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Abstract In this work, we investigate the Higgs–
Starobinsky (HS) model in the context of warm inflation sce-
nario. The dissipative parameter as a linear form of temper-
ature of warm inflation is considered with strong and weak
regimes. We study the HS model in the Einstein frame using
the slow-roll inflation framework. The inflationary observ-
ables are computed and then compared with the Plank 2018
data. With the sizeable number of e-folds and proper choices
of parameters, we discover that the predictions of warm HS
model present in this work are in very good agreement with
the latest Planck 2018 results. More importantly, the param-
eters of the HS model are also constrained by using the data
in order to make warm HS inflation successful.
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1 Introduction

Despite the fact that the standard model of cosmology, a.k.a.
the Big Bang model, provides a comprehensive explana-
tion for a broad range of observed phenomena including
the anisotropy of the cosmic microwave background (CMB)
consisting of the small temperature fluctuations in the black-
body radiation left over from the Big Bang and a mechanism
for generating the primordial energy density perturbations
that are the seed for late time large-scale structure. How-
ever, there are some observations in which the traditional
Big Bang model fails to explain. These cosmological prob-
lems are linked to the primordial universe. More concretely,
the observed flatness, homogeneity, and the lack of relic
monopoles posed severe problems in the standard Big Bang
cosmology. In order to solve such fundamental problems,
an inflationary scenario [1–5] is a well-established paradigm
describing an early universe and posts an indispensable ingre-
dient of modern cosmology.

In the standard picture, an accelerated expansion quickly
erases all traces of any pre-inflationary matter or radiation
density resulting the universe in the vacuum state. We explain
the transition from inflation to the “hot Big Bang” state by
requiring the nucleosynthesis and using the physics of recom-
bination leading to the descriptions of the CMB temperature
anisotropies we observed today. To this end, we need the
interactions between the inflaton with other fields resulting
the (partial) decay of the inflaton into ordinary matter and
radiation. However, inflaton decay can only play a significant
role at the end of the slow-roll regime, leading to the stan-
dard “(p)reheating” paradigm, see e.g. [6–8]. In standard cold
inflation, any preexisting radiation is stretched and dispersed
during a very short cosmic phase and no new radiation is
produced. However, one can imagine an alternative scenario
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where dissipative effects and associated particle production
can sustain a thermal bath concurrently with the accelerated
expansion of the Universe during inflation. This alternative
perspective was known as warm inflationary paradigm. The
original proponent of warm inflation was proposed by Arjun
Berera and his colleagues [9,10]. As mentioned in Ref. [11],
this alternative counterpart is proposed in which the radiation
energy density smoothly decreases all during an inflation-
like stage and with no discontinuity enters the subsequent
radiation-dominated stage.

Beside, the Starobinsky R2 cosmic inflation model [1] and
the non-minimal coupling Higgs inflation [12] are greatly
received attention over decades. In particular, Those two
models are very successful to explain the mechanisms of
the inflationary universe and nicely fit with the observational
data. However, these two models suffer from some funda-
mental problems per se. On the one hand, Higgs inflation
encounters to the unitary problem if we consider single scalar
Higgs field as the inflaton only and the Higgs field needs
to large at the beginning of the inflationary phase [13]. On
the other hand, the origin or mechanism to generate the R2

term in the Starobinsky model is still unclear. Fortunately,
an attempt to combine and fulfill the Higgs with Starobin-
sky is successfully done by many authors of Refs. [14,15].
This leads to a so-called Higgs–Starobinsky (HS) inflation
model. The main idea of the HS model is that the Higgs field
does couple to the graviton (Ricci scalar) at large coupling
and this leads to the R2 emerging from the quantum correc-
tion between Higgs and graviton at least at one-loop level.
As a result, this model does not suffer from all mentioned
problems of the Higgs and Starobinsky inflationary mod-
els. Salient features of the HS are that there is no physics
beyond standard model of particle physics and the higher
curvature term R2 of the Starobinsky inflation is automat-
ically generated by the quantum correction effect. In addi-
tion, the unitarity problem of the original Higgs inflation is
solved. The HS inflation has been used to study in various
aspects [16–27]. Moreover, there were some mixed Higgs–
Starobinsky models in the Palatini formulation of gravity
[28–30] as well as in the metric formulation of gravity [31].
Additionally, an extension of the scalaron-Higgs model by a
non-minimal coupling of the Standard Model Higgs boson to
the quadratic Ricci scalar was proposed by Ref. [32]. How-
ever, a study of the HS model in warm inflationary universe
has not been reported yet and hence it is worth investigating
it in the present work.

The structure of the present work is organized as follows.
In Sect. 2, we set up the (warm) HS inflationary model and
study it in the Einstein frame. We then derive the relevant
cosmological observables in the warm inflation scenario. In
Sect. 3 we compare the theoretical results in the warm HS
inflation with the Planck 2018 data. Finally, We conclude our
findings in the last section.

