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A R T I C L E I N F O A B S T R A C T

Editor: R. Gregory This manuscript introduces a novel holographic correspondence in 𝑑-dimensional de Sitter (dS𝑑 ) spacetime, 
connecting bulk dS𝑑 scalar unitary irreducible representations (UIRs) with their counterparts at the dS𝑑 boundary 
±, all while preserving reflection positivity. The proposed approach, with potential applicability to diverse dS𝑑
UIRs, is rooted in the geometry of the complex dS𝑑 spacetime and leverages the inherent properties of the (global) 
dS𝑑 plane waves, as defined within their designated tube domains.
1. Introduction

The concept of duality between a quantum theory in dS𝑑 spacetime 
and a Euclidean theory on its boundary was first introduced in Ref. [1]. 
This duality has been anticipated to capture the underlying degrees of 
freedom in dS𝑑 quantum gravity [1,2]. However, a crucial challenge 
arises as the resulting boundary theory lacks the essential property of 
unitarity [1] (or reflection positivity, as mentioned in Ref. [3]), which 
is vital for a physically meaningful interpretation. Therefore, while the 
proposed duality construction may hold significance from a technical 
perspective, its direct holographic interpretation remains elusive [1,3].

Preserving reflection positivity is a formidable challenge that ex-
tends beyond the domain of dS𝑑 quantum field theory, permeating into 
the realm of dS𝑑 representation theory (see Ref. [4]). It is essential to 
emphasize that elementary systems within the framework of dS𝑑 (in the 
Wigner sense) are intricately connected with the dS𝑑 UIRs [5]. Conse-
quently, any progress in addressing this challenge within either of these 
interconnected contexts holds profound importance.

This manuscript particularly focuses on the realm of dS𝑑 representa-
tion theory and introduces a novel perspective that holds the potential 
to pave the way for ensuring reflection positivity within the dS𝑑 holo-
graphic framework. It does so by drawing on the necessity of analyt-
icity within the complex dS𝑑 spacetime and the inherent properties of 
(global) dS𝑑 plane waves, which are guaranteed through their proper 
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1 Generally, the dS𝑑 principal UIRs hold significance from the Minkowskian perspective, given their contraction towards the Poincaré massive UIRs under the 

definition within the complex dS𝑑 spacetime domains. Specifically, it 
focuses on the scalar principal (‘massive’) UIRs of the dS𝑑 group and es-
tablishes a profound connection that preserves the inner product.1 For 
a given dS𝑑 principal UIR, this connection bridges the orthonormal ba-
sis of the (projective) Hilbert space hosting the UIR within the bulk 
of dS𝑑 with its corresponding orthonormal counterpart on a (𝑑 − 1)-
dimensional sphere 𝕊𝑑−1. This sphere serves as the ‘future’ boundary 
+ of dS𝑑 spacetime. Furthermore, this manuscript unveils a one-to-one 
correspondence that conserves the inner product between the orthonor-
mal basis of the latter Hilbert space on the 𝕊𝑑−1 at + and its antipodal 
orthonormal counterpart on another 𝕊𝑑−1 sphere situated at the ‘past’ 
boundary −.

This approach opens up a realm of exciting possibilities for further 
exploration and deeper comprehension of holography within the intri-
cate context of dS𝑑 spacetime.

Convention: In this manuscript, we consistently utilize the natural 
units where 𝑐 = ℏ = 1.

2. Presentation of the dS𝒅 machinery

The dS𝑑 spacetime can be conveniently visualized as a hyperboloid 
embedded within a (1 + 𝑑)-dimensional Minkowski space ℝ𝑑+1:

𝑀dS𝑑
=
{
𝑥 ∈ℝ𝑑+1 ; (𝑥)2 ≡ 𝑥 ⋅ 𝑥 = 𝜂

𝛼𝛽
𝑥𝛼𝑥𝛽 = −𝑅2

}
, (1)
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where 𝑥𝛼 (𝛼, 𝛽 = 0, … , 𝑑) refers to the corresponding Cartesian coordi-
nates, 𝜂

𝛼𝛽
= diag(1, −1, … , −1) to the ambient Minkowski metric, and 

𝑅 to the (constant) radius of curvature.
The dS𝑑 relativity group, denoted as SO0(1, 𝑑), comprises all linear 

transformations within ℝ𝑑+1 that preserve the quadratic form (𝑥)2 =
𝜂
𝛼𝛽
𝑥𝛼𝑥𝛽 , possess a determinant of 1, and do not reverse the direction of 

the ‘time’ variable 𝑥0.
In a unitary representation of the dS𝑑 group, the corresponding in-

finitesimal generators, denoted here by 𝑀𝛼𝛽 , obey the commutation 
rules:[
𝑀

𝛼𝛽
,𝑀

𝜎𝛿

]
= −i

(
𝜂𝛼𝜎𝑀𝛽𝛿

+ 𝜂
𝛽𝛿
𝑀𝛼𝜎 − 𝜂

𝛼𝛿
𝑀

𝛽𝜎
− 𝜂

𝛽𝜎
𝑀

𝛼𝛿

)
. (2)

