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Quantum fields in time-dependent backgrounds generally lead to particle production. Here we consider
“unexciting” backgrounds for which the net particle production vanishes. We start by considering the
simple harmonic oscillator and explicitly construct all unexciting time-dependent frequencies. This allows
us to construct homogeneous backgrounds in field theory for which there is no particle production in any
given mode, though we are able to show that there are no homogeneous backgrounds for which the particle
production vanishes in every mode. We then construct general inhomogeneous unexciting field theory
backgrounds. The set of all unexciting field theory backgrounds will be further restricted by the choice of
physical interactions and this leads to an interesting open problem.
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I. INTRODUCTION

There has been considerable effort to study quantum
radiation in time-dependent classical backgrounds (e.g.,
[1]). Landmark examples include Schwinger particle pro-
duction [2] and Hawking radiation [3]. In the latter, the time
dependence of the metric during gravitational collapse
produces particles, while Schwinger particle production
can be thought of as due to the time dependence of the
electromagnetic vector gauge potential.
The present work is motivated by the Schwinger

process for non-Abelian gauge fields recently discussed
in Ref. [4] where a homogeneous non-Abelian electric
field of a certain “color” produces (massless) gauge
radiation of other colors. This process appears to be quite
general, so one might expect a similar process to occur
even if the background electric field is not uniform, for
example if the color electric field is confined into flux
tubes, as is widely believed to occur in QCD. However,
QCD electric flux tubes should not produce quantum
excitations if they are to be stable and confining. This
motivates the general question—can we find nontrivial
space- and time-dependent backgrounds in which particle
production does not occur?
An example of an unexciting electric field configuration

is already known in massless QED in 1þ 1 dimensions
[5,6]. One considers a capacitor consisting of external
charges þQ and −Q separated by a distance L. The system
can be solved completely since bosonization yields a scalar

plus gauge field theory with only bilinear couplings. The
unexciting electric field background takes the form [5],

F01 ¼ QðΘðxþ L=2Þ − Θðx − L=2ÞÞ
þ gðfðxþ L=2Þ − fðx − L=2ÞÞ ð1Þ

where g is the coupling constant in the model, and

fðxÞ ¼ −
Q
2g

sgnðxÞð1 − e−gjxjÞ: ð2Þ

A sketch of the unexciting electric field is shown as the
dashed curve in Fig. 1. Note, though, that the unexciting
background is not purely an electric field as it also consists
of a condensate of fermion bound states. These bound
states are described after bosonization by a scalar field, ϕ,
that acquires a nontrivial profile,

ϕðxÞ ¼ fðxþ L=2Þ − fðx − L=2Þ: ð3Þ

Unexciting backgrounds may have practical utility as
well. We can imagine situations where a quantum system is
in its ground state in a certain background (e.g., a magnetic
field), and we would like to change the background to a
final configuration while the quantum system is finally in
its ground state. The background would then have to be an
unexciting background.
The simple harmonic oscillator (SHO) with time-depen-

dent frequency is the simplest system where this question
can be analyzed (see also Ref. [7]). Are there time-
dependent frequencies for which the SHO does not get
excited? In this case we are able to find a complete solution
in Sec. II. To our surprise, we find a very wide class of
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time-dependent frequencies, not necessarily adiabatic, for
which particle production does not occur.
The next step is to generalize the SHO result to quantum

field theory in a classical background. We first consider
homogeneous but time-dependent backgrounds. The
homogeneity of the background simplifies matters since
the excitations can be diagonalized and each mode of the
quantum field behaves as a quantum SHO with time-
dependent frequency. In Sec. III, we show that there are
backgrounds for which particle production can be sup-
pressed for at most a discrete set of modes and not for
all modes.
In Sec. IV we consider the full problem of inhomo-

geneous, time-dependent backgrounds. Here too we are
able to find backgrounds for which there is no particle
production. However, the solution does not address the
constraint that only certain forms of interactions may be
present in a particular physical system. After discussing
whether field theory backgrounds may be unexciting at all
times in Sec. VI, we turn to unexciting backgrounds that
might arise in physical systems in Sec. VII. We are unable
to construct a general unexciting physical background in a
field theory and leave it as an open problem.