2 Model Set-up

2.1 The HS action

The gravitational action of the HS model with non-minimal
coupling to the Ricci scalar and the self-interacting Higgs
field is given by

SJ =
∫

d4x
√−g

[
−1

2
M2

p R − 1

2
ξ h2 R

+1

2
gμν∂μh ∂νh − λ

4
h4 − α R2

]
, (2.1)

where the subscript SJ stands for the action in the Jordan
frame and M2

p = 1/8πG, ξ and α are Planck mass, non-
minimal Higgs and R2 Starobinsky term coupling constants,
respectively, while the h field is the Higgs scalar field with the
standard Higgs potential the self-interacting coupling con-
stant λ. In the HS model, the large coupling of the Higgs
and graviton plays the role as the trigger of the Starobin-
sky inflation term R2 from the quantum correction [14,15].
According to the RG analysis of the HS model at the one-loop
level [26,27], it was shown that the coupling of the R2 term,
α, is proportional to α(h) ∝ (ξ + 1/6)2 ln(h/μ) where the
renormalization scale is set at the Planck mass, i.e., μ ≈ Mp

and the Higgs field (h) is a sub-Planckian field as h � Mp.
This is the main mechanism behind the generation of the
Starobinsky R2 inflation in the HS model. At the large val-
ues of non-minimal coupling ξ and the inflaton (scalaron, φ

see below) and in the slow-roll regime during inflation, we
can drop kinetic term of the Higgs field. Then the HS gravity
action is given by [18,19,23],

SJ =
∫

d4x
√−g

[
−1

2
M2

p R − 1

2
ξ h2 R − α R2 − λ

4
h4

]
.

(2.2)

We can eliminate the non-minimal Higgs coupling term,
ξ σ 2 R via the equation of motion of h field. The Euler-
Lagrange equation of the Higgs field, h is therefore written
by

1

2
ξ h2 R + λ

4
h4 = 0 �⇒ h2 = − 6 ξ R/λ. (2.3)

Substituting the Higgs field in above equation, we find

SJ =
∫

d4x
√−g M2

p

[
−1

2
R − 1

12 M2 R2
]

, (2.4)

M2 = M2
p

12
(
α + 3 ξ2/(2 λ)

) . (2.5)

The above action is a standard form of the Starobinsky infla-
tion action. We will see in the latter that the scalaron mass,
Mα of the pure Starobinsky inflaton field (for ξ = 0 = λ) is

123



Eur. Phys. J. C (2022) 82 :122 Page 3 of 11 122

given by

M2
α = M2

p

12 α
, (2.6)

whereas the scalaron mass of the HS gravity is modified by
[19,23]

M2 = M2
α

1 + 18 (ξ2/λ) M2
α/M2

p
. (2.7)

According to the observational constraints of the amplitudes
of the curvature perturbation, one finds M ≈ 1.3 × 10−5Mp

[33]. By using the fixing M parameter, we obtain the relation
between three parameters ξ , α and λ and we will employ
action in Eq. (2.4) to work out relevant inflation parameters
and fix the parameters from the HS model with the observa-
tional data in the next section.

It is very convenient to study the inflation dynamics in
the Einstein frame which can be obtained via the conformal
transformation. According to the HS action Eq. (2.2) in the
Jordan frame, we can impose the conformal factor as


2 = 2

M2
p

∂

∂R

(
1

2
M2

p R + M2
p

12 M2 R2

)
= 1 + R

3 M2 , (2.8)

where the definition of the effective mass M is given in
Eq. (2.7). The conformal factor, 
2, plays important role
on transformation of the gravitational action from the Jor-
dan frame to the Einstein frame. The relation between metric
tensors of the Jordan and Einstein frames reads

gμν = 
2 g̃μν. (2.9)

We would like to mention that all quantities with “˜” are
represented quantities in the Einstein frame. The Ricci scalar
in the Jordan frame is written in terms of quantities in the
Einstein frame as

R = 
2
(
R̃ + 3 g̃μν∂μ∂ν ln 
2 − 3

2
g̃μν∂μ ln 
2 ∂ν ln 
2

)
.

(2.10)

More importantly, the scalaron field, φ, in the HS model is
introduced via

φ = Mp

√
3

2
ln 
2. (2.11)

SE =
∫

d4x
√−g̃

[
−1

2
M2

p R̃ + 1

2
g̃μν ∂μφ ∂νφ − V (φ)

]
,

(2.12)

Using the definition of the scalaron field, one can write the
effective potential of the scalaron in the Einstein frame as

V (φ) = 3

4
M2

p M
2
(

1 − e
−

√
2
3

φ
Mp

)2

. (2.13)

This is the standard Starobinsky scalaron potential in the Ein-
stein frame and we will employ this potential in the analysis
of the warm inflation scenario throughout this work.

