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We present the light-flavor quark masses and low-energy constants using the 2þ 1 flavor full-QCD
ensembles with stout smeared-clover fermion action and Symanzik gauge action. Both the fermion and gauge
actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at three lattice
spacings a∈ ½0.05; 0.11� fm, four spatial sizes L∈ ½2.5; 5.1� fm, seven pion masses mπ ∈ ½135; 350� MeV,
and several values of the strange quark mass. The quark mass is defined through the partially conserved axial

current relation and renormalized to MSð2GeVÞ through the intermediate regularization independent
momentum subtraction scheme. The systematic uncertainty of using the symmetric momentum subtraction
scheme is also included. Eventually, we predict mu ¼ 2.45ð22Þð20Þ MeV, md ¼ 4.74ð11Þð09Þ MeV,
and ms ¼ 98.8ð2.9Þð4.7Þ MeV with the systematic uncertainties from lattice spacing determination,
continuum extrapolation and renormalization constant included. We also obtain the chiral condensate
Σ1=3 ¼ 268.6ð3.6Þð0.7Þ MeVand the pion decay constantF ¼ 86.6ð7Þð1.4Þ MeV in theNf ¼ 2 chiral limit,
and the next-to-leading order low-energy constants l3 ¼ 2.43ð54Þð05Þ and l4 ¼ 4.322ð75Þð96Þ.
DOI: 10.1103/PhysRevD.109.054507

I. INTRODUCTION

As fundamental parameters of the standard model which
are not directly measurable in experiments, the mass of the
lightest three flavors can only be determined accurately
using lattice quantum chromodynamics (QCD). Lattice
QCD offers a nonperturbative approach to solve QCD,
the underlying theory of the strong interactions, but a set of
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complete and accurate ensembles is essential to ensure
reliable results.
Due to the infamous fermion doubling problem which

prevents a straightforward discretization of the continuum
Dirac fermion action, an accurate determination of the light
quark masses is highly nontrivial. Since the widely used
clover fermions suffer the additional chiral symmetry
breaking which induces power divergence with loop
corrections, most of the light quark mass determinations
are made with either the staggered fermion (or its improved
versions) [1–13] which suffers the mixing between four
equivalent “tastes” of a given flavor, or Ginsburg-Wilson
fermion actions like domain wall [14–18] or overlap [19]
fermions which requires Oð10–100Þ times more cost of
computational resources than the clover fermions.
Thus a natural question is, whether it is possible for the

clover fermion to reach a high accuracy determination of
the light quark masses. In 2007, Ishikawa et al. [20]
proposed an alternative approach to define light quark
masses from the partially conserved axial current (PCAC)
relation and renormalize it with tadpole improved one-loop
matching. By utilizing the Schrödinger functional (SF)
scheme [21], the PCAC quark mass can be renormalized
nonperturbatively, and the calculation of the physical
pion mass with a single lattice spacing a ¼ 0.09 fm and
mπL ∼ 2 gives mu;d ¼ 3.12ð24Þð08Þ MeV [22–25] at
MSð2 GeVÞ, which is 10% lower than the present lattice
average value mu;d ¼ 3.381ð40Þ MeV [26] with large
uncertainty.
A more systematic study using the SF scheme was

conducted by theALPHACollaborationwithmultiple lattice
spacing a∈ ½0.05; 0.086� fm but relatively heavy quark
masses mπ ≥ 200 MeV, and their determination resulted
in mu;d ¼ 3.54ð12Þð9Þ MeV [27]. So far, the most precise
determination of mu;d ¼ 3.469ð47Þð48Þ [27,28] with clover
fermion comes from theBMWCollaboration, which utilized
multiple lattice spacingsa∈ ½0.05;0.012� fmwith the lightest
pion mass mπ ¼ 131ð2Þ MeV and renormalized the quark
mass using the widely used regularization independent
momentum subtraction (RI=MOM) scheme [29].
But the systematic uncertainty of using the RI=MOM

scheme could be underestimated, as the RI=MOM scheme
exhibits poor perturbative convergence for the scalar/
pseudoscalar current, leading to sensitivity in the final result
due to the estimate of the missing higher-order corrections.
Thus, the symmetric momentum subtraction (SMOM)
scheme [30,31] was proposed to suppress this uncertainty
and has been employed in most recent quark mass deter-
minations using chiral fermions. Nevertheless, a recent
study [32] at multiple lattice spacings shows that using
either the RI=MOM or SMOM intermediate scheme can
result in the renormalized scalar current under MS scheme
differing by 30% at a ∼ 0.1 fm for the clover fermion.
Additionally, it is worth mentioning that the renormal-

ized quark mass using the RI=MOM scheme with the

twisted-mass fermion [33–35] is mu;d ¼ 3.64ð7Þð6Þ MeV,
which is approximately 5% higher than the results obtained
with chiral fermions that predominantly use the SMOM
scheme.
In this work, we conduct a detailed comparison of the

renormalization constants (RCs) using the RI=MOM and
SMOM schemes. It turns out that the sensitivity of the
intermediate schemes can be suppressed to ∼5% level,
which allows us to provide a relatively precise prediction of
the quark mass. Based on the kaon masses with the QED
effect subtracted, we also obtain the up, down, and strange
quark masses separately, along with other related quan-
tities. We expect that further improvement in the prediction
accuracy can be achieved through calculations on more
lattice spacings.

II. SIMULATION SETUP

The results in this work, are based on the 2þ 1 flavor
full-QCD ensembles using the tadpole-improved
tree-level Symanzik (TITLS) gauge action and the tadpole-
improved tree-level clover (TITLC) fermion action.
The TITLS gauge action, denoted as Sg, is defined in the

following:

Sg ¼
1

Nc
Re

X
x;μ<ν

Tr

�
1 − β̂

�
PU

μ;νðxÞ þ
c1RU

μ;νðxÞ
1 − 8c01

��
; ð1Þ

where Nc ¼ 3, and

PU
μ;νðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†

μðxþ aν̂ÞU†
νðxÞ;

RU
μ;νðxÞ ¼ UμðxÞUμðxþ aμ̂ÞUνðxþ 2aμ̂Þ

×U†
μðxþ aμ̂þ aν̂ÞU†

μðxþ aν̂ÞU†
νðxÞ;

UμðxÞ ¼ P

�
exp

�
ig0

Z
xþμ̂a

x
dyAμðyÞ

��
;

and β̂ ¼ ð1 − 8c01Þ 6
g2
0
u4
0

≡ 10=ðg20u40Þ with c01 ¼ − 1
12
,

c1 ¼ c0
1

u2
0

, u0 ¼ hReTr
P

x;μ<ν
PU

μνðxÞ
6NcṼ

i1=4 is the tadpole improve-

ment factor, Ṽ ¼ L̃3 × T̃ is the dimensionless 4D volume
of the lattice, and we use Õ for the dimensionless value of
any quantity O.
The TITLC fermion action uses 1-step stout smeared link

V with smearing parameter ρ ¼ 0.125,

SqðmÞ ¼
X

x;μ¼1;…;4;η¼�
ψ̄ðxÞ

X 1þ ηγμ
2

VημðxÞψðxþημ̂aÞ

þ
X
x

ψðxÞ½−ð4þmaÞδy;x þ cswσμνg0FV
μν�ψðxÞ;

ð2Þ

where csw ¼ 1
v3
0

with v0 ¼ hReTr
P

x;μ<ν
PV

μνðxÞ
6NcṼ

i1=4, and
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FV
μν ¼

i
8a2g0

ðPV
μ;ν − PV

ν;μ þ PV
ν;−μ − PV

−μ;ν

þ PV
−μ;−ν − PV

−ν;−μ þ PV
−ν;μ − PV

μ;−νÞ: ð3Þ

The parameters utilized for the simulation, encompass-
ing the lattice size (L̃3 × T̃), gauge coupling (β̂), and
the lattice spacing (a) determined through the gradient
flow [36] with w0 [37] using the Symanzik action, are
outlined in Table I. The dimensionless bare degenerated
light and strange quark mass (m̃b

l;s), renormalized quark
masses (mR

l;s) at MSð2GeVÞ, and the respective pion and
kaon masses (mπ;K) are also included in the table. The
details of the pseudoscalar meson mass and lattice spacing
extraction can be found in Appendixes A 1 a and A 1 b. The
impact of the mistuning effect of the tadpole improvement
factors u0 and v0 can also be found there (Appendix A 1 c).
The ensemble set used in this work is designed to control

the variables in the systematic uncertainty estimation. For
example, the spatial size L of the C24P29, F32P30, and
H48P32 ensembles are all within 1–2% of each other,
and the unitary pion masses are also similar with a 10%
difference. Thus, they are very suitable for investigating the
discretization error of the hadron structure with nonzero
given momentum. The pion mass and volume of C32P23
are close to those of F48P21 within 10%, and remaining
differences can be further suppressed by interpolation with
the other ensembles or by generating a new ensemble
C36P21 using interpolated parameters. The other ensem-
bles with larger dimensionless volume, such as F64P14
and/or H64P22, should also be helpful in achieving better
control over the discretization error, and will be generated
in the future.
For the clover fermion action, defining the renormalized

quark massmR
q from the bare quark mass parameter m̃b

q can
be subtle since the critical quark mass m̃crti vanishing the

pion mass is nonzero. A more practical solution defines it
through the PCAC relation [20],

ZA∂μAμ ¼ 2mR
qZPP; ð4Þ

where Aμ ¼ ψ̄γ5γμψ and P ¼ ψ̄γ5ψ . The PCAC quark
mass mPC

q is then defined through the pion-correlation
functions,

mPC
q ¼ mPS

P
x⃗hA4ðx⃗; tÞP†ð0⃗; 0Þi

2
P

x⃗hPðx⃗; tÞP†ð0⃗; 0Þi

����
t→∞

; ð5Þ

where mPS is the pseudoscalar meson mass. The
renormalized quark mass is subsequently defined as
mR

q ¼ ZA=ZPmPC
q .