In the context of a scalar representation carried by the Hilbert space 
of Klein-Gordon square-integrable functions 𝜙(𝑥) on the spacetime 
manifold 𝑀dS𝑑

, these generators are given by the expression 𝑀𝛼𝛽 =
−i
(
𝑥𝛼𝜕𝛽 − 𝑥𝛽𝜕𝛼

)
[8]. The quadratic Casimir operator for this represen-

tation is defined as 𝑄0 = −1
2𝑀𝛼𝛽𝑀

𝛼𝛽 = −𝑅2□dS𝑑
, where □dS𝑑

stands 
for the d’Alembertian operator on dS𝑑 .

The quadratic Casimir operator 𝑄0 exhibits the property of com-
muting with the action of 𝑀𝛼𝛽 s. Therefore, it acts like a constant on all 
states in a given dS𝑑 scalar UIR:

𝑄0𝜙(𝑥) = ⟨𝑄0⟩𝜙(𝑥) , (3)

where ⟨𝑄0⟩ = −𝜏(𝜏 + 𝑑 − 1), with 𝜏 ∈ ℂ, denotes the corresponding 
Casimir eigenvalues. Then, the dS𝑑 scalar UIRs can be effectively clas-
sified based on the corresponding Casimir eigenvalues, specifically, the 
corresponding values of 𝜏 [9,10].

According to Dixmier [9], the dS𝑑 scalar UIRs fall into three distinct 
series: principal, complementary, and discrete series. Note that the dis-
crete series is absent in odd spacetime dimensions [11,12]. Within our 
study, as already pointed out, a specific focus is placed on the represen-
tations from the principal (massive) series. For the dS𝑑 principal repre-

sentations, the complex parameter 𝜏 takes the form 𝜏 = − 𝑑−1
2 − i𝜈, with 

𝜈 ∈ℝ; ⟨𝑄0⟩ = ( 𝑑−1
2

)2 + 𝜈2. It is important to note that, the scalar prin-
cipal representations with ±𝜈 are equivalent, sharing the same Casimir 
eigenvalues.

The key observation here is that, in practical terms, for a given dS𝑑
scalar principal UIR, the common dense subspace within the respec-
tive Hilbert space - the support space of the UIR - is spanned by the 
Klein-Gordon square-integrable eigenfunctions of the quadratic Casimir 
operator 𝑄0 for the assumed eigenvalue ⟨𝑄0⟩. Consequently, Eq. (3), 
adopted for the corresponding Casimir eigenvalue or, equivalently, the 
corresponding 𝜏 value, plays a fundamental role as the respective ‘field 
(wave) equation’ in this group-theoretical construction.

3. The dS𝒅 plane waves

According to Refs. [13,14], for a given 𝜏 = − 𝑑−1
2 − i𝜈 (𝜈 ∈ ℝ), the 

scalar principal field equation (3) has a continuous set of simple solu-
tions known as dS𝑑 plane waves:

𝜙
𝜏,𝜉
(𝑥) =

(
𝑥 ⋅ 𝜉
𝑅

)𝜏

, (4)

where 𝜉 is a vector on the null-cone 𝐶 within ℝ𝑑+1, that is, 𝐶 =
{
𝜉 ∈

ℝ𝑑+1 ; (𝜉)2 ≡ 𝜉 ⋅ 𝜉 = 𝜂
𝛼𝛽
𝜉𝛼𝜉𝛽 = 0

}
. These dS𝑑 plane waves, as functions 

of 𝜉 on 𝐶 , exhibit homogeneity with degree 𝜏 . Consequently, they can 
be entirely characterized by specifying their values along a carefully 
chosen curve (known as the orbital basis) 𝛾 of 𝐶 .

Here, it is essential to underline that, when regarding these waves 
as functions on the dS𝑑 manifold 𝑀dS𝑑

, their definition is limited to 
2

connected open subsets of 𝑀dS𝑑
and not the entire manifold, due to the 
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possibility of the ‘dot product’ 𝑥 ⋅𝜉 being zero. Additionally, as functions 
on 𝑀dS𝑑

, these waves exhibit multiple values since 𝑥 ⋅𝜉 can also assume 
negative values.

