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1 Introduction

One of the main outcomes of the swampland program (see [1–4] for reviews) is a renewed
interest in the exploration of regions at infinite distance in moduli space. A prominent tool
and motivation is the Distance Conjecture [5], which posits the existence of towers of particles
becoming exponentially light along trajectories reaching such infinite distance regions.

In theories with exact moduli spaces, such as the much studied case of 4d N = 2
supersymmetry, the exploration of infinite distances is possible using spacetime independent
scalar vevs. In this context there is a rich industry of various approaches and results,
including [6–19]. An interesting feature in theories with several scalars, in particular in
CY moduli spaces [6, 8, 9], is the existence of a rich network of infinite distance loci with
different components which in general intersect in non-trivial ways, and for which the Distance
Conjecture requires formulations including the interplay of multiple towers [15–19].

In the presence of general scalar potentials, however, the above adiabatic exploration
of infinite distances by constant vevs may result in inconsistencies [20] and may even be
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forbidden [21] (see [22] for a recent discussion). One is thus bound to the study of spacetime-
dependent solutions, as pioneered in [23] (see [17] for recent discussions, and [24, 25] for recent
time-dependent running solutions and the Distance Conjecture). In this context, there are
several classes of solutions describing scalars running to infinite field space distance at finite
spacetime distance. These include dynamical cobordisms [26–30] (see also [31–37] for related
early work and [20, 38–48] for other related recent developments), 4d EFT strings [49–51],
and small black holes [28, 47, 52, 53] (see [54] for the exploration of infinity in moduli space
using large black holes).

Dynamical cobordisms describe configurations of scalars running in one spacetime di-
mension, along which spacetime ends at finite distance when the theory hits a spacetime
singularity at which scalars run off to infinite field space distance [26, 27]. They can be
regarded as describing boundaries of spacetime at a codimension-1 end of the world (ETW)
brane, which provide a dynamical realization of the cobordism defects predicted by the
Cobordism Conjecture of [55] (see [56–67] for other applications). Interestingly, they admit a
universal local description introduced in [28] in terms of single parameter (dubbed critical
exponent), which moreover controls interesting scaling relations between the spacetime and
field theory distances in the solution.

A natural question is how to use running solutions to explore the network of infinite
distance limits in theories with multiple scalars. To achieve this goal, we consider the
generalization of the above configurations, by considering solutions which include different
spacetime regions at which different infinite distance limits are attained, and which intersect
in spacetime so as to allow the exploration of the intersection of components of the infinite
distance loci in field space. In particular we focus on the realization of this idea using
dynamical cobordisms as building blocks, and build a large class of explicit solutions describing
intersecting ETW brane configurations.

Intersecting ETW branes have further interesting interpretations in the light of other
swampland conjectures besides the Distance Conjecture. Being a key ingredient in dynamical
cobordism, they have a natural home in the Cobordism Conjecture [55]. Indeed, a configura-
tion of two intersecting ETW branes (ETW1 and ETW2) can be regarded as a dynamical
cobordism where the ETW2 brane defines a boundary for the configuration of the bulk theory
ending on the ETW1 (and viceversa), see figure 1a. In short, the intersection provides the
end of the world for end of the world branes.

A second cobordism interpretation for the intersecting ETW brane configurations, il-
lustrated in figure 1b, is as providing a domain wall between different boundaries, defined
by the ETW1 and ETW2 branes, for the same bulk theory. This is again in the spirit of
the Cobordism Conjecture, which implies that in quantum gravity theories there must exist
domain walls interpolating between any two configurations.

The full expicit solutions we construct have a remarkably simple structure, realizing a
superposition of the individual ETW branes, and are fully characterized by the individual
critical exponents. In fact we compute the source terms and find they correspond to localized
terms associated to the ETW brane tension and scalar couplings, with no additional source
terms localized at their intersection.

Our approach should be regarded as local near the intersection, in the spirit of [28],
and similarly leads to a universal scaling properties. We explore them in the context of
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Figure 1. Two possible cobordism interpretations of intersecting ETW branes: a) The ETW2 brane
defines a cobordism to nothing for the configuration of the bulk theory ending at the ETW1 brane
boundary. b)The bulk theory ends on a cobordism to nothing boundary which switches from and
ETW1 brane to and ETW2 brane.

versions of the Distance Conjecture in theories with multiple scalars, including the Convex
Hull formulation [15].

Although we do not expect our solutions to provide the most general intersecting ETW
brane solutions, we show that they include a rich set of physically relevant systems, such
as intersecting Witten’s bubbles of nothing [68] (see [69–72] for recent related systems) in
toroidal compactifications, or generalizations in compactifications in products of spheres,
possibly dressed with fluxes (and hence including D-brane sources at the ETW brane). The
setup also provides an arena for the actual exploration of the network of infinite distance
loci in CY moduli spaces, which will be discussed in [73].

For simplicity we mostly focus on configurations of two ETW branes intersecting or-
thogonally (see [29, 30, 32, 33] for other discussions of codimension-2 solutions), but also
present generalizations for more than two ETW branes, and for general angles. We also
compare our solutions with intersecting ETW branes associated to the same scalar, and show
the latter actually are better regarded as singular limits of a single recombined ETW brane.
This fits with the interpretation in [45] for a particular example with tachyon condensation
in supercritical strings.

A cosmological application of our solutions would be the description of collisions of
cosmological bubbles (see [74] for a review). It would be interesting to exploit our local
models to extract universal signatures of these phenomena. We leave the exploration of
phenomenological applications of our solutions to future work.

The paper is organized as follows. In section 2 we review the codimension-1 ETW brane
solution, following [28]. In section 3 we construct the intersecting ETW brane solutions and
discuss their properties. The ansatz and explicit solutions are constructed in section 3.1,
section 3.2 discusses the associated ETW brane worldvolume source terms, and in section 3.3
we describe the scaling properties of the class of solutions. Section 4 contains explicit
examples, including intersections of Witten’s bubbles of nothing in S1 × S1 compactifications
(section 4.1), and in Sp1 × Sp2 compactifications (section 4.2), ETW branes with charged
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D-brane defects (section 4.3), and the intersection of a bubble of nothing with a general ETW
brane (section 4.4). In section 5 we discuss the interplay with swampland constraints, including
the cobordism conjecture (section 5.1), the distance conjecture (section 5.2), including the
convex hull formulation in [15] and the infinite distance pattern in [18, 19]. Finally, we
offer some concluding remarks in section 6. Appendix A discusses several generalizations
and related systems, including intersections at general angles (section A.1), intersections
of more than two ETW branes (section A.2), and intersecting ETW branes with a single
scalar (section A.3)

2 Overview of codimension-1 ETW branes

In this section we overview the local description for codimension-1 ETW branes in [28].
Consider d-dimensional gravity coupled to a real scalar ϕ with general potential

S =
∫

ddx
√
−g

(1
2R − 1

2 (∂ϕ)2 − V (ϕ)
)

, (2.1)

Here and in the rest of this work we set MP l = 1 units and consider d > 2. The scalar may
correspond to a combination of underlying moduli/scalar fields.

The codimension-1 ETW brane solution has the structure

ds2
d = e−2σ(y)ds2

d−1 + dy2 ,

ϕ = ϕ(y) , (2.2)

As pioneered in [27], the dynamical cobordism is characterized by the scalar ϕ going off to
infinite distance in field space ϕ → ∞ at finite distance in spacetime y → 0. Imposing the
equations of motion, the local description near the ETW brane is

ϕ(y) ≃ −2
δ
log y

σ(y) ≃ − 4
(d − 2)δ2 log y + 1

2 log c , (2.3)

where the parameter δ describes the leading exponential behaviour of the potential

V (φ) = −aceδφ (2.4)

with c a free parameter and a is related to δ by

δ =
√

d − 1
d − 2(1− a) (2.5)

As explained in [28] the above solution leads to universal scaling relations among the
spacetime distance to the singularity ∆, the traverse scalar field space distance D and the
spacetime curvature scalar, in terms of the parameter δ:

∆ ∼ e−
1
2 δD, |R| ∼ eδD. (2.6)

A general warning, for these solutions and those in coming sections, is that at infinity
in field space one expects the theory to have a lowered cutoff, which limits the validity of
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the effective field theory. Indeed, the appearance of corrections at the species scale has been
discussed in small black holes in [53], and we may expect similar phenomena in ETW brane
solutions. Still, effective field theory remains a useful tool to describe the systems, and even
to quantify these corrections. Our solutions in this work should be understood in this spirit.

We now discuss a simple example of ETW brane, given by an analogue of the bubble of
nothing of S1 compactifications [68], with the role of the expanding bubble replaced by a
flat static wall of nothing (see [28] for the spherical bubble case).

