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Abstract In this article, we analyze tensor-vector-
pseudoscalar(TVP) type of vertices D;“"D+ 0, D;‘OD0 0,
D3t D*w, D3°D°w, By B*p, BiBp, By B*w, B;°B°
w, B}, Bg¢ and D}, D¢ in the frame work of three point
QCD sum rules(QCDSR). According to these analysis, we
calculate their strong form factors which are used to fit into
analytical functions of Q2. Then, we obtain the strong cou-
pling constants by extrapolating these strong form factors
into deep time-like regions. As an application of this work,
the coupling constants for radiative decays of these heavy
tensor mesons are also calculated at the point of Q% = 0.
With these coupling constants, we finally obtain the radia-
tive decay widths of these tensor mesons.

1 Introduction

With rapid developments of high-energy physics experi-
ments, more and more new states of mesons have been con-
firmed by DO, CDF and LHCD collaborations [1-7]. The
heavy-light mesons, which are composed of a heavy quark
and a light quark, can be classified into the spin doublets in
the heavy quark limit. For example, the 15(0~, 17) doublets
(B, B*), (D, D*), (By, BY), (D5, D¥) and the 1P(17,21)
doublets (B, BY), (Bs1, B},), (D1, D3), (Dy1, D},) have
also been confirmed in experiments [5]. That is to say, the
quantum numbers 7 (J Py for heavy tensor mesons Dy, B;‘,
DY, and B, are %(2+), %(2*), 0(2%) and 0(2) respectively.

Compared with the 1S(0~,17) and 1P (0", 17) states
of the heavy mesons, the 1P(1F,27%) doublets have been
drawn little attention [8,9]. The strong decay processes
D3 — D*m, Dm [1,10-12], D}, — DK [1], B} — B*m,
Br [1,4], B}, — BK, B*K [2,3,6] have been observed
in experiments. In reference [13], the strong decays of some
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excited charmed and beauty mesons into a light vector meson
were analyzed by exploiting the effective field theory and
a classification of the newly observed heavy-light mesons
was proposed. In our previous work, we also studied some
strong decay processes of these newly observed mesons
and obtained their strong coupling constants and strong
decay widths [14—16]. As a continuation of these work, we
study the strong vertices DT Dt p, D3'D%, D3 DT w,
D3;°Dw, By Bt p, B;°B%p, B5* BT w, BB, B}, B¢
and D}, Ds¢ and obtain their strong coupling constants.
These strong coupling constants not only play an essential
role for understanding the inner structure of these mesons but
also can help us to know about its decay behaviors. Besides,
the strong coupling constants about the heavy-light mesons
can also help us understanding the final-state interactions in
the heavy quarkonium (or meson) decays [17-19]. With a
fitted function about the strong form factors in Section 3,
we can also obtain the coupling constants for the radiative
decays with intermediate momentum Q2 = 0, which will be
used to calculate the radiative decay widths of these mesons.

To study the decay behaviors of mesons, we can adopt
several theoretical models including perturbative and non-
perturbative methods. The QCD sum rules, proposed by Shif-
man, Vainshtein, and Zakharov [20], connects hadron prop-
erties and QCD parameters [22]. It has been widely used to
study the properties of the hadrons [22,23,25-59]. In this
work, we analyze the tensor-vector-pseudoscalar(TVP) type
of vertices and the radiative decays using the three-point
QCD sumrules. Itis noticed that we ignore the isospin break-
ing effects of u and d quark in our analysis. This is because
that the masses of u and d quark are too small comparing with
the heavy quark. Thus, the error coming from the isospin
breaking effects can be ignored in the calculations about the
properties of hadrons containing heavy quark(s). This paper
is organized as follows. After the Introduction, we study
the tensor-vector-pseudoscalar(TVP) type of strong vertices
using the three point QCD sum rules with vector mesons
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being off-shell. In Sect. 3, we present the numerical results
and discussions. Finally, the paper ends with the conclusions.