To achieve a globally defined single-valued representation of these 
waves, they must be treated as distributions [13,14]. Specifically, they 
must be considered as the boundary values of analytically continued 
solutions (4) into appropriate domains within the complex dS𝑑 manifold 
𝑀

(ℂ)
dS𝑑

:

𝑀
(ℂ)
dS𝑑

≡{
𝑥+ i𝑦 ∈ℂ5 ; (𝑥)2 − (𝑦)2 = −𝑅2, 𝑥 ⋅ 𝑦 = 0

}
. (5)

The minimal domains of analyticity, which lead to a global single-
valued definition of the dS𝑑 plane waves, are found to be the forward 
and backward tubes of 𝑀 (ℂ)

dS𝑑
, respectively defined by  ± =

{
ℝ𝑑+1 +

i�̊� ±} ∩𝑀
(ℂ)
dS𝑑

, where the domains �̊� ± ≡ {
𝑦 ∈ ℝ𝑑+1 ; (𝑦)2 > 0, 𝑦0 ≷ 0

}
stem from the causal structure in ℝ𝑑+1. Then, by taking the bound-
ary value (in the distribution sense) of the complexified waves from 
the forward  + or backward  − tube, while 𝜉 is merely restricted to 
the future light-cone 𝐶+ =

{
𝜉 ∈ℝ𝑑+1 ; (𝜉)2 = 0, 𝜉0 > 0

}
, we obtain the 

single-valued global plane wave reading of the solutions (4):(
𝑥 ⋅ 𝜉
𝑅

)𝜏

=
(
(𝑥+ i𝑦) ⋅ 𝜉

𝑅

)𝜏 ||||𝜉∈𝐶+ , 𝑦∈�̊� ± , 𝑦→0
. (6)

Notably, within this framework, as long as the analyticity domain 
is selected appropriately, it guarantees that in the flat (Minkowskian) 
limit, the dS𝑑 scalar principal waves at a given point 𝑥 ∈𝑀dS𝑑

precisely 
correspond to the conventional positive-frequency Minkowskian plane 
waves of a particle with mass 𝑚 [6].

In the end, for a more comprehensive and detailed discussion of the 
provided material, readers are referred to Ref. [5].

4. Plane waves: generating orthonormal bases for the scalar 
principal UIRs in the bulk of dS𝒅

The scalar principal waves do not display square integrability under 
the Klein-Gordon inner product. Nevertheless, they do give rise to the 
Klein-Gordon square-integrable, strictly speaking, orthonormal bases of 
the carrier Hilbert spaces of the scalar principal UIRs.

To illustrate this point, we invoke a set of bounded global coordi-
nates appropriate for describing a bounded version of dS𝑑 spacetime. 
These intrinsic coordinates, known as conformal coordinates, can be 
expressed as:

𝑥 =
(
𝑅 tan𝜌,𝑅(cos𝜌)−1𝐮

)
, (7)

where − 𝜋

2 < 𝜌 < 𝜋

2 and 𝐮 ∈ 𝕊𝑑−1
1 (𝕊𝑑−1

1 representing the unit (𝑑 − 1)-
dimensional sphere). Notably, the coordinate 𝜌 serves as a timelike 
component and plays a crucial role as a conformal time parameter.

The expression 𝑥 ⋅ 𝜉∕𝑅 can be expressed using the conformal coor-
dinates as:

𝑥 ⋅ 𝜉
𝑅

= 𝜉0𝑒i𝜌

2i cos𝜌
(
1 + 𝑟2 − 2𝑟(u ⋅ v)

)
, (8)

where, above, we have defined 𝜉 ≡ (𝜉0, 𝝃) ∈ 𝐶+, with 𝝃 = (𝜉1, … , 𝜉𝑑 ) ≡‖𝝃‖v ∈ℝ𝑑−1, ‖𝝃‖2 ≡ 𝝃 ⋅ 𝝃 and v ∈ 𝕊𝑑−1
1 , and finally 𝑟 = i𝑒−i𝜌. Note that, 

since 𝜉 ∈ 𝐶+, we naturally have 𝜉0 > 0 and 𝜉0 = ‖𝝃‖.
Then, by employing the generating function associated with Gegen-

bauer polynomials 𝐶−𝜏
𝑛 (𝑥) (as outlined in, for instance, Ref. [15]), it 

becomes readily evident that:(
𝑥 ⋅ 𝜉
𝑅

)𝜏

=
(

𝜉0𝑒i𝜌

2i cos𝜌

)𝜏 (
1 + 𝑟2 − 2𝑟(u ⋅ v)

