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We study whether in-medium showers of high-energy gluons can be treated as a sequence of individual
splitting processes g → gg, or whether there is significant quantum overlap between where one splitting
ends and the next begins. Accounting for the Landau-Pomeranchuk-Migdal (LPM) effect, we calculate
such overlap effects to leading order in high-energy αsðμÞ for the simplest theoretical situation. We
investigate a measure of overlap effects that is independent of physics that can be absorbed into an effective
value q̂eff of the jet-quenching parameter q̂.
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When passing through matter, very high energy particles
lose energy by showering, via the splitting processes of
hard bremsstrahlung and pair production induced by small-
angle scatterings from the medium. Figure 1 shows a
cartoon of shower development, where the energy E0 of the
initial high-energy particle is split among more and more
particles as time goes by, until eventually the remaining
particles have such low energy that they thermalize with the
medium (if the medium is thick enough to stop them before
they leave). We will focus on showers of very high energy
(E ≫ T) partons traversing a quark-gluon plasma of
temperature T. The quantum mechanical duration of a
high-energy splitting in the rest frame of the plasma is
known as the formation time. We have drawn ovals in Fig. 1
to represent the formation time (or, equivalently, formation
length) of each splitting, depicting the formation times as
small compared to the time between splittings. In that case,
if one has results for individual medium-induced splitting
rates, one may statistically model shower development by
treating high-energy particles classically between split-
tings, and rolling dice based on the splitting rates to decide
when and how each particle splits. We call this a “weakly
coupled” picture of in-medium shower development.
Alternatively, if formation times are large compared to

times between splittings, one may not treat different
splittings as quantum mechanically independent, and any
classical picture of shower development breaks down. We
will call that a “strongly coupled” shower, which has been

studied theoretically for certain QCD-like theories (such as
N ¼ 4 supersymmetric QCD) that can be studied with
gauge-gravity duality [1–4].
As we will review, the distinction between weakly and

strongly coupled pictures of shower development is con-
trolled by the size of the running coupling αsðμÞ at the
transverse momentum scale μ associated with high-energy
splittings. We will devise and calculate a theoretical
measure of how large αsðμÞ can be before the weakly
coupled picture of shower development breaks down.
Roughly, our approach will be to treat αsðμÞ as small
but calculate the correction to the qualitative picture of
Fig. 1 by computing the correction from overlapping
formation times of two consecutive splittings. We will
have to carefully sharpen the question we ask in order to
factorize out effects of soft bremsstrahlung. This Letter
aims to give a broad overview of our method and
conclusion, with many details and derivations left to a
companion paper [5].
The formalism for making such calculations is challeng-

ing, and so we take the simplest possible theoretical
situation. (i) Imagine a quark-gluon plasma that is static,
homogeneous, and large enough to completely stop the
shower. (ii) Imagine that we start with a single high-energy

E0

FIG. 1. Schematic depiction of a high-energy shower in a
medium. The splittings are nearly collinear, but tiny splitting
angles have been exaggerated to make the drawing readable.
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parton that is very close to on shell. (This ignores, for
example, the initial shower of decreasing virtuality that
takes place when a high-energy parton is scattered out of a
nucleon in a relativistic collision.) (iii) Treat the elastic
scattering of high-energy partons from the medium in
multiple-scattering (q̂) approximation, which is that the
typical total transverse momentum change p⊥ after trav-
eling through a length L of medium behaves like a random
walk, hp2⊥i ¼ q̂L, where the proportionality constant q̂ is
determined by the medium. (iv) Take the large-Nc limit,
where Nc is the number of quark colors. (v) Focus on
gluon-initiated showers, and so the only relevant splittings
in Fig. 1 are g → gg in the large-Nc limit. All of these
assumptions could, in principle, be relaxed in the formalism
that we use, but that would make the calculations much
more difficult.
Before proceeding, we review some parametric scales

associated with single splittings (such as g → gg), shower
development, and the weakly-coupled picture of Fig. 1.
Formation times grow with energy. At sufficiently high
energy (E ≫ T in our case), the formation time tform of
high-energy splittings becomes large compared to the mean
free time τscatt for elastic scattering from the medium; many
scatterings take place during a single splitting, which
causes a very significant reduction of the splitting rate,
known as the Landau-Pomeranchuk-Migdal (LPM) effect
[6–9]. The treatment of the LPM effect in QCD was
originally worked out by Baier, Dokshitzer, Mueller,
Peigne, and Schiff [10–12] and by Zakharov [13,14]
(BDMPS-Z). In that limit, the formation time scales para-
metrically as tform ∼

ffiffiffiffiffiffiffiffiffi
ω=q̂

p
in QCD, where ω ≫ T is the

energy of the least-energetic daughter of the splitting. The
typical scale μ of transverse momentum transferred from
the medium during the formation time is of order