In Fig. 1, we plot the dimensionless PCAC quark mass
m̃PC

q ≡mPC
q a as a function of the dimensionless input bare

quark mass parameters m̃b
q ≡mb

qa, at three lattice spacings
with mπ ∼ 300 MeV. The figure also includes linear fits
using the following form:

m̃PC
q ¼ kmðm̃b

q − m̃crtiÞ; ð6Þ

where m̃crti corresponds to the critical pion mass that makes
the pion mass and m̃PC vanish. The parameter km ¼ 1þ
Oða2; αs; aαsÞ approaches 1=ZA determined by nonpertur-
bative RI=MOM renormalization (due to the relation
ZmZP ¼ 1) in the continuum limit, while it is affected
by the Oða2Þ discretization error and OðαsÞ loop effects at
finite lattice spacing.
Unlike the hadron mass, the determination of physical

quark mass on the lattice using discretized actions requires
additional renormalization. The RCs defined under the MS
scheme, can only be obtained through regularization-
independent (RI) schemes such as RI=MOM [29] or

TABLE I. Lattice size L̃3 × T̃, gauge coupling β̂ ¼ 10=ðg2u40Þ, dimensionless bare quark mass parameters m̃b
l;s, renormalized quark

masses mR
l;s and the corresponding pseudoscalar mass mπ;K , and the statistics information.

C24P34 C24P29 C32P29 C32P23 C48P23 C48P14 F32P30 F48P30 F32P21 F48P21 H48P32

L̃3 × T̃ 243 × 64 243 × 72 323 × 64 323 × 64 483 × 96 483 × 96 323 × 96 483 × 96 323 × 64 483 × 96 483 × 144

β̂ 6.20 6.41 6.72
a (fm) 0.10530(18) 0.07746(18) 0.05187(26)

m̃b
l −0.2770 −0.2770 −0.2770 −0.2790 −0.2790 −0.2825 −0.2295 −0.2295 −0.2320 −0.2320 −0.1850

m̃b
s −0.2310 −0.2400 −0.2400 −0.2400 −0.2400 −0.2310 −0.2050 −0.2050 −0.2050 −0.2050 −0.1700

mR
l (MeV) 22.90(19) 16.94(12) 17.35(11) 10.55(11) 10.27(10) 3.638(83) 18.54(12) 18.511(92) 8.58(16) 8.59(08) 19.42(05)

mR
s (MeV) 111.41(16) 87.46(10) 88.16(10) 84.48(07) 84.79(04) 103.15(05) 93.23(11) 93.05(08) 89.75(10) 90.43(08) 95.61(04)

mπ (MeV) 341.1(1.8) 292.7(1.2) 292.4(1.1) 228.0(1.2) 225.6(0.9) 135.5(1.6) 303.2(1.3) 303.4(0.9) 210.9(2.2) 207.2(1.1) 317.2(0.9)
mK (MeV) 582.7(1.6) 509.4(1.1) 509.0(1.1) 484.1(1.0) 484.1(1.3) 510.0(1.0) 524.6(1.8) 523.6(1.4) 492.0(1.7) 493.0(1.4) 536.1(3.0)

ncfg 200 476 198 400 62 203 206 99 194 98 176
nsrc 32 3 3 3 3 48 3 3 3 12 12
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SMOM [30,31]. These RCs should be independent of
intermediate schemes.
For the overlap fermion action, which possesses strict

chiral symmetry, the relations ZV ¼ ZA and ZP ¼ ZS ¼
1=Zm are satisfied strictly. The scheme dependence of
RI=MOM or SMOM can be ignored compared to other
systematic uncertainties [38].
However, in the case of the clover fermion action, the

ratio ZA=ZV can deviate from unity due to the additive
chiral symmetry breaking effect generated by additional
terms in the action, and it is sensitive to the choice of using
RI=MOM or SMOM scheme. Based on the fπ at three
lattice spacing withmπ ¼ 317 MeV, the scheme sensitivity
is approximately 1% after a linear a2 continuum extrapo-
lation, with the discretization error through RI=MOMbeing
25% smaller than that of SMOM.
For the chiral symmetry breaking effect between ZS and

ZP, it is valuable to consider the scalar matrix element with
the valence quark contribution only,

gS;π;ME ¼ hπjSjπival=hπjπi; ð7Þ

where S ¼ ψ̄ψ . We show the renormalized gMSð2 GeVÞ
S;π;ME ¼

ZMSð2 GeVÞ
S gS;π obtained from RI=MOM and SMOM

schemes in Fig. 2, for mπ ¼ 317 MeV at three different
lattice spacings. It can be observed that the RI=MOM
scheme exhibits a smaller discretization error than that of
the SMOM scheme, and the continuum extrapolated values
differ from each other by approximately 7.6(2.3)%.
Using the Feynman-Hellman theorem, one can also

extract gS;π from the quark mass dependence of mπ, as

gS;π;FH ¼ 1

2

∂mπðmqÞ
∂mq

≃
mπ

4mq
þOðmq; a2Þ; ð8Þ

where the factor 1
2
in front of ∂mπðmqÞ

∂mq
is used to average the

contribution from two propagators in the pion correlator.

Using the renormalized quark mass mMSð2 GeVÞ
q extracted

with the RI=MOM or SMOM scheme, gMSð2 GeVÞ
S;π;FH (filled

green dots for MOM and red boxes for SMOM) are in the
range of 3.9 to 4.2 and then slightly smaller than the linear
a2 extrapolated value gS;π;ME ¼ 4.35ð9Þ (green band) using
the RI=MOM scheme but consistent with the SMOM value
4.02(6) (red band). Even more, gS;π;FH is consistent with the
gS;π;ME using the RI=MOM scheme at each lattice spacing
within two sigma, but have significant difference from the
gS;π;ME using the SMOM scheme. Thus, the deviation
between the gS;π;FH and gS;π;ME using the RI=MOM scheme
would be only a systematic uncertainty due to the linear a2

extrapolation. Thus the renormalized gS shall have about
7% systematic uncertainty with present data, and more
reliable continuum extrapolation with data at more lattice
spacing is essential to obtain accurate prediction on gS.
The renormalization constants for various quark bilinear

operators are detailed in Appendix A 2, along with a
discussion on the discretization error from different
renormalization methods of quark field and mass.

III. RESULTS

Using the lattice spacing shown in Table I, we find
that the unitary pion mass on the ensemble C48P14 at
a ¼ 0.1053ð2Þ fm is 135.5(1.6) MeV, which perfectly
agrees with the physical neutral pion mass mπ0 of
134.98 MeV within 1% statistical uncertainty. The charged
pion mass mπ�139.57 MeV receives the QED correction
4.53(6) MeV [39] and then the subtracted pure QCDmπ� is
consistent with that of mπ0 within the uncertainty.
The corresponding renormalized light quark mass and

pion decay constants can also be determined as

FIG. 1. The dimensionless PCAC quark mass m̃PC
q ¼ mPC

q a vs
the bare quark mass m̃b

q ¼ mb
qa at three lattice spacings. The

slope should approach 1 in the continuum limit. The data points
correspond to six valence quark masses around the unitary light
and strange quark masses in those ensembles.

FIG. 2. Renormalized scalar matrix element gS;π with mπ ¼
317 MeV at three lattice spacing. gS;π;ME used ZMSð2 GeVÞ

S , gS;π;FH

used ZMSð2 GeVÞ
P , through either the RI=MOM or SMOM scheme.

The extrapolated values deviate by ∼7%.
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mMSð2 GeVÞ
l ða ¼ 0.105 fmÞ ¼ 3.64ð8Þð11Þ MeV;

fπða ¼ 0.105 fmÞ ¼ 121.9ð5Þ MeV; ð9Þ

where the second uncertainty of mq comes from that of the
renormalization constant. Based on the continuum extrapo-
lation with a 317 MeV pion mass, the pion decay constant
can change by approximately 7%, and then agree with the
present PDG value 130.4(0.2) MeV [40] after the con-
tinuum extrapolation.
In order to process this continuum extrapolation sys-

tematically, we calculate the quark propagators with unitary
light quark mass and also two partially quenched quark
masses with the constraint mπL > 3.5, on each of the 11
ensembles. Then we use the next-to-leading order (NLO)
partially quenched χPT form [41] to describe the pion
masses and decay constants with different valence and sea
quark masses, in addition to extra parameters cm=f;a=l for
the finite-lattice spacing/volume corrections.
Since the statistics on each ensemble are different, we

perform 4000 bootstrap re-samplings on each ensemble and
conduct the correlated global fit based on these bootstrap
samples. In such a strategy, the correlation between differ-
ent data points in the same ensemble is included automati-
cally, and that between different ensembles vanishes within
the statistical uncertainty of the re-sampling. The lattice
spacing and renormalization constants are sampled for each
bootstrap sample using a Gaussian distribution with their
uncertainties as the width of the distribution.
To illustrate the lattice spacing dependence and the

unitary quark mass dependence, we subtract the partially
quenching effect using bootstrap samples of the fit para-
meters from the original data points, and show the ratio

ðmπÞ2=mMSð2 GeVÞ
q (upper panel) and also fπ (lower panel)

at different quark masses mq in the Fig. 3. The corrected
data points at different lattice spacings use different
symbols: red crosses for a ¼ 0.105 fm, blue triangles for
a ¼ 0.077 fm, and filled green dots for a ¼ 0.052 fm. The

bands with similar color represent the fitted band at the
corresponding lattice spacing, and the gray band shows the
final prediction in the continuum and infinite volume limit.
It is observed that the continuum extrapolation pushes fπ to
be obviously higher, while the impact on the ðm2

π=mqÞ ratio
and, consequently, mq is much weaker.
The mπ and fπ with unitary valence and sea quark

masses have the following parametrization,

m2
π ¼ Λ2

χ2y

�
1þ y

�
ln

2yΛ2
χ

m2
π;phys

− l3

�
þOðy2Þ

�
; ð10Þ

Fπ ¼ F

�
1 − 2y

�
ln

2yΛ2
χ

m2
π;phys

− l4

�
þOðy2Þ

�
; ð11Þ

where Λχ ¼ 4πF, y ¼ Σml

F2Λ2
χ
. Σ, F, and l3;4 are low-energy

constants. Our determination of those constants are also
collected in Table II, consistent with the current Nf ¼
2þ 1 FLAG average but have smaller uncertainties
except F.
In this work, we use themK� andmK0 with the constraint

mphys
u þmphys

d ¼ 2mphys
l , to determine the up, down, and

strange quark masses mu;d;s. The QED correction on the
kaon mass is subtracted based on the literature [34]

under the renormalization scheme mMS
q;QCDþQEDð2 GeVÞ ¼

mMS
q;QCDð2 GeVÞ. On each ensemble, we calculate the

strange quark propagators with a unitary strange quark
mass mv

s ¼ ms
s, and also two partially quenched quark

masses mv
s ∼ 100 MeV. We construct the kaon correlation

functions with three strange quark masses and three light
quark masses used in the pion case. The 3 × 3 partially
quenched kaon masses on all the ensembles are fitted with
the following form proposed in a recent work [35]:

TABLE II. Summary of our determination on quark masses at MSð2 GeVÞ and the other quantities, through the intermediate
RI=MOM or SMOM schemes, with comparison with FLAG [26] and/or PDG [40]. The difference between two schemes is considered
as systematic uncertainty in the combined determination.

ml (MeV) mu (MeV) md (MeV) ms (MeV) Σ1=3 (MeV) ms=ml mu=md

RI=MOM 3.60(11) 2.45(22) 4.74(11) 98.8(2.9) 268.6(3.6) 27.47(30) 0.519(51)
SMOM 3.45(05) 2.25(10) 4.65(08) 94.1(1.2) 269.3(1.8) 27.28(22) 0.485(26)
Combined 3.60(11)(15) 2.45(22)(20) 4.74(11)(09) 98.8(2.9)(4.7) 268.6(3.6)(0.7) 27.47(30)(13) 0.519(51)(34)
FLAG=PDG 3.381(40) 2.27(09) 4.67(09) 92.2(1.0) 272(5) 27.42(12) 0.485(19)

F (MeV) Fπ=F fπ (MeV) fK� (MeV) fK�=fπ l3 l4

RI=MOM 86.6(7) 1.0675(19) 130.7(0.9) 155.6(0.8) 1.1907(76) 2.43(54) 4.322(75)
SMOM 85.1(6) 1.0683(15) 128.6(0.8) 152.9(0.7) 1.1890(74) 2.49(23) 4.226(48)
Combined 86.6(7)(1.4) 1.0675(19)(08) 130.7(0.9)(2.1) 155.6(0.8)(2.7) 1.1907(76)(03) 2.43(54)(05) 4.322(75)(96)
FLAG=PDG 86.8(6) 1.062(7) 130.2(0.8) 155.7(0.7) 1.1917(37) 3.07(64) 4.02(45)
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m2
Kðmv

l ; m
s
l ; m

v
s ; ms

s; aÞ
¼ ðbvsmv

s þ bssms
s þ bvl m

v
l þ bslm

s
lÞ

× ½1þ cKl m
v
l þ cKma2 þ cKL exp ð−mπLÞ�: ð12Þ

The global fit result is showed in Table XI. Based on the
fit of m2

K, the total strange quark mass dependence bvs þ
bss ¼ 2.37ð08Þ is consistent with the leading-order light
quark mass dependence bvl þ bsl ¼ 2.59ð95Þ, and the
coefficient of the nonlinear quark mass dependence
cKl ¼ 1.2ð3.3Þ × GeV−1 can not be determined based on
current statistics.
In Fig. 4, we show the corrected kaon mass mcr

K and
decay constant fcrK with the light quark massml corrected to
its physical value mphys

l . The finite volume and partially
quenched effects are also subtracted. We can found that fK
also exhibits a strong lattice spacing dependence, similar to
the fπ case, while the kaon mass is insensitive to the lattice
spacing.
As illustrated in Figs. 3 and 4, all the global fits of the

pseudoscalar meson mass and decay constant provide
reasonable χ2=d:o:f: More information on the global fit
can be found in Appendix A 3.

The physical quark massesmu;d;s and also corresponding
fπ;K using mphys

l and intermediate RI=MOM scheme, are
collected in Table II. In addition, Table II shows the global
fit results using the ZA;P through the SMOM scheme for
comparison. As we can see from the continuum extrapo-
lation tests using a 317MeV pion mass, the SMOM scheme
yields quark masses that are 3–4% lower and decay
constants that are ∼2% lower compared to the RI=MOM
scheme. However, the ratio of the quark masses or decay
constants remains unchanged within the uncertainty as the
renormalization constants are canceled.
Therefore, we consider the result using the RI=MOM

scheme as the central value due to its smaller discretization
error, and treat the difference between the results obtained
using the two schemes as systematic uncertainties. Such a
systematic uncertainty can also be considered as an estimate
of the residual discretiation error, as the correct continuum
limit should be independent of the intermediate renormaliza-
tion scheme. All our determinations are consistent with the
present lattice averages [26] and/or PDG [40] within 1 − 2σ.

IV. SUMMARY

In this work, we determine the up, down, and strange
quark masses, along with several low-energy constants,

FIG. 3. The corrected unitary ðmuni
π Þ2=mq and the decay

constant funiπ varies with the quark mass, at three lattice spacing
(colored data points and corresponding bands with dashed line for
0.0519 fm, dash-dotted line for 0.0775 fm, and dotted line for
0.1053 fm) and also continuum (gray band).

FIG. 4. The corrected kaon massmcr
K and the decay constant fcrK

with the physical light quark mass mphys
l , varies with the strange

quark mass at three lattice spacing (colored data points and
bands) and also continuum (gray band).
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using the 2þ 1 flavor full-QCD ensembles with tadpole-
improved clover and Symanzik actions. The major results
are summarized in Table II.
Similar to one of the most precise works [28] with the

clover fermion, we have skipped the axial current improve-
ment [42] since the improvement coefficient itself strongly
depends on the lattice spacing a and bring the improvement
term to be consistent with an Oða2Þ correction. As
evidence, both fπ and mq show good consistency with a
simple linear a2 lattice spacing dependence. Then assigning
cA ∼ 0.05a=ð0.105 fmÞ in the improved axial vector cur-
rent Aimp

μ ¼ Aμ þ cAa∂μP [42] can eliminate the discreti-
zation error in fπ;K, however, this error will be transferred
to the quark mass. Thus, simulations at more lattice
spacings would be a more systematic solution to enhance
the accuracy of our predictions in the continuum than the
axial current improvement.
On the other hand, the additive chiral symmetry breaking

makes the renormalization of the quark mass to be highly
nontrivial. Our study suggests that the ZS and ZP obtained
through the SMOM scheme are closer than those through
the RI=MOM scheme, while the latter one can make the
discretization error of both the mR

q ¼ ZA=ZPmPC
q and

gRS ¼ ZSgS to be smaller. Our final prediction of the quark
masses are 5.6(2.8)% higher than the current (2þ 1)-flavor
lattice averages but consistent with the previous (2þ 1)-
and (2þ 1þ 1)-flavor results using the RI=MOM scheme.
At the same time, the RI=MOM scheme can also cause the
Feynman-Hellman theorem gS;π ≃

mπ
4mq

to be violated by 7

(3)% after the linear Oða2Þ continuum extrapolation.
Using the SMOM scheme can eliminate the violation

and bring the quark mass prediction closer to the current
(2þ 1)-flavor lattice average. However, the SMOM
scheme introduces larger discretization errors for all the
renormalized quantities we investigated and causes the
decay constants fπ;K to be 2–3% smaller than the physical
values after the linear Oða2Þ continuum extrapolation.
The above observations indicate that renormalization is a

significant issue that requires careful investigation, and
conducting similar calculations using chiral fermions
would be essential to gain a better understanding of these
violations. At the same time, nonperturbative renormaliza-
tion should remove all the OðαsÞ effects, but not all the
cross terms like the residual OðaαsÞ effect of the clover
action, which can cause theOða2Þ continuum extrapolation
to fail. Thus, we consider the difference between the results
obtained by the two schemes as systematic uncertainties in
our final determination of the aforementioned quantities,
which are larger than the statistical uncertainties in various
cases. We anticipate that additional research utilizing
ensembles with a greater number of lattice spacings can
encompass both the Oða2Þ and OðaαsÞ terms in the
continuum extrapolation, resulting in a more dependable
and uniform continuum limit.

It is worth mentioning that in Ref. [28], the trace-
subtraction trick S̄ ¼ S − 1

4
Tr½S� is applied into renormal-

ization procedure, and the quark mass is renormalized at
RI=MOM 2 GeV, followed by perturbative matching at a
much higher scale. This approach is crucial in suppressing
their truncation error to the sub-percent level. However, in
our case, it appears to be inefficient due to significant
nonperturbative effects observed at 2 GeV. We plan to
conduct a more systematic investigation once the CLQCD
ensembles at more lattice spacings are generated.
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APPENDIX

1. Simulation details

This section is organized as follows. The dimensionless
joint fit on the pseudoscalar meson mass, its decay
constant, and the corresponding PCAC quark mass will
be discussed in Appendix A 1 a. Based on the determi-
nation of an uniform lattice spacing at given β̂ detailed in
Appendix A 1 b, the mistuning effect of the tadpole
improvement factors is not always negligible and will be
addressed in Appendix A 1 c.

a. Dimensionless joint fit

We construct two kinds of the two-point functions for the
meson states:
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CΓΓ0
2;wpðt;mqÞ ¼

X
x⃗

hTr½S†Cðx⃗; y0 þ t; y0;mqÞγ5Γ

× SCðx⃗; y0 þ t; y0;mqÞΓ0γ5�i=L3; ðA1Þ

CΓΓ0
2;wwðt;mqÞ ¼

X
x⃗;z⃗

hTr½S†Cðx⃗; y0 þ t; y0;mqÞγ5Γ

× SCðz⃗; y0 þ t; y0;mqÞΓ0γ5�i=L3; ðA2Þ

where C2 is independent of the source time slice y0 after
taking expectation value, the Coulomb gauge fixed-wall
source propagator is defined as

SCðx; y0;mqÞ ¼
X
y⃗

Sðx; y⃗; y0;mq;UCÞ; ðA3Þ

Sðx; y;mq;UÞ≡ ψðx;mq;UÞψ̄ðy;mq;UÞ is the quark
propagator of the quark field ψ with bare quark mass
mq on a given gauge configuration U, and UC is the
Coulomb gauge fixed configuration satisfying the gauge
fixing condition Im½Pi¼1;2;3ðUCðxÞ −UCðx − an̂iÞÞ� ¼ 0.
For the clover fermion action, the PCAC quark mass mq

is then defined through the pion correlation functions [20],

mPC
q ¼ mPS

P
x⃗hA4ðx⃗; tÞP†ð0⃗; 0Þi

2
P

x⃗hPðx⃗; tÞP†ð0⃗; 0Þi

����
t→∞

: ðA4Þ

The renormalized quark mass is subsequently defined
as mR

q ¼ ZA=ZPmPC
q .