)𝜏
=
(

𝜉0𝑒i𝜌
)𝜏 ∞∑

𝑟𝑛 𝐶−𝜏
𝑛 (u ⋅ v) . (9)
2i cos𝜌
𝑛=0
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Recall that ℜ(𝜏) < 0. This expansion lacks validity in the context of 
functions. This is because the generating function for the Gegenbauer 
polynomials (as clearly demonstrated above) exhibits convergence only 
when |𝑟| < 1. However, in our current scenario, we have |𝑟| = |i𝑒−i𝜌| =
1. Nevertheless, we are able to overcome this limitation by introducing 
a slight imaginary shift to the angle 𝜌, i.e., 𝜌 ↦ 𝜌 − i𝜀 (𝜀 > 0). This 
process ensures the convergence of the expansion, effectively leading to 
the extension of the ambient coordinates to the backward tube  −.

We also have the following auxiliary relation [15]:

𝐶−𝜏
𝑛 (u ⋅ v) =

Γ
( 𝑑
2 − 1

)
Γ(−𝜏)

⌊ 𝑛2 ⌋∑
𝑘=0

𝑐𝑘 𝐶
𝑑
2 −1
𝑛−2𝑘(u ⋅ v) , (10)

where:

𝑐𝑘 =

(
𝑛− 2𝑘+ 𝑑

2 − 1
)
Γ
(
𝑘− 𝜏 − 𝑑

2 + 1
)
Γ
(
𝑛− 𝑘− 𝜏

)
𝑘! Γ

(
− 𝜏 − 𝑑

2 + 1
)
Γ
(
𝑛− 𝑘+ 𝑑

2

) , (11)

and:

𝐶
𝑑
2 −1
𝐿=𝑛−2𝑘(u ⋅ v) = 2𝜋

𝑑
2(

𝐿+ 𝑑

2 − 1
)
Γ
( 𝑑
2 − 1

)
×

∑
𝑙


𝐿𝑙
(𝐮)∗

𝐿𝑙
(𝐯) , (12)

in which 𝐿𝑙 stands for the hyperspherical harmonics of degree 𝐿 on 
𝕊𝑑−1
1 (𝐯, 𝐮 ∈ 𝕊𝑑−1

1 ), 𝑙 = (𝑙1, … , 𝑙𝑑−2), with 𝐿 ⩾ 𝑙1 ⩾ 𝑙2 ⩾… ⩾ |𝑙𝑑−2| ⩾ 0.
Pursuing the above procedure, we arrive at the following pivotal 

expansion:(
𝑥 ⋅ 𝜉
𝑅

)𝜏

= 2𝜋
𝑑
2 (𝜉0)𝜏

∑
𝐿𝑙

Φ𝜏
𝐿𝑙
(𝑥)∗

𝐿𝑙
(𝐯) , (13)

where:

Φ𝜏
𝐿𝑙
(𝑥) = i𝐿−𝜏 𝑒−i(𝐿−𝜏)𝜌

(2 cos𝜌)𝜏
Γ(𝐿− 𝜏)

Γ
(
𝐿+ 𝑑

2

)
Γ(−𝜏)

× 2𝐹1
(
𝐿− 𝜏 , −𝜏 − 𝑑

2 + 1 ; 𝐿+ 𝑑

2 ; −𝑒
−2i𝜌)𝐿𝑙(𝐮) . (14)

The following statements hold for any 𝜏 associated with the scalar 
principal representations. First, the functions Φ𝜏

𝐿𝑙
(𝑥) are orthonormal 

with respect to the Klein-Gordon inner product:⟨
Φ𝜏
𝐿𝑙
(𝑥),Φ𝜏

𝐿′𝑙′
(𝑥)

⟩
KG

= 𝛿
𝐿𝐿′𝛿𝑙𝑙′ . (15)

The Klein-Gordon inner product ⟨⋅, ⋅⟩KG is defined, up to a possible (pos-
itive) normalization constant, by:⟨
Φ(𝑥),Φ′(𝑥)

⟩
KG

= i ∫
Σ

(
Φ∗(𝑥)𝜕𝛾Φ′(𝑥) − Φ′(𝑥)𝜕𝛾Φ∗(𝑥)

)
d𝜎𝛾

≡ i ∫
Σ

Φ∗(𝑥)
↔
𝜕 𝛾Φ′(𝑥) d𝜎𝛾 ,

where Σ and d𝜎𝛾 respectively refer to a Cauchy surface and the area el-
ement vector on it. Considering the global coordinate choice 𝑥 = 𝑥(𝜌, 𝐮)
that we have adopted, the Klein-Gordon inner product explicitly reads 
as:⟨
Φ(𝑥),Φ′(𝑥)