2.2 Cosmological equations in warm inflation scenario

Having used the HS action (2.12) in the Einstein frame with
the flat FRW line element, the Friedmann equation of the
warm inflation is written by,

H2 = 1

3 M2
p

(
1

2
φ̇2 + V (φ) + ρr

)
. (2.14)

The Klein–Gordon equation of the scalaron field (φ) with
the dissipative term (�) due to the warm inflation scenario is
governed by

φ̈ + 3H φ̇ + V ′ = −� φ̇, (2.15)

while the conservation of the radiation matter is read

ρ̇r + 4H ρr = � φ̇2. (2.16)

According to the finite temperature field theory analysis in
the supersymmetry models, one obtains the general form of
the dissipative parameter as [34–37]

� = Cm
Tm

φm−1 . (2.17)

The dissipative parameter, �, corresponds to the friction of
the inflaton field in the thermal bath in the warm inflationary
universe. In addition,Cm is a constant encoding the inflaton’s
microscopic effect of the dissipative dynamics and the m is
an integer. In particular, the high temperature supersymmet-
ric model is governed by m = 1 whereas m = 3 is responded
to the low temperature supersymmetric model [36]. The use
of the general form of the dissipative parameter given in Eq.
(2.17) can also be found in the context of warm inflation
with power-law plateau potential [55]. In the following sub-
sections, we will consider the dissipative parameter with the
slow-roll approximation for m = 1 which corresponds to a
so-called warm little inflation.

In warm inflationary universe with the slow-roll regime,
we can re-write the Friedmann equation as well as the equa-
tions of motion for the scalaron (inflaton) and the radiation
matter to obtain

H2 ≈ 1

3M2
p
V (φ), (2.18)

φ̇ ≈ − V ′(φ)

3H(1 + Q)
, Q ≡ �

3H
, (2.19)

ρr ≈ � φ̇

4H
, ρr = Cr T

4, (2.20)

where Q is called a dissipative coefficient and Cr =
g∗ π2/30. To obtain above equations, the following approx-
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imations have been used

ρr � ρφ, ρφ = 1

2
φ̇2 + V, (2.21)

φ̇2 � V (φ), (2.22)

φ̈ � 3H (1 + Q) φ̇, (2.23)

ρ̇r � 4H ρr , (2.24)

as usually done in the slow-roll scenario. It is more convenient
to consider the warm inflation in two regimes as

Q � 1, strong regime, (2.25)

Q � 1, weak regime. (2.26)

More importantly, we can re-write the temperature in terms
of the scalaron field, φ, by using the Eqs. (2.17)–(2.20) in the
general m integer values. One finds

T =
(
V ′ 2 φm−1

4H Cm Cr

) 1
4+m

, for Q � 1, (2.27)

T =
(
Cm V ′ 2 φ1−m

36H3 Cr

) 1
4−m

, for Q � 1. (2.28)

Next, we provide the slow-roll parameters in the warm infla-
tion for general m and they read

ε = M2
p

2

(
V ′

V

)2

, η = M2
p
V ′′

V
,

β = M2
p

(
V ′ �′

V �

)
. (2.29)

The inflationary phase of the universe occurs under the fol-
lowing conditions

ϕ � 1 + Q, η � 1 + Q, β � 1 + Q. (2.30)

Moreover, the number of e-folds, N , can be written in two
regimes as

N =
∫ φN

φend

Q V

V ′ dφ, for Q � 1, and

N =
∫ φN

φend

V

V ′ dφ, for Q � 1. (2.31)

The power spectrum of warm inflation has been calculated
by the authors of Refs. [38–45] and it reads

�R =
(

H2
N

2πφ̇N

)2 (
1 + 2nN +

(
TN
HN

)
2
√

3 π QN√
3 + 4π QN

)
G(QN ),

(2.32)

where the subscript “N” is labeled for all quantities estimated
at the Hubble horizon crossing and n = 1/

(
exp H/T −1

)
is

the Bose–Einstein distribution function. More importantly,
the function G(QN ) encodes the coupling between the infla-
ton and the radiation in the heat bath which leads to a growing

mode in the fluctuations of the inflaton field originally cal-
culated in Ref. [38] and consequent implications [37,40]. In
contrast, however, if G(QN ) = 1, the above expression for
the amplitude of the primordial spectrum is only valid in the
weak dissipative regime, as it has been stated in other stud-
ies of warm inflation, see for example Refs. [39,46–49]. In
addition, the scalar spectral index is defined by

ns − 1 = d ln �R
d ln k

∣∣∣∣
k=kN

= d ln �R
dN

, (2.33)

with ln k ≡ a H = N . The tensor-to-scalar ratio of the per-
turbation, r , can be calculated via the following formulae:

r = �T

�R
, (2.34)

where �T is the power spectrum of the tensor perturbation
and it takes the same form as the standard (cold) inflation
picture, i.e. �T = 2H2/π2M2

p = 2V (φ)/3π2M4
p.

In the following, we will separately consider the amplitude
of the power spectrum in Eq. (2.32) for the warm inflation
with the HS theory in the weak regime (i.e., Q � 1 and
G(QN ) = 1) and the strong regime (Q � 1 and G(QN ) �=
1) in the Sects. 2.2.1 and 2.2.2, respectively.