We start with (d + 1)-dimensional gravity with an action

Sd+1 = 1
2

∫
dd+1x

√
−gR. (2.7)

We consider compactifying on S1 parametrized by θ, with the compactification ansatz

ds2
d+1 = eαρds2

d + e−βρdθ2. (2.8)

The parameters α, β are fixed by requiring the d-dimensional metric is in the Einstein frame,
and by fixing the normalization of the radion kinetic term. We have

β = (d − 2)α, α2 = 4
(d − 1)(d − 2) . (2.9)

The resulting d-dimensional action is

S = 1
2

∫
ddx

√
−g

[
R − (∂ρ)2] . (2.10)

The theory is like (2.1) with the scalar ϕ = ρ and zero potential, since S1 has no curvature.
It thus admits a solution of the kind (2.2), (2.3) with

δ = 2
√

d − 1
d − 2 . (2.11)

It is easy to uplift this solution and check that it corresponds to taking an S1 slicing of
(d + 1) dimensional flat space

ds2
d+1 = ds2

d−1 + dr2 + r2dθ2, (2.12)

with ds2
d−1 describing a flat metric along the ETW brane worldvolume, and r and y related by

y =
(

d − 2
d − 1

)
r

d−1
d−2 . (2.13)

We refer to [28] for other examples, some of which will be arise as building blocks in our
examples of intersecting ETW branes in section 4. We now turn to the general description
of codimension-2 intersections of ETW branes.
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3 Intersecting ETW branes

In this section we consider configurations describing the intersection of two ETW branes
of the kind considered in the previous section. As we will see, they remarkably satisfy a
simple superposition ansatz. This is reminiscent of the superposition of harmonic functions
for supergravity solutions of (suitably smeared) intersecting BPS branes, with the differences
that we do not require supersymmetry of the solutions, or even of the underlying theory,
and that our solutions are fully localized and require no smearing.

We note that we focus on solutions describing the local behaviour near the intersection.
The global structure in a general setup may differ in a model-dependent way. Hence, we
focus on the universal behaviour of the configurations, much in the spirit of [28] for the
codimension-1 case.

3.1 Codimension-2 ansatz and solutions

We consider the following (n + 2)-dimensional action for gravity coupled to two real scalars
with a general potential V (ϕ1, ϕ2):

S =
∫

dn+2x
√
−g

{1
2R − 1

2 (∂ϕ1)2 − 1
2 (∂ϕ2)2 − α

2 ∂ρϕ1∂ρϕ2 − V (ϕ1, ϕ2)
}

. (3.1)

Note that we have introduced a mixed kinetic term, which could be removed by diagonalization.
However, maintaining it will allow for a simpler solution for the scalar profiles. As in the
codimension-1 case in section 2, the scalars can be combinations of several moduli/scalar fields.

The above action is regarded as describing the theory around the infinite distance locus.
An important observation in this respect is that we are using a locally flat metric around
that point. Points at infinity are actually singular in general, but can admit such description
if one restricts to specific directions in field space. An illustrative example is provided by
considering two complex scalars Φ with Kähler potential

K = log(Φ1 +Φ1) + log(Φ1 +Φ2). (3.2)

Introducing the axion and saxion components Φi = φi + iti, the metric is given by two
decoupled hyperbolic spaces

1
t2
1

(
dt2

1 + dφ2
1

)
+ 1

t2
2

(
dt2

2 + dφ2
2

)
= dϕ2

1 + dϕ2
2 + e−2ϕ1dφ2

1 + e−2ϕ2dφ2
2, (3.3)

where we have introduced the canonically normalized saxion fields ϕi = log ti. Clearly, the
metric for the axions φi is singular at the infinite distance locus for ϕi → ∞. On the other
hand, restricting to solutions where the axions are inactive, the dynamics for the saxions is
controlled by flat metric kinetic terms. The action (3.1) should be understood as describing
such smooth slices around the infinite distance point.1

In order to solve the equations of motion for the above action, we consider the ansatz
for the metric:

ds2
n+2 = e2A(y1,y2)ds2

n + e2B(y1,y2)dy2
1 + e2C(y1,y2)dy2

2 , (3.4)
1More formally, in the formalism of [15], the smooth slice belongs to the subspace G spanned by asymptotic

tangent vectors of asymptotically geodesic trajectories.
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Figure 2. Intersection of two orthogonal ETW branes of type δ1 and δ2. Our solutions zoom into
the region near the intersection, denoted with a dashed curve.

and for the profiles of the two scalars:

ϕ1 = ϕ1(y1), ϕ2 = ϕ2(y2). (3.5)

A linear independent set of combinations of the equations of motion is

(1) e−2Cn
[
n
(
A′)2+A′ (B′−C ′)+A′′

]
+e−2Bn

[
n
(
Ȧ
)2

+Ȧ
(
Ċ−Ḃ

)
+Ä

]
=−2V,

(2) e−2C
[
−n

(
A′)2+(n−2)A′ (B′−C ′)+(n−2)A′′+2B′ (B′−C ′)+2B′′+

(
ϕ′

2
)2]+

+e−2B
[
−n

(
Ȧ
)2

+(n−2)Ȧ
(
Ċ−Ḃ

)
+(n−2)Ä+2Ċ

(
Ċ−Ḃ

)
+2C̈+

(
ϕ̇1
)2
]
=0,

(3) n
[
ȦB′−ȦA′+ĊB′−Ȧ′

]
= α

2 ϕ̇1ϕ′
2,

(4) e−2B
[(

nȦ−Ḃ+Ċ
)

ϕ̇1+ϕ̈1
]
+α

2 e−2C [(nA′+B′−C ′)ϕ′
2+ϕ′′

2
]
− ∂V

∂ϕ1
=0,

(5) e−2C [(nA′+B′−C ′)ϕ′
2+ϕ′′

2
]
+α

2 e−2B
[(

nȦ−Ḃ+Ċ
)

ϕ̇1+ϕ̈1
]
− ∂V

∂ϕ2
=0,

(3.6)

where we have introduced the notation ḟ ≡ ∂y1f , f ′ ≡ ∂y2f .
In particular, eq.(1) is proportional to the sum of the {y1y1} and {y2y2} components of the
Einstein equations. Eq.(2) is the {ij} component, using eq.(1) to eliminate the potential.
Eq.(3) is the mixed {y1y2}component, and eqs.(4) and (5) are the equations of motion
for the scalars.

We are interested in solutions describing intersecting ETW branes, with the requirement
that each scalar ϕi runs off to infinite distance in field space as it approaches the origin
in the coordinate yi it depends on; consequently both scalars diverge at the codimension-2
locus y1 = y2 = 0. This is depicted in figure 2.

Let us emphasize again that the solution is intended to be a local description near the
intersection point. Hence the center piece of figure 2 is meant to describe a local patch near
the intersection where this local description holds.
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A simple proposal for the solution to describe two intersecting ETW branes is that for
e.g. constant non-zero y2, one recovers a codimension-1 ETW brane solution (and similarly
for y1). Hence, the metric should be of the form (2.2). This is achieved if we impose an
additive structure in our warp factors

A(y1, y2) = −σ1(y1)− σ2(y2), B(y1, y2) = −σ2(y2), C(y1, y2) = −σ1(y1). (3.7)

Note that we have not included additive factors depending on y1 on B, or on y2 on C, since
they can be reabsorbed by redefining those coordinates. In fact, the above parametrization
makes the connection with (2.2) manifest. The metric (3.4) becomes

ds2
n+2 = e−2σ1−2σ2ds2

n + e−2σ2dy2
1 + e−2σ1dy2

2 , (3.8)

so that for e.g. in a constant non-zero y2 slice, the resulting (n + 1)-dimensional metric
is (up to a constant)

ds2
n+1 = e−2σ1ds2

n + dy2
1 (3.9)

with a running scalar ϕ1(y1), and ϕ2 remains constant along the slice. This is precisely
the structure of the local description of a codimension-1 ETW brane. Obviously, a similar
pattern holds for constant y1 slices. Motivated by this, we can propose logarithmic profiles
for the functions σi, ϕi:

σ1 = −a1 log y1 + 1
2 log c1, σ2 = −a2 log y2 +

1
2 log c2,

ϕ1 = b1 log y1, ϕ2 = b2 log y2, (3.10)

where c1 and c2 correspond to (subleading) constant terms related to the two independent
integration constants of the equations of motion.

Replacing these profiles in (3.6), we get the following constraints:

V = −1
2c1na1[ (n + 1)a1 − 1 ]y−2

1 y−2a2
2 − 1

2c2na2[ (n + 1)a2 − 1 ]y−2a1
1 y−2

2

≡ −c1v1y−2
1 y−2a2

2 − c2v2y−2a1
1 y−2

2

α = 2√a1a2

b2
i = nai (3.11)

Note the prefactors in the scalar potential, which are controlled by the constants ci in the
logarithmic ansatz (3.10). In the first equation, assuming a1, a2 ̸= 1, the potential splits in
two pieces with different dependence on y1, y2. We thus split

V = V1 + V2, V1 ∼ −c1v1 y−2
1 y−2a2

2 , V2 ∼ −c2v2 y−2a1
1 y−2

2 (3.12)

Note that the asymptotic behaviour of V fixes the values of a1, a2 and then there is no
freedom to change α. Hence this class of solutions requires a tuning of the mixed kinetic term
for the scalars. This may seem a strong restriction on the theory; however, starting from a
theory with e.g. no mixed terms, one can always redefine the scalars such that the appropriate
mixed term arises. Hence the above condition can be regarded as specifying in which basis of
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the scalar fields the solution takes the above simple form. Interestingly we will show that the
above set of solutions includes large classes of interesting examples, as we describe in section 4.