II. QUANTUM SIMPLE HARMONIC OSCILLATOR

Consider a SHO with unit mass m ¼ 1 and time-
dependent frequency ωðtÞ. We are interested in finding
ωðtÞ such that there is no net energy production in quantum
excitations.
Our analysis uses the “classical-quantum correspon-

dence” (CQC) developed in Refs. [8,9] whereby quantum
particle production in time-dependent backgrounds can be
analyzed by solving a system of classical differential
equations in higher dimensions. (The formalism only
applies to bosonic particles.) In the simplest case of a

quantum SHO, the CQC maps the problem to a classical
SHO in two dimensions, which can be described by a
complex variable zðtÞ. Expectation values of quantum
operators can all be written as functions of z.

A. SHO Solution

The CQC equation for the complex variable zðtÞ is

z00 þ ω2z ¼ 0 ð4Þ

with initial conditions (taken at t ¼ ti)

zi ¼ −
iffiffiffiffiffiffiffi
2ωi

p ; z0i ¼ −
ffiffiffiffiffi
ωi

2

r
ð5Þ

where primes denote time derivatives and subscripts i and f
refer to initial and final times. The energy in excitations is
given by the function1

EðtÞ ¼ 1

2
jz0 − iωzj2: ð6Þ

An unexciting background would be one for which the final
energy in excitations vanishes. Note that excitations may be
produced and absorbed at intermediate times; we only
require the final energy to vanish for the background to be
unexciting. If instead, we require that the energy vanishes at
all times, (6) implies z0 ¼ iωz. Differentiating once and
using (4) implies ω0 ¼ 0. Hence there are no nontrivial
backgrounds for which the SHO excitation energy vanishes
for all times.
To derive an unexciting background we first write

zðtÞ ¼ ρðtÞeiθðtÞ: ð7Þ

Then (4) implies

ρ00 þ ω2ρ ¼ 1

4ρ3
; θ0 ¼ −

1

2ρ2
ð8Þ

where in the second equation we have used the initial
conditions (5) in terms of ρ and θ,

ρi ¼
1ffiffiffiffiffiffiffi
2ωi

p ; ρ0i ¼ 0; θi ¼
3π

2
; θ0i ¼ −ωi: ð9Þ

Now we use the ρ equation in (8) to solve for ω in terms
of ρ,

L 2 L 2
x

Electric Field

FIG. 1. As in Ref. [5], two infinitely heavy charges, þQ and
−Q, are placed at x ¼ −L=2 and x ¼ þL=2 respectively. The
classical electric field is given by the thick dark line. With pair
production, the electric field evolves into the unexciting con-
figuration illustrated by the dashed curve.

1There is no ambiguity in the definition of excitation energy in
contrast to the number of particles as discussed in the literature
(e.g., [10] and, more recently, [11]).
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ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4ρ4
−
ρ00

ρ

s
: ð10Þ

This tells us how the frequency should vary with time for
any choice of ρðtÞ ≥ 0. In addition, if we require ω2 ≥ 0,
then 4ρ3ρ00 ≤ 1, though ω2 < 0 implies an inverted SHO
potential and might be acceptable for certain systems.
Now restrict the function ρðtÞ so that

ρ0i ¼ ρ00i ¼ 0; ρ0f ¼ ρ00f ¼ 0; ð11Þ

while ρi and ρf are unconstrained. For any choice of such
ρðtÞ, the energy in excitations

