the mass, on the spatial interval, and are finite to short distances; for arbitrary dimension, the nontrivial 
commutators read
2
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[
ϕ̂(�x, t), π̂ (�x′, t)

]
= i(α + β)

2(2π)D

∞∫
−∞

d�k
ωs−1

k

cos
(�k · (�x − �x′)

)
; (10)

[
ϕ̂(�x, t), ϕ̂†(�x′, t)

]
= (α − β)

2(2π)D

∞∫
−∞

d�k
ωs

k

cos
(�k · (�x − �x′)

)
; (11)

[
π̂ (�x, t), π̂ †(�x′, t)

]
= − (α − β)

2(2π)D

∞∫
−∞

d�k
ωs−2

k

cos
(�k · (�x − �x′)

)
; (12)

[
ϕ̂(�x, t), π̂ †(�x′, t)

]
= 0; (13)

the last vanishing commutator is due to the trivial commutators [â, ̂a] = 0 = [b̂, ̂b], and it corresponds to the commutator (5); furthermore, 
with the choice s = 1, and the election α = 1 = β , one defines the traditional scheme with 

[
ϕ̂, π̂

] = iδDirac , and 
[
ϕ̂, ϕ̂†

] = 0 = [
π̂ , π̂ †

]
; 

note that with this choice of parameters, one decides which commutator is nontrivial, and then the commutation relations (3)-(5) are 
reproduced. However, this is only an election, since one can for example to choice α = 1 = −β , and thus 

[
ϕ̂, π̂

] = 0, and 
[
ϕ̂, ϕ̂†

] 
= 0 
=[
π̂ , π̂ †

]
, which corresponds certainly to an atypical version for quantum field theory.

Therefore, if in general α 
= ±β , we have the more stringent version of the commutation relations (3)-(5), which will be nonvanishing, 
close in spirit to noncommutative quantum mechanics, in which the commutation relations (2) are precisely nonvanishing [3–5]. Hence, 
one can start with the initial idea of a transition to the continuum from the relations (1), and (2), to the relations (3)-(4), but one obtains 
at the end a more general version for quantum field theory, without invoking any breakthrough of the modern physics. In the same sense, 
if we look back, in the converse direction of that transition, then one can infer that a more stringent version for quantum mechanics there 
exists, in which the coordinates and momenta do not commute to each other.

We discuss in detail only the fundamental commutator (10); independently on the choice of the parameters α, and β , the integrals 
for the relations (11), and (12) can be developed along the same lines. Thus, in the expression (10), the value s = 1 corresponds to the 
usual Dirac delta in D dimensions; this general integral for s arbitrary will define the distributions Ds , that we shall determine explicitly 
in different dimensions. Note that the cases for s < 1 are evidently divergent, and we work with the restriction s ≥ 1, with the purpose 
of including the standard case s = 1 with Lorentz symmetry; as we shall see, the conventional description in terms of the Dirac delta 
distribution separates the infinite family of divergent theories, from the infinite family of (Lorentz-breaking) convergent ones constructed 
here. The k-integration in the general expression (10) must be determined explicitly for each dimension, and in principle it exists in 
arbitrary spacetime dimensions.

2.1. 3+1 QFT

On the other hand, in three spatial dimensions the commutator in spherical coordinates is written as

[
ϕ̂(�x, t), π̂ (�x′, t)

]
= (α + β)

2

i

2π2
∣∣��x∣∣

∞∫
0

dk
k sin (k

∣∣��x∣∣)(√
k2 + m2

)s−1 , (14)

where k =
√

k2
1 + k2

2 + k2
3; some solutions are [7],

s
[
ϕ̂, π̂

]
lim∣∣��x∣∣→0

[
ϕ̂, π̂

]
1 i 1

2π

δ(
∣∣��x∣∣)∣∣��x∣∣2 i∞

2 i m
2π2

∣∣��x∣∣ K1(m
∣∣��x∣∣) i

2π2
1∣∣��x∣∣2

3 i 1
4π

∣∣��x∣∣ e−m
∣∣��x∣∣ i

4π
1∣∣��x∣∣

4 i 1
2π2 K0(m

∣∣��x∣∣) − i
2π2 ln

m
∣∣��x∣∣
2

5 i 1
8πm e−m

∣∣��x∣∣ i
8π

1
m

6 i
6π2

∣∣��x∣∣
m K1(m

∣∣��x∣∣) i
6π2

1
m2

the convergence at short distances takes the form lim∣∣��x∣∣→0

[
ϕ̂, π̂

] ∼ α+β

ms−4 , with s ≥ 5; in contrast with the previous cases such a conver-
gence is achieved from s ≥ 4, for two spatial dimension, and from s ≥ 3 for one spatial dimension; in fact these results suggest that for 
a D + 1 space-time dimension, the convergence is achieved for s ≥ D + 2; additionally the logarithmic divergence is achieved just when 
the weight coincides with the spacetime dimension, s = D + 1. Such a coincidence allows, in particular, to choice the function K0 as the 
common expression for the field commutator in all dimensions. General expressions for the integrals (14) for every s are available in the 
literature [7].
3
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3. Finite observables