Using the above, we get

a1 =
1±

√
1 + 8v1

(
1 + 1

n

)
2(n + 1) , a2 =

1±
√
1 + 8v2

(
1 + 1

n

)
2(n + 1) (3.13)

In analogy with the codimension-1 ETW branes, we introduce the quantities δ1, δ2, such
that the local ansatz reads

V = V1 + V2 = −c1v1 eδ1ϕ1ea2δ2ϕ2 − c2v2 ea1δ1ϕ1eδ2ϕ2

ϕ1 = − 2
δ1

log y1, ϕ2 = − 2
δ2

log y2

σ1 = − 4
nδ2

1
log y1, σ2 = − 4

nδ2
2
log y2 (3.14)

This is the codimension-2 local description of intersecting ETW branes, which generalizes
the structure of the local description for codimension-1 ETW branes in [28]. The full solution
is determined by the critical exponents δi associated with the two individual ETW branes.
From the above equations, they are given by

δ2
1 = 8(n + 1)

n ±
√

n [n + 8v1(n + 1)]
, δ2

2 = 8(n + 1)
n ±

√
n [n + 8v2(n + 1)]

. (3.15)

Let us mention that our solution is even more general than what the derivation above
suggests. Indeed, if one starts from (3.4) and requires a general additive structure with
independent functions (i.e. beyond (3.7)) with general logarithmic profiles, the equations
of motion end up leading to the above solution. Hence, (3.7) can be regarded as a derived
structure, once the logarithmic profiles are imposed.

We incidentally note that the ansatz (3.8) is conformally flat, generalizing the situation
encountered in the codimension-1 case in section 2. This is easily shown by changing to
new coordinates x1, x2 such that

dy1 = e−σ1dx1, dy2 = e−σ2dx2 (3.16)

so that (3.8) becomes

ds2
n+2 = e−2σ1−2σ2 [ ds2

n + dx2
1 + dx2

2 ] . (3.17)

where σi are obviously regarded as functions of xi. Conformally flat codimension-2 solutions
have been discussed in setups with a single scalar e.g. in [33]. It would be interesting to
explore possible relations between the two setups.

For our purposes, the expression (3.17) will allow to generalize our solutions to ETW
branes intersecting at general angles in appendix A.1. In coming sections we restrict to
orthogonal intersections (3.8) for simplicity, the generalization being trivial.
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3.2 The sources

In this section we discuss the source terms that correspond to our above intersecting ETW
brane solutions, and check that they are just a superposition of source terms at y1 = 0 and
at y2 = 0 closely related to the source terms of codimension-1 ETW branes. In particular,
there is no further source term localized purely at the intersection y1 = y2 = 0. For simplicity
of the discussion, we focus on the case of zero scalar potential; the general case can be
worked out similarly.

We start with recovering the source term for the codimension-1 ETW brane solutions
following [30] (see also [29, 32, 71, 72]). We start with the d-dimensional action with a source
term describing the tension and coupling to the scalar of the ETW brane:

S =
∫

ddx
√
−g

[ 1
2R − 1

2 (∂ϕ)2
]
− λ

∫
dd−1x

√
−g̃ eα̃ϕδ(y), (3.18)

where now g̃ denotes the pullback of the d-dimensional metric g to the worldvolume of the
codimension-1 defect. Using the ansatz (2.2), the two equations of motion coming from the
variation with respect to the metric become:

{i, j} : 1
2ϕ′2 + (d − 1)(d − 2)

2 σ′2 − (d − 2)σ′′ + λeα̃ϕδ(y) = 0,

{y, y} : ϕ′2 − (d − 1)(d − 2)σ′2 = 0,

(3.19)

where the prime denotes derivation with respect to y. The variation of the action with
respect to the field ϕ gives:

ϕ′′ − (d − 1)ϕ′σ′ = α̃λeα̃ϕδ(y). (3.20)

Making the ansatz ϕ = −
√

d−2
d−1f(y) and σ = − 1

d−1f(y) automatically satisfies the {y, y}
equation of motion, and the remaining two equations read:

d − 2
d − 1

(
f ′2 + f ′′) = −λeα̃ϕδ(y),√

d − 2
d − 1

(
f ′2 + f ′′) = −α̃λeα̃ϕδ(y).

(3.21)

By direct comparison one can read off the value of α̃

α̃ =
√

d − 1
d − 2 . (3.22)

Setting now f(y) = log(h(y)) (with h(y) ≥ 0) this becomes

h′′

h
= −λ

d − 1
d − 2e− log hδ(y) ⇒ h′′ = −λ

d − 1
d − 2 δ(y) . (3.23)

Now we can integrate this over [0, x0) and take the limit x0 → 0. The left hand side
is just the discontinuity of h′. Using the solution to the equations of motion, for y < 0 we
take h = 1, so that f(y) = 0 and all fields vanish beyond the ETW brane, while for y > 0,
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h = y − y0, with y0 an integration constant (with y0 < 0 to have h(y) ≥ 0 near y = 0), which
we will eventually take to y0 → 0− to match our solution.

Then after the integration/limit we have:

1 = −d − 1
d − 2λ ⇒ λ = −d − 2

d − 1 . (3.24)

The negative tension of this ETW brane was already explicitly noticed in [30] (see also [72]),
for the physical choice of signs we have implicitly assumed in our solution.

We now turn to the intersecting ETW-brane solution, and show that codimension-1
sources of the kind studied above suffice to support the solution. We thus use a d-dimensional
action (and set d = n + 2) including sources of the following form:

S =
∫

dn+2x
√
−g

{1
2R − 1

2 (∂ϕ1)2 − 1
2 (∂ϕ2)2 − α

2 ∂ρϕ1∂ρϕ2

}
− λ1

∫
dn+1x

√
−g1eα11ϕ1+α12ϕ2δ(y1)− λ2

∫
dn+1x

√
−g2eα22ϕ2+α21ϕ1δ(y2) .

(3.25)

where gi, i = 1, 2 is the pullback of the metric on the worldvolume of the (n + 1)-dimensional
ETW branes. Note that we have not included a term δ(y1)δ(y2), as it is not necessary (in
fact, it is forced to be absent) in our solution.

The equations of motion arising from the variation of the above action are very similar to
those of (3.6), when appropriately replacing the potential with the source terms. Using the
ansatz (3.4) for the metric and the additive structure (3.7) for the warp factors, the equations
of motion coming from the variations of (3.25) with respect to the metric components are:

{i, j} : 1
2
[
e−2σ1

(
ϕ̇2

1 + n(n + 1)σ̇2
1 − 2nσ̈1

)
+ e−2σ2

(
ϕ′2

2 + n(n + 1)σ′2
2 − 2nσ′′

2

)]
+ λ1eα11ϕ1+α12ϕ2e−2σ1−σ2δ(y1) + λ2eα22ϕ2+α21ϕ1e−σ1−2σ2δ(y2) = 0,

{y1, y1} : 1
2
[
− ϕ̇2

1 + n(n + 1)σ̇2
1 + e2σ1−2σ2

(
ϕ′2

2 + n(n + 1)σ′2
2 − 2nσ′′

2
)]

+ λ2eα22ϕ2+α21ϕ1e−2σ2+σ1δ(y2) = 0,

{y2, y2} : 1
2
[
− ϕ′2

2 + n(n + 1)σ′2
2 + e−2σ1+2σ2

(
ϕ̇2

1 + n(n + 1)σ̇2
1 − 2nσ̈1

)]
+ λ1eα11ϕ1+α12ϕ2e−2σ1+σ2δ(y1) = 0,

{y1, y2} : − nσ̇1σ′
2 +

1
2αϕ̇1ϕ′

2 = 0.

(3.26)

Additionally, one has two equations of motion coming from the variations with respect
to the fields ϕi:

ϕ1 : e−σ1+σ2
(
− (n + 1)ϕ̇1σ̇1 + ϕ̈1

)
+ α

2 eσ1−σ2
(
− (n + 1)ϕ′

2σ′
2 + ϕ′′

2
)

− α11λ1eα11ϕ1+α12ϕ2e−σ1δ(y1)− α21λ2eα22ϕ2+α21ϕ1e−σ2δ(y2) = 0,

ϕ2 : α

2 e−σ1+σ2
(
− (n + 1)ϕ̇1σ̇1 + ϕ̈1

)
+ eσ1−σ2

(
− (n + 1)ϕ′

2σ′
2 + ϕ′′

2
)

− α12λ1eα11ϕ1+α12ϕ2e−σ1δ(y1)− α22λ2eα22ϕ2+α21ϕ1e−σ2δ(y2) = 0.