2 QCD sum rules for hadronic coupling constants

For tensor-vector-pseudoscalar(TVP) type of vertices, its
three-point correlation function is written as,

n;wr (p, P’)
=2 / d4x [ d4yei(P—p’).x+ip’.)'(0|T<Jr (x)JP(y)JZU(()))K))’
(H
where J,,,, J;, and Jp denote interpolating currents of heavy
tensor mesons, vector mesons and pseudoscalar mesons.

These interpolating currents have the same quantum num-
bers with studied mesons [23,61],

— <> <> 2. <>
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Jp(y) = O(iysq(y)
Je(x) = qg(x)yrq(x)

where
<> — <~
D,=(0,—igGy) —(0,+igGy)
g;;w = 8uv — Pu_fv

p

2.1 The hadronic side

To obtain hadronic representation, we insert a complete
set of intermediate hadronic states into the correlation
Iy (p, p’). These intermediate states have the same quan-
tum numbers with the current operators J,,, J;, and Jp. After
isolating ground-state contributions of these mesons [20,22],
the correlation function is expressed as,

Hhadr

(017 OIPE)) (017 O V(@) )T 1, @10) PPV (@) Lver T(p))

mesons, and g is the strong form factor of tensor-vector-
pseudoscalar(TVP) type of vertices. Besides, &,,, ¢, are
polarization vectors of the tensor mesons and vector mesons
with the following properties,
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With these above equations, the correlation function IT .
(p, p’, q@) can be expressed as follows,

s (p. p'.q)
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2.2 The OPE side

In this part, we will briefly outline the operator product
expansion(OPE) for the correlation function I, (p, p’, q)
in perturbative QCD. Firstly, we contract all of the quark
fields with Wick’s theorem, and rewrite the correlation func-
tion as follows,

OPE
.. (p, p'sq)
- / d4x/ dtye! PP S (S (v = )y Shy
x(x — DT uu S (2 = Y)¥slz=o] e
where
<~ <> 2. <«
F;w:Vp,Dv‘i‘Vva,_gguup ©)

+oo @

e () =

(M — p)(M§; = q*)(M§ = p?)

The matrix elements appearing in this equation are substi-
tuted with the following parameterized equations,

(T(P)IJ}, (0)|0) = frMz&r:, (p),
(01 (0)|V(g)) = fr M (q),

M2
(01Jp(0)[P(p')) = m’j’Tf;
q

PPV (@)|Lypr|T(p)) = g6 pukpnp" 1L}

with ¢ = p — p’. Here, fr, fp and f; are decay con-
stants of the tensor mesons, pseudoscalar mesons and vector
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and §7(S2) denote light(heavy) quark propagators which can
be expressed as [22,38].
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where ¢ = %, the A% is a Gell-Mann matrix, and n, m,
k are color indices [22]. In the covariant derivative, the
gluon G, (z) in Eq. (4) has no contributions as G, (z) =
%Z)‘G;L,L(O) + ... = 0. Using Egs. (4), (5), (6) and (7), the
perturbative contribution of the correlation function is writ-
ten as

AN )]
3 /d4klr[(k+mq)yr(k+¢7]5/+mq)ru,v(k715/+mQ)VSJ

= e k21l + p— p'7 — m21lk — p)? —mD]
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3l — 282k — 254 ) ©)

Putting all the quark hnes on mass-shell by the Cutkoskys
rules, we compute the integrals both in coordinate and
momentum spaces. Then, we can obtain the spectral density
by taking the imaginary parts of the correlation function,

pert

PLe 5,1, 9%) = f[[zA + 1[Ang —my)

—B(mq —mg) + mq]e’”pp Py
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where
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During these derivations, we set s = p2, u = p/2 and

q = p — p’ in the spectral densities. As a result, we can
see that there are several different structures on hadronic side
and OPE side. In general, we can choose either structure to
study the hadronic coupling constant. In our calculations,
we observe that the structure £"7P”' p,, can lead to pertinent
result. Using dispersion relation, the perturbative term can
be written as,

et (p, p) _/ / Pﬁsrrt(Y u, 612)
y73%4 " (s_ 2)(u— /2)
xdsdu|
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\/(mé —m‘ZI —u+q2)2—4xm% A(x,u,qz)