We construct now the Hamiltonian, momentum and charge operators; we start from their classical form

H =
∫

dD x
(
π∗

ϕπϕ + ∇ϕ∗ · ∇ϕ + m2ϕ∗ϕ
)

, (15a)

Q = i

∫
dD x (ϕ†∂0ϕ − ∂0ϕ

†ϕ), (15b)

Pi = −i

∫
dD x (πϕ∂iϕ + πϕ†∂iϕ

†); (15c)

as it is well known, the quantization ambiguities imply that one has that to choice the order in which the commuting classical quantities 
will be promoted to operators; for example, if one considers symmetrized classical expressions such as π∗

ϕπϕ = 1
2 π∗

ϕπϕ + 1
2 πϕπ∗

ϕ , then the 
operator versions of the observables read

Ĥ =
∫

dDk ω2−s
k

[
â†(�k)â(�k) + b̂†(�k)b̂(�k)

]
+ α + β

2

LD

(2π)D

∫
dDk ω2−s

k︸ ︷︷ ︸ (16a)

Q̂ =
∫

dDk ω1−s
k

[
â†(�k)â(�k) − b̂†(�k)b̂(�k)

]
+ α − β

2

LD

(2π)D

∫
dDk ω1−s

k︸ ︷︷ ︸, (16b)

P̂ i =
∫

dDk
ki

ωs−1
k

[
â†(�k)â(�k) + b̂†(�k)b̂(�k)

]
+ α + β

2

LD

(2π)D

∫
dDk ki ω1−s

k︸ ︷︷ ︸
=0

, (16c)

where we have confined the system in a box with sides of length L. The above expressions have been obtained by using the commuta-
tors (9), by locating the annihilation operators to the right hand side, without invoking normal ordering; in the approach at hand, the 
potentially divergent integrals can be controlled by choosing appropriately the weight s, and then they will be finite.

With the usual definition of the vacuum, â(k) |0〉 = 0 = b(k) |0〉, the first terms with the annihilation operators located to the right hand 
side vanish trivially. Therefore, the action of the observables on the vacuum state is determined by the terms in underbrace, which are 
potentially divergent, depending on the choice of the parameters α, β , and the weight s; for the momenta (16c) such an integral vanishes 
trivially for all dimensions, because the integrand is an odd function on ki . Furthermore, the choice α = β will lead a neutral vacuum, and 
to a nontrivial vacuum energy; conversely, the choice α = −β will lead to a vanishing vacuum energy, and to a nontrivial vacuum charge. 
Hence, if one imposes the constraint α 
= ±β , then the vacuum will have both a nontrivial energy and a nontrivial charge; however in the 
present approach both quantities can be regularized, removing the UV divergences.

On the other side, if the transition to operators is made without using the symmetrization of classical expressions, but we use for 
example the expressions such as Eqs. (15), then the coefficients in the integrals in underbrace are simply α, or β; however, the key 
observation in the approach at hand is that such integrals are finite, and the normal ordering of operators is not invoked.

3.1. The vacuum energy is finite

This case includes the traditional values α = 1 = β , that together with the choice s = 1 lead to a neutral vacuum state Q̂ |0〉 = 0, and 
with ultraviolet divergences for Ĥ ; this represents the first famous result of QFT, an infinite energy for the vacuum, which is removed by 
invoking normal ordering of operators; as we shall see, this procedure is not required in the present scheme.