(3.27)

In analogy with the codimension-1 case, let us make the change ϕi = −
√

n
n+1fi(yi),

σi = − 1
n+1fi to simplify the equations, in particular the {y1, y2} equation in (3.26) is satisfied
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identically. Each of the remaining equations splits into two contributions depending on each
the two coordinates, provided that α21ϕ1 = σ1 and α12ϕ2 = σ2, hence

α12 = α21 = 1√
n(n + 1)

. (3.28)

For the scalar equations (3.27) to be compatible one needs

α = 2
n + 1 . (3.29)

which corresponds to the appropriate value for the case of vanishing potential. The set of
equations decouples into two sets basically identical to the codimension-1 equations (3.21)
for the fi, namely

n

n + 1
(
f ′2

i + f ′′
i

)
= −λie

αiiϕiδ(yi),√
n

n + 1
(
f ′2

i + f ′′
i

)
= −αiiλie

αiiϕiδ(yi),
(3.30)

with no sum over i, and where prime denotes derivative with respect to their argument,
now also for f1(y1). The equations can be analyzed as in the codimension-1 case, so their
compatibility requires

α11 = α22 =
√

n + 1
n

=
√

d − 1
d − 2 (3.31)

and the computation of the discontinuities imply

λ1 = λ2 = −n − 1
n

= −d − 2
d − 1 , (3.32)

just like in the codimension-1 case, cf. (3.24).
Hence the sources are a simple superposition of two terms along yi = 0, with tensions

λi and couplings αii to the scalar ϕi given by those of the corresponding codimension-1
ETW brane solution. The extra coupling α12 of the ETW brane along y1 = 0 to ϕ2, and
α21 of the ETW along y2 = 0 to ϕ1 imply an interesting variation of the effective tension
of the ETW branes as one moves further away from the intersection. Morally, it accounts
for the extra factor involved in expressing the codimension-2 solution as a codimension-1
solution, mentioned just above (3.9).

Let us finally explain the solution leaves no room for a codimension-2 δ(y1)δ(y2) source
term. Such term would lead to discontinuities in mixed derivatives of the fields, which are
absent in the equations of motion (3.26), (3.27). This is already built in from the use of the
additive structure (3.7). It would be interesting to explore more general solutions involving
this extra sources, but this lies beyond the scope of this work.

3.3 Scaling relations

In this section we discuss the analogue of the scaling relations (2.6), in particular the relation
between the spacetime distance to the singularity along some path and the traversed scalar
field space distance. Clearly, the relation will be path-dependent, albeit in a simple way.
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Consider a general path yi(t) in spacetime, parametrized by t, with yi → 0 as t → 0.
For instance, we can choose

y1 = tγ1 , y2 = tγ2 (3.33)

in terms of two positive real numbers γi ≥ 0. Clearly, a change t → tλ is just a reparametriza-
tion of the same path, so γi are defined up to an overall rescaling, so only its ratio is
meaningful. The tangent vector is

∂tyi = γi tγi−1. (3.34)

The spacetime distance to the origin along this path is

∆ =
∫
[ e−2σ2(∂ty1)2 + e−2σ1(∂ty2)2 ]

1
2 dt =

∫
[ γ2

1t2r1 + γ2
2t2r2 ]

1
2 dt (3.35)

with

r1 = 4γ2
nδ2

2
+ γ1 − 1, r2 = 4γ1

nδ2
1
+ γ2 − 1 (3.36)

We can consider two regimes, depending on which contribution dominates in the t → 0 limit.
The two regions are separated by the line r1 = r2, equivalently

γ1
γ2

=
4

nδ2
2
− 1

4
nδ2

1
− 1

. (3.37)

The two regimes correspond to the path being closer to each of the two ETW branes.
Assuming r1 ̸= r2, the spacetime distance in the two regions is given by

∆ =
∫

γi tri dt = γi

ri + 1 tri+1. (3.38)

We incidentally note that the ri have a natural interpretation by writing the tangent
vector (3.34) in the tangent space frame2 τa = ea

i ∂tyi with ea
i defined by Gij = ea

i eb
jδab

τ⃗ = (e−σ2∂ty1, e−σ1∂ty2) = (γ1tr1 , γ2tr2). (3.39)

Products of vectors in the tangent space are with the flat metric δab, so this reproduces the
distance element (3.35). The tangent vector τ⃗ will play an interesting role in the discussion
of the Distance Conjecture in section 5.2.

The profiles for the scalars allow to translate the path yi(t) in spacetime into a path
in field space ϕi(y(t)). Let us now compute the field theory distance traversed along the
path from a point located at some small non-zero value t to the origin t = 0. From the
action (3.1), the line element in field space is given by

dD2 = dϕ2
1 + dϕ2

2 + αdϕ1dϕ2 = 4
(

γ2
1

δ2
1
+ γ2

2
δ2

2
+ αγ1γ2

δ1δ2

)
dt2

t2 . (3.40)

2We warn the reader that we are using lowercase indices for our spacetime coordinates yi, which leads to
some funny contraction of indices, like in this formula.
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This can be recast in terms of the spacetime distance, for each of the two regions in (3.38), as

D = −2
(

γ2
1

δ2
1
+ γ2

2
δ2

2
+ αγ1γ2

δ1δ2

) 1
2

log t ∼ − 2
|ri + 1|

(
γ2

1
δ2

1
+ γ2

2
δ2

2
+ αγ1γ2

δ1δ2

) 1
2

log∆. (3.41)

The explicit dependence on the parametrization i.e. on the γi, is simply due to the fact that
the choice of initial point for the computation of the distance in terms of a value t does
depend on the parametrization (3.33).

We thus obtain a scaling relation near the intersection, of the kind (2.6), namely

∆ ∼ e−
1
2 δint D , (3.42)

with a path-dependent coefficient, which in each of the two regions reads

δint =
(

γ2
1

δ2
1
+ γ2

2
δ2

2
+ αγ1γ2

δ1δ2

)− 1
2

(ri + 1). (3.43)

This interpolates between the values of the critical exponents of the two individual ETW
branes, which are attained for paths orthogonal to the individual ETW branes:

γ1 = 1 , γ2 = 0 ⇒ δint → δ1

γ1 = 0 , γ2 = 1 ⇒ δint → δ2
(3.44)

In order to visualize the interpolation, let us parametrize γ1 = √
γ and γ2 = 1/

√
γ such

that we have the ratio γ1/γ2 = γ. The value of γ separating the two regimes is (3.37). In
terms of this parametrization, we have

δint =


(

γ
δ2

1
+ 1

γδ2
2
+ α

δ1δ2

)−1/2 (√
γ + 4

nδ2
2
√

γ

)
for γ > γ∗(

γ
δ2

1
+ 1

γδ2
2
+ α

δ1δ2

)−1/2 ( 1√
γ + 4√γ

nδ2
1

)
for γ < γ∗.

(3.45)

Note that we recover the limits δ1, δ2 for γ 7→ ∞, 0, respectively.
Consider for instance the case δ1 = δ2 ≡ δ. The two regimes are separated by γ∗ = 1

and the scaling parameter simplifies:

δint =

 [1 + γ(γ + α)]−1/2
(

4+nγδ2

nδ

)
for γ > 1

[1 + γ(γ + α)]−1/2
(

4γ+nδ2

nδ

)
for γ < 1.

(3.46)

For δ1 ̸= δ2 the separation between the two regimes lies at γ∗ ̸= 1. In figures 3 we display
δint as a function of log γ, for some illustrative examples with equal (figure a) or different
(figure b) values of δ1, δ2.

The scaling properties between the spacetime and field theory distance will play an
important role in the discussion of swampland conjectures in section 5. In the following
section we turn to show several explicit examples of systems described by the solution we
have discussed.
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Figure 3. Plot of δint as a function of the path for two illustrative examples with δ1 = δ2 ≡ δ

(figure a) and δ1 ̸= δ2 (figure b).

4 Explicit examples

In this section we consider explicit examples of intersecting ETW brane solutions. Many are
simply obtained from simple configurations, like flat space, by considering reduction along
some isometry orbits, which potentially diverge at large distances from the intersection. The
solutions we describe should be regarded as local descriptions near the intersection of more
involved solutions where such orbits have finite size at infinity. We will mention explicit
realizations for several of our examples.

4.1 S1 × S1 compactifications

A simple example of a codimension-1 ETW brane is the wall of nothing in S1 compactifications
(analogue of the bubble of nothing in [68]) described in section 2. From the higher-dimensional
perspective, the local description corresponds to taking flat space, splitting of an R2, and
slicing it along the angular S1, regarding it as a compactification circle, with radius varying
along the radial coordinate, cf. (2.12).

In the same spirit, we can consider the intersection of two wall of nothing ETW branes,
which provides a local model for two3 intersecting bubbles of nothing for different S1’s. The
idea is simply to consider the flat (n + 4)-dimensional space, written as

ds2
n+4 = ds2

n + dr2
1 + dr2

2 + r2
1dθ2

1 + r2
2dθ2

2 (4.1)

where ds2
n is just flat n-dimensional space.

The above will soon be rewritten in the Einstein frame of the (n + 2)-dimensional theory
obtained upon reduction on the S1 × S1 parametrized by θi; but the intuition is already
clear. We have an (n+2)-dimensional theory with two scalars, the S1 sizes, depending of two
coordinates ri. Each scalar shrinks to zero size at the codimension-1 locus r1 = 0 or r2 = 0,
respectively, and both shrink simultaneously at the codimension-2 locus r1 = r2 = 0.

3The case of two intersecting bubbles of nothing for the same S1 belongs to the class of solutions considered
in section A.3.