Through a joint fit (Õ is the dimensionless value of any
quantity O),

C̃A4P
2;wpðt̃−1Þ− C̃A4P

2;wpðt̃þ1Þ
4C̃PP

2;wpðt̃Þ

����
0≪t̃≪T̃

¼Sinhðm̃PSÞ
m̃PS

m̃PC
q ; ðA5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̃PP
2;wpðt̃Þ

C̃PP
2;wwðt̃Þ

s ����
0≪t̃≪T̃

¼ m̃2
PS

2m̃PC
q

ffiffiffiffiffiffiffiffi
Zwp

p f̃PS; ðA6Þ

C̃PP
2;wpðt̃Þj0≪t̃≪T̃ ¼ Zwp

2m̃PS
ðe−m̃PS t̃ þ e−m̃PSðT̃−t̃ÞÞ; ðA7Þ

the PCAC quark mass m̃PC
q , pseudoscalar mass

m̃PS ¼ Cosh−1
C̃PP
2;wpðt̃ − 1Þ þ C̃PP

2;wpðt̃þ 1Þ
2C̃PP

2;wpðt̃Þ

����
0≪t̃≪T̃

; ðA8Þ

and decay constant f̃PS are extracted as fit parameters,
alongside an additional unphysical fit parameter Zwp for the
Coulomb gauge-fixed wall source.
In Fig. 5, we shown the joint fit result of the unitary light

quark on the physical point ensemble C48P14. To suppress
the statistical uncertainty, we repeated the calculation on

nsrc ¼ 48 of 96 times slides on ncfg ¼ 203 configurations.
The values of nsrc and ncfg of the other ensembles can be
found in Table. I. The ratios (red data points) defined in
Eq. (A5) for m̃q are consistent with a constant in the region
of t̃ > 10, as shown in the top left panel. The situation is
similar for f̃PS (top right panel) and also m̃PS (bottom left
panel). Since the statistics on C48P14 are limited, we
performed a joint uncorrelated fit in the range t̃∈ ½10; 40�
for Eqs. (A5)–(A7) and used bootstrap resampling to
estimate the uncertainty, represented by the gray band in
the figure. We can see that the fit agrees very well with the
data points, and the uncertainties of the fitted bands are
comparable to the original data. Thus, it is unlikely that the
uncertainty has been underestimated by the uncorrelated fit.
The strange quark mass case on the ensemble C48P14 is

shown in Fig. 6. Since the statistical uncertainty decreases
with with a heavier quark mass, we only repeated the
calculation on three time slides for each configuration,

FIG. 5. The ratios for m̃q (left top), f̃PS (right top), m̃PS (left
bottom) defined in Eqs. (A5)–(A8), and the correlator C̃PP

2;wp (right
bottom) as functions of t̃, for the physical light quark mass at the
coarsest lattice spacing. The joint-fit results are shown on the
plots as gray bands.

FIG. 6. Similar to Fig. 5 but for the strange quark mass and
fewer sources (nsrc ¼ 3).
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resulting in more noticeable fluctuations compared to the
light quark case.
Through the above fit, we can extract the light and

strange quark masses through the pion and ηs correlators,
respectively,

∂μðl̄γ5γμlÞ ¼ 2mPC
l l̄γ5l; ∂μðs̄γ5γμsÞ ¼ 2mPC

s s̄γ5l: ðA9Þ

Alternatively, the sum of the light and strange quark masses
can also be extracted from the kaon correlator,

∂μðs̄γ5γμlÞ ¼ ðmPC
l þmPC

s Þs̄γ5l: ðA10Þ

Thus, we should verify two extraction provide consistent
result, at least in the continuum. Figure 7 shows the ratio
of these two determinations of ml þms at three lattice
spacings, with mπ ∼ 300 MeV and mηs ∼ 700 MeV for
better signals. Two determinations deviate from each other
by approximately 0.6% at the coarsest lattice spacing but
are consistent within the statistical uncertainty of 0.1% after
a linear a2 extrapolation to the continuum limit.
At three lattice spacings with mπ ∼ 300 MeV, we fit the

dimensionless PCAC quark mass m̃PC
q ¼ mPC

q a with the
following form:

m̃PC ¼ kmðm̃b − m̃crtiÞ; ðA11Þ

where m̃b
q ¼ mb

qa is the original input quark mass param-
eters, and m̃crti corresponds to the critical pion mass that
makes the pion mass and m̃PC vanish. The parameter km ¼
1þOða2; αs; aαsÞ approaches 1=ZA determined by non-
perturbative RI=MOM renormalization (due to the relation
ZmZP ¼ 1) in the continuum limit, while it is affected by
the Oða2Þ discretization error and OðαsÞ loop effects at
finite lattice spacing.
Based on the numerical results listed in Table III, we

observe that m̃crti remains negative even after a naive

OðaÞ þOða2Þ extrapolation to the continuum, with a value
of −0.0865. Therefore, it is crucial to include the Oððαbs Þ2Þ
term, where αbs ¼ g2

0

4π ¼ 10
4πβ̂u4

0

, in the continuum extrapola-

tion to ensure that m̃crti⟶
a→0

0, as predicted by lattice

perturbative theory.
On the other hand, the discrepancy between km and 1

diminishes as the lattice spacing becomes smaller. We will
discuss this further in the following section on
renormalization.

b. Lattice spacing determination

Figure 8 illustrates the lattice spacing determined by the
gradient flow [36] with w0 [37] at three bare couplings β̂
and mπ ∼ 300 MeV, using different gauge action improve-
ment coefficient c1 in the flow; c1 ¼ −0.331 (Iwasaki
action), −0.2 and −1=ð12u20Þ for interpolation, −1=12
(Symanzik action), and 0 (Wilson action). The c1 depend-
ence becomes weaker at smaller lattice spacings, indicating
that it is a discretization effect. As the tadpole improvement
factor approaches 1 with increasing gradient flow t,
implementing tadpole improvement for the action used
by the flow only affects the small flow time region and is
unnecessary. Thus, we consistently use the standard c1 ¼
−1=12 in the gradient flow to match the gauge action
employed in HMC and mitigate the discretization error.

FIG. 7. The ratio of the PCAC quark mass determined from the
quarkoinum (pion and ηs), and also kaon. Two definitions are
consistent upto Oða2Þ correction.

TABLE III. The bare coupling αbs , critical quark mass m̃crti, and
slope km at three lattice spacing a and mπ ∼ 300 MeV.

a (fm) 0.105 0.077 0.052
αbsðaÞ 0.2397 0.2234 0.2035

m̃crti −0.28560ð4Þ −0.23545ð3Þ −0.18885ð1Þ
km 0.881(1) 0.953(1) 1.009(1)

FIG. 8. The lattice spacings determined by w0 with different
gauge action improvement factor c1.
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Using the FLAG average value of the gradient flow scale,
w0 ¼ 0.1736ð9Þ fm [26], the lattice spacing aw0

for each
ensemble is determined using the Symanzik flow and
summarized in Table IV. It is evident that aw0

primarily
depends on the gauge coupling β̂, while the quark mass also
exhibits significant effects, as indicated by the precise aw0

results with a statistical uncertainty of approximately 0.1%.
Empirically, aw0

can be described by the following para-
metrization, yielding a χ2=d:o:f: of 2.2 (with a correspond-
ing p-value of 0.09, still larger than the standard lower
bound of 0.05):

aw0
ðβ̂; m̃π; m̃ηs ; δu0; δv0Þ

¼ aðβ̂Þ
�
1þ cl

�
m̃2

π

aðβ̂Þ2 −m2
π;phys

�

þ cs

�
m̃2

ηs

aðβ̂Þ2 −m2
ηs;phys

�
þ cLe−m̃πL̃

þ cu0ðu0 − uI0Þ þ cv0ðv0 − vI0Þ
�
; ðA12Þ

where, mπ;phys ¼ 134.98 MeV [40] represents the physical
pion mass without QED correction, and mηs;phys ¼
689.63ð18Þ MeV [48] corresponds to the pseudoscalar
meson mass of the strange quark with only connected
insertions. The tadpole improvement factors used in the

actions are denoted as uI0 and vI0, while u0 and v0 are
tadpole improvement factors obtained from the generated
configurations. The lattice spacing aðβÞ with physical
quark masses at each β, along with the other fitting
parameters cl;s;L;u0;v0 are also provided in Table IV.
We observe that the volume dependence is consistent

with zero, but there is still a nonvanishing mismatch effect
(uI0 ≠ u0 and vI0 ≠ v0) in the tadpole improvement factors,
like what be showed in Table V. It is also interesting to note
that the dependence of aw0

on the strange quark mass is
weaker compared to that of the light quark mass by a factor
of approximately 4, instead of 2 from two light flavors.

c. Mismatch effect of the tadpole
improvement factors

As shown in Table IV, the mismatch effect of the tadpole
improvement factors can have a nonzero impact on the
determination of aw0

through the gradient flow. Both u0 and
v0 represent vacuum expectation values and cannot be
accurately determined before generating gauge configura-
tions using the realistic hybrid Monte Carlo (HMC)
production. Therefore, for each ensemble, we initiate the
HMC with an initial guess for u0 and v0, measure their
values on each trajectory until they stabilize, and sub-
sequently restart the HMC production with the updated
values of u0 and v0. After several iterations, the input
values uI0 and vI0 become consistent with u0 and v0, as
measured from the configurations, at a level of approx-
imately 0.002%, resulting in an effect of around 0.6% on
the lattice spacing. The only exception is the test ensemble
C24P34, which exhibits a larger deviation in both u0 and
v0; however, their impact on aw0 is mainly canceled out
due to the opposite signs of cu0 and cv0 .
After averaging u0 and uI0 to obtain an estimate of the

self-consistent tadpole improvement factor ū0, we observe
that the volume dependence is at the level of 0.001% based
on the spatial sizes utilized. On the other hand, the quark
mass dependence appears to be more pronounced.
In the upper panel of Fig. 9, the value of ū0 exhibits a

linear behavior with respect to the combined quark mass
2m̃PC

l þ 0.55ð1Þm̃PC
s ∝ 0.5m̃2

π þ 0.14m̃2
ηs . This suggests

that the dependence on the strange quark mass exhibits
a similar suppression as observed in aw0

, as shown in

TABLE IV. aw0
on different ensembles and the fitted values

through the functional form in Eq. (A12).

aw0
afitw0

Fit parameters

C24P34 0.11198(17) 0.11202(16) að6.20Þ 0.10530(18)
C24P29 0.10811(15) 0.10834(09) að6.41Þ 0.07746(18)
C32P29 0.10858(11) 0.10836(06) að6.72Þ 0.05187(26)
C32P23 0.10637(13) 0.10637(06) cl 0.507(18)
C48P23 0.10631(06) 0.10635(05) cs 0.110(23)
C48P14 0.10583(07) 0.10582(06) cL 0.001(09)
F32P30 0.08044(10) 0.08044(08) cu0 −408ð125Þ
F48P30 0.08017(05) 0.08017(05) cv0 379(110)
F32P21 0.07758(16) 0.07757(15)
F48P21 0.07810(07) 0.07809(06)
H48P32 0.05430(11) 0.05430(11)

TABLE V. The tadpole improvement factors uI0 and vI0 used in the gauge and fermion actions, u0 and v0 measured from the realistic
configurations generated using uI0 and vI0, and their averages ū0 and v̄0.