EðtÞ ¼ ρ02

2
þ ρ2

2

�
1

2ρ2
− ω

�
2

ð12Þ

satisfies

Ei ¼ 0 ¼ Ef: ð13Þ

To see Ei ¼ 0, the initial conditions in (9) suffice. To see
Ef ¼ 0, note that the function ρ is chosen to satisfy ρ0f ¼ 0,
so the first term in (12) vanishes, while ρ00f ¼ 0 together
with (10) implies that the second term in (12) vanishes at
the final time. Note that ρi and ρf can be different, which
means that ωi and ωf can be different.
In Fig. 2 we sketch the late time dynamics required for

particle production.
Another quantity of interest may be the phase of the

wave function, especially in cases where the final fre-
quency equals the initial frequency. The full wave function

for the position x of the simple harmonic oscillator can be
written as

ψðt; xÞ ¼ eiγðtÞ

ð2πρ2Þ1=4 exp
�
i
2

�
_ρ

ρ
þ i
2ρ2

�
x2
�

ð14Þ

where

γðtÞ ¼ −
Z

t

ti

dt0

4ρ2ðt0Þ : ð15Þ

Let us now consider the case of an unexciting background
with ωi ¼ ωf. Then the conditions in (11) imply that
ρi ¼ ρf, and the phase difference from the case of a trivial
background with ωðtÞ ¼ ωi is

ΔγðtÞ ¼ −
1

4

Z
t

ti

dt0
�

1

ρ2ðt0Þ −
1

ρ2i

�
: ð16Þ

B. An explicit example

Consider the choice of function

ρðtÞ ¼ 1þ 1

2
tanhðtÞ; ð17Þ

with ti → −∞ and tf → þ∞. This choice satisfies the
conditions ρ0i ¼ ρ00i ¼ 0 and ρ0f ¼ ρ00f ¼ 0 required for an
unexciting background. Then (10) gives us ωðtÞ which we
plot in Fig. 3 and in Fig. 4 we plot the energy in excitations
as a function of time. At early times the energy in
excitations grows but all the energy is absorbed at late
times to give no net production of energy.

C. A more general derivation

The construction of the unexciting background in
Sec. II A was explicit but it used polar coordinates that

FIG. 2. The potential for the complex variable z is parabolic in
two dimensions (one complex dimension). Conservation of
angular momentum implies that the trajectory of z goes around
the parabola. If the trajectory oscillates, as shown by the solid
curve, there is net particle production. There is no net particle
production if the trajectory does not oscillate at late times.

4 2 2 4
t

0.5

1.0

1.5

2.0

(t)

FIG. 3. The frequency ωðtÞ for the explicit example of
Sec. II B.
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do not generalize easily to the field theory case. Here we
construct ωðtÞ in terms of the complex variables zðtÞ and
the procedure can be generalized to field theory as
in Sec. IV.
We start with the identities

ðzz�Þ0 ¼ zz0� þ z0z�; ðzz�Þ00 ¼ 2ðz0z�0 − ω2zz�Þ: ð18Þ

Therefore,

FðtÞ≡ ðz0 − iωzÞðz0 þ iωzÞ� ¼ 1

2
ðzz�Þ00 − iωðzz�Þ0: ð19Þ

Now consider zðtÞ such that

ðzz�Þ00i ¼ 0 ¼ ðzz�Þ0i ð20Þ

and

ðzz�Þ00f ¼ 0 ¼ ðzz�Þ0f: ð21Þ

Then (19) shows that Fi ¼ 0 ¼ Ff, implying that one of
the two factors ðz0 − iωzÞ or ðz0 þ iωzÞ must vanish at ti
and tf. At ti the initial conditions tell us that

ðz0 − iωzÞi ¼ 0: ð22Þ

At tf we use the angular momentum constraint,

z0z� − zz�0 ¼ i ð23Þ

and ω > 0 to show that

jz0 þ iωzj2 ¼ jz0j2 þ ω2jzj2 þ ω > 0 ð24Þ

provided ω > 0. Therefore ðz0 þ iωzÞf ≠ 0. Then the only
possibility is that

ðz0 − iωzÞf ¼ 0: ð25Þ

However the energy in excitations is given by (6) and hence
Ef ¼ 0 if we have a zðtÞ such that (21) is satisfied. With
such a choice of zðtÞ we find ω as

ωðtÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2

�
z00

z
þ z�00

z�

�s
ð26Þ

where we have made sure that the expression under the
radical is real and we have only chosen the positive square
root. With a little algebra, and making use of (23), we
recover (10).
If we also require ω to be real valued, we must impose

the condition

−
1

2

�
z00

z
þ z�00

z�

�
≥ 0: ð27Þ

To summarize, an unexciting background can be found
from

ωðtÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2

�
z00

z
þ z�00

z�

�s
ð28Þ

by choosing any complex function zðtÞ that satisfies the
conditions (20) and (21) together with the initial condition
in (5) and the Wronskian condition in (23).
The solution in (31) is equivalent to the solution in (10)

when written in terms of ρ and θ together with the
constraint in (23).