⟩
KG

= i 𝔠𝜏 ∫
𝕊𝑑−11 ,𝜌=0

Φ∗(𝜌,𝐮)
↔
𝜕 𝜌 Φ′(𝜌,𝐮) d𝜇(𝐮) , (16)

where d𝜇(𝐮) represents the invariant measure on 𝕊𝑑−1
1 and the (posi-
3

tive) constant normalization factor is:
Physics Letters B 848 (2024) 138402

𝔠𝜏 = 22ℜ(𝜏) 𝑒𝜋ℑ(𝜏) |||Γ(−𝜏)|||2 . (17)

Second, Φ𝜏
𝐿𝑙
(𝑥)s exhibit infinite differentiability in terms of 𝑥 ∈

𝑀dS𝑑
.

Third, the functions Φ𝜏
𝐿𝑙
(𝑥), by virtue of the linear independence of 

𝐿𝑙(u)s, serve as conventional solutions to the respective scalar-field 
equation (3) when appropriately separating variables.

Consequently, for a given 𝜏 associated with the scalar principal UIRs, 
the carrier Hilbert space of the respective representation can be densely 
generated by considering the span of all finite linear combinations of 
the analytic, Klein-Gordon orthonormal functions Φ𝜏

𝐿𝑙
(𝑥).

5. Status of the boundary theory at +

We now proceed to examine the behavior of the boundary theory at 
+, focusing specifically on the behavior of the basis elements Φ𝜏

𝐿𝑙
(𝑥), 

as they are multiplied by appropriate factors, at the limit 𝜌 → + 𝜋

2 . We 
begin by introducing the aforesaid factors:

𝔉𝜏
𝑠 ≡ (2 cos𝜌)𝜏 Γ(−𝜏) Γ

(
𝜏 + 𝑑

2

)
,

𝔉𝜏
𝑝 ≡ Γ(𝐿+ 𝜏 + 𝑑 − 1)

Γ(𝐿− 𝜏)
=

Γ(𝐿+ 𝑑−1
2 − i𝜈)

Γ(𝐿+ 𝑑−1
2 + i𝜈)

≡ 𝑒i𝜔𝐿𝜏 ,

𝔉𝜏
𝑟 ≡ 1

Γ(2𝜏 + 𝑑 − 1)
= 1

Γ(−2i𝜈)
. (18)

By construction, these factors respectively serve as a scale factor (recall 
that ℜ(𝜏) < 0), a phase factor, and a regularization factor. It is worth 
noting that the regularization factor 𝔉𝜏

𝑟 is pivotal in resolving the sin-
gularity that emerges due to the presence of the term Γ(2𝜏 + 𝑑 − 1) =
Γ(−2i𝜈) in the subsequent limiting procedure. Importantly, Γ(−2i𝜈) be-
comes undefined when 𝜈 = 0, which accurately characterizes a scenario 
for the scalar principal UIRs. Subsequently, we can establish the follow-
ing asymptotic formula:

lim
𝜌→+ 𝜋

2

(
𝔉𝜏
𝑠 𝔉

𝜏
𝑝𝔉

𝜏
𝑟 Φ

𝜏
𝐿𝑙

(
𝑥(𝜌,𝐮)

))
=𝐿𝑙(𝐮) ≡Ψ(+)𝜏

𝐿𝑙
(𝐮) . (19)

The asymptotic modes Ψ(+) 𝜏
𝐿𝑙

(𝐮) are infinitely differentiable with re-

spect to 𝐮 ∈ 𝕊𝑑−1
1 and are L2 orthonormal:

⟨
Ψ(+)𝜏
𝐿𝑙

(𝐮),Ψ(+)𝜏
𝐿′𝑙′

(𝐮)
⟩
L2 = 𝛿

𝐿𝐿′𝛿𝑙𝑙′ , (20)

where:

⟨
Ψ(𝐮),Ψ′(𝐮)

⟩
L2 = ∫

𝕊𝑑−11

Ψ∗(𝐮) Ψ′(𝐮) d𝜇(𝐮) . (21)

Moreover, for a given 𝜏 associated with the scalar principal UIRs, 
Ψ(+) 𝜏
𝐿𝑙

(𝐮)s constitute a complete set of solutions for the respective scalar-

field equation realized on the boundary 𝕊𝑑−1 (see, for instance, Refs. 
[5,16]).