C24P34 C24P29 C32P29 C32P23 C48P23 C48P14 F32P30 F48P30 F32P21 F48P21 H48P32

uI0 0.855453 0.855453 0.855453 0.855520 0.855520 0.855548 0.863437 0.863473 0.863488 0.863499 0.873378
u0 0.855255(7) 0.855439(2) 0.855429(2) 0.855528(2) 0.855523(1) 0.855530(2) 0.863460(1) 0.863459(1) 0.863519(2) 0.863515(1) 0.873372(1)
ū0 0.855354(4) 0.855446(1) 0.855441(1) 0.855524(1) 0.855522(1) 0.855539(1) 0.863449(1) 0.863466(1) 0.863504(1) 0.863507(1) 0.873375(1)

vI0 0.951479 0.951479 0.951479 0.951545 0.951545 0.951570 0.956942 0.956984 0.957017 0.957006 0.963137
v0 0.951275(6) 0.951461(2) 0.951452(2) 0.951550(2) 0.951547(1) 0.951554(2) 0.956968(1) 0.956967(1) 0.957024(1) 0.957019(1) 0.963134(1)
v̄0 0.951377(3) 0.951470(1) 0.951466(1) 0.951548(1) 0.951546(1) 0.951562(1) 0.956955(1) 0.956976(1) 0.957021(1) 0.957013(1) 0.963136(1)
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Table IV. In the lower panel, we observe that v0 exhibits the
same quark mass dependence within the uncertainty.
However, such a mismatch will not significantly alter the

physical observables. To illustrate this, let us consider the
C24P34 ensemble with the largest mismatch effect. We
calculate the pion two-point function CPP

2;wpðt; m̃b
l ; cswÞ

using the same m̃b
l ¼ −0.2770, but with either csw ¼

1=ðvI0Þ3 or 1=v̄30. The joint-fit parameters defined in
Eqs. (A5)–(A7) are listed in Table VI. We find that the
matrix elements f̃PS and Zwp remain unchanged within
0.05% uncertainties. However, m̃PS experiences a 0.6%
change, resulting in a 1.1% shift in the quark mass. This can
be understood by noting that increasing csw leads to an
increase in m̃crti, thereby making the multiplicative renor-
malizable quark mass m̃PC

l larger for the same m̃b
l .

Consequently, the mismatch effect falls within the statis-
tical uncertainty of C24P34 and is an order of magnitude
smaller in other ensembles. Hence, we can safely disregard
this mismatch effect in the subsequent discussions.

2. Renormalization

Unlike the hadron spectrum, the determination of hadron
matrix elements on the lattice using discretized actions
requires additional renormalization. The RCs defined under
theMS scheme, can only be obtained through regularization-
independent (RI) schemes such as RI=MOM [29] or

SMOM [30,31]. These RCs should be independent of
intermediate schemes.
For the overlap fermion action, which possesses explicit

chiral symmetry, the relations ZV ¼ ZA and ZP ¼ ZS ¼
1=Zm are guaranteed. The consistency of using RI=MOM
or SMOM schemes has been verified within systematic
uncertainties [38]. However, in the case of the clover
fermion action, which exhibits additive chiral symmetry
breaking, additional considerations and discussions regard-
ing its impact on renormalization are necessary in this
section.
Following a similar strategy employed by Ref. [38], the

values of ZS;P;T incorporate two sources of uncertainty. The
first one encompasses ensemble-independent statistical and
systematic uncertainties, including lattice spacing, finite
volume effects, and a2μ2 fit range. The second source of
uncertainty arises from perturbative matching, including
uncertainties associated with ΛQCD, truncation in the
perturbative matching, and perturbative scale running.
These uncertainties are fully correlated across different
ensembles. As shown in Table VII for the C32P29
ensemble, the truncation error is the largest source of
uncertainty for ZS;P.
In Ref. [38], the truncation error resulting from the

3-loop perturbative matching between the RI=MOM and
MS schemes is estimated by introducing a fake 4-loop
correction. As an illustration, considering the scalar/pseu-
doscalar case with the largest truncation error, the 3-loop
matching and the fake 4-loop one are expressed as follows:

CMS;RI=MOM
S;nf¼3;3−loop¼1þ0.4244αsþ1.007α2sþ2.722α3s ; ðA13Þ

CMS;RI=MOM
S;nf¼3;fake4−loop ¼ 1þ 0.4244αs þ 1.007α2s þ 2.722α3s

þ 7.358α4s : ðA14Þ

The coefficient of fake α4s term 2.7222=1.007 ¼ 7.358 is
the same as that provided by the Padé approximation,

TABLE VI. The joint-fit results with the same m̃b
l and either

csw ¼ 1=ðvI0Þ3 or 1=v̄30, on the test ensemble C24P34 which has
the largest mismatch effect.

m̃PS m̃PC
l f̃PS Zwp

1=ðvI0Þ3 ¼ 1.1609 0.1832(12) 0.01191(13) 0.0768(10) 10.50(30)
1=ðv̄0Þ3 ¼ 1.1613 0.1822(12) 0.01178(13) 0.0768(11) 10.50(31)

Difference 0.0011(01) 0.00013(01) 0.0000(00) 0.00(01)

TABLE VII. Summary of uncertainties of RCs in percentage on
the C32P29 ensemble through the intermediate RI=MOM
scheme.

Source
ZMS
q =ZV

(%)
ZMS
S =ZV

(%)
ZMS
P =ZV

(%)
ZMS
T =ZV

(%)

Statistical error 0.13 0.37 0.92 0.06
Lattice spacing < 0.01 < 0.01% < 0.01 < 0.01
Finite volume effect 0.03 0.24 0.62 0.02
Fit range of a2μ2 0.11 0.47 1.21 0.31

ΛMS
QCD

< 0.01 1.64 1.65 < 0.01

Truncation in matching 0.24 3.45 3.45 0.24
Perturbative running 0.02 0.07 0.07 0.02

Total 0.32 3.74 4.26 0.31
FIG. 9. The combined quark mass 2m̃PC

l þ 0.55ð1Þm̃PC
s

dependence of ū0 ¼ u0þuI
0

2
(upper panel) and v̄0 ¼ v0þvI

0

2
(lower

panel), at 10=g2 ¼ 6.2.
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CMS;RI=MOM
S;nf¼3;Pade3

¼ 1 − 2.279αs − 0.1402α2s
1 − 2.703αs

¼ 1þ 0.4244αs þ 1.007α2s þ 2.722α3s

þ 7.358α4s þOðα5sÞ: ðA15Þ

Based on the precise 4-loop calculation, the precise
4-loop matching is [49],

CMS;RI=MOM
S;nf¼3;4−loop ¼ 1þ 0.4244αs þ 1.007α2s þ 2.722α3s

þ 8.263α4s ; ðA16Þ

which is larger than CMS;RI=MOM
S;nf¼3;fake 4−loop but smaller than

CMS;RI=MOM
S;nf¼3;Pade3

. Considering that the existence of the 5-loop

correction, we anticipate that the Padé approximation will
provide a more accurate estimate for CS;nf¼3.
Thus, we shall use the 4-loop Padé approximation,

CMS;RI=MOM
S;nf¼3;Pade4

¼ 1 − 2.611αs − 0.2813α2s − 0.3349α3s
1 − 3.036αs

¼ 1þ 0.4244αs þ 1.007α2s þ 2.722α3s

þ 8.263α4s þ 25.084α5s þOðα6sÞ; ðA17Þ

as the central value of the matching coefficient, and taking
the difference between CS;nf¼3;Pade4 and CS;nf¼3;Pade3 as
systematic uncertainty of the truncation on the perturbative
matching.
In this section, we will commence with the vector current

normalization and explore different choices of quark field
renormalization in Appendix A 2 a. Appendix A 2 a will
then present the investigation of the chiral symmetry
breaking effect between ZV and ZA. Subsequently, in
Appendix A 2 d, we will examine the analogous inves-
tigation of ZP and ZS, with additional discussions on Zm in
Appendix A 2 c. Finally, for completeness, the case of the
tensor current will be discussed in Appendix A 2 e.

a. Vector normalization and Zq

Unlike its continuum counterpart, the local vector
current under lattice regularization is subject to both the
Oða2Þ discretization error andOðαsÞ-loop corrections [50],
and then requires additional normalization. The normali-
zation constant ZV can be determined from the vector
current conservation condition,

ZV
hHjV4jHi
hHjHi ¼ 1; ðA18Þ

where Vν ¼ ψ̄γνψ and H represents an arbitrary hadronic
state. Thus, extracting ZV from the pion correlator in the
rest frame will be the cheapest choice [50],

ZV ¼
X
x⃗

hTr½S†Cðx⃗; T̃=2; 0;mqÞSCðx⃗; T̃=2; 0;mqÞ�i=

×

�
2
X
x⃗;z⃗

hTr½S†Cðx⃗; T̃=2; 0;mqÞSðx⃗; T̃=2; z⃗; t;mqÞ

× γtSCðz⃗; t; y0;mqÞ�i
	
jT̃≫t≫0; ðA19Þ

where the additional propagator in the denominator can be
obtained using the sequential source technique. The ratio at
three lattice spacing and their constant fits in the range
of 0 ≪ t ≪ T̃=2, are shown in Fig. 10. As demonstrated
in [50], ZV is affected by αs corrections and cannot be
accurately extrapolated to 1 using a simple naive a2n

continuum extrapolation.
The quark field RC ZRI0

q in the RI scheme can be
accessed through either its definition,

ZRI0
q ðμÞ ¼ lim

m→0

−i
12p2

Tr½S−1ðpÞ=p�p2¼μ2 ; ðA20Þ

with SðpÞ ¼ P
x e

−ip·xhψðxÞψ̄ð0Þi, or the vertex correction
of the vector current which is equivalent in the continuum,