III. HOMOGENEOUS BACKGROUNDS

If the background is time dependent but spatially
homogeneous, the quantum field can be expanded in
Fourier modes and the problem reduces to an infinite
number of simple harmonic oscillators labeled by the wave
number of that mode. The time-dependent frequency of
each mode is denoted ωkðtÞ and depends on the back-
ground under consideration. The variables corresponding to
the z’s for the single harmonic oscillator of Sec. II now
carry the mode index and will be written as zk. They satisfy
the equation

z00k þ ω2
kzk ¼ 0 ð29Þ

with initial conditions in (5). The frequencies ωk may take
different forms depending on the interactions in question.
We will illustrate the arguments for the form when a
classical background field, ϕðtÞ, interacts with a quantum
field, ψðx; tÞ, due to a λϕ2ψ2=2 interaction. Then,

4 2 2 4
t

0.05

0.10

0.15

E(t)

FIG. 4. The excitation energy EðtÞ for the explicit example of
Sec. II B.
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ω2
k ¼ k2 þ λϕ2ðtÞ: ð30Þ

From Sec. II we can certainly find a background for
which a given mode is not excited. But we are interested
in finding a background for which none of the modes is
excited. Let us choose a background for which the mode
k ¼ k� is unexcited and denote the mode by � subscripts.
Then the background is given by

ω2�ðtÞ ¼ −
1

2

�
z00�
z�

þ z�00�
z��

�
ð31Þ

and

λϕ2ðtÞ ¼ −k2� −
ρ00�
ρ�

þ 1

4ρ4�
: ð32Þ

Then, for another mode, say k ¼ p, we must have

z00p þ ½ðp2 − k2�Þ þ ω2�ðtÞ�zp ¼ 0 ð33Þ

and initial conditions for zp are as in (5). For zp to be
unexcited, we require that z00pðtfÞ ¼ 0. However, the initial
conditions fix the evolution of zp and the condition
z00pðtfÞ ¼ 0 is an extra boundary condition on the evolution.
In general, it will only be satisfied for at most a discrete set
of modes, not for all p. Hence we conclude that unexciting
homogeneous backgrounds do not exist. (Time-dependent
electric fields with no Schwinger pair production in a
particular mode are discussed in [12].)
The story would be different if each mode of the

quantum field were to interact with an independent back-
ground. Then one would be able to separately choose
unexciting backgrounds for each mode. This suggests that
perhaps inhomogeneous backgrounds, where different
background modes couple to different excitation modes,
can be unexciting. We now turn to this question.

IV. GENERAL SPACE AND TIME-DEPENDENT
BACKGROUNDS

A free quantum field in a general space and time-
dependent background can be treated within the framework
of the CQC. Then space is discretized, say with N lattice
points, and the Bogolyubov coefficients (generalized to
inhomogeneous backgrounds) correspond to an N × N
matrix that we denote by Z. The equation of motion for
Z is

Z00 þΩ2Z ¼ 0 ð34Þ

where Ω ¼ Ω† ¼ Ω� contains both the spatial derivatives
of the (real) field and the spacetime background.