Hence, for a given 𝜏 corresponding to the scalar principal UIRs, 
Ψ(+) 𝜏
𝐿𝑙

(𝐮)s do indeed establish an orthonormal basis for the common 
dense subspace of the respective Hilbert space - the carrier of the UIR -
on the 𝕊𝑑−1 at +.

Remark: In this Hilbert space, every mode Ψ(+) 𝜏
𝐿𝑙

(𝐮) is linked to its 
antipodal counterpart:

Ψ(+)𝜏
𝐿𝑙

(−𝐮) = (−1)𝐿Ψ(+)𝜏
𝐿𝑙

(𝐮) , (22)

and the following relationship holds:

⟨
(+)𝜏 (+)𝜏

⟩ ⟨
(+)𝜏 (+)𝜏

⟩

Ψ
𝐿𝑙

(𝐮),Ψ
𝐿𝑙

(𝐮)
L2 = Ψ

𝐿𝑙
(−𝐮),Ψ

𝐿𝑙
(−𝐮)

L2 . (23)
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6. dS𝒅 plane waves and establishing a holographic 
correspondence between the bulk and boundary (+) Hilbert 
spaces

An essential observation in the aforementioned context is the piv-
otal role played by the dS𝑑 plane waves as the kernel of a Fourier-type 
transformation, enabling a smooth transition, while upholding the prin-
ciple of reflection positivity, from the Hilbert spaces that support the 
scalar principal UIRs in the bulk of dS𝑑 to their respective counterparts 
on the 𝕊𝑑−1 at +, and vice versa. The explicit form of this kernel, 
𝑀dS𝑑

× 𝕊𝑑−1
1 ∋ (𝑥, 𝐮) ↦ 𝔎(𝑥, 𝐮), is as follows:

𝔎(𝑥,𝐮) ≡ 1

2𝜋
𝑑
2 (𝜉0)𝜏

(
𝑥 ⋅ 𝜉
𝑅

)𝜏

, (24)

such that, from Eq. (13), we have:

𝔎(𝑥,𝐮) =
∑
𝐿𝑙

Φ𝜏
𝐿𝑙
(𝑥)

(
Ψ(+)𝜏
𝐿𝑙

(𝐮)
)∗
. (25)

The corresponding Fourier transformation then reads as:

Φ𝜏
𝐿𝑙
(𝑥) =

⟨
𝔎∗(𝑥, ⋅),Ψ(+)𝜏

𝐿𝑙

⟩
L2 , (26)

Ψ(+)𝜏
𝐿𝑙

(𝐮) =
⟨
𝔎(⋅,𝐮),Φ𝜏

𝐿𝑙

⟩
KG
. (27)

Clearly, for a given 𝜏 corresponding to the scalar principal UIRs, 
this Fourier transformation establishes a one-to-one correspondence be-
tween the Klein-Gordon orthonormal basis functions Φ𝜏

𝐿𝑙
(𝑥), carrying 

the respective UIR in the bulk of dS𝑑 , and their corresponding L2 or-
thonormal asymptotic counterparts Ψ(+) 𝜏

𝐿𝑙
(𝐮) on the 𝕊𝑑−1 at +. This 

correspondence not only upholds the principle of reflection positivity 
but also ensures a clear and direct mapping.

7. Status of the boundary theory at −

The remaining task to complete the aforementioned framework of 
holographic correspondence is to investigate the relationship between 
the L2 orthonormal, asymptotic modes Ψ(+) 𝜏

𝐿𝑙
(𝐮) on the 𝕊𝑑−1 at + and 

their respective twins Ψ( - )𝜏
𝐿𝑙

(𝐮) on another 𝕊𝑑−1 at −.
To do so, in line with Ref. [17], we embrace the perspective of an 

observer in motion along the geodesic ℎ(𝑥◦) passing through the point 
𝑥◦ = (0, … , 0, 𝑥𝑑 =𝑅),2 situated in the (𝑥0, 𝑥𝑑 )-plane:

ℎ(𝑥◦) =
{
𝑥 = 𝑥(𝑡) ; 𝑥0 =𝑅 sinh 𝑡

𝑅
,

�⃗� ≡ (𝑥1,… , 𝑥𝑑−1) = 0,

𝑥𝑑 =𝑅 cosh 𝑡

𝑅

}
, (28)

where 𝑡 ∈ ℝ. The region comprised of all events in 𝑀dS𝑑
, which can 

be connected with the observer through the reception and emission of 
light signals, is defined as:

ℜ
ℎ(𝑥◦)

=
{
𝑥 ∈𝑀dS𝑑

; 𝑥𝑑 > |𝑥0|} . (29)

This region is bounded by two distinct boundaries:

ℌ±
ℎ(𝑥◦)

=
{
𝑥 ∈𝑀dS𝑑

; 𝑥0 = ±𝑥𝑑, 𝑥𝑑 > 0
}
, (30)

which are respectively referred to as the ‘future horizon’/‘past horizon’ 
of the observer following the geodesic ℎ(𝑥◦).