μ ∼
ffiffiffiffiffiffiffiffiffiffiffi
q̂tform

p
∼ ðq̂ωÞ1=4: ð1Þ

This is also the typical scale of the relative transverse
momenta of the two daughters of the splitting.
For simplicity, focus for now on democratic splitting of a

particle with energy E, meaning that the two daughters have
roughly comparable energies. In the high-energy limit, the
probability of a democratic splitting is parametrically of
order αðμÞ per formation time, where αðμÞ is the running
QCD coupling. Note that μ grows with energy ω ∼ E=2 in
(1). Now consider two, consecutive, democratic splittings.
Then the energies and so formation lengths characteristic
of the two consecutive splittings are the same order of
magnitude. Since the probability of a splitting is para-
metrically α per formation time, the typical distance
between splittings will be of order tform=α, and the
probability of the two consecutive splittings overlapping
will be order α. So, naively, the weak-coupling picture of
showers corresponds parametrically to αðμÞ small, and that
picture fails when αðμÞ is large.

That is a naive statement because the preceding argu-
ment was for democratic splittings. References [15–17]
have shown that the probability of a hard splitting over-
lapping with soft bremsstrahlung is enhanced by a large
double logarithm in QCD, similar to double logarithms in
small-x physics but with some kinematic limits different.
They found that, even if αsðμÞ is small, such overlaps have
large effects on energy loss when the double logarithm
compensates. In our case of splitting of a high-energy
particle of energy E in a thick quark-gluon plasma of
temperature T, “soft” gluon energy ω means T ≪ ω ≪ E,
which is the range that contributes to the double logarithm.
So overlap effects become significant when αsðμÞln2ðE=TÞ
is large, which can happen even if αsðμÞ is somewhat small.
But they also found that these double log effects can be
absorbed into a redefinition of the medium parameter q̂. In
our situation here, that means that the potentially large
effects of a soft gluon bremsstrahlung overlapping a hard
splitting process can be absorbed into the original LPM/
BDMPS-Z calculation of the hard g → gg splitting rate by
taking q̂ → q̂effðEÞ ¼ q̂þ δq̂ in that calculation, where
δq̂ðEÞ ∼ αsq̂ln2ðE=TÞ. They also showed (following [18])
how to resum leading logs to all orders in αsðμÞ.
Refining the question.—The goal of this Letter is to

construct a measure of the size of overlap effects that
cannot be factorized away and absorbed into an effective
value for the medium parameter q̂. We start with an idea
proposed in Ref. [19]. For simplicity, imagine for a moment
a shower composed of democratic splittings. The
distance between consecutive splittings is of order
tform=α ∼ α−1

ffiffiffiffiffiffiffiffiffi
E=q̂

p
, where the typical energy E of the

individual shower particles decreases rapidly as the shower
develops. A shower initiated by a single particle of energy
E0, moving in the z direction, will therefore stop and
deposit all its energy into the medium in a distance of order
lstop ∼ α−1

ffiffiffiffiffiffiffiffiffiffiffi
E0=q̂

p
, which depends on q̂. As a thought

experiment, imagine measuring the distribution ϵðzÞ in z of
where that energy is deposited into the medium, statistically
averaged over many such showers. (We do not track the
parametrically small spread of the shower in the transverse
directions.) A qualitative picture is shown in Fig. 2. We
define lstop as the first moment hzi≡ E−1

0

R
dz zϵðzÞ of this

distribution. Other features of the distribution, such as its

FIG. 2. Energy deposition distribution ϵðzÞ.
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width σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2i − hzi2

p
, are parametrically the same order

as lstop ∼ α−1
ffiffiffiffiffiffiffiffiffiffiffi
E0=q̂

p
. Naively, the dependence on q̂ would

then cancel in a ratio such as σ=lstop. More generally, one
may study any aspect of what we will call the “shape” SðZÞ
of the energy deposition distribution ϵðzÞ. By shape, we
mean Fig. 2 rescaled to units where lstop ¼ 1 and normal-
ized to have unit area under the curve:

SðZÞ≡ hzi
E0

ϵðhziZÞ; ð2Þ

where Z≡ z=hzi. Naively, this shape function is insensitive
to any physics (such as soft bremsstrahlung) that can be
absorbed into the value of q̂.
The shape SðZÞ and its moments are insensitive to

constant shifts δq̂ to q̂. However, the potentially large
double log correction, arising from a soft bremsstrahlung
overlapping a hard splitting, is not constant: it depends
logarithmically on the energy scale E of the underlying
hard splitting. So δq̂ is different for different splittings in
the shower, and those differences do not exactly cancel in
SðZÞ. As discussed in Ref. [19] in the specific context of
σ=lstop (which is the second reduced moment of S), the
energy dependence of the double-log corrections from
overlapping soft bremsstrahlung will lead to potentially
large single-log corrections to the shape—that is, correc-
tions that are O½αs lnðE0=TÞ� instead of OðαsÞ. The naive
calculation of overlap corrections to SðZÞ will not be
completely independent of soft bremsstrahlung physics.
To proceed, consider a loose analogy with parton

distribution functions (PDFs) in the context of deep
inelastic scattering (DIS) and other inclusive processes.
The cross sections factorize into (i) constituent cross
sections of the partons and (ii) PDFs. Beyond leading
order (LO), the constituent cross sections have initial-state
collinear divergences in perturbation theory that must be
absorbed into the PDFs. This requires introducing a
factorization scale Mfac to specify exactly how much to
absorb (analogous to introducing the renormalization scale
μ when absorbing ultraviolet divergences) [20]. In next-to-
leading order (NLO) perturbative calculations, the answer
depends on the choice of Mfac, just as it depends on the
choice of renormalization scale μ. Theorists typically set
Mfac and μ to be the same and of order of the appropriate
physics scale of the problem (e.g.,

ffiffiffiffiffiffiffiffiffi
jQ2j

p
in DIS) in order

to avoid large logarithms in the perturbative expansion.
Typically, the exact choice of scale is varied over a
reasonable range to give a theory guess of uncertainty.
The higher the order in perturbation theory, the less
sensitive the result to that variation.
We adopt a similar strategy. We define q̂effðΛfacÞ to

exactly absorb all double and subleading single log
behavior from overlapping soft bremsstrahlung that has
ωsoft ≤ Λfac. We will choose Λfac to be of the order of the

relevant energy scale of the problem (in the rest frame of
the plasma). Similar to (1), the corresponding transverse
momentum scale is Mfac ∼ ðq̂ΛfacÞ1=4. We will calculate all
effects of overlapping formation times on SðZÞ that have
not already been absorbed into qeffðΛfacÞ. Later, we will see
that the question of whether overlap effects that cannot be
absorbed into q̂ are large or small is very insensitive to the
exact choice of Λfac.
Shower evolution.—The rates that contribute to

LOþ NLO, large-Nc, gluon shower evolution are
called ½dΓ=dx�LO, ½ΔdΓ=dx�NLOg→gg, and ½ΔdΓ=dxdy�g→ggg.
Formulas for these rates are given in Refs. [22,23], culmi-
nating the development of Refs. [24–28]. Here, leading
order refers to the LPM/BDMPS-Z rate for a single,
nonoverlapping splitting g → gg, such as each individual
splitting shown in Fig. 1. Our “LO” rate encompasses an
arbitrary number of scatterings from the medium and does
not assume that the coupling αsðTÞ of the quark-gluon
plasma is perturbatively small. Here, LO vs NLO refers
only to how many powers of direct interactions αsðμÞ
between high-energy (E ≫ T) partons are involved in the
splitting. ½dΓ=dx�LO is the differential LO rate for the
energy to split as E → xEþ ð1 − xÞE. ½ΔdΓ=dxdy�g→ggg is
a rate representing the overlap correction to any two
consecutive splittings, g → gg → ggg, with final energy
split as E → xEþ yEþ ð1 − x − yÞE. (We also include
g → ggg from direct 4-gluon vertices in ½ΔdΓ=dxdy�g→ggg

[23].) ½ΔdΓ=dx�NLOg→gg gives related one-loop corrections to
single splitting, such as from g → gg → ggg → gg. These
rates are designed so that one may evolve the shower using
classical statistics for an evolution that contains both 1 → 2

splittings, with differential rate ½dΓ=dx�1→2 ¼ ½dΓ=dx�LOþ
½ΔdΓ=dx�NLOg→gg, and 1 → 3 splittings, with rate
½ΔdΓ=dxdy�g→ggg. The latter rate can sometimes be neg-
ative because it contains the overlap correction, which can
have either sign [25]. Negative ½ΔdΓ=dxdy�g→ggg will not
cause any problem for the NLO analysis in this Letter.
In our convention, final-state identical particle symmetry

factors are not included in the differential rates above. So,
since all our high-energy particles are gluons, the total
splitting rate would be formally (ignoring the fact that it is
infrared divergent)

Γ ¼ 1

2!