The initial conditions for Z are2

Zi ¼ −
iffiffiffi
2

p ð
ffiffiffiffiffi
Ωi

p
Þ−1; Z0

i ¼
1ffiffiffi
2

p ffiffiffiffiffi
Ωi

p
ð35Þ

where it is assumed that Ωi is invertible.
The matrix Ω2 is a combination of the gradient terms for

the quantum field and its interactions with the background.
Hence we write

Ω2 ¼ −∇2 þ U ð36Þ

where

∇2 ¼
8<
:

−2=a2; i ¼ j

1=a2; i ¼ j� 1

0; otherwise

ð37Þ

where a is the lattice spacing. The form of the matrix U is
constrained by the form of the interactions. For example, if
the interactions are local, i.e., occur at the same spatial point,
then U will be diagonal. For derivative interactions, U will
contain off-diagonal terms.
Further we have constraints that are satisfied by the

evolution [9],

Z�0ZT 0 − Z0Z†0 ¼ 0 ð38Þ

Z�ZT − ZZ† ¼ 0 ð39Þ

Z�ZT 0 − ZZ†0 ¼ i: ð40Þ

These constraints can also be recast as [9]

Z†Z0 − Z†0Z ¼ i ð41Þ

Z†Z�0 − Z†0Z� ¼ 0: ð42Þ

The total energy in quantum excitations is given by

E ¼ 1

2
TrjZ0 − iΩZj2 ð43Þ

and we define an unexciting background to be one that
gives Ef ¼ 0.
First we derive a necessary condition for an unexciting

background. From (43), EðtfÞ ¼ 0 implies

Z0
f ¼ iΩfZf; Z†0

f ¼ −iZ†
fΩf: ð44Þ

Multiplying these two equations and simplifying gives

2To take the positive square root, the matrix under the radical is
diagonalized, then the positive square root of each of the diagonal
entries is taken, and finally the matrix diagonalization is inverted.

UNEXCITING CLASSICAL BACKGROUNDS PHYS. REV. D 105, 056008 (2022)

056008-5



ðZ†ZÞ00f ¼ 0: ð45Þ

Equation (45) is a necessary condition to construct an
unexciting background. Once we find a suitable Z, the
unexciting background is given by

Ω2 ¼ −
1

2
ðZ00Z−1 þ ðZ†Þ−1Z†00Þ ð46Þ

and

Ω ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ðZ00Z−1 þ ðZ†Þ−1Z†00Þ

r
ð47Þ

where the þ sign indicates that the positive (matrix) root
should be taken.
The condition (45), together with the constraints in (38),

(39) and (40), and the additional condition

ðZ†ZÞ0f ¼ 0 ð48Þ

are also sufficient for an unexciting background. To show
this, we rewrite (46) as

Ω2 ¼ −
1

2
ðZ†Þ−1ððZ†ZÞ00 − 2Z†0Z0ÞZ−1: ð49Þ

Having chosen some ZðtÞ, (49) fixes Ω2 for all times.
We now show that (47) gives vanishing energy at the

final time. This is because the condition in (45) when
inserted in (49) gives

Ωf ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−iZ0

fZ
−1
f Þ†ð−iZ0

fZ
−1
f Þ

q
: ð50Þ

Next we show that M≡ −iZ0
fZ

−1
f is Hermitian.

M −M† ¼ −iðZ†
fÞ−1ðZ†ZÞ0fZ−1

f ¼ 0; ð51Þ

since ZðtÞ is chosen to satisfy (48). Therefore M ¼ M†.
Further, using the constraint in (41),

M ¼ 1

2
ðM þM†Þ ¼ ðZZ†Þ−1f ð52Þ

and this is a positive matrix. Therefore (50) gives

Ωf ¼ −iZ0
fZ

−1
f ¼ ðZZ†Þ−1f ð53Þ

and so from (43),

Ef ¼ 1

2
TrjZ0

f − iΩfZfj2 ¼ 0: ð54Þ

This proves that to construct an unexciting background
we can use (47) where ZðtÞ satisfies the constraints in (38),
(39) and (40), and the final time conditions in (45) and (48).