2.2.1 Weak regime: Q � 1 and G(QN ) = 1

In this subsection, we will calculate observable quantities
of the warm inflation by dropping the growing mode of the
power spectrum in Eq. (2.32) which corresponds to Q � 1
and G(QN ) = 1 limit. In the warm inflationary universe, the
parameter r has been determined and written in terms of the
slow-roll parameters in the weak regimes for T � H limit
by Refs. [41,42] as

r = 16 ε, for Q � 1. (2.35)

In this work, we consider up to the first order of the Q correc-
tion for r parameter. As results, we note that the dissipative
coefficient Q does not play the role in the weak regime similar
to the cold inflation scenario. Moreover, the ns is evaluated
in the simple analytical forms for the weak regime by Refs
[41,42]. Up to the first-order correction of the Q parameter,
ns are given by

ns = 1 − 6 ε + 2 η + Q (8 ε − 2 β) , Q � 1. (2.36)

Next, we will compute all relevant inflationary observables
by considering m = 1 dissipative parameter model. The dis-
sipative parameter for m = 1 model reads

� = C1 T . (2.37)

As mentioned earlier, this model is related to the high tem-
perature in supersymmetric models and also known as warm
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little inflation [46]. The coupling C1 in Eq. (2.37) is given by

C1  3 g2

h2
(
1 − 0.34 log(h)

) , (2.38)

where g is the Yukawa couplings of the inflaton and heavy
fermions in the warm little inflation scenario while the cou-
pling h is used to determine decay widths of the heavy
fermions decaying to light singlet scalar and other light
fermion particles [46]. More interestingly, the inflaton in this
scenario corresponds to the pseudo-Goldstone boson from
the broken symmetry and it is analogy to the little Higgs
mechanism in the electroweak symmetry breaking frame-
work.

The slow-roll parameters of the � = C1 T model are given
by,

ε = 4

3

[
e

√
2
3

φ
Mp − 1

]2 , η = 4

3

[
2 − e

√
2
3

φ
Mp

]

[
e

√
2
3

φ
Mp − 1

]2 ,

β = 4

9

[
1 − 2 e

√
2
3

φ
Mp

]

[
e

√
2
3

φ
Mp − 1

]2 , for Q � 1.

β = 4

15

[
2 − 3 e

√
2
3

φ
Mp

]

[
e

√
2
3

φ
Mp − 1

]2 , for Q � 1. (2.39)

Before we proceed the theoretical results to be confronted
with the data, we will determine the Q in the weak regime,
Q � 1. By using Eqs. (2.19), (2.28) and (2.37), the parameter
Q is given by

Q = 2

3

[
� e2χ

3 (eχ − 1)4

] 1
3

≈ 2

3

[
�

3 e2χ

] 1
3

, for Q � 1,

(2.40)

where we have defined a new parameter � ≡ (
C4

1/Cr
)

(
M2

p/M
2
)

and χ ≡ √
2/3 φ/Mp.

The warm inflation will stop when the following condi-
tions are satisfied

ε = 1 + Q, η = 1 + Q, β = 1 + Q. (2.41)

In the latter, we will consider the end of the warm inflation
for two cases, i.e., the strong Q � 1 and weak Q � 1
approximation. In this subsection, we start with the weak
regime Q � 1 and the end of inflation yields

εend ≈ 1 �⇒ φend ≈ 0.18 Mp, (2.42)

while the number of e-folds in the weak regime is given by

N = 1

M2
p

∫ φN

φend

V

V ′ dφ

≈ 3

4

(
e

√
2
3

φN
Mp − e

√
2
3

φend
Mp

)

≈ 3

4
e

√
2
3

φN
Mp = 3

4

√
4

3 ε
, (2.43)

where approximations eχ ±1 ≈ eχ and φN � φend are once
assumed. As a result, we find

φN =
√

3

2
Mp ln

(
4

3
N

)
. (2.44)

In addition, we also re-write the slow-roll parameters in terms
of N in the weak regime, Q � 1, as

ε ≈ 3

4 N 2 , η ≈ −
√

4 ε

3
= − 1

N
,

β ≈ −2

3

√
4 ε

3
= − 2

3 N
. (2.45)

Next section, we will evaluate the cosmological observables
of the warm HS inflation in the strong regime limit.

2.2.2 Strong regime: Q � 1 and G(QN ) �= 1

In the strong dissipative regime, the inflaton perturbations
are non-trivially affected by the fluctuations of the thermal
bath, and the amplitude of the spectrum may get a correction,
generically called the “growing mode”, depending on the
value of the dissipative ratio. This was originally computed
by Graham and Moss [38], see also some relevant literature
[50,51]. In the present analysis, we will consider the warm
inflation in the strong regime with the growing mode effect.

By using Eqs. (2.19), (2.27) and (2.37), we find Q for the
strong limit as

Q =
[

23

34

� e2χ

(eχ − 1)4

] 1
5

≈
[

23

34

�

e2χ

] 1
5

, for Q � 1,

(2.46)

At the end of inflation in the strong regime, one finds from
Eq. (2.41)

εend ≈ Qend �⇒ 4

3 (eχ − 1)2 ≈
[

23

34

� e2χ

(eχ − 1)4

] 1
5

.