ZRI0;ver
q ðμÞ ¼ lim

m→0

ZV

36
Tr

�
Λμ
Vðp; pÞ

�
γμ −

=ppμ

p2

��
p2¼μ2

;

ðA21Þ

where

ΛOðp1; p2Þ ¼ S−1ðp1ÞGOðp1; p2ÞS−1ðp2Þ;
GOðp1; p2Þ ¼

X
x;y

e−iðp1·x−p2·yÞhψðxÞOð0Þψ̄ðyÞi: ðA22Þ

These two definitions are equivalent in the continuum, but
they are subject to different discretization errors. Figure 11

FIG. 10. ZV from the vector current conservation of pion
correlator at three lattice spacing. The plateau values are
summarized in Table IX as the ZV of the ensembles C24P29,
F32P30, and H48P32.
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illustrates the comparison between ZRI0
q and ZRI0;ver

q at three
lattice spacings. The two definitions become closer either at
smaller μ or smaller a, with ZRI0;ver

q exhibiting a signifi-
cantly smaller a2p2 error. This situation is reminiscent of
the overlap fermions case [38], where the a2μ2 errors have
opposite signs.
Given that ZRI0;ver

q involves an off-diagonal projection
that introduces additional discretization errors, it is more
convenient to define the quark field renormalization
through the standard RI definition [29],

Zω
q ðμ2Þ ¼ lim

m→0

ZV

48
Tr½Λμ

Vðp1; p2Þγμ�p2
1
¼p2

2
¼μ2;ðp1−p2Þ2¼ωμ2 ;

ðA23Þ

The discrepancy between Zω
q with different ω and ZRI0

q

should be eliminated through their respective perturbative
matchings, which can be calculated in the continuum. For
the SMOM condition with ω ¼ 1, the convergence of the
perturbative matching is poorer compared to that of Zq

using the q-projection definition [31], but the discretization
error will be smaller.

b. Chiral symmetry breaking between ZA and ZV

For the clover fermion, the ratio

ZA

ZV
ðμ2;ωÞ ¼ Tr½Λμ;MS

A ðp1; p2Þγ5γμ�
Tr½Λμ;MS

V ðp1; p2Þγμ�

����
p2
1
¼p2

2
¼μ2;ðp1−p2Þ2¼ωμ2

ðA24Þ

can deviate from unity due to the additive chiral symmetry
breaking present in the action. As depicted in Fig. 12 for the
RI=MOM scheme (data points, ω ¼ 0) and SMOM scheme
(bands, ω ¼ 1) at three different lattice spacings with

mπ ∼ 300 MeV, we observe that the breaking diminishes
as a2μ2 increases, indicating that the chiral symmetry
breaking in the mass term becomes less important.
However, the ratio does not approach unity in the con-
tinuum limit without any αs corrections. It is worth noting
that the breaking using the SMOM scheme is much smaller
than that with the RI=MOM scheme, while increases
rapidly at small a2μ2.
If we fit the ZA=ZV data with a polynomial form in the

range of 9 GeV2 ≤ p2 ≤ 15=a2 and extrapolate it to
a2p2 ¼ 0, the obtained result will be sensitive to the choice
of ω. Therefore, we extrapolate the fπ at two coarser lattice
spacings to the unitary pion mass at the finest lattice
spacing, which is mπ ¼ 317 MeV. The renormalized fRπ ¼
ZAfπ is shown in Fig. 13, using both the extrapolated
ZA=ZV obtained through RI=MOM and SMOM. The
results suggest that the scheme sensitivity is approximately
1% after a linear a2 continuum extrapolation, with the
discretization error through RI=MOM being 25% smaller.

FIG. 11. Comparison of ZRI0
q (data points) and ZRI0;ver

q (bands) at
three lattice spacing with different scale μ. The discrepancy
observed in the figure is primarily attributed to the discreti-
zation error.

FIG. 12. The ratio ZA=ZV through the RI=MOM scheme (data
points) or SMOM scheme (bands) at three lattice spacing as
functions of a2p2.

FIG. 13. Renormalized pion-decay constant fπ with mπ ¼
317 MeV at three lattice spacing, using ZA ¼ ZV

ZA
ZV

through
either RI=MOM or SMOM scheme. The extrapolated values
deviate by 1.3(8)%.
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c. Pesudoscalar current renormalization ZP
and induced quark mass

The renormalization ofmPC
q requires both ZA and ZP. By

defining Ẑω
P under either the RI=MOM (ω ¼ 0) or SMOM

(ω ¼ 1) scheme,

Ẑω
PðμÞ ¼

Zω
q

1
12
Tr½ΛPðp1; p2Þγ5�

����
p2
1
¼p2

2
¼μ2;ðp1−p2Þ2¼ωμ2

¼ ZV

1
48
Tr½Λμ

Vðp1; p2Þγμ�
1
12
Tr½ΛPðp1; p2Þγ5�

����
p2
1
¼p2

2
¼μ2;ðp1−p2Þ2¼ωμ2

;

ðA25Þ
ZP in the chiral limit can be extracted from the following
parametrization:

Ẑω
Pðμ;mPC

q Þ ¼
�
Aω
PðμÞ
mPC

q
þ ðZω

PðμÞÞ−1 þ Cω
PðμÞmPC

q

�
−1
;

ðA26Þ
where mPC

q can be replaced by m2
π based on the GMOR

relation. As shown in Fig. 14, Aω¼1
P is negligible in the fit,

but Aω¼0
P will be nonzero due to the mass pole of the

Goldstone meson and is related to the dynamical quark
mass under the Landau gauge [51].
If one define the RI quark mass at given scale as [51]

mRI
q ¼

1
12
Tr½S−1ðpÞ�jp2¼μ2

ZRI
q ðμÞ ; ðA27Þ

then for the overlap fermion action with exact chiral
symmetry, we can further define ZRI

m ¼ mRI
q =mb

q and have
the relation ZmẐp ¼ 1 holding for arbitrary mq and μ.
Thus, the following definition of the RI quark mass:

m̂RI
q ¼ ZAmPC

q

ẐMOM
P ðμÞ ; ðA28Þ

ensures that mRI
q ¼ m̂RI

q given the relation ZAmPC
q ¼ mb

q for
the overlap fermion. However, the case of clover fermions
can be quite different due to its additive chiral symmetry
breaking.
In Fig. 15, we present both mRI

q and m̂RI
q at three lattice

spacings with mπ ∼ 300 MeV, and compare them with the
results obtained from the overlap fermion at a ¼ 0.111 fm.
We observe that m̂RI

q seems to be insensitive to the lattice

FIG. 15. Values of mRI
q (data points) and m̂RI

q (bands) at three
lattice spacing with mπ ∼ 300 MeV at different RI=MOM scale
μ. m̂RI

q (black crosses) using the overlap fermion are also shown
on the figure for comparison.

FIG. 14. Valence pion mass square m2
π;vv dependence of Ẑω¼0

P

(RI=MOM, lighter points) and Ẑω¼1
P (SMOM, darker points) with

a2μ2 ¼ 4, at three lattice spacing and mπ;ss ∼ 300 MeV.

FIG. 16. a2μ2 dependence of ZMSð2 GeVÞ
P through the RI=MOM

(ω ¼ 0, upper panel) and SMOM (ω ¼ 1, lower panel) schemes,
at three lattice spacing and mπ;ss ∼ 300 MeV.
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spacing and is close to the overlap result m̂RI
q ¼ mRI

q [51];
butmRI

q exhibits a significant a2μ2 error and some unknown
UV effects, resulting in large values at large μ.
After Zω

P is extracted, it can be further converted to the
MS scheme at given scale likes μ0 ¼ 2 GeV through the
perturbative matching, and shall be independent of both

μ and ω. In Fig. 16, ZMSð2 GeVÞ
P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ¼
0.105 fm can be consistent with that using the SMOM
scheme, with the 3–4% systematic uncertainties from the
perturabative matching. The situation improves at smaller
lattice spacing, and systematic uncertainties are also
smaller there. In Fig. 17, we show the renormalized quark
mass at MSð2 GeVÞ with mπ ¼ 317 MeV at three lattice

spacing, using ZMSð2 GeVÞ
P through either RI=MOM or

SMOM scheme. We can see that the lattice spacing
dependence using the RI=MOM scheme is consistent with
zero, while SMOM shows a nonvanishing dependence
and make the continuum extrapolated value to be 3.1
(1.5)% lower.

d. Chiral symmetry breaking between ZP and ZS

The scalar current RC can be defined similarly with a
slightly different parametrization,

Ẑω
S ðμÞ ¼ ZV

1
48
Tr½Λμ

Vðp1; p2Þγμ�
1
12
Tr½ΛSðp1; p2Þ�

����
p2
1
¼p2

2
¼μ2;ðp1−p2Þ2¼ωμ2

;

Ẑω
S ðμ;mPC

q Þ ¼ Aω
S ðμÞ
mPC

q
þ ðZω

S ðμÞÞ þCω
S ðμÞmPC

q ; ðA29Þ

where S ¼ ψ̄ψ , and the Aω
S term can be dropped for ω ¼ 1.

However, as shown in Fig. 18, the effect of the Aω
S term is

consistently negligible regardless of the value of ω.
After converting to the MS scheme at a given scale using

the same matching procedure as in the pseudoscalar case,

we obtain ZMSð2 GeVÞ
S as shown in Fig. 19, through either the

RI=MOM scheme (upper panel) or the SMOM scheme
(lower panel) with the corresponding a2μ2 errors. We
observe that the scheme dependence of ZS is much stronger
than that of ZP, but the difference diminishes as the lattice
spacing decreases.
Another comparison we can make is the ratio ZS=ZP

obtained through either the RI=MOM or SMOM scheme.

FIG. 17. Renormalized quark mass with mπ ¼ 317 MeV at

three lattice spacing, using ZMSð2 GeVÞ
P through either RI=MOM or

SMOM scheme. The extrapolated values deviate by 3.1(1.5)%.

FIG. 18. Valence pion mass square m2
π;vv dependence of Ẑω¼0

S

(RI=MOM, lighter points) and Ẑω¼1
P (SMOM, darker points) with

a2μ2 ¼ 4, at three lattice spacing and mπ;ss ∼ 300 MeV.