V. SOLVING THE CONSTRAINTS

Let us define

ρ2 ¼ ZZ† ð55Þ

where ρ2 is real, symmetric and positive due to the
constraint condition in (39). Then we can write

Z ¼ ρU ð56Þ

where U is a unitary matrix.
Now we turn to the constraint in (40). Insertion of (56) in

(40) gives the conditions

½ρ; ρ0� ¼ 0; ð57Þ

fρ2; U0U†g ¼ i; ð58Þ

where the curly braces denote an anticommutator. Note that
(57) also implies ½ρ; ρ00� ¼ 0.
A solution of Eq. (58) is

U0U† ¼ i
2
ρ−2 ð59Þ

which is analogous to the solution in the case of a single
simple harmonic oscillator [see Eq. (8)].3

With some algebra, we can check that Z as given by (56)
satisfies all the three constraints (38), (39) and (40). With
this Z in (46) we also find

Ω2 ¼ −ρ00ρ−1 þ 1

4
ρ−4: ð60Þ

So now the problem of constructing field theory unexcit-
ing backgrounds has been reduced to suitably choosing a
real-valued matrix function ρ that satisfies the conditions

½ρ; ρ0� ¼ 0; ρ0i ¼ 0 ¼ ρ0f; ρ00i ¼ 0 ¼ ρ00f: ð61Þ

Then we can construct Ω2 using (60).
A simple example solution is

ρðtÞ ¼ Aþ 1

2
tanhðtÞB ð62Þ

where the time-independent, real, symmetric matrices A
and B commute: ½A; B� ¼ 0. This choice of ρ satisfies all
the conditions in (61) and from (60) will lead to Ω2 that is
unexciting. The challenge however is to find ρðtÞ that not
only gives an unexciting background but is also consistent

3The solution in (59) is not unique. For example, one could
add any matrix on the right-hand side of (59) that anticommutes
with ρ2.
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with interactions that are of physical interest. We will turn
to this question in Sec. VII.

VI. UNEXCITING FOR ALL TIMES

In the case of the SHO it was simple to see that only the
trivial background with ω0 ¼ 0 is unexciting at all times as
in Sec. II A. Here we consider field theory backgrounds that
may be unexciting for all times.
Setting EðtÞ ¼ 0 in (43) gives

Z0 ¼ iΩZ: ð63Þ

Differentiating once with respect to time and using (34)
gives

Ω0Z ¼ 0: ð64Þ

Assuming that Z is invertible, this implies that Ω0 ¼ 0 and
the time dependence of Ω is trivial. An exception is when
the background has some symmetries and there are
excitation zero modes for then the initial Z in (35) is not
well defined.
A second related exception is in situations where the

background is “stationary.” Then the background can have
time dependence but the spectrum of excitations is time
independent and so Ω0 ¼ 0. An example is when the
background is due to a soliton, as discussed in [13]. A
static soliton background has translational symmetry and
the excitation spectrum has a zero mode [14]. A boosted
soliton background is time dependent but there is clearly no
particle production since one can always go to the rest
frame of the soliton. A second similar example of an
unexciting background is that of pp waves [15] and may be
relevant for cosmologies with null big bang singularities
[16]. A third example occurs in spontaneously broken non-
Abelian gauge theories that contain monopole solutions.
Excitations of the rotor degree of freedom of the monopole
endows the monopole with electric charge and converts it
into a dyon [17]. The dyon fields are time dependent but
stationary, and the spectrum of excitations around a dyon is
time independent. This then brings us to the example of a
pure non-Abelian gauge theory. Here too there are rotor
degrees of freedom whose time dependence produces
stationary backgrounds [18]. We plan to describe and
analyze this example in a forthcoming publication.
Another important point to note is in the context of

massless QED in 1þ 1 dimensions mentioned in the
Introduction. There we have described an unexciting
electric field configuration. This background is unexciting
for all times as no fermions are produced, in contrast to our
conclusion above. The reason is that our analysis using the
CQC only applies to the production of bosons and cannot
be applied to fermionic systems. Once the model is
bosonized, the scalar field, ϕ, couples directly to the
electromagnetic field strength due to a ϕϵμνFμν coupling.

Even though the gauge potential is time dependent in
temporal gauge, there can be no production of ϕ quanta in a
static electric field background.