In the approach at hand the zero-point energy reads,

Ĥ |0〉 = (α + β)LD

2(2π)D

∫
dDk(√

|�k|2 + m2

)s−2
|0〉 ≡ (α + β)LD

2(2π)D
H0 |0〉 . (17)

In the next table we show some values for the integral H0;

s H0,D=1 H0,D=2 H0,D=3

1 ∞ ∞ ∞
2 ∞ ∞ ∞
3 ln k

m ∞ ∞
4 π

m ln |�k|
m ∞

5 2
m2

2π
m ln |�k|

m

6 π
2

1
m3

π
m2

π2

m

the first row with s = 1 is justly the traditional divergent case, valid for all dimensions; this result is replicated for the case s = 2. In 
general for D + 1 space-time dimensions, the vacuum energy is finite from s ≥ D + 3, and takes the form α+β

ms−D−2 ; therefore, one can 
extend the table to the right and below, since the diagonals have basically the same form. In particular the diagonal with logarithmic 
4
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divergences is obtained with the approximation m
k � 1 as k → ∞ after the integration. Therefore, the general conclusion is that one 

chooses whether the vacuum has or not an infinite energy; for a spacetime dimension given, there exist in fact an infinite number of 
values for s leading to finite values for the vacuum energy; see the Eqs. (34), and (35) below for some numerical examples.

Classically the potential for the complex field ϕ coming from the Lagrangian defines a paraboloid, namely V (ϕ, ϕ̄) = m2ϕϕ̄ = m2(ϕ2
1 +

ϕ2
2), whose lowest energy level implies that ϕ = 0, i.e. the bottom of such a paraboloid. According to the table, the vev for the energy 

does not vanish (and in general does not diverge), rather it is finite and is defined in terms of the mass. This result can be considered as 
the analogous of the well known result for a quantum harmonic oscillator, whose potential energy is defined as V (x) = 1

2 ω2x2; classically 
the vacuum is the state in which the particle is motionless, with x = 0; however, quantum-mechanically the lowest energy state has an 
energy E0 = 1

2 h̄ω. This zero-point energy was fundamental for recovering, at the Einstein time, the expected classical limit for the average 
energy of an oscillator in thermal equilibrium at temperature T ; specifically such a limit is obtained by expanding the Planck formulae 
E w = h̄ω

eh̄ω/kT −1
+ 1

2 h̄ω, in the classical limit kT � h̄ω; for more details on this issue and its relationship with the cosmological constant 
problem see [8]. As well known, there no exists in the traditional scheme, an analogous result due to the divergence of the vev for the 
energy; furthermore, as we shall see in the section 4, the vev for the quantum field itself, will not diverge.

Furthermore, for the excited states of the quantum harmonic oscillator, obtained from the repeated action of the creation operator on 
the vacuum, |n〉 ≡ (â†)n |0〉, we have the very known eigen-energy expression Ĥ |n〉 = (n + 1

2 )h̄ω |n〉, and then the system has a ladder of 
energy states. In our case, we have a similar situation, by considering the excitations of the field; if â† |0〉 ≡ |ka〉 and b̂† |0〉 = |kb〉 are single 
excited states, then it is straightforward to construct the following energy eigenstates,

Ĥ |ka〉 = [ α

ωs−2
ka

+ α + β

2

LD

(2π)D
H0

] |ka〉 ,

Ĥ |kb〉 = [ β

ωs−2
kb

+ α + β

2

LD

(2π)D
H0

] |kb〉 ; (18)

where the vacuum energy H0 = H0(m; s) is described above in the table; thus, these one-particle states have excitation energies α

ωs−2
ka

, and 
β

ωs−2
kb

in relation to the vacuum energy. These single expressions can be generalized for multi-particle eigen-states with n a-bosons excited, 

and with m b-bosons excited, in any order,

Ĥ
∣∣k1

a , , ,kn
a;k1

b, , ,km
b

〉 = [
α

n∑
i=1

(
1

ωki
a

)s−2 + β

m∑
i=1

(
1

ωki
b

)s−2 + α + β

2

LD

(2π)D
H0

] ∣∣k1
a , , ,kn

a;k1
b, , ,km

b

〉 ; (19)

hence, the energy of this eigen-state is given by the sum of the energies of the various particles. Additionally these energy eigen-states 
are also eigen-states for the number operators, which are defined as usual,∫

d�kâ†(�k)â(�k)
∣∣k1

a , , ,kn
a;k1

b, , ,km
b

〉 = nα
∣∣k1

a , , ,kn
a;k1

b, , ,km
b

〉
,

∫
d�kb̂†(�k)b̂(�k)

∣∣k1
a , , ,kn

a;k1
b, , ,km

b

〉 = mβ
∣∣k1

a , , ,kn
a;k1

b, , ,km
b

〉 ; (20)

which count effectively the number of particles of each type in the multi-particle states.
In the traditional scheme the normal ordering implies to forget (for a moment) the fundamental commutators (9) for extracting an 

infinite vacuum energy; however, in order to construct a nontrivial quantum field theory, one must restore those commutators, and then 
one does not use normal ordering for constructing the eigenstates for the Hamiltonian and for the number operators. This ambiguity has 
darkened the traditional formulation of quantum field theory, as opposed to the approach at hand, in which the fundamental commutators 
(9) are maintained always switched on, namely, for constructing finite vev for the observables, and for the building of the multi-particle 
eigen-states described above.