– 15 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
0

We now turn to carrying this out explicitly. We start with (n + 4)-dimensional gravity
with action

Sn+4 = 1
2

∫
dn+4x

√
−gn+4 Rn+4 (4.2)

and compactify on S1 × S1, parametrized by coordinates θ1, θ2. We consider the following
ansatz for the (n + 2)-dimensional theory:

ds2
n+4 = eα1ρ2+α2ρ2ds2

n+2 + e−β1ρ1dθ2
1 + e−β2ρ2dθ2

2, (4.3)

where the breathing modes ρi are functions of the non-compact n + 2 dimensions.4 The
parameters are fixed by the (n + 2)-dimensional Einstein frame condition, and normalization
of the scalar kinetic terms, giving

nαi = βi, β2
i = 4n

n + 1 . (4.4)

Upon compactification, the (n + 2)-dimensional action for these fields is

Sn+2 ∝ 1
2

∫
dn+2x

√
−gn+2

[
Rn+2 − |dρ1|2 − |dρ2|2 − α∂µρ1∂µρ2

]
, (4.5)

with

α = 2
n + 1 . (4.6)

This corresponds to an action of the kind (3.1), with the two scalars corresponding to
the S1 sizes, namely ϕi ≡ ρi. The scalar potential is zero because the S1’s have no curvature.

The flat space slicing (4.1) corresponds to an intersecting ETW brane solution of the
kind in section 3 with

ds2
n+2 = r

2
n
1 r

2
n
2

(
ηµνdxµdxν + dr2

1 + dr2
2

)
,

ϕ1 = −
√

n + 1
n

log r1, ϕ2 = −
√

n + 1
n

log r2. (4.7)

With a change of variables

yi =
n

n + 1 r
n+1

n
i , (4.8)

we can go from the above conformally flat solution to one of the form (3.4) with

ds2
n+2 = y

2
n+1
1 y

2
n+1
2 ds2

n + y
2

n+1
2 dy2

1 + y
2

n+1
1 dy2

2,

ϕi = −
√

n

n + 1 log yi. (4.9)

This corresponds to the critical exponents

δi = 2
√

n + 1
n

. (4.10)
4Although in this particular example they will turn out to be the relevant lower dimensional scalars ϕi, we

choose to maintain a specific notation for breathing modes, as in general there may be additional components
entering the scalars ϕi (see sections 4.3, 4.4 for examples).
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4.2 Sp1 × Sp2 compactifications

We now consider a generalization of the above example, by starting with an D-dimensional
space, with D = n + 2 + p1 + p2, and compactifying on Sp1 × Sp2 . The intersecting ETW
brane solution, in which the Sp1 and Sp2 shrink to zero size at two interescting codimension-1
loci, is locally given by slicing D-dimensional flat space as

ds2
D = ηµνdxµdxν + dr2

1 + dr2
2 + r2

1dΩ2
p1 + r2

2dΩ2
p2 , (4.11)

where xµ are coordinates along the Poincaré invariant directions along the intersection and
dΩ2

p1 and dΩ2
p2 are the line elements in Sp1 and Sp2 , respectively.

Let us quickly describe this construction. We start with D-dimensional gravity with action

SD = 1
2

∫
dDx

√
−gDRD. (4.12)

The compactification ansatz is

ds2
D = eα1ρ2+α2ρ2ds2

n+2 + e−β1ρ1dΩ2
p1 + e−β2ρ2dΩ2

p2 , (4.13)

with the requirement to land on the (n + 2)-dimensional Einstein frame leading to

nαi = piβi. (4.14)

Also, we normalize the kinetic terms of the two radions ρi via the following relations:

β2
i = 4n

pi(n + pi)
(4.15)

The (n + 2)-dimensional Einstein frame action for gravity and the two radions is

Sn+2 ∝ 1
2

∫
dn+2x

√
−gn+2

[
Rn+2 − |dρ1|2 − |dρ2|2 − α∂µρ1∂µρ2

+p1(p1 − 1)
R2

p1

e(α1+β1)ρ1+α2ρ2 + p2(p2 − 1)
R2

p2

eα1ρ1+(α2+β2)ρ2

]
, (4.16)

with

α =
2√p1p2√

(n + p1)(n + p2)
. (4.17)

The action (4.16) has precisely the structure (3.1) with the two radions corresponding to
the two scalars i.e. ϕi ≡ ρi, which have an exponential potential due to the curvature of
the internal spheres.

The flat space slicing (4.11) provides a solution to this theory with the structure (3.8), (3.10)
with

ds2
n+2 = y

2p1
p1+n

1 y
2p2

p2+n

2 ds2
n + y

2p2
p2+n

2 dy2
1 + y

2p1
p1+n

1 dy2
2,

ϕi = −
√

npi

n + pi
log yi. (4.18)
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This corresponds to the critical exponents

δi = 2
√

n + pi

npi
. (4.19)

The S1 × S1 example in section 4.1 is clearly recovered for p1 = p2 = 1.
One particular example realizing this local behaviour (albeit with AdS4 rather than 4d

Poincaré invariance along the ETW brane) is the gravity dual of 4d N = 4 SU(N) SYM
with a boundary coupled to a 3d N = 4 BCFT [75, 76]. It is given by the supergravity
solution of D3-branes ending on NS5- and D5-branes), see [48, 77–85], which as emphasized
in [48, 84, 85] corresponds to an ETW brane in AdS5 × S5. It is described as an AdS4 times
(S2)2 fibered over a Riemann surface given by the first quadrant (y1, y2) with yi ≥ 0. The two
S2’s shrink to zero size at y1 = 0 and y2 = 0 respectively, while both shrink simultaneously at
y1 = y2 = 0 (so, together with the polar angle in the (y1, y2)-plane, there is a shrinking S5).
Hence, this setup reproduces locally the structure of our solution, while globally provides
an explicit example in which the S2’s have constant radius at infinity (being part of the
constant radius S5 in the asymptotic AdS5 × S5).

4.3 Adding D-brane defects

The above examples correspond to variants of bubbles of nothing, in which the ETW brane
is realized geometrically, by shrinking (parts of) the compact space. In general, one expects
ETW branes to be dressed with topological defects necessary to remove non-trivial cobordism
charges of the compactification. A prototypical example is compactifications with field
strength fluxes, which require the presence of charged branes at the ETW brane to remove the
flux. In this section we consider a simple example describing the local behaviour of an ETW
brane for a compactification on S8−p with N units of RR flux (hence the ETW brane is dressed
with N Dp-branes) intersecting an ETW brane of a fluxless Sq (i.e. a bubble of nothing).

Actually, the solution is described by simply taking the solution for a stack of N Dp-branes
in flat space. For simplicity we focus on p < 7, for which the metric and dilaton read

ds2
10 = Z(r1)

p−7
8 (ηµνdxµdxν + dr2

2 + r2
2dΩ2

q) + Z(r1)
p+1

8
(
dr2

1 + r2
1dΩ2

8−p

)
,

Φ = (3− p)
4
√
2

logZ(r1),

Z(r1) = 1 +
(

ρ

r1

)7−p

, ρ7−p = gsNα′(7−p)/2(4π)(5−p)/2Γ
(7− p

2

)
.

(4.20)

Here xµ parametrize p − q of the Dp-brane worlvolume directions, and r2 is the radial
coordinate in the remaining Rp+1 part of the worldvolume, and dΩ2

q is the line element in
the angular Sq. Namely, we slice the Dp-brane solution along the transverse S8−p and a
worldvolume Sq, and regard it as a solution of an S8−p × Sq compactification.

We thus start with the 10d action for gravity coupled to the dilaton and the RR (p+1)-form

S10 ∼ 1
2

∫
d10x

√
−g10

{
R10 − |dΦ|2 − 1

2(8− p)!e
aΦ|F8−p|2

}
(4.21)

with
a = p − 3

2 . (4.22)

– 18 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
0

We use the compactification ansatz

ds2
10 = eα1ρ1+α2ρ2ds2

n+2 + e−β1ρ1dΩ2
8−p + eγ1ρ1−γ2ρ2dΩ2

q

F8−p = NdV ol
(
S8−p

)
.