The parameter 𝑡 in the representation (28) corresponds to the proper 
time experienced by the observer located on the geodesic ℎ(𝑥◦). We 
can therefore label the ‘time-translation group relative to ℎ(𝑥◦)’ as the 
one-parameter subgroup 𝔗

ℎ(𝑥◦)
(
∼ SO0(1, 1)

)
of the dS𝑑 group. The 

2 Note that the selection of this point is entirely arbitrary, owing to the 
4

SO0(1, 𝑑) symmetry of the dS𝑑 manifold 𝑀dS𝑑
.
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transformations associated with 𝔗
ℎ(𝑥◦)

are hyperbolic rotations occur-

ring parallel to the (𝑥0, 𝑥𝑑 )-plane. The action of 𝔗
ℎ(𝑥◦)

on the domain 
ℜ

ℎ(𝑥◦)
is defined as follows; let 𝑥 = 𝑥(𝒕, ⃗𝑥) denote an arbitrary point in 

ℜ
ℎ(𝑥◦)

:

𝑥(𝒕, �⃗�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥0 =
√
𝑅2 − (�⃗�)2 sinh 𝒕

𝑅
,

�⃗� = (𝑥1,… , 𝑥𝑑−1) ,

𝑥𝑑 =
√
𝑅2 − (�⃗�)2 cosh 𝒕

𝑅
,

(31)

where 𝒕 ∈ ℝ and (�⃗�)2 = (𝑥1)2 + … + (𝑥𝑑−1)2 < 𝑅2. The action of 
𝔗
ℎ(𝑥◦)

(𝑡), with 𝑡 ∈ ℝ, on 𝑥(𝒕, ⃗𝑥) defines a group of isometric auto-

morphisms of the domain ℜ
ℎ(𝑥◦)

. It is given by 𝔗ℎ(𝑥◦)(𝑡) ⋄ 𝑥(𝒕, ⃗𝑥) =
𝑥(𝑡 + 𝒕, ⃗𝑥) ≡ 𝑥𝑡. The associated orbits, denoted by ℎ�⃗�(𝑥◦), distinctly rep-
resent all branches of hyperbolas within the domain 

ℎ(𝑥◦)
, which lie in 

two-dimensional plane sections parallel to the (𝑥0, 𝑥𝑑 )-plane. Note that 
among the given set of orbits of 𝔗ℎ(𝑥◦), the only orbit that represents a 
geodesic of 𝑀dS𝑑

is ℎ(𝑥◦) ≡ ℎ0⃗(𝑥◦). [It is indeed the only orbit that ex-

tends from the ‘past’ boundary − to the ‘future’ boundary + of dS𝑑
spacetime.] Thus, the interpretation of the group 𝔗ℎ(𝑥◦) as time trans-
lation is relevant primarily for observers moving on or in the vicinity of 
ℎ(𝑥◦), where the proximity is considered to be small compared to the 
radius of curvature of the dS𝑑 hyperboloid.

In this context, a remarkable phenomenon comes to light as we 
direct our focus toward the complex orbits of 𝔗ℎ(𝑥◦), referred to as 
ℎ
(ℂ)
�⃗�

(𝑥◦) =
{
𝑧𝑡 ≡ 𝑧(𝑡 + 𝒕, ⃗𝑥), 𝑡 ∈ ℂ

}
. Intriguingly, all nonreal points as-

sociated with the complex hyperbolas ℎ(ℂ)
�⃗�

(𝑥◦) lie within  ±, the very 
domains where the dS𝑑 plane waves demonstrate their analytical prop-
erties. Consequently, owing to the inherent analytic nature of the dS𝑑
waves, a significant link arises in our framework between the domain 
ℜ

ℎ(𝑥◦)
and its antipodal region:

ℜ
ℎ(−𝑥◦)

=
{
𝑥 = (𝑥0, �⃗�, 𝑥𝑑 ) ∈𝑀dS𝑑

; (−𝑥0, �⃗�,−𝑥𝑑 ) ∈ℜ
ℎ(𝑥◦)

}
, (32)

through the process of analytic continuation (it suffices to consider 
ℑ(𝑡) = 𝜋). Note that the natural time variable relevant to an observer 
traversing the geodesic ℎ(−𝑥◦) (antipodal to ℎ(𝑥◦)) is −𝑡. [See Ref. [14], 
for more details.]