(2.47)

From the above equality, we can solve to obtain the value of
the inflaton field (scalaron) at the end of inflation:

φend ≈
√

3

2

Mp

8
ln

(
2

3

43

�

)
, (2.48)

123



122 Page 6 of 11 Eur. Phys. J. C (2022) 82 :122

where the large field approximation has been done via eχ ±
1 ≈ eχ with χ = √

2/3 φ/Mp. Moreover, the inflaton field
at the Hubble horizon crossing in the strong regime, φN , can
be determined to obtain

N = 1

M2
p

∫ φN

φend

Q V

V ′ dφ

≈ 5

2

(
C4

1 M2
p

182 Cr M2

) 1
5 (

e
3
5

√
2
3

φN
Mp − e

3
5

√
2
3

φend
Mp

)

≈ 5

2

(
�

182

) 1
5

e
3
5

√
2
3

φN
Mp = 5

4

[
23

34 �

(√
4

3 ε

)3 ] 1
5

,

(2.49)

where � ≡
(
C4

1 M2
p/Cr M2

)
and the condition φN � φend

has been applied. This leads to

eχN = 12

5

(
6

52

N 5

�

) 1
3

,

�⇒ φN =
√

3

2

Mp

3
ln

(
8

64

55

N 5

�

)
, (2.50)

where χN ≡ √
2/3 φN/Mp. As done above, we therefore

can re-write the slow-roll parameters in terms of the number
of e-folds, N , by using the large field approximation in the
strong Q limit via

ε ≈ 53

4 · 33

(
52

6

�

N 5

) 2
3

,

η ≈ −
√

4 ε

3
= −5

√
5

9

(
52

6

�

N 5

) 1
3

,

β ≈ −2
√

3 ε

5
= −

√
5

3

(
52

6

�

N 5

) 1
3

. (2.51)

Recalling the power spectrum in Eq. (2.32), we re-write
the power spectrum as

�R = V (φN )
(
1 + QN

)2

24 π2 M4
p ε

×
(

1 + 2 nN +
(
TN
HN

)
2
√

3 π QN√
3 + 4π QN

)
G(QN ),

(2.52)

where the function G(QN ) represents the growth rate of the
inflaton field fluctuation from the coupling between the infla-
ton and the radiation fluid in the thermal bath [38]. Having
solved the full set of the cosmological perturbation equa-
tions in the warm inflation scenario, the shape of the function
G(QN ) for the linear temperature of the dissipative parame-
ter in Eq. (2.37) can be determined by performing a numerical

fitting as done in Ref. [47]. For the Higgs-like and plateau-
like potentials, the growing mode function has been proposed
by Ref. [39] and is given by

G1(QN )  1 + 0.18 Q1.4
N + 0.01 Q1.8

N , (2.53)

while the original growing mode function of the warm little
inflation is written by [46]

G2(QN )  1 + 0.335 Q1.364
N + 0.0185 Q2.315

N . (2.54)

In addition, at the thermalized inflaton fluctuation limit,
1 + 2 nN  2 TN/HN and TN/HN = 3 QN/C1, one can
re-write the power spectrum in the following form [39],

�R  5C3
1

12 π4 g∗ Q2
N

(
1 +

√
3 π QN√

3 + 4π QN

)
G(QN ) , (2.55)

where the relation ρr/V (φ) = ε Q/2(1 + Q)2 is used to
obtain above equation. We note that the above power spec-
trum in this limit is independent of the inflaton potential [39].

Then, the tensor-scalar ratio parameter r in this case can
be obtained by using Eqs. (2.34) and (2.55). It reads

r = �T

�R
=16 ε

[
6 Q3

N

C1

(
1 +

√
3 π QN√

3 + 4π QN

)
G(QN )

]−1

.

(2.56)

The spectral index of the power spectrum with the growing
mode function in Eq. (2.53) is given by [39,40,47]

ns = 1 + QN

3 + 5 QN

(
6 ε − 2 η

)
�R

d�R
dQN

, (2.57)

d�R
dQN

= 5C3
1

12 π4 g∗

[
1

Q2
N

(
1 +

√
3 π QN√

3 + 4π QN

)
dG(QN )

dQN

− 1

Q3
N

(
2 +

√
3 π QN√

3 + 4π QN
+ 2

√
3 π2 Q2

N

(3 + 4 π QN )
3
2

)
G(QN )

]
.

(2.58)

In this section, we have derived all relevant equations of the
warm inflation that will be used to confront with the obser-
vational data by considering two types of the growing mode
functions, G1,2(QN ) as shown in Eqs. (2.53) and (2.54) in
the next section.