(10)

For non-perturbative terms, we take into account the con-
tributions of (¢q), (7g0.Gq), (g*G?) and (f3G?). After per-
forming double Borel transformation, we find that contribu-
tions of non-perturbative terms come only from condensate
terms (gZG?), (f>G?). The expressions of these condensate
terms are written as,
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3 The results and discussions

Estimating the parameters of the lowest-lying hadronic state
are in general plagued by the presence of unknown sub-
traction terms, the spectral function of excited and contin-
uum states. This situation can be substantially improved
by applying to both OPE side and phenomenological side
the Borel transformation [61]. Thus, we perform the double
Borel transform with respect to the variables P> = —p?2,
P’? = —p'? and match OPE side with the hadronic repre-
sentation Eq. (3), invoking the quark-hadron duality. Finally,
we obtain the QCDSR as follows,

gflP’M]}%errfTM% (_
(mg +mo)(M2 + Q?)

2 2
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2
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Table 1 Input parameters used in this analysis

Parameters Values (MeV) Parameters Values (MeV) Parameters Values
Mg 2465.4 + 1.3 [62] mps 5839.85 £ 0.17 [62] (““'”—Gz) (0.012 £ 0.004) GeV* [63-65]
M o 2460.7 £ 0.4 [62] mp, 5366.89 £+ 0.19 [62] (gf.’GGG) (0.045 £ 0.002)GeV°® [63-65]
mp+ 1869.65 £ 0.05 [62] mp 775.26 +0.25 [62] o (229 £3)MeV [62]
m po 1864.83 £ 0.05 [62] Mgy 782.65 +£0.12 [62] fo (210 £4)MeV [62]
Mpts 5737.2 £ 0.7 [62] me 1019.46 £ 0.016 [62] fo 197 £ 8MeV [67]
m g 5739.5 0.7 [62] My 2.2%03 (621 fo 203.7£4.7 MeV [62]
mp+ 5279.32 £ 0.14 [62] mg 4.793 1621 o 110 £ 11 MeV [66]
m go 5279.63 & 0.15 [62] mp 4180133 [62] Ios (182 4 20) MeV [66]
mpe, 2569.1 4 0.8 [62] me 1275 £ 25 [62] /s 188 & 25MeV [62]
mp, 1968.3 £ 0.07 [62] my 95%3 [62] 5, 134 + 11MeV [66]
fD;*z 222 £ 21 [66] fB, 231 £ 16 [66] I, 257.8 = 4.1MeV [62]
S u pert( QZ)d d 8 -
exp|——= |exp | —— S, u, sdu g
P M12 p ]\422 p 7L O central value
GG) g2 172 2 GGG 12 12 N2 % upper bound
+IGO (M7, M3, Q%) + S (MT, M3, Q%) 6b\ - v lower bound
. v\ - fitted curve of central value
(14) o 5l LR AR fitted curve of upper bound
%, \\ - = = fitted curve of lower bound
(O] K
Here, Q2 = —qz, parameters so and ug are used to fur- a 4r
. . . . o
ther reduce the contributions from excited and continuum *o~ sl
states. Its values are employed as so = (m; + A )% and e
ug = (my, + A,)?, where m; and m, are ground state masses 2r
of the in-coming and out-coming hadron. In general, A; and 1k
A, are expected to be 0.3GeV ~ 0.5GeV, which can guar-

antee the values of sg and ug be close to the mass squared
of the first excited state of these in-coming and out-coming
hadrons [14]. Parameters M 12 and M22 in Eq. (14) are Borel
parameters. In order to choose optimal values about these
above parameters, two criteria should be considered. Firstly,
pole contribution should be as large as possible comparing
with contributions of higher and continuum states. Secondly,
we should also ensure OPE convergence and the stability of
our results. That is to say, the results which are extracted from
sum rules, should be independent of the Borel parameters.
One can consult Refs. [15,16] for more technical details of
these processes. As for the other parameters in Eq. (14), their
values are all listed in Table 1.