Given the freedom of selection of the point 𝑥◦ ∈ 𝑀dS𝑑
, as far as 

physics at ± is concerned, this distinctive property inherent in our 
framework introduces a crucial implication: any given mode Ψ(+) 𝜏

𝐿𝑙
(𝐮)

on the 𝕊𝑑−1 at + is intrinsically linked to its antipodal counterpart 
Ψ( - )𝜏
𝐿𝑙

(−𝐮) on another 𝕊𝑑−1 at −, possibly up to a phase factor, as:

Ψ( - )𝜏
𝐿𝑙

(−𝐮) = Ψ(+)𝜏
𝐿𝑙

(𝐮) . (33)

Essentially, for a given 𝜏 corresponding to the scalar principal UIRs, 
this identity establishes a one-to-one mapping, while maintaining the 
principle of reflection positivity, between the orthonormal basis of the 
carrier Hilbert space of the UIR at + and its counterpart at −.

7.1. Precision on Eq. (33)

To derive Eq. (33), an alternative approach involves considering a 
limiting procedure directly, as illustrated by Eq. (19):

lim
𝜌→− 𝜋

2

(
𝔉𝜏
𝑠 𝔉

𝜏
𝑝𝔉

𝜏
𝑟 Φ

𝜏
𝐿𝑙

(
𝑥(𝜌,𝐮)

))
= 𝑒−i𝜋𝜏 (−1)𝐿𝐿𝑙(𝐮)

= 𝑒−i𝜋𝜏 𝐿𝑙(−𝐮)
≡ 𝑒−i𝜋𝜏 Ψ( - )𝜏
𝐿𝑙

(−𝐮) . (34)
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A straightforward comparison between this result and Eq. (19) immedi-
ately establishes the identity (33). However, it is important to note that 
while the alternative approach provides a more direct proof of the de-
sired identity (33), the comprehensive nature of the former approach 
carries significant importance. It illuminates the antipodal asymmetry 
described in (33) as a manifestation of the analytical nature of the dS𝑑
waves within the complex manifold of dS𝑑 .

8. Conclusion and outlook

The literature on dS𝑑/CFT𝑑−1 has recently advanced from a more 
explicit application of the group theoretic features of the dS𝑑 group and 
sharper considerations of unitarity, as evidenced in Refs. [18–20]. This 
paper contributes to this evolving literature by establishing a seamless 
holographic connection between the Hilbert spaces supporting the dS𝑑
scalar principal (massive) UIRs located within the bulk of dS𝑑 and their 
corresponding counterparts at ±, all while maintaining the principle 
of reflection positivity. The robustness of this framework is exempli-
fied by three pivotal identities, identified as Eqs. (26), (27), and (33). 
These identities offer a powerful tool to explicitly encode the physical 
essence of dS𝑑 within its bulk and interpret it within the context of its 
associated boundary theory, embodying the core principles of hologra-
phy. The bedrock of this correspondence rests upon the application of 
the dS𝑑 plane waves, facilitating a seamless transition between these 
two manifestations by virtue of their analytical continuation into the 
appropriate domains of the complex dS𝑑 spacetime.

While a substantial amount of work still remains ahead, we assert 
with strong conviction that placing reliance on this holographic frame-
work holds the promise of establishing a comprehensive holographic 
correspondence on dS𝑑 . Last but certainly not least, it stands out as one 
of the exceptionally rare constructs with the tangible potential to di-
rectly meet the minimal requirements of such correspondence, making 
it highly deserving of a thorough examination.

In this context, a significant objective emerges for future research, 
particularly concerning holography and the dS𝑑/CFT𝑑−1 model for 
quantum gravity. To address this, it becomes imperative to extend this 
holographic framework to encompass various dS𝑑 UIRs, with a specific 
focus on those associated with the discrete series in even spacetime di-
mensions, as exemplified in Ref. [21]. Notably, the explicit plane wave 
formulations of the dS𝑑=4 principal and discrete spin- 12 fields, as pre-
sented in Ref. [22], the principal and discrete spin-1 fields in Refs. 
[23,24], the principal spin- 32 field in Ref. [25], the principal and the dis-
crete spin-2 fields in Refs. [26–28] collectively pave the way forward.

Moreover, a genuine dS𝑑 holographic framework is naturally ex-
pected to provide a clear explanation for the entropy on the dS𝑑
horizon—a critical criterion in its own right. Addressing this demand 
presents another significant objective in the further development of the 
aforementioned framework. It requires the incorporation of tools and 
concepts from quantum information theory, including entanglement en-
tropy and mutual information.
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