3 Confrontation with the Planck 2018 data

In order to confront the results with the observational data,
we need to compute the relevant observables, i.e., the tensor
to scalar perturbation ratio, r , and the spectral index, ns ,
by using Eqs. (2.35) and (2.36), respectively. Moreover, we
separate our investigations into two cases in the latter. The
first one is the exclusion of the growing mode in the strong
(Q � 1) and weak (Q � 1) limits. While in the second
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case, we will include the growing mode effects in the strong
regime only.

We will constrain our scalaron potential with the COBE
normalization condition [52] for fixing parameters in the
Higgs–Starobinsky model. To generate the observed ampli-
tude of the density perturbation (As), the potential must sat-
isfy the COBE renormalization at horizon crossing φ = φN :

V

ε

∣∣∣∣
φ=φN

 (0.0276 Mp)
4 = 3M

4
e2χN , (3.1)

where we have defined M ≡ 3M2
pM

2/4, χN ≡ √
2/3

φN/Mp and this is used to impose a constraint on the mass
scale M given in Eq. (2.7).

3.1 Weak regime, Q � 1

The tensor to scalar perturbation ratio in the weak regime
Q � 1 is taken into the following form

r = 16

[
4

3 (eχN − 1)2

]
. (3.2)

According to the above equation, the parameter r has the
same form as that of the standard (cold) inflation result. For
the spectral index, ns , in the weak limit is written by

ns = 1 − 24

3 (eχN − 1)2 + 8

3

(2 − eχN )

(eχN − 1)2

+2

3

[
� e2χN

3 (eχN − 1)4

] 1
3

[
32

3 (eχN − 1)2 − 8

9

(1 − 2 eχN )

(eχN − 1)2

]
.

(3.3)

Again, it is more convenient to write r and ns in terms of
a number of e-folds N . For Q � 1 case, with help of
Eqs. (2.43) and (2.45), they read

r ≈ 12

N 2 , (3.4)

ns ≈ 1 − 2

N
− 9

22 + 2

3

(
3
(
1.72 × 106C4

1

)
24Cr

)1/3

(
6

N 2 + 3

2N

)
. (3.5)

Here we write ns in terms of parametersC1, Cr and N . More-
over, we solve Eq. (3.1) to obtain

M2 = 5.80 × 10−7 M2
p

N 2 . (3.6)

In Fig. 1, we compare our predictions given by Eqs. (3.4) and
(3.5) for different values of N with Planck’18 results for TT,
TE, EE, +lowE+lensing+BK15+BAO [53]. As an example,
we use typical values of Cr , C1 as given in Ref. [54]. In
this weak limit, we also find that the results show very small

Fig. 1 We compare the theoretical predictions of the weak limit Q � 1
given in Eqs. (3.4) and (3.5) in the (r − ns) plane for different values
of N using Cr = 70 and C1 = 2.0 × 10−7 with Planck’18 results for
TT, TE, EE, +lowE+lensing+BK15+BAO

values of r . In order to have the predictions fit well inside
the 1 σ regions of the Planck 2018 data, values of Cr are
constrained between 55 < N < 70 using Cr = 70, C1 =
2.0 × 10−7. We discover for the weak limit that the thermal
bath makes negligible effects to the inflationary observables
r and ns due to a very tiny values of C1 required.

For the weak limit, we can also use the scalaron mass
parameter to constrain underlying parameters α, λ, ξ using
the relation:

M2 = M2
p

12
(
α + 3 ξ2/(2 λ)

) . (3.7)

Combining Eqs. (3.6) and (3.7), we find

M2
p

12
(
α + 3 ξ2/(2 λ)

) ≈ 5.80 × 10−7 M2
p

N 2 , (3.8)

which yields

λ = 1.04 × 10−5ξ2

N 2 − 6.96 × 10−6α
. (3.9)

We find for example using λ ≈ 1044/
(
3600−6.96×10−6α

)
with N = 60, ξ = 10,000. We find that values of underly-
ing parameters α, λ, ξ are not affected by the thermal bath
counterpart.

3.2 Strong regime, Q � 1, with the growing mode effect

The power spectrum of the inflaton fluctuation with the grow-
ing mode provides more details about the coupling between
inflaton and radiation fluid that we have calculated the rele-
vant observables of the HS gravity in the warm inflation sce-
nario. To confront with the Planck data 2018, it is convenient
to re-write the tensor-scalar, r parameter and the spectral
index, ns in terms of the number of e-folds, N . More impor-
tantly, two forms of the growing mode functions G1,2(QN )
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in Eqs. (2.53) and (2.54) will be used to compare to the data.
We start with the r parameter. Recalling the result of the r
parameter with the growing mode in Eq. (2.56), we find

r1,2 = 16
53

4 · 3
Q2

N

[ (
6

C1

)
Q3

NDN G1,2(N )

]−1

, (3.10)

DN = 1 +
√

3 πQN√
(3 + 4 πQN )

, (3.11)

G1(N ) = 1 + 0.18 Q1.4
N + 0.01 Q1.8

N , (3.12)