(4.23)

We now impose the Einstein frame condition, and fix the normalization of the scalars ρi

β1 = nα1 + qγ1
8− p

= 1
8 + n − p

(p − n)γ1 ± 2

√
n
[
8 + n − p + 2(p − n)γ2

1
]

√
8− p


γ2 = n

q
α2 = ±2

√
n

q(n + q)

(4.24)

The resulting (n + 2)-dimensional action (with n = p − q) is:

Sn+2 =
1
2 C
∫

dn+2x
√
−gn+2

{
Rn+2−|dΦ|2−|dρ1|2−|dρ2|2+

γ2q [β1(p−8)+γ1p]
2n

∂µρ1∂µρ2+

+(8−p)(7−p)e(α1+β1)ρ1+α2ρ2+q(q−1)e(α1−γ1)ρ1+(α2+γ2)ρ2

− N2

2(8−p)!e
aΦe[α1+(8−p)β1]ρ1+α2ρ2

}
,

(4.25)

with the coefficient

C =

 2π(8−p)/2

Γ
(

(8−p)
2

)
(2πq/2

Γ
( q

2
)) . (4.26)

We can now write this in the form (3.1) using the redefinitions

ϕ1 =
∫ [

|dΦ|2 + |dρ1|2
]1/2

ϕ2 = ρ2 (4.27)

and the following relation between the 10 dimensional dilaton and the radion:

Φ =
√
2(p − 7)
(p − 3)ρ1, (4.28)

from which we have:

ϕ1 =
[
1− 2γ1

β1

]1/2
ρ1. (4.29)
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The action becomes:

Sn+2 = C
2

∫
dn+2x

√
−gn+2

{
Rn+2 − |dϕ1|2 − |dϕ2|2 − α∂ρϕ1∂ρϕ2+

+ (8− p)(7− p)
R2

8−p

e
1
n

(
1−2 γ1

β1

)−1/2
[(8+n−p)β1+(n−p)γ1]ϕ1

e
2
√

q
n(n+q) ϕ2+

+ q(q − 1)
R2

q

e
1
n

(
1−2 γ1

β1

)−1/2
[(8−p)β1−pγ1]ϕ1

e
2
√

n+q
nq

ϕ2+

− N2

2(8− p)!e

{
(p−3)

2

(
1− 1

2
β1
γ1

)−1/2
− 1

n

(
1−2 γ1

β1

)−1/2
[(n+1)(p−8)β1+qγ1]

}
ϕ1

e
2
√

q
n(n+q) ϕ2

}
(4.30)

with
α = γ2q [β1(8− p)− γ1p]

2n

(
1− 2γ1

β1

)−1/2
. (4.31)

The Dp-brane solution descends to a solution of the kind (3.4) with the redefinitions

y1 =
( 2n

9 + n(p − 5)− p

)
r

9+n(p−5)−p
2n

1 ,

y2 =
(

n

q + n

)
r

q
n

+1
2 .

(4.32)

The solution corresponds to

ds2
n+2 = e−2σ1−2σ2ds2

n + e−2σ2dy2
1 + e−2σ1dy2

2, (4.33)

ϕ1 = −
√

n(9− p)
9 + n(p − 5)− p

log y1, (4.34)

ϕ2 = −
√

qn

q + n
log y2, (4.35)

σ1 = − (9− p)
9 + n(p − 5)− p

log y1, (4.36)

σ2 = − q

q + n
log y2. (4.37)

Hence the resulting critical exponents are

δ1 = 2
√

9 + n(p − 5)− p

n(9− p) , δ2 = 2
√

q + n

qn
. (4.38)

4.4 One general ETW brane

In this section we present a generalization of the previous sections, and consider the intersection
of a bubble of nothing ETW brane, corresponding to a shrinking Sp, with a completely
general ETW brane characterized by a critical exponent δ. The solution is actually very
simple. We start with a theory in d = n + p + 2 dimensions and action

Sd =
∫

ddx
√
−g

[1
2R − 1

2 (∂φ)2 − V (φ)
]

(4.39)
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We consider a general codimension-1 local ETW brane solution as in (2.2), (2.3), sliced along
an angular Sp on its worldvolume dimensions, namely

ds2
d = e−2σ(y) [ ds2

n + dr2 + r2dΩ2
p ] + dy2

φ(y) ≃ −2
δ
log y, σ(y) ≃ − 4

(d − 2)δ2 log y,
(4.40)

The potential in the regime near the ETW brane is of the exponential form (2.4):

V (φ) = −aceδφ. (4.41)

Taking the coordinate r to parametrize a coordinate along with the Sp varies, this realizes
the intersection of ETW branes of interest.

In order to describe it from the perspective of the (n + 2)-dimensional action after
reduction along the Sp, we take the compactification ansatz

ds2
d = eαρds2

n+2 + e−βρdΩ2
p, (4.42)

The coefficients α, β are fixed by the Einstein frame condition in (n + 2)-dimensional action
and the normalization of the scalar ρ. We require

nα = pβ, β2 = 4n

p(p + n) . (4.43)

The resulting (n + 2)-dimensional action is

Sn+2 = 1
2

∫
dn+2x

√
−gn+2

{
Rn+2 − (∂φ)2 − (∂ρ)2 + p(p − 1)

R2
p

e
2
√

n+p
np

ρ
− 2V (φ)e2

√
p

n(n+p) ρ

}
,

(4.44)

where φ is the scalar associated to the generic ETW brane in d−dimensions and ρ is the
breathing mode of the Sp compactification. In order to get an action in the form (3.1),
we redefine the fields via:

φ = δ

√
n(n + p)

4p + n(n + p)δ2 ϕ1, ρ = ϕ2 + 2
√

p

4p + n(n + p)δ2 ϕ1 , (4.45)

and the (4.44) becomes:

Sn+2 = 1
2

∫
dn+2x

√
−gn+2

{
Rn+2 − (∂ϕ1)2 − (∂ϕ2)2 − α∂ρϕ1∂ρϕ2+

+ p(p − 1)
R2

p

e
2
√

n+p
np

(
ϕ2−2

√
p

4p+n(n+p)δ2 ϕ1

)
+ 2ace

2
√

p
n(n+p) ϕ2+

√
4p+n(n+p)δ2

n(n+p) ϕ1

}
,

(4.46)

with
α = 2

√
p

4p + n(n + p)δ2 . (4.47)
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It is easy to check that the configuration (4.40) is a local intersecting ETW brane solu-
tion (3.14). Performing the change of variables

y1 =
(

n(n + p)δ2

4p + n(n + p)δ2

)
y

4p

n(n+p)δ2 +1
, y2 =

(
n

p + n

)
r

p
n

+1 (4.48)

we obtain

ds2
n+2 = e−2σ1−2σ2ds2

n + e−2σ2dy2
1 + e−2σ1dy2

2

σ1 = − 4(n + p)
δ2n(n + p) + 4p

log y1, σ2 = − p

n + p
log y2

ϕ1 = −2
√

n(n + p)
4p + n(n + p)δ2 log y1, ϕ2 = −

√
np

n + p
log y2 (4.49)

This corresponds to the critical exponents

δ1 =
√

δ2 + 4p

n(n + p) , δ2 = 2
√

n + p

np
. (4.50)

Note that δ2 nicely agrees with the value obtained in section 4.2 cf. (4.19). We can also
recover examples of previous sections for different choices of δ. For instance, for δ2 = 4n+p+q

q(n+p)

we recover the case of Sp × Sq compactification studied in section 4.2. Also, for δ2 = 4(q−3)2

q(9−q) ,
with q < 7, we recover the case of a Dq-brane solution reduced along the transverse S8−q

times an Sp along the brane worldvolume, as studied in section 4.3 (with reversed labels p, q).
We hope that these examples suffice to illustrate that our class of solutions includes

many physically relevant cases of ETW branes.

5 Swampland applications

In this section we discuss the interplay of our solutions with various swampland constraints.
We mainly focus on the cobordism conjecture and the distance conjecture, but mention
others along the way.

5.1 Cobordism conjecture

Since ETW branes are motivated by the Cobordism Conjecture, there are several interesting
interpretations of our intersecting ETW brane solutions from this perspective.

5.1.1 The end of the world for end of the world branes

Dynamical cobordisms arise in the exploration of the Cobordism Conjecture [55] beyond
its merely topological avatar. They provide explicit effective field theory descriptions of
cobordisms to nothing, including the possibly necessary defects to remove any non-trivial
cobordism classes or other charges in the configuration.

From the perspective of the effective theory, the microscopic structure of the cobordism
defect remains mostly shrouded in the mist of the UV completion, but there may be features
of the ETW brane worldvolume dynamics amenable to the effective theory approach. One
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way to probe them is to let the ETW brane interact with other defects of the theory. In
the familiar context of string theory branes, the worldvolume gauge field content in a brane
can be read from the objects able to end on it [86], and some such BIon configurations are
accessible in supergravity [87]. In the context of cobordism defects, for instance [65] obtained
the type IIB R7-brane worldvolume theory by the characterization of branes allowed to end
on its worldvolume. Namely, cobordism defects must be able to explain not just the end of
bulk spacetime, but also the disappearance of the possible defects present in the bulk theory.

Intersecting ETW brane configurations can be regarded as a radical case of this last
idea: cobordism defects must be able to explain not just the end of bulk spacetime, but also
of bulk configurations bounded by other pre-existing cobordism defects. From the effective
theory perspective, when the bulk theory is bounded by a first ETW brane (ETW1), the
resulting configuration must admit being bounded by a second ETW brane (ETW2), with
the bulk ending on the ETW2 brane and its boundary ETW1 brane ending on its intersection
with the ETW2 brane, see figure 1a. Obviously there is the converse picture, in which the
ETW1 brane provides a boundary of the configuration given by the bulk theory ending
on the ETW2 image. Hence our intersecting ETW brane solutions explain the end of the
world for end of the world branes.

5.1.2 Interpolating domain walls between ETW branes

There is another related but complementary interpretation of intersecting brane configurations
from the Cobordism Conjecture perspective, focusing on its implication that in theories of
quantum gravity any two configurations can be connected by some domain wall. Hence we
may consider two configurations given by the bulk theory bounded by the ETW1 and the
same bulk theory bounded by a different ETW2 brane. We can now consider the interpolating
configuration across which the bulk theory is unchanged but the ETW1-brane turns into the
ETW2 brane. This can be regarded as a configuration of two intersecting ETW branes in the
limit where their angle is close to π, with the intersection playing the role of interpolating
domain wall between the ETW brane boundaries, see figure 1b.