FIG. 19. a2μ2 dependence of ZMSð2 GeVÞ
S through the RI=MOM

(ω ¼ 0, upper panel) and SMOM (ω ¼ 1, lower panel) schemes,
at three lattice spacing and mπ;ss ∼ 300 MeV.
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As depicted in Fig. 20, the chiral symmetry breaking effect
is significantly smaller when using the SMOM scheme
(bands) compared to the RI=MOM scheme (data points).
Moreover, both schemes exhibit further suppression at
smaller lattice spacings. Similar to the ZA=ZV case, the
inclusion of the OðαsÞ term is necessary to restore chiral
symmetry in the continuum.

e. ZT and brief summary on renormalization

For completeness, we also show the tensor current
renormalization using both the RI=MOM and SMOM
schemes,

Ẑω
T ðμÞ ¼ ZV

1
48
Tr½Λμ

Vðp1; p2Þγμ�
1
72
Tr½ΛTμν

ðp1; p2Þσμν�

����
p2
1
¼p2

2
¼μ2;ðp1−p2Þ2¼ωμ2

;

ðA30Þ

where Tμν ¼ ψ̄σμνψ . Then ZMSð2 GeVÞ
T can be obtained

through the corresponding perturbative matching after
performing a linear m2

π extrapolation to the continuum,
as shown in Fig. 21. The systematic uncertainty arising

from the SMOM matching is estimated to be 2–3%, which

implies that ZMSð2 GeVÞ
T is considered independent of the

intermediate scheme within this uncertainty. At last, a2μ2

dependence of ZMSð2 GeVÞ
T is showed in Fig. 22.

Based on the values of ZA;S;P;T obtained in this work and
collected in Table VIII, it can be observed that the
dependence on the intermediate scheme (RI=MOM or

FIG. 20. The ratio ZS=ZP through the RI=MOM scheme at
three lattice spacing as functions of a2p2.

FIG. 21. Valence pion mass square m2
π;vv dependence of Ẑω¼0

S

(RI=MOM, lighter points) and Ẑω¼1
T (SMOM, darker points) with

a2μ2 ¼ 4, at three lattice spacings and mπ;ss ∼ 300 MeV.

TABLE VIII. Normalization and renormalization constant at
MSð2 GeVÞ at three lattice spacing withmπ;ss ∼ 300 MeV, using
RI=MOM (ω ¼ 0) or SMOM (ω ¼ 1) as intermediate scheme.)
In the RI=MOM case, the first line represents the result fit without
1=p2 term, while the second line represents the fit with that term.

a (fm) ω ZA ZS ZP ZT

0.1053(2) 0 0.8547(13) 0.957(08)(34) 0.727(09)(26) 0.864(01)(05)
0.8388(39) 0.897(20)(44) 0.672(36)(31) 0.867(04)(04)

1 0.8177(04) 0.754(02)(09) 0.698(05)(08) 0.848(01)(27)

0.0775(2) 0 0.8821(08) 0.879(05)(18) 0.701(05)(15) 0.923(01)(03)
0.8792(25) 0.892(12)(11) 0.689(22)(09) 0.919(05)(02)

1 0.8533(06) 0.738(01)(07) 0.689(02)(06) 0.906(01)(22)

0.0519(3) 0 0.9011(04) 0.796(09)(10) 0.683(05)(08) 0.978(01)(02)
0.8998(07) 0.822(08)(04) 0.683(08)(03) 0.973(01)(01)

1 0.8838(02) 0.720(01)(05) 0.684(01)(05) 0.961(00)(19)

FIG. 22. a2μ2 dependence of ZMSð2 GeVÞ
T through the RI=MOM

(ω ¼ 0, upper panel) and SMOM (ω ¼ 1, lower panel) schemes,
at three lattice spacing and mπ;ss ∼ 300 MeV.
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SMOM) is reduced as the lattice spacing decreases.
However, it is important to note that the scheme depend-
ence is not completely eliminated even after performing the
continuum extrapolation. Considering the lattice spacing
dependence of the renormalized fπ , mq, and gS, it is
recommended to use the RI=MOM scheme to suppress the
discretization error.
In Table VIII, we also show the renormalization con-

stants using the RI=MOM scheme but with an additional
1=p2 term [32]. This term can have an obvious impact at
the coarsest lattice spacing but is consistent with zero at the
finest lattice spacing. This is understandable as the fitting
range at finer lattice spacing is much larger, reducing the
possible influence of a 1=p2 pole in the inferred region.
Thus, it can be considered a discretization effect that will be
eliminated in the continuum extrapolation.
As a summary of this section, Table IX summarizes the

normalization and renormalization constants for all the
ensembles used in this work, obtained through the inter-
mediate RI=MOM scheme. The first uncertainty of RCs is
ensemble independent, while the second one is fully
correlated on different ensembles and can be suppressed
after the continuum extrapolation.

3. Global fit

In order to process this continuum extrapolation sys-
tematically, we calculate the quark propagators with unitary
light quark mass and also two partially quenched quark
masses with the constraint mπL > 3.5, on each of the 11
ensembles. Then we use the following NLO partially
quenched χPT form [41] to describe the pion masses
and decay constants with different valence and sea quark
masses, in addition to extra parameters cm=f;a=l for the finite
lattice spacing/volume corrections:

m2
π;vv ¼ Λ2

χ2yv

�
1þ 2

Nf
½ð2yv − ysÞ lnð2yvÞ þ ðyv − ysÞ�

þ 2yvð2α8 − α5Þ þ 2ysNfð2α6 − α4Þ
	

× ½1þ cπLe
−mπL þ cπs ðm2

ηs −m2
ηs;phys

Þ�
× ð1þ cπaa2Þ; ðA31Þ

Fπ;vv ¼ F

�
1−

Nf

2
ðyv þ ysÞ lnðyv þ ysÞ þ yvα5 þ ysNfα4

�
× ½1þ dπLe

−mπL þ dπs ðm2
ηs −m2

ηs;phys
Þ�

× ð1þ dπaa2Þ; ðA32Þ

where Nf ¼ 2 for two light flavors and Λχ ¼ 4πF is the
intrinsic scale of χPT with F being the pion decay constant
in the chiral limit. The dimensionless expansion parameters

yv=s ¼ Σmv=s
l

F2Λ2
χ
involve the chiral condensate Σ and quark massTA
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mv=s for the valence and sea quark masses, respectively.
Additionally, αi represents the NLO low-energy constants
of χPT at the intrinsic scale Λχ . These constants can be
converted to the usual scale-dependent partially quenched
χPT NLO coefficients as LiðμÞ ¼ 1

128π2
ðαi þ ci ln

μ
Λχ
Þ with

c4;5;6;8 ¼ f− 1
2
;− Nf

2
;−

2þN2
f

N2
f
;
N2

f−4
4Nf

g, respectively [52,53].

We also introduce additional corrections terms with the
coefficients cm=f;a=L=s to account for the discretization,
finite volume and strange quark mismatch effects, with
mηs ¼ 689.63ð18Þ MeV from Ref. [48].
Since the statistics on each ensemble are different, we

perform 4000 bootstrap resamplings on each ensemble and
conduct the correlated global fit based on these bootstrap
samples. In such a strategy, the correlation between differ-
ent ensembles vanishes within the statistical uncertainty of
the resampling and is suppressed by the number of boot-
strap samples. The lattice spacing and renormalization
constants are sampled for each bootstrap sample using a
Gaussian distribution with their uncertainties as the width
of the distribution. These values are then applied to the
dimensionless quantities extracted from the joint fit defined
in Eqs. (A5)–(A8).
The lattice spacing uncertainty is sampled with an

uniform seed at a given lattice spacing, since this uncer-
tainty is fully corrected on all the ensembles at this lattice
spacing. Similarly, The perturbative matching uncertainty
of ZP is sampled with a uniform seed on all the ensembles,
but with respective rescale factors on each ensemble. On
the other hand, the uncertainty of lattice spacing and the
nonperturbative uncertainty of ZP are sampled independ-
ently on each ensemble. In order to show the impact of two
ZP uncertainties in the global fit, we preform the following
four cases of fit, and show the results of Σ, F, α4;5;6;8, and
also cm=f;a=L=s in Table X:
(1) Fitting with the statistical uncertainty δÕ from the

dimensionless observable Õ with O ¼ mπ; mPC
q , and

fπ , and also lattice spacing uncertainty δa.
(2) Fitting with δÕ, δa and nonperturbative uncer-

tainty δnpZP.
(3) Fitting with δÕ, δa and perturbative uncertainty

δpZP.
(4) Fitting with δÕ, δa, δnpZP and also δpZP.
All four cases provide reasonable χ2=d:o:f: values, and

similar values of F which are irrelevant to ZP. However, the
uncertainty of Σ is highly sensitive to δZP, as expected. By
imposing the conditions ys ¼ yv, Mπ;vv ¼ Mπ;phys ¼
134.98 MeV, a → 0, and L → ∞, we can extract the light

quark mass mMSð2 GeVÞ
l in the continuum and infinite

volume limits from the global fit. The ml obtained from
different cases of fits are also listed in Table X.
As shown in the table, the extrapolated quark massml ¼

3.60ð3ÞMeV obtained in Case (1) is consistent with the
value 3.64(8)(11) MeV at a ¼ 0.105 fm, as we argued

before. Additionally, it has a smaller uncertainty due to the
constraints from the other ensembles and the exclusion of
δZP. However, the uncertainty is enlarged to 2.7% in Case
(4) where both the nonperturbative and perturbative uncer-
tainties of ZP are included, while the central value remains
almost unchanged. Treating δpZP as correlated across all the
ensembles significantly suppresses its impact from 3% (at
a ¼ 0.105 fm) to 0.5% after the continuum extrapolation, as
shown inCase (3);However, Case (2) suggests that the δnpZP

is enlarged from 1% (at a ¼ 0.105 fm) to 2.5% simulta-
neously since it is independent for different ensembles.
It is worth mentioning that the relative uncertainty of Σ

and ml in Cases (2)–(4) is almost the same and will be
canceled when we consider the renormalization indepen-
dent combination Σml.
Currently, 90% of the uncertainty ofml ¼ 3.60ð11ÞMeV

comes from the independent statistical uncertainty of ZP
using the RI=MOM scheme on different ensembles, which
can be suppressed if we adopt a more aggressive treatment
on the renormalization constants. However, the current 3%
uncertainty of ml is similar to the difference between the
continuum extrapolation of ml at mπ ¼ 317 MeV using
either the RI=MOM or SMOM scheme. Therefore, we
reserve this opinion for future study, where more lattice
spacings can be utilized to gain a better understanding of
the chiral symmetry breaking effect in the renormalization
constants.
With the ml extracted above, we can also determine the

physical fπ in the continuum and infinite volume limits to
be 130.7(9) MeV, which is consistent with the experimental
value of 130.4(2) MeV [40]. Based on F extracted above,
we predict Fπ=F ¼ ffiffiffiffiffiffiffiffi

1=2
p

fπ=F ¼ 1.0675ð19Þ.
As shown in Table X and inspired by the previous

sections, the discretization error in quark mass is consistent

TABLE X. Global fits with and without nonperturabtive un-
certainty δnpZP and perturabtive uncertainty δpZP.