G2(N ) = 1 + 0.335 Q1.364
N + 0.0185 Q2.315

N , (3.13)

with � = (
C4

1/Cr
) (

M2
p/M

2
)

. In addition, Eqs. (2.46),

(2.50) and (2.51) have been used to obtain above equation.
Substituting Eqs. (2.46), (2.50), (2.51) and (2.55) into
Eq. (2.57), the spectral index with the growing mode in terms
of the number of e-folds, N , is given by

n(1,2)
s = 1 + QN

3 + 5 QN

(
53

2
Q2
N + 10

√
5

3
QN

)

× 1

�
(1,2)
R (N )

d�
(1,2)
R (N )

dQN
, (3.14)

�
(1,2)
R (QN ) = 5C3

1
12 π4 g∗

DN G1,2(QN )

Q2
N

, (3.15)

d�
(1,2)
R

dQN
= 5C3

1
12 π4 g∗

(DN G′
1,2(QN )

Q2
N

−
D′

Q G1,2(QN )

Q3
N

)
, (3.16)

D′
Q = 2 +

√
3 π QN

(3 + 4 π QN )
1
2

+ 2
√

3 π2 Q2
N

(3 + 4 π QN )
3
2

, (3.17)

G′
1(QN ) = 0.252 Q0.4

N + 0.018 Q0.8
N (3.18)

G′
2(QN ) = 0.457 Q0.364

N + 0.0428 Q1.315
N , (3.19)

where QN ≡ 1
3

(
52 �
6 N2

) 1
3
. Having used all variables defined

above, we can write an explicit form of r1,2 and n(1,2)
s written

in terms of Cr , C1 and N to obtain

r1 = 2.804 (CrC1)1/5

N2X

⎛
⎝1 + 0.620

(
C12/5

1

C3/5
r

)0.6

+ 4.462

(
C12/5

1

C3/5
r

)0.47
⎞
⎠

,

(3.20)

r2 = 2.804 (CrC1)1/5

N2X

⎛
⎝1 + 3.738

(
C12/5

1

C3/5
r

)0.77

+ 7.646

(
C12/5

1

C3/5
r

)0.455
⎞
⎠

,

(3.21)

n(1)
s = 1 +

972.04V

⎛
⎝0.0101909WX

(
C12/5

1

C3/5
r

)1/3

− 0.00102877Y Z

⎞
⎠

XY

⎛
⎝3 + 49.5296

(
C12/5

1

C3/5
r

)1/3
⎞
⎠

,

(3.22)

n(2)
s = 1 +

972.039V

⎛
⎝0.010191XS

(
C12/5

1

C3/5
r

)1/3

− 0.00102876UZ

⎞
⎠

UX

⎛
⎝3 + 49.5296

(
C12/5

1

C3/5
r

)1/3
⎞
⎠

,

(3.23)

where we have defined new variables as

X = 1 +
53.902

(
C12/5

1

C3/5
r

)1/3

√
3 + 124.481

(
C12/5

1

C3/5
r

)1/3
,

Y = 1 + 0.620312

(
C12/5

1

C3/5
r

)0.60

+ 4.462

(
C12/5

1

C3/5
r

)0.47

,

Z = 1 + X +
3354.9

(
C12/5

1

C3/5
r

)2/3

(
3 + 124.481

(
C12/5

1

C3/5
r

)1/3
)3/2 ,

W = 0.112717

(
C12/5

1

C3/5
r

)0.27

+ 0.630606

(
C12/5

1

C3/5
r

)0.13

,

V = 73.8343

(
C12/5

1

C3/5
r N 3

)1/3

+ 6132.95

(
C12/5

1

C3/5
r N 3

)2/3

,

U = 1 + 3.73825

(
C12/5

1

C3/5
r

)0.77

+ 7.64619

(
C12/5

1

C3/5
r

)0.45

,

S = 0.873623

(
C12/5

1

C3/5
r

)0.44

+ 1.05285

(
C12/5

1

C3/5
r

)0.12

.(3.24)

Moreover, we solve Eq. (3.1) to obtain

M2 = 0.0126
Mp

N

(
C4

1

Cr

)1/5

. (3.25)

Having compared with the weak regime case, the mass scale
in the strong regime does also depend on the values of Cr

and C1.
We compare our predictions in the strong regime for dif-

ferent values of Cr with Planck’18 results for TT, TE, EE,
+lowE+lensing+BK15+BAO illustrated in Fig. 2. Here we
consider C1 = 8.0 × 10−1 and keep a number of e-folds
fixed at N = 50 (left panel) and N = 55 (right panel).
On the left panel, we consider G1(QN ) (purple curve) and
G2(QN ) (orange curve) and find that the predictions given
by G1(QN ) are in excellent agreement with the 1 σ region of
the Planck contour, while the results obtained from G2(QN )

fit in the 2 σ region of the Planck data only for large val-
ues of Cr � 210. Moreover, on the right panel, we display
G1(QN ) (purple curve) and G2(QN ) (orange curve) and dis-
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cover that the results given by G1(QN ) fit in the 1 σ region
of the Planck contour for Cr � 50, while with the same val-
ues of input parameters, i.e., C1, N , Cr , the results obtained
from G2(QN ) lie outside the 2 σ region of the Planck data.