ETW branes at general angle θ are explicitly constructed in appendix A.1. The limit
θ → π is singular in that description, but only because the original coordinate system becomes
degenerate. It would be interesting to extract the resulting limit configuration, or build
its solution from scratch, but we refrain from doing so in the hope that the conceptual
picture is clear enough.

The above links with the cobordism conjecture relate to the structure of spacetime and
its boundaries (and boundaries of their boundaries). The realization of these configurations
via dynamical cobordisms with scalars blowing up at the ETW branes furthermore leads to
an in interesting map between spacetime physics and field space, to which we turn next.

5.2 Distance conjecture

Our solutions are spacetime-dependent configurations probing infinite distance limits in field
space at finite spacetime distance, and therefore have a direct interplay with the Distance
Conjecture [5]. We explore various such connections in this section.
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5.2.1 General distance conjecture

The Distance Conjecture [5] states that effective field theories break down along geodesic
paths extending to infinite distance limits in moduli space due to the appearance of an infinite
tower of states at a scale m falling exponentially with the field theory distance

m ∼ e−λD (5.1)

with some O(1) coefficient λ (with λ ≥ 1√
d−2 according to the sharpened distance con-

jecture [16]).
In spacetime-dependent configurations probing infinite field space distances at finite

spacetime distance, such as ETW branes [28–30], there are interesting relations between
the field space distance and the spacetime distance, cf. (2.6). This allows to provide a
spacetime version of the Distance Conjecture which expresses the falloff of the cutoff scale
along some path in spacetime.

In our intersecting ETW brane setup, we have found similar scaling relations between
the field space distance and the spacetime distance (3.42), controlled by the path-dependent
coefficient δint. Combining this expression with (5.1), we obtain

m ∼ ∆
2λ

δint (5.2)

In spacetime-dependent solutions, i.e. beyond the adiabatic approximation, the interpre-
tation of m is not necessarily the appearance of an infinite tower [23]; it instead indicates
the scale at which new UV physics kicks in. This played an important role in the context of
small black holes, where it fixes the size of the smallest possible black hole in the effective
theory [53, 60]. It would be interesting to explore similar mechanisms for ETW branes.

5.2.2 The convex Hull distance conjecture

In theories with several scalar fields, there are different infinite distance limits, which probe
the existence of different UV towers. Hence, the cutoff along general infinite distance path
in field space can be sensitive to multiple individual towers. A general recipe to obtain
the exponential falloff along such a general path is provided by the Convex Hull Distance
Conjecture [15] (see also [17]), as follows.

Consider all the towers of the theory corresponding to all possible infinite distance
limits, and denote by m(ϕi) the moduli-dependent mass scale of each of these towers. Let
us introduce the scalar charge to mass ratios

ζi ≡ ∂i logm. (5.3)

Consider a trajectory ϕi(t) going to some infinite distance limit, and define the (normalized)
tangent vector

τ i ≡ ϕ′i

||ϕ′||
, with ϕ′i = dϕi

dt
(5.4)

Along this trajectory the tower scale falls off as in (5.1) with

λ = −ζi τ i = − ζiϕ
′i

||ϕ′||
. (5.5)
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Notice that there is a dependence on the moduli space metric in the normalization of the
tangent vector.

Introducing the tangent frame ea
i in field space Gij = δabe

a
i eb

j , and its inverse ei
a, this

can be recast in terms of vector scalar products

λ = −ζaτa, with ζa = ei
aζi , τa = ei

aτi. (5.6)

Combining all towers, the falloff rate is controlled by the convex hull defined by the scalar
charge to mass ratios for all towers in the theory [15].

We have shown that theories with several scalars admit intersecting ETW brane solutions,
and that different spacetime paths approaching the intersection define different field space
paths traversing infinite distance. Formally, one can regard the scalar profiles ϕi(yµ) in our
solution5 as defining an embedding of two spacetime dimensions into the scalar field space.
This allows to define pullbacks of moduli space quantities onto the spacetime dimensions,
and formulate a spacetime avatar of the Convex Hull Distance Conjecture.

Indeed, the pullback onto spacetime of the scalar charge to mass ratio is

ζµ = ∂µ logm(ϕi(xµ)) = ∂µϕi ζi (5.7)

Also, for a path in spacetime xµ(λ), with (unnormalized) tangent vector

vµ = x′µ(λ), with x′µ = dxµ

dλ
, (5.8)

we get a path ϕi(xµ(λ)) in field space, with (unnormalized) tangent vector

d

dλ
ϕi(xµ(λ)) = ∂µϕi x′µ = ∂µϕi vµ (5.9)

We then have the spacetime version of the numerator of (5.5)

ζi ϕ′i = ζi∂µϕi vµ = ζµvµ (5.10)

The Convex Hull criterion requires using normalized tangent vectors in field space. Using
the scalar field metric Gij , we have

||ϕ′|| = (Gijϕ′iϕ′j)
1
2 = (Gij∂µϕi∂νϕjx′µx′ν)

1
2 = (hµνvµvν)

1
2 , (5.11)

namely, the norm of vµ but computed with the induced metric

hµν = Gij∂µϕi∂νϕj (5.12)

Hence one can formulate the Distance Conjecture as a statement in spacetime in terms
of the metric hµν . Note that this is actually different from the spacetime metric gµν . In
particular, the field space metric contains mixed terms, whereas the actual spacetime metric
is diagonal. It would be interesting to discuss dynamical properties in spacetime of this
induced metric from the field space.

5We momentarily change to upper indices for fields and spacetime coordinates in order to match usual
mathematical conventions in the following argument.
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5.2.3 The infinite distance pattern

The above ideas can be easily extended to other swampland criteria. For instance, in [18, 19],
an interesting pattern was proposed to hold at infinite distance limits (see also [88] for proposals
in the interior) between the tower scale m(ϕi) and the species scale (the effective cutoff
scale of quantum gravity [89–93]) Λs(ϕi), which in general is moduli-dependent. Specifically,
they are claimed to satisfy

Gij ∂i logm ∂j log Λs = 1
d − 2 (5.13)

In the context of our solutions, there is a spacetime version of this condition using the
(inverse) induced metric

hµν ∂µ logm(ϕi(yµ)) ∂ν log Λs(ϕi(yµ)) = 1
d − 2 (5.14)

Note that the species scale and its relation to the distance conjecture has already been
studied from the perspective of the link between spacetime and field space structures for
codimension-1 ETW brane solutions in [94]. We expect that similarly exciting ideas may
arise in the codimension-2 case of intersecting ETW branes. We leave these explorations
as well as links to other swampland conjectures for future work.

6 Conclusions

The exploration of infinite distance limits has led to the construction of diverse defects, such
as ETW branes, small black holes or 4d EFT strings, defined by the fact that scalars reach
infinite field theory distance at their cores. It is natural to ask about the interplay of such
objects, and their use to explore the network of infinite field theory distance limits, i.e. their
different components and their intersections.

In this paper we have initiated this exploration by constructing explicit solutions describ-
ing intersecting ETW branes in theories with multiple scalars. The configurations behave as
the superposition of two codimension-1 ETW branes, and display interesting path-dependent
scaling properties along trajectories approaching the codimension-2 intersection. We have
explored the interplay of these solutions with swampland conjectures, and in particular with
the convex hull description of the Distance Conjecture in theories with several scalars. Finally,
we have explicitly shown that many interesting systems correspond to solutions within our
class, including intersections of bubbles of nothing and several generalizations thereof.

Some of the interesting questions opened up by our work are:

• Our solutions can be regarded as a mere superposition of ETW branes, in the sense that
their source terms are localized on the individual codimension-1 ETW branes. It would
be interesting to describe more general intersections supported also by codimension-2
source terms. In this respect, it would be interesting to connect with the codimension-2
objects in [29, 30].

• There are localized D-brane solutions in the literature (see [95] for review and references),
which upon suitable reductions along transverse space may be rephrased as intersections
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of codimension-1 ETW branes. However, the reduction involves directions along which
there are no isometries and it is likely it leads to solutions not describable within our
ansatz. It would be interesting to study these examples as a tool to generate more
general solutions, in particular including examples with non-trivial degrees of freedom
at the intersection of ETW branes.

• In our solutions the scalars diverging at the ETW branes had a non-trivial mixed kinetic
term. It would be interesting to describe intersecting configurations for decoupled scalar
fields, in particular to better connect with CY moduli spaces near infinite distance
limits [6, 8, 9]. This will be addressed in [73].

• We have focused on ETW branes and their interplay via intersections. More generally,
it would be interesting to understand the interplay of other defects defined by scalars
running off to infinity in field space. For instance, the crossing of two EFT strings
may lead to the creation of new strings, unveiling non-abelian structures at infinity in
moduli space, in the spirit of [96].

We hope to come back to these and other interesting questions in future work.
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A Some generalizations

In this appendix we consider several generalizations and variants of the solutions discussed
in the main text.