4. The vev for the field operator is finite

One consequence of the usual choice s = 1 is the inexistence of normalizable states; with the conventional definition of the vacuum 
state â|0 >= 0 = b̂|0 >, one has that, < 0|ψ̂ψ̂†|0 >→ ∞; hence, the action of the field operators on the Hilbert space is not well defined. 
Since operators and expectation values normalize to delta functions in the usual formulation, one requires to construct well defined 
operators by smearing those singular distributions, which can be achieved by creating a wave-packet through 

∫
d�pe−ip·x f (p)â†|0 >, where 

typically the smearing function f is chosen as the Gaussian f = e−p2/2m2
; this procedure is of course as arbitrary as the smearing functions 

chosen, and this kind of arbitrariness also has darkened the traditional formulation of quantum field theory.
However, as expected at this point, the fluctuation of the field operator at a fixed point is in general finite for arbitrary weight s; 

explicitly we have for arbitrary dimension,

< 0|ϕ̂ϕ̂†|0 >= < 0|0 >

2(2π)D
α

+∞∫
−∞

d�k
ws

k

; < 0|ϕ̂†ϕ̂|0 >= < 0|0 >

2(2π)D
β

+∞∫
−∞

d�k
ws

k

; (21)

therefore,
5
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〈0|
(
ϕ̂(x)ϕ̂†(x) + ϕ̂†(x)ϕ̂(x)

)
|0〉 = < 0|0 >

2(2π)D
(α + β)

+∞∫
−∞

d�k
ws

k

;
(22)

this expression will lead to a similar table to that constructed for the vacuum energy above, for different values of the weight s and for 
different background dimensions.

5. On noncommutative field theory

The noncommutative version for the quantum mechanics of a harmonic oscillator, can be defined by the following commutation 
relations for the dynamical variables,

[qi, p j] = iδi j; [q1,q2] = iθ, [p1, p2] = iB; (23)

inspired by this noncommutative scheme, in [6] a noncommutative field theory is introduced by considering the transition to the contin-
uum through the following commutation relations for a complex scalar field,

[ψ̂(�x), �̂ψ (�y)] = iδ(�x − �y); (24)[
ψ̂(�x), ψ̂†(�y)

] = θδ(�x − �y),
[
�̂ψ(�x), �̂†

ψ(�y)
] = Bδ(�x − �y); (25)[

ψ̂(�x), �̂†
ψ(�y)

] = 0; (26)

which correspond to a generalization of the commutation relations (3)-(5). There is no a comment on the commutator (26) in [6], and we 
assume here that it vanishes in that approach; this vanishing commutator coincides with our commutator (13), which is a consequence 
of the trivial commutators [â, ̂a] = 0 = [b̂, ̂b]. In the approach [6], the parameters θ , and B measure the noncommutativity, and their 
phenomenological bounds are established; such bounds do not contradict the low-energy phenomena, and will have observable effects at 
high energies.

According to the Eqs. (10)–(13) of the present approach, the more stringent version of the noncommutative quantum field theory 
can be obtained with the restriction α 
= ±β . Since each commutator is defined with a different weight s, one can not to identify all 
commutators with the Dirac delta, such as in the above proposal; one can identify only one commutator with that distribution.

According to the previous results, in a four dimensional space-time, the first value for the weight s = 6 guarantees the convergence 
for the vacuum energy and for the vev’s of the field operators, which are of the form α+β

m , and α+β

m3 respectively; moreover, for the field 
commutators we have,

[
ϕ̂(�x, t), π̂ (�x′, t)

]
= i

α + β

2

|��x|
6π2m

K1(m|��x|); (27)

[
ϕ̂(�x, t), ϕ̂†(�x′, t)

]
= α − β

2

m|��x| + 1

32πm3
e−m|��x|; (28)

[
π̂ (�x, t), π̂ †(�x′, t)

]
= −α − β

2

e−m|��x|

8πm
; (29)[

ϕ̂(�x, t), π̂ †(�x′, t)
]

= 0. (30)

In fact, from s ≥ 6 there exists an infinite family of (finite) noncommutative quantum field theories in the more stringent version that 
can represent an alternative for the proposal given in [6]; we shall study in forthcoming works the phenomenological implications of our 
approach along the lines developed in that reference.