The strong form factor g from Eq. (14) are obtained in
deep space-like region g> — —oo, where the intermediate
mesons are off-shell. In order to obtain strong coupling con-
stants, we must extrapolate these results into deep time-like
region. This extrapolation is model-dependent, thus there are
no specific expressions for the dependence of the strong form
factors on QZ. In other works, different kinds of functions
have been employed as their fitting functions such as expo-
nential function [46,69,70], power-law function [45] or their
combinations [40,68]. In this work, our analysis indicates

-1 -0.5 0 0.5 1 1.5 2 2.5 3
Q%(GeV?)

Fig. 1 The strong form factor g DY D+p> and its fitted results as a func-

tion of Q2

that this dependence can be appropriately fitted into the fol-
lowing exponential function,

g(0?%) = Aexp[BQ?] (15)

InFigs. 1,2,3,4,5,6,7,8,9, and 10, we show the values
of the strong form factors on Q2 that are obtained from Eq.
(14) and its fitting curve, where they are marked as Central
value and Fitted curve of Central value separately. Thus, we
can obtain the strong coupling constants by taking Q% =
—mgnf shen TOr intermediate mesons in the fitting function
Eq. (15). The values of fitted parameters A and B in Eq. (15)
and the strong coupling constants are all listed in Table 2.

The uncertainties of strong form factors in Eq. (14)
mainly come from input parameters m D+ YT, Sos

Jos (qq)s -+~
with uncertainty transfer formula § = \/ > (%)2(xi —xi)2,

Theoretically, we can calculate its values
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U : centralbvalus 1 7 O central value 1
: upper boun * upper bound
6N\ Vv lower bound 1 6r\ Vv lower bound 1
L\ fitted curve of central value —~ i fitted curve of central value
‘T‘> 5F%, """" fitted curve of upper bound (7‘> 5 N ----- fitted curve of upper bound f
8 N = = - fitted curve of lower bound 8 N - = = fitted curve of lower bound
=Y =Y '
L, o
o™ 3 o™ 3t
) )
2t ol
1t 1r
0 0
-1 -1
Q%(GeV?) Q%(GeV?)
Fig. 2 The strong form factor g D D0 and its fitted results as a func- Fig. 5 The strong form factor g D30 DO and its fitted results as a func-
tion of Q2 tion of Q2
9 T T T T T . .
sl ]
o central value
7 * upper bound |
. —~ &b Vv lower bound |
9 By D g fitted curve of central value
% %, 5t \\ ------ fitted curve of upper bound |
o <) \ = = = fitted curve of lower bound
£ A K 4 +3 L 5
0 L ~ 4
e 4 o central value V% Vv v :fzm
o % upper bound o 3t
3r v lower bound 1
fitted curve of central value 2r
o e fitted curve of upper bound J
- = = fitted curve of lower bound 1r
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0
-1 -0.5 0 0.5 1 15 2 2.5 3 -1 .
Q%(GeV?) Q%(GeV?)
Fig. 3 The strong form factor g BBt p and its fitted results as a func- Fig. 6 The strong form factor g Dyt Do and its fitted results as a func-
tion of Q2 tion of Q2
8 T T T T T T T 8 T T T T T T T
4 T i
~ . ° * g
Dy <
V <~
e = V% V- v
o = 1 ‘m 4} o central value Vv
£ o tral val V : Y
o be cen rabva us A\ V- ¢ ;Dm“‘ * upper bound
upper boun Vv lower bound
3r v Ifower bound " 1 3r fitted curve of central value 1
itted curve of central valuve [ fitted curve of upper bound
2r e fitted curve of upper bound 1 2r - = - fitted curve of lower bound 1
- = = fitted curve of lower bound
-1 -0.5 0 0.5 1 1.5 2 2.5 3 -1 -0.5 0 0.5 1 1.5 2 25 3
Q%(GeV?) Q%(GeV?)
Fig. 4 The strong form factor g BiOBOp> and its fitted results as a func- Fig. 7 The strong form factor g B B*wr and its fitted results as a func-
tion of Q2 tion of Q2
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v
) Vv V%
3 V-~ v

o 4f V-

S o central value Y

> * upper bound

3t Vv lower bound 1

fitted curve of central value
----- fitted curve of upper bound
= = = fitted curve of lower bound