Z
1

0

dx

�
dΓ
dx

�
1→2

þ 1

3!

Z
1

0

dx
Z

1−x

0

dy

�
dΓ
dxdy

�
1→3

:

ð3Þ

When a shower involves more than just 1 → 2 splitting
processes, the shower evolution equation can be neatly
packaged in terms of what we call the “net” rate ½dΓ=dx�net
[22] for a splitting to produce one daughter of energy xE
(plus any other daughters) from a parent of energy E. In the
case of generic 1 → 2 and 1 → 3 splittings,
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�
dΓ
dx

�
net

¼
�
dΓ
dx

�
1→2

þ 1

2!

Z
1−x

0

dy

�
dΓ
dxdy

�
1→3

: ð4Þ

Note that the integral of ½dΓ=dx�net over x is not the total
rate Γ. Instead, there is a very useful alternative relation [5]:
Γ ¼ R

dx x½dΓ=dx�net. In terms of ½dΓ=dx�net, the shower
evolution equation is [5,22]

∂

∂t
nðζ;E0; tÞ ¼

Z
1

0

dx

�
−x

�
dΓ
dx

ðx;ζE0Þ
�
net
nðζ;E0; tÞ

þ θðx− ζÞ
x

�
dΓ
dx

�
x;
ζ

x
E0

��
net
n

�
ζ

x
;E0; t

��
;

ð5Þ

where nðζ; E0; tÞ is the number density in ζ of gluons with
energy ζE0 at time t. ½dΓðx; EÞ=dx�net is the net splitting
rate (4), and θ is the unit step function.
We have implicitly integrated over final (postoverlap)

transverse momenta both in our rate calculations and in
nðζ; E0; tÞ, and chosen a p⊥ insensitive test of overlap
effects, because implicit p⊥ integration drastically simpli-
fies the calculation of rates [29].
We want to factor out (and absorb into q̂) the double and

single logs arising from soft bremsstrahlung with energy
ω0 ≤ Λfac, and so, at NLO, we use a factorized version of
the net rate in evolution equations like (5). In the multiple-
scattering (q̂) approximation we have used, the net rate (4)
is double-log infrared divergent, but the factorized net rate
will not be. The computations [22,23] of splitting rates used
a small infrared (IR) cutoff ωmin on soft gluon energy. With
that IR regulator, the factorized rate is then

�
dΓ
dx

�
fac

net
¼

�
dΓ
dx

�
net

−
CAαs
4π

�
dΓ
dx

�
LO

×
Z

Λfac

ωmin

dω0

ω0

�
ln

�
E
ω0

�
− s̄ðxÞ

�
; ð6Þ

where CA ¼ Nc is the adjoint Casimir, the integral of the
first term in braces produces a double logarithm, and the
single log coefficient s̄ðxÞ is given explicitly in
Refs. [30,31]. The combination (6) is finite as ωmin → 0
and should be independent of the details of the actual
physics [18,32] that cuts off the double logarithm in the
infrared.
The evolution equation (5) can be simplified if the

(factorized) net rate scales with energy as exactly E−1=2

for fixed x. This depends on the details of how one chooses
Λfac. One choice might be (i) Λfac ∝ E0, the energy of the
entire shower. Absorbing double logs into q̂, the “leading-
order” description would then use q̂effðE0Þ for all splittings
in the shower. Amore refined choicewould be (ii)Λfac ∝ E,
and so use q̂effðEÞ for each splitting, adjusted for the
parent’s energy E of that particular splitting. An even more
refined choice would be to recognize that the formation

time and transverse momentum kicks associated with a
g → gg splitting are determined (regarding the LPM effect)
by the energy of the softest daughter, and so take
(iii) Λfac ∼min½xE; ð1 − xÞE�. In case (i), due to the
mismatch of Λfac and the energy of individual splittings,
a part of (6) will scale like E−1=2 ln2ðΛfac=EÞ, which does
not allow simplification of the evolution equation. Both
cases (ii) and (iii) avoid logarithmic dependence on E.
Because (iii) is the most natural choice, we stick to that
here. Specifically, we choose Λfac ∝ xð1 − xÞE, which is a
smooth function of x with the desired parametric behavior.
To simplify the shower evolution equation, scale E−1=2