We further consider scenarios in which values of C1 and
Cr are kept fixed for C1 = 0.8 and Cr = 70, 150 for each
Gi (QN ) displayed in Fig. 3. On the left panel, we show the
results obtained from G1(QN ) and find that the predictions
when Cr = 70 (purple curve) and Cr = 150 (orange curve)
fit in the 1 σ region of the Planck data for 47 � N � 57
with C1 = 0.8, whilst on the right panel, we consider the
predictions obtained fromG2(QN ) and notice that the results
using Cr = 70 (purple curve) and Cr = 150 (orange curve)
fit in the 1 σ region of the Planck data for N � 45 and for
N � 43, respectively.

By using Eqs. (3.20) and (3.21) with r < 0.07, one may
find the range of the possibleC1 as function ofCr . Moreover,

the constraints on the coefficient C1 can be translated into
constraints on the relation between Yukawa coupling g and
h as follow. Let us consider Eq. (2.38) and choose C1 = 0.8
and N = 50 as an example. We then find from Eq. (2.38)

0.8  3 g2

h2
(
1 − 0.34 log(h)

) −→ g  7.303

×10−2
√

50 h2 − 17 h2 log(h). (3.26)

The above relation display the relation between the Yukawa
coupling of the heavy fermions and the inflaton, g and the
Yukawa coupling of heavy fermions, light singlet scalar and
other light fermion particles, h. One may obtain the allowed
values of the Yukawa couplings g and h by varying the h cou-
pling with h2/4π < 1 due to the validity of the perturbative
expansion of the theory.

Fig. 2 We compare the theoretical predictions of (r, ns) in the strong
limit Q >> 1 including the growing mode effect. In each contour, we
consider two forms of G(QN ) given in Eq. (3.12) for G1(QN ) (purple
curve) and (3.13) for G2(QN ) (orange curve) with N = 50 (left panel)

and N = 55 (right panel). We compare theoretical predictions of (r, ns)
for different values of Cr and keep C1 fixed with C1 = 8.0×10−1 with
Planck’18 results for TT, TE, EE, +lowE+lensing+BK15+BAO

Fig. 3 We compare the theoretical predictions of (r, ns) in the strong
limit Q >> 1 including the growing mode effect. In each contour, we
consider G1(QN ) (left panel) given in Eq. (3.12) withCr = 70 (purple)
andCr = 150 (orange); whilstG2(QN ) (right panel) given in Eq. (3.13)

with Cr = 70 (purple) and Cr = 150 (orange). We compare theoretical
predictions of (r, ns) for different values of N ranging from [40, 100]
and keep C1 fixed with C1 = 8.0×10−1 with Planck’18 results for TT,
TE, EE, +lowE+lensing+BK15+BAO
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4 Conclusion

In this work, we have demonstrated a class of warm inflation
scenario using HS gravity with a linear temperature of the
dissipative parameter. We have studied the dynamics of the
warm inflation in the Einstein frame and considered our anal-
ysis into two regimes, strong (Q � 1) and weak (Q � 1).
In particular, the effect of the growing mode, i.e., the inter-
action between inflaton and radiation fluid, has been taken
into account to the power spectrum amplitude. We have cal-
culated relevant observables in the warm inflation in order to
compare to the observational data. In the strong regime, we
have discovered that inflationary parameters r and ns can be
written in terms of the parameters Cr and C1 and hence they
are affected by having the thermal bath, while in the weak
regime the inflationary parameters are very weakly affected
by the thermal bath. Therefore the thermal bath effects are
approximately negligible in this regime.

According to our analysis, we have found that the HS
model in weak regime provides an excellent agreement with
the data, whilst the thermal bath effects have played an sig-
nificant role in the strong dissipative regime. The ranges of
the parameters in HS model have been evaluated to make the
predictions compatible with the Planck 2018 results. Conse-
quently, we have also found that the Starobinsky gravitational
coupling, α is slightly modified by the dissipative parame-
ters Cr and C1 present in warm inflation. Interestingly, in
order to be satisfied with the Planck data, our results of C1

in the strong regime Q � 1 exceed the upper bound of
C1 � 0.02 mentioned in the original model of warm little
inflation [39,46]. Additionally, when including the growing
mode effect to the strong regime, we discovered that the dissi-
pative parametersCr also exceed the standard value,Cr = 70
predicted by the minimal supersymmetric standard model
[41]. Finally, with the sizeable number of e-folds and proper
choices of parameters, we have also discovered for the strong
regime that the predictions of warm HS model present in this
work are in very good agreement with the latest Planck 2018
results.

In addition, more models of the different/same dissipa-
tive parameter are interesting for future investigation. More
importantly, further studies on the dynamics of the universe
after radiation-dominated era might shed some light on the
Hubble tension problem. We wish to address this topic for
future study.
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