A.1 Intersection at angles

In the main text we have restricted the intersection of ETW branes to be orthogonal in
the conformally flat coordinates (3.17). It is a natural generalization to consider a general
off-diagonal term

ds2
n+2 = e−2σ1−2σ2 [ ds2

n + dx2
1 + dx2

2 + f dx1dx2 ]
= e−2σ1−2σ2 ds2

n + e−2σ2 dy2
1 + e−2σ1 dy2

2 + f e−σ1−σ2 dy1dy2 , (A.1)

where σi are regarded as functions of xi in the top line and of yi in the bottom one. We
will look for solutions in which each scalar still runs along one coordinate ϕ1(y1), ϕ2(y2).
In fact, we try and solve the equations of motion by using logarithmic profiles for σi and
ϕi as in (3.10), which we repeat for convenience

σ1 = −a1 log y1 +
1
2 log c1, σ2 = −a2 log y2 +

1
2 log c2,

ϕ1 = b1 log y1, ϕ2 = b2 log y2, (A.2)
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The equations of motion are satisfied if the coefficients satisfy:

b2
i = na2

i , α = 2√a1a2 (A.3)

and the potential behaves as

V = V1 + V2 +O
(
y−1−a1

1 y−1−a2
2

)
V1 = c1v1y−2

1 y−2a2
2 = 2c1na1

(f2c1c2 − 4) [(na1 + a1 − 1)] y−2
1 y−2a2

2 (A.4)

V2 = c2v2y−2a1
1 y−2a

2 = 2c2na2
(f2c1c2 − 4) [(na2 + a2 − 1)] y−2a1

1 y−2
2 (A.5)

O
(
y−1−a1

1 y−1−a2
2

)
= −c1c2

2n2fa1a2
(f2c1c2 − 4)y−1−a1

1 y−1−a2
2 (A.6)

Note that the equations of motions provide us more than two terms for the potential.
Assuming that a1 < 1 and a2 < 2, the last term is subleading respect to the previous ones
which contain the information to specify the kind of intersecting ETW branes.

Moreover the coefficients are given by a generalization of (3.13), namely

ai =
n ±

√
n + 2(n + 1)vi (f2c1c2 − 4)

2n(n + 1) (A.7)

Finally, the critical exponents are given by

δ2
i = 4

a1n
= 8(n + 1)

n ±
√

n + 2(n + 1)vi(f2c1c2 − 4)
(A.8)

Hence, even though (A.3) has the same structure as (3.11), there is a non-trivial de-
pendence on f in the potential and the coefficients of the logarithms. This implies that,
given the potential of the theory, one can read off the values of ai and vi from its leading
exponential behaviour, and determine the value (or values) of f that provides a solution,
which in general corresponds to non-orthogonal intersections.

Note that when f2c1c2 − 4 = 0 the values above become singular. This corresponds to
the limit where the angle between the two ETW branes is 0 or π and the two ETW branes
overlap. It would be interesting to explore the limiting behaviour near this regime.

A.2 Triple intersections and beyond

In this section we discuss a natural generalization of the intersecting ETW branes of section 3,
by considering triple intersections of three independent ETW branes.

We consider the following action for (n + 3)−dimensional gravity coupled to three real
scalar fields with general potential V (ϕ1, ϕ2, ϕ3):

Sn+3 =
∫

dn+3√−g

1
2R − 1

2

3∑
i=1

(∂ϕi)2 − 1
2
∑
i ̸=j

αij∂ρϕi∂
ρϕj − V (ϕ1, ϕ2, ϕ3)

 . (A.9)

We consider the following ansatz for the metric:

ds2
n+3 = e2A(y1,y2,y3)ds2

n + e2B(y1,y2,y3)dy2
1 + e2C(y1,y2,y3)dy2

2 + e2D(y1,y2,y3)dy2
3. (A.10)
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The equations of motion admit solutions with each scalar ϕi depends only on the coordinate
yi, given by a simple generalization of (3.4), namely

ds2
n+3 = e−2σ1−2σ2−2σ3ds2

n + e−2σ2−2σ3dy2
1 + e−2σ1−2σ3dy2

2 + e−2σ1−2σ2dy2
3, (A.11)

while the different functions are locally of the form

ϕi = bi log yi, σi = −ai log yi +
1
2 log ci (A.12)

and the scalar potential splits into three terms V = V1 + V2 + V3 encoding the dominant
terms as the different scalars go off to infinity, with

Vi = −civiy
−2
i y

−2aj

j y−2ak
k , i ̸= j ̸= k (A.13)

The parameters of the solution are related by

b2
i = (n + 1)ai, ai =

1±
√
1 + 8vi

n+2
n+1

2(n + 2) , αij = (aiaj)−
1
2 . (A.14)

Hence the critical exponents are

δ2
i = 8(n + 2)

(n + 1)± (n + 1)
√
1 + 8vi

n+2
n+1

. (A.15)

in terms of which the analogue of (3.14) is

Vi = −civie
δiϕieajδjϕj eakδkϕk , i ̸= j ̸= k

ϕi = − 2
δi

log yi, σi = − 4
(n + 1)δ2

i

log yi . (A.16)

It is clear that one can generalize to even higher-codimensional intersections. Triple or
higher intersections can be useful to further understand intersection of loci corresponding
to multiple infinite distance limits.

A.3 ETW brane configurations with a single scalar field

One may wonder to what extent we need two scalars to achieve intersecting ETW brane
configurations. In this appendix we consider candidates for codimension-2 intersections of
ETW branes in a theory with a single scalar. We will show that the configuration is actually
better described as a single recombined codimension-1 ETW brane.

We start with (n+2)-dimensional gravity coupled to one real scalar with general potential

S =
∫

dn+2x
√
−g

[1
2R − 1

2 (∂ϕ)2 − V (ϕ)
]

. (A.17)

We consider a codimension-2 ansatz Considering the following ansatz for the solution:

ds2
n+2 = e2A(y1,y2)ds2

n + e2B(y1,y2)dy2
1 + e2C(y1,y2)dy2

2

ϕ = ϕ(y1, y2), (A.18)

– 29 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
0

and we solve the equations of motion with a set of logarithmic profiles for the fields

A = a1 log y1 + a2 log y2, B = b2 log y2, C = c1 log y1

ϕ = d1 log y1 + d2 log y2 (A.19)

We get the conditions

(a2 − b2)(na2 + b2 − c2)− a2 + b2 = 0, (a1 − c1)(na1 + c1 − b2)− a1 + c1 = 0
d2

1 = c1(a1 − c1) + (n − 1)a1 + c1, d2
2 = b2(a2 − b2) + (n − 1)a2 + b2

d2
1 = 1

2na1

(
1 + d1

d2
b2

)
, δ2

2 = 1
2na2

(
1 + d2

d1
c1

)
V1 = −n

2 a1 (na1 + c1 − 1) y−2
1 y−2b2

2 , V2 = −n

2 a2 (na2 + b2 − 1) y−2c1
1 y−2

2

This system is solved by the following choice of the parameters:

d1 = d2 = −
√

n, a1 = c1 = a2 = b2 = 1 (A.20)

The scaling relations are now satisfied with the critical exponent:

δ = 2√
n

, (A.21)

independently of the path. Indeed, the computation is basically identical to that of section 3.3
with a single field, so that δ1 = δ2 ≡ δ. The analogue of (??) is

δint = (ri + 1) δ (A.22)

with ri as in (3.36). Actually, using a parametrization satisfyin γ1 + γ2 = 1, the latter are
ri = 0, and hence δint = δ independently of the path.

The interpretation is that the configuration, rather than the intersection of two individual
ETW branes, describes a singular limit of a single recombined ETW brane. This is also
motivated by the fact that the solution (A.18), (A.19), with parameters (A.20), is

ds2
n+1 = y2

1y2
2ds2

n + y2
2dy2

1 + y2
1dy2

2, ϕ = −
√

n log(y1y2) (A.23)

Performing a change of coordinates

y = y1y2, x = log(y1/y2) (A.24)

we see that the scalar profile varies non-trivially only along y. In fact, the full solution reads

ds2
n+1 = y2( ds2

n + 2dx2 ) + 2dy2, ϕ = −
√

n log(y) (A.25)

Reabsorbing the factors of 2 via simple redefinitions, this corresponds to a codimension-1
ETW brane solution of type (2.2), (2.3)), for δ given in (A.21). Note the interesting way
in which the coordinate x, along which the scalar is constant, becomes a coordinate along
the codimension-1 ETW brane, by combining with the n original ones.

Actually, this phenomenon of recombination of ETW branes was already proposed in [45]
in the particular context of ETW branes in supercritical bosonic strings with light-like
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tachyon condensation. The system contains two ETW branes with precisely the critical
exponent (A.21). One is spacelike and corresponds to the dilaton growing towards infinitely
strong coupling at a point in a finite past time in the Einstein frame; the second is lightlike and
corresponds to closed string tachyon condensation. Both ETW branes meet in a codimension-2
(D−2)-dimensional locus. Although the ETW branes seem to involve two different scalars, the
dilaton and the tachyon, it was shown that they mix together into a single combination. This
motivated the proposal that the two ETW branes should be regarded as a single recombined
one, so that the beginning of time can be thought of as a strong coupling avatar of closed
string tachyon condensation. It is very satisfactory that our general analysis here provides
extra support for this picture.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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