out of the rate by rewriting dΓðx; EÞ ¼ E−1=2dΓ̃ðxÞ,
t ¼ E1=2

0 t̃, and nðζ; E0; tÞ ¼ ñðζ; t̃Þ. Then

∂

∂t̃
ñðζ; t̃Þ ¼ ζ−1=2

Z
1

0

dx

�
dΓ̃
dx

ðxÞ
�
fac

net

×

�
−xñðζ; t̃Þ þ θðx − ζÞ

x1=2
ñ

�
ζ

x
; t̃

��
: ð7Þ

An even simpler equation can be found for the (rescaled)
energy deposition distribution [5,19],

∂ϵ̃ðz̃Þ
∂z̃

¼
Z

1

0

dx x

�
dΓ̃
dx

ðxÞ
�
fac

net
fx−1=2ϵ̃ðx−1=2z̃Þ − ϵ̃ðz̃Þg; ð8Þ

where ϵ̃ðz̃Þ≡ E−1=2
0 ϵðE1=2

0 z̃Þ is normalized so thatR
∞
0 dz̃ ϵ̃ðz̃Þ ¼ 1. Simpler yet, the moments of this distribu-
tion are given recursively in terms of integrals of the net
rate [5,19]:

hz̃ni ¼ nhz̃n−1iR
1
0 dx xð1 − xn=2Þ½dΓ̃dx�facnet

: ð9Þ

Results and conclusions.—We find that the width σS ¼
σ=lstop of the shape distribution SðZÞ is

σ

lstop
¼

�
σ

lstop

�
LO

eff

ð1þ χαs þ higher orderÞ; ð10Þ

where the relative size of overlapping formation-time
corrections not absorbed into q̂eff is

χαs ¼ ð−0.019� 0.001 ln κÞCAαsðμÞ ð11Þ

for Λfac ¼ κxð1 − xÞE and μ ¼ ðq̂AΛfacÞ1=4, where our
canonical choice is κ ¼ 1. Even for NcαsðμÞ ¼ 1, (11) is
a tiny, few-percent effect (for any reasonable choice of κ).
Reference [5] gives some results for higher moments of

SðZÞ for gluon showers, but it is more interesting to just
look at how the function SðZÞ itself changes. Let δSðZÞ be
the change in the shape function to first order in overlap
effects, i.e., to first order in αsðμÞ. Figure 3 depicts SLOðZÞ
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vs SLOðZÞ þ δSðZÞ for Ncαs ¼ 1. The difference is very
small and will be proportionally smaller for
smaller NcαsðμÞ.
Though the corrections to the shape SðZÞ are very small

for large-Nc gluon showers (Fig. 3), the corrections to
quantities that do depend directly on q̂ are substantial, even
when factorized. The relative difference between ½dΓ=dx�facnet
and ½dΓ=dx�LO can be of order Ncαs × 100% for demo-
cratic splittings and is fairly sensitive to the choice of
Λfac [5].
We should clarify that, when we use measurements of

the shape function to “ignore all effects that can be
absorbed into q̂,” we are not claiming that those exact
same effects also affect transverse momentum broadening
(the basis for our original definition of q̂). For our
purpose here, think of q̂eff as an effective “jet quenching”
parameter rather than a precisely defined effective “trans-
verse momentum broadening” parameter. It is known that
the coefficient of the IR double logs are universal in the
sense that they affect both the same way [15–17]. At least
in the large-Nc limit, there is a (more subtle) universality
for subleading, IR single logs as well [30]. But we are
unaware of any reason for such universality to hold
beyond logarithms.
In dramatic contrast to (11), Ref. [19] analyzed σ=lstop

for charge (rather than energy) deposition of an electron-
initiated shower in large-Nf QED, and the analog of (11)
was found to be χαEM ¼ −0.87NfαEMðμÞ (and no factori-
zation scale need be introduced). This is a large effect for
NfαEM ¼ 1. Reference [5] offers some crude, incomplete,
after-the-fact insight about the qualitative difference with
(11) and motivates future study of (i) whether adding
quarks to our analysis would qualitatively change our
conclusion and (ii) whether overlap effects for energy vs
charge stopping are qualitatively different.
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