δZP included N=A δnp δp δnp þ δp

χ2=d:o:f: 1.3
F (GeV) 0.08659(69) 0.08659(72) 0.08659(71) 0.08660(74)
Σ1=3 (GeV) 0.2684(14) 0.2685(30) 0.2685(14) 0.2686(36)

α4 0.342(93) 0.343(99) 0.340(99) 0.34(10)
α5 −0.38ð18Þ −0.39ð19Þ −0.38ð18Þ −0.38ð20Þ
α6 0.056(41) 0.058(84) 0.054(47) 0.054(86)
α8 0.482(79) 0.48(18) 0.483(81) 0.48(18)

cπa ðfm−2Þ 2.12(67) 2.1(1.8) 2.1(3.7) 2.0(4.1)
cπL 0.64(20) 0.65(53) 0.64(20) 0.65(51)
cπs ðGeV2Þ 0.058(32) 0.06(14) 0.101(32) 0.07(14)
dπa ðfm−2Þ −5.56ð45Þ −5.55ð47Þ −5.57ð55Þ −5.57ð57Þ
dπL −0.73ð14Þ −0.73ð15Þ −0.73ð14Þ −0.73ð15Þ
dπs ðGeV2Þ 0.197(28) 0.197(31) 0.197(29) 0.198(32)

ml;phys (MeV) 3.600(31) 3.60(11) 3.60(03) 3.60(11)
fπ;phys (MeV) 130.73(89) 130.73(90) 130.73(90) 130.74(92)
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with zero, while this error in fπ is much more significant.
On the other hand, the finite volume effect appears to be
compariable with the discretization effect, with the correc-
tion on the F32P21 ensemble with the smallest mπL being
about 4.6(1.1)%.
It is worth mentioning that the dependence of the pion

mass on the strange quark mass is almost consistent with
zero, as expected based on the direct calculation of the
strange content in the pseudoscalar meson and the
Feynman-Hellman theorem [54]. However, the dependence
of the pion decay constant on the strange quark mass is
more significant, which is partially attributed to the smaller
uncertainty. Currently, the strange quark mass on the
C24P34, C48P14, and H48P32 ensembles is higher than
the physical value, while on all the other ensembles it is
lower. Therefore, this dependence may arise from other
systematic effects, and we cannot exclude this possibility
with the present ensembles. Further studies with tuned
quark masses would be helpful in verifying this.
To illustrate the lattice spacing dependence and the

unitary quark mass dependence, we subtracted the partially
quenching effect using bootstrap samples of the fit param-
eters from the original data points mdata

π;vv and fdataπ;vv. We
define the corrected muni

π and funiπ as follows:

ðmuni
π Þ2 ¼ ðmdata

π;vvÞ2
1þ cm;Le−mπL þ cm;sðm2

ηs −m2
ηs;phys

Þ

− Λ2
χyvðys − yvÞ

�
−

2

Nf
½lnð2yvÞ þ 1�

þ 2Nfð2α6 − α4Þ
	
ð1þ cm;aa2Þ;

funiπ ¼ fdataπ;vv

1þ cf;le−mπL þ cf;sðm2
ηs −m2

ηs;phys
Þ

− Fðys − yvÞ
�
−
Nf

2
lnðyv þ ysÞ þ Nfα4

	
× ð1þ cf;aa2Þ: ðA33Þ

The mπ and fπ with unitary valence and sea quark
masses y ¼ yv ¼ ys have another widely used parametri-
zation,

m2
π ¼ Λ2

χ2y

�
1þ y

�
ln

2yΛ2
χ

m2
π;phys

− l3

�
þOðy2Þ

�
; ðA34Þ

Fπ ¼ F

�
1 − 2y

�
ln

2yΛ2
χ

m2
π;phys

− l4

�
þOðy2Þ

�
; ðA35Þ

where l3;4 is related to α4;5;6;8 by

l3 ¼ ln
Λ2
χ

m2
π;phys

− 2½ð2α8 − α5Þ þ 2ð2α6 − α4Þ�;

l4 ¼ ln
Λ2
χ

m2
π;phys

þ 1

2
ðα5 þ 2α4Þ: ðA36Þ

Our determination of l3;4 are also collected in Table II,
consistent with the current FLAG average but have smaller
uncertainties.
In this work, we use themK� andmK0 with the constraint

mphys
u þmphys

d ¼ 2mphys
l , to determine the up, down, and

strange quark masses mu;d;s. The partially quenched kaon
masses and decay constants on all the ensembles are fitted
with the following form proposed in a recent work [35]:

m2
Kðmv

l ; m
s
l ; m

v
s ; ms

s; aÞ
¼ ðbvsmv

s þ bssms
s þ bvl m

v
l þ bslm

s
lÞ

× ½1þ cKl m
v
l þ cKma2 þ cKL exp ð−mπLÞ�; ðA37Þ

fKðmv
l ; m

s
l ; m

v
s ; ms

s; aÞ
¼ ðdf þ dvsmv

s þ dssms
s þ dvl m

v
l þ dslm

s
lÞ

× ½1þ dKa a2 þ dKL exp ð−mπLÞ�: ðA38Þ

Based on the QED correction ΔQEDmK obtained in
previous literature [34],

ΔQEDmK� − ΔQEDmK0 ¼ 2.07ð15Þ MeV;

ΔQEDm2
K0 ¼ 0.174ð24Þ × 10−3 GeV2; ðA39Þ

we can obtain ΔQEDmK0 ¼ 0.17ð2Þ MeV and ΔQEDmK� ¼
2.24ð15Þ MeV, respectively. Thus, the pure QCD kaon
mass with physical quark mass will be

TABLE XI. Global fit of the kaon mass and decay constant, with both δnpZP and δpZP.

χ2=d:o:f: bvl (GeV) bsl (GeV) bvs (GeV) bss (GeV) cKl ðGeV−1Þ cKa ðfm−2Þ ckL

0.94 2.36(94) 0.23(25) 2.30(12) 0.07(13) 1.2(3.3) 1.4(4.2) 0.24(35)

χ2=d:o:f: df (GeV) dvl dsl dvs dss dKa ðfm−2Þ dkL

0.98 0.1291(32) 0.161(51) 0.573(49) 0.1601(80) 0.085(30) −5.43ð87Þ −0.386ð94Þ
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mK0;QCD ¼mphys
K0 −ΔQEDmK0 ¼ 497.44ð02ÞMeV;

mK�;QCD ¼mphys
K� −ΔQEDmK� ¼ 491.44ð15ÞMeV; ðA40Þ

and the physical quark masses mphys
u , mphys

d and mphys
s can

be determined using the following three conditions:

mKðmphys
d ; mphys

l ; mphys
s ; mphys

s ; 0Þ ¼ mK0;QCD;

mKðmphys
u ; mphys

l ; mphys
s ; mphys

s ; 0Þ ¼ mK�;QCD;

mphys
u þmphys

d ¼ 2mphys
l : ðA41Þ

Note that we ignored the isospin symmetry breaking effect
in the sea quark masses, since it should be Oððmd −muÞ2Þ
and negligible given the current uncertainties.
The corrected kaon mass mcr

K and the decay constant fcrK
shown in Fig. 4 are defined as

ðmcr
KÞ2 ¼ ðmdata

K Þ2 −m2
Kðmv

l ; m
s
l ; m

v
s ; ms

s; a; LÞ
þm2

Kðmphys
l ; mphys

l ; mv
s ; mv

s ; a; L → ∞Þ; ðA42Þ

fcrK ¼ fdataK − fKðmv
l ; m

s
l ; m

v
s ; ms

s; a; LÞ
þ fKðmphys

l ; mphys
l ; mv

s ; mv
s ; a; L → ∞Þ; ðA43Þ

with the light quark mass ml corrected to its physical value
mphys

l using the bootstrap samples of the fitted mK .
As a consistency check, we also calculate mηs on each

ensemble and perform a similar global fit with the follow-
ing functional form:

m2
ηs ¼ ½hslms

l þ hvsmv
s þ hssms

s þ hl2ðms
lÞ2�

× ð1þ haa2 þ hLemηsLÞ; ðA44Þ

The χ2=d:o:f: of the fit is 1.4 an all the coefficients except
hls are consistent with zero within the uncertainty, but
dropping more terms will enlarge the χ2=d:o:f: significantly
and then we keep all the coefficients. Using the physical
light and strange quark masses, we predict mηs ¼
687.4ð2.2Þ MeV in the infinite volume and continuum
limit, which is consistent with the BMWc value of 689.63
(18) MeV [48] we used in the fits for lattice spacing and fπ .
Additively, we extract the dependence ofm2

ηs on the strange

quark mass, ∂m2
ηs

∂ms
¼ 4.9ð1Þ GeV, which is slightly lower

than the value of m2
π=mq shown in Fig. 3.

The physical quark massesmu;d;s and also corresponding
fπ;K using mphys

l and intermediate RI=MOM scheme, are
collected in Table II. In addition, Table II shows the global-
fit results using the zA;P through the SMOM scheme for
comparison. As we can see from the continuum extrapo-
lation tests using a 317MeV pion mass, the SMOM scheme
yields quark masses that are 3–4% lower and decay
constants that are ∼2% lower compared to the RI=MOM
scheme. However, the ratio of the quark masses or decay
constants remains unchanged within the uncertainty as the
renormalization constants are canceled.
Therefore, we consider the result using the RI=MOM

scheme as the central value due to its smaller discretization
error, and treat the difference between the results obtained
using the two schemes as systematic uncertainties. Such
a systematic uncertainty can also be considered as an
estimate of the residual discretization error, as the correct
continuum limit should be independent of the intermediate
renormalization scheme. With this systematic uncertainty,
all our determinations are consistent with the present lattice
averages [26] and/or PDG [40] within 1 − 2σ, and the low-
energy constants Σ and l3;4 have smaller uncertainties.
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