6. Particle physics numerology

In quantum field theory the energy scale is introduced through the commutators (9), and in the standard scheme, with the choice 
α = h̄ = β , the fundamental commutator reads 

[
ϕ̂, π̂

] ∼ ih̄δDirac . In the approach at hand, the parameters α and β can be chosen inde-
pendently, and in principle they define different energy scales; for simplicity we consider here that they define the same energy scale. In 
the system of units in which all fundamental quantities appear explicitly, we have that [α] = [β] = [h̄]/[T ]s−1, and hence these parameters 
will be adjusted according to the value of s; the choice s = 1 reproduces the traditional case. Therefore, we have a new timelike parameter 
encodes in α and β; this parameter can be identified with the corresponding time scale associated with the energy scale, and particularly 
it can be identified with the Planck time. If we call T such a parameter, then the vacuum energy can be rewritten as (neglecting factors 
like 2π, π2, etc., that appear in the tables),

H0(T , s) = mc2

( T
h̄ mc2)s−2

; (31)

where we have considered that in the new system of units m → mc
h̄ and wk → cwk; note that the quantity T

h̄ mc2 is dimensionless, 
and thus this expression is easily interpretable, since the vacuum energy turns out to be proportional to the rest energy of the field. 
Moreover, note that at quantum level, the particle has an effective mass mef f ec ≡ ( T

h̄ mc2)2−sm, which is different to that initially postulated 
at Lagrangian level.
6
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Let T
h̄ c2 ≡ 1

M be the inverse of the mass scale defined by T , then

H0(M, s) = mc2

( m
M )s−2

; (32)

therefore for masses above the mass scale m > M , the vacuum energy satisfies H0 < mc2, and conversely for the case m < M , one has 
that H0 > mc2; thus, in relation to the mass scale, the light masses will have a higher vacuum energy than those with heavy masses. 
In particular if m = M , then the vacuum energy will reduce to the energy that defines the scale, H0 = Mc2. This result is valid without 
reference to a mass scale, since we can compare the vacuum energy for two masses m1, and m2 (and for the same weight s),

H0(m2, s)

H0(m1, s)
=

(m1

m2

)s−3; (33)

thus, if m1 < m2, then H0(m1) > H0(m2).
The present scheme can be applied to estimate the vev for the energy of a neutral Higgs boson-like particle, which is realized by 

imposing that the field operator is Hermitian, thus b̂ = â, and α = β , and then we have a neutral field (see Eq. (16b)).
First we choice as scenario the energy scale for the strong interactions with M ≈ 1 Gev, and for the mass of the Higgs-like field the 

value determined experimentally for the Higgs boson, m ≈ 125 Gev; therefore, from Eq. (32),

H0

c2
≈ (125)3−s GeV ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

15 TeV, s = 1,

125 GeV, s = 2,

1 GeV, s = 3,

8 MeV, s = 4,

60 KeV, s = 5,

500 eV, s = 6,

(34)

since that m > M , the energy is decreasing as s → ∞; thus, if the value of this observable is determined experimentally, and such a 
value is below the mass of the Higgs-like particle, then one can to choose the appropriate value for s, and thus to set the corresponding 
quantum field theory. Note that, since there exist orders of magnitude between the values of the vev’s for the different values of s, the 
adjustment of s may require a fine tuning by using fractional values.

Another scenario of interest is the electroweak energy scale with M ≈ 246 Gev, and hence we have the following values for the vev’s 
of the energy for same Higgs-like particle of mass m ≈ 125 Gev, in order to compare with the previous table of values; in this case the 
vev’s are above the mass m, and they are increasing as s → ∞;

H0

c2
≈ 125(2)s−2 GeV ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

62 GeV, s = 1,

125 GeV, s = 2,

250 GeV, s = 3,

500 GeV, s = 4,

1 TeV, s = 5,

2 TeV, s = 6.

(35)

Note that between the first three values for the vev’s in the table (34), there exist orders of magnitude of difference, as opposed to the 
four first values in the table (35), which are approximately of the same order; along the same lines, one can compare the set of the 
vev’s of the last three values in both tables. Similarly one can compare the vev’s in both tables for the value s = 6, which applies for the 
four-dimensional case as the first value for finite observables; we realize that there exist ten orders of magnitude of difference.
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