VII. UNEXCITING PHYSICAL BACKGROUNDS?

The system of interest may be a quantum field interacting
with a scalar background, for example a λϕ2ψ2=2 inter-
action as in Sec. III. Or it could be charged particles
interacting with a background electric field, as in
Schwinger particle production. Or it could be both a scalar
field and an electric field, and also perhaps a gravitational
background. Depending on the system, the form of the
frequency matrix Ω2 is restricted and it is of interest to find
unexciting backgrounds consistent with the interactions of
interest.
Let us illustrate the problem with our example from

Sec. III where the interaction is λϕ2ψ2=2 and ϕðt;xÞ is the
space- and time-dependent background. In this case the
interaction acts like an effective mass term andΩ2 takes the
form,

Ω2 ¼ −∇2 þ ðm2 þ λϕ2Þ ð65Þ

where ∇2 is given in (37) and is a symmetric, tri-diagonal
matrix, while them2 þ λϕ2 term is a diagonal matrix. From
(60) we can write

λϕ2 ¼ −
�
□ρþm2ρ −

1

4
ρ−3

�
1

ρ
ð66Þ

where □ ¼ ∂2
t −∇2 is the D’Alembertian (matrix) oper-

ator. Since λϕ2 has to be a diagonal matrix, this imposes an
additional constraint on ρ, namely that the right-hand side
of (66) be diagonal. It is not clear how to choose a
nontrivial ρðtÞ that satisfies (61) and that leads to a diagonal
form for λϕ2 in (66).
The physical system of quantum excitations in a color

electric field [4] is similar to that of the scalar field
discussed above but with additional complications due to
group indices and three spatial dimensions. The back-
ground vector gauge potential can be taken in temporal
gauge to be Aa

i ¼ EiðxÞfðtÞδa3, where EiðxÞ is the chosen
background electric field function of the a ¼ 3 color, and
the function fðtÞ is chosen to suitably turn the electric field
on and off asymptotically. (We assume that external
currents are present so that the background magnetic field
vanishes.) The leading interaction between the background
and the gluonic excitations will again be local; only the
gradient terms provide couplings of the excitation fields at
different spatial points. The analog of (66) for this problem
will again require that a matrix ρ be chosen so that a
combination similar to that on the right-hand side of (66) be
diagonal.
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VIII. CONCLUSIONS

Our investigations were motivated by Schwinger pair
production in the background of a non-Abelian electric
field, but the question is more general—are there classical
time-dependent backgrounds that do not produce quantum
excitations?
To address this question, we first considered a quantum

simple harmonic oscillator with a time-dependent fre-
quency. We found an infinite set of unexciting back-
grounds—variations of the frequency, even possibly
rapid, that lead to no net production of excitations. The
result is potentially of interest in practical settings where
one may wish to alter external backgrounds without
disturbing a quantum system.
We then considered the quantum field theory case. The

spatially homogeneous background problem can be dia-
gonalized and becomes equivalent to an infinite set of
simple harmonic oscillators. We argued that we could
suppress excitations of some modes by choosing a suitable
background time dependence. However, there are always
some modes that get excited by the time-dependent back-
ground and hence a homogeneous background cannot be
unexciting.
Finally we considered the general case of inhomo-

geneous, time-dependent backgrounds. Here we were able
to derive a formula that enables us to construct unexciting

backgrounds. However these are “idealized” backgrounds
and, as discussed in Sec. VII, may not correspond to
physical interactions, e.g., an electric field background. The
question whether there are unexciting physical back-
grounds is still open, one we hope to return to in the future.
Another question of interest that we considered in

Sec. VI is if there are classical time-dependent backgrounds
that are unexciting for all times. We showed that such
backgrounds may exist in bosonic systems provided the
background has symmetries and the time dependence is
purely in the variables that are conjugate to the symmetry
generators. For then, the time dependence leads to a
stationary background in which the spectrum of excitations
is time independent and hence there is no particle pro-
duction. A related question is to find backgrounds in which
excitations are continuously created and absorbed in an
oscillatory fashion, with no net production on average.
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