1
-1 -0.5 0 0.5 1 15 2 2.5 3

Q%(GeV?)
Fig. 8 The strong form factor g B BOw and its fitted results as a func-
tion of Q2
4.5

central value

* upper bound
1.5F v lower bound
fitted curve of central value
“““““ fitted curve of upper bound
- = = fitted curve of lower bound

0.5 b
-1 -0.5 0 0.5 1 1.5 2 25 3
Q%(GeV?)
Fig. 9 Thestrong form factor g BY,By> and its fitted results as a function
of 02
9
s\
71 o central value
* upper bound
& 6f Vv lower bound
S fitted curve of central value
8 50\ fitted curve of upper bound
=, = = = fitted curve of lower bound
al 4r
5
(@] 3t
2 -
1 -
ol— L

0.5 1
Q%(GeV?)

Fig. 10 The strong form factor g D%, D;¢» and its fitted results as a func-

tion of Q2

where f denotes the strong form factor in Eq. (14), and x;
denotes input parameters. For simplicity, the upper and lower
limits of the results are estimated by taking fuPrerlower) —
f(x; £ Ax;), which are marked as Upper bound and Lower
bound in Figs. 1, 2, 3, 4, 5, 6, 7, 8,9, and 10. After these
approximations, they are also fitted into exponential func-
tions and are also extrapolated into the physical regions in
order to get the uncertainties of the strong coupling constants.
These results are all listed in Table 2.

Finally, we give an analysis of the radiative decays of
the heavy tensor mesons T — Py. The coupling constants
of these radiative decays grp, can be easily obtained by
setting Q% = 0in Eq. (15). The radiative decay width can be
expressed as the following representation,

I Pl
I' = T
2J +1 2 8nM}| |
JIMP — (M + 22— (M~ m)?)
o 2M;

where i and f denote the initial and final state mesons, J is
the total angular momentum of the initial meson, )  denotes
the summation of all the polarization vectors, and T denotes
the scattering amplitudes. The radiative decays T — Py can
be described by the following electromagnetic lagrangian

£= _quunqAﬂ (17)

From this lagrangian, the decay amplitude can be written as,

p (16)

T = Py (@, o)IT(p. &)

l / w
=@ ove.o) s (BV@. 6T £5,)
= PV, )T, £5)) ——— fumyeQy(~iderc®
q- —my
= gwye"‘mppaéﬁnp/"%éjq%fvmvqu(—i)e,f{K (18)

Here, py, p'" and g, are the four momenta of the tensor
meson, pseudoscalar meson and y. Besides, &, ¢ and ¢ are
their polarization vectors, respectively. With Egs. (16) and
(17), we can obtain the radiative decay width of T — Py,

3
1 2 2 AT M% — M%
I'= _loaQ[u,d,S]gTPy|_| 5

nmy 2MT
2
1| 5M2 —2M3 2
x 8[—T2MT P} —gM% (19)
where o = %,Qu = %,Qd = Q5 = —%. Considering

different decay channels, we obtain the widths of different
radiative decays, which are listed in Table 3. From refer-
ence [62], we can see the decay widths of the tensor mesons,
[(D3%) = 47.5 + 1.1MeV, T(D3F) = 46.7 £ 1.2MeV,
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Table 2 Strong coupling constants and fitted parameters about the central value, upper bound and lower bound

Mode g (GeV~2) Ac B. Ay B, A B
Dyt - Dtp 4.891080 3.062 —0.781 3.596 —0.764 2.659 —0.801
D% — D% 4.7179% 3.127 —0.684 3.698 —0.665 2.698 —0.706
Bt - B'p 6.1113 5.814 —0.083 7.169 —0.064 4.844 ~0.100
B — B% 6.037039 5.733 —0.084 7.049 —0.065 4.785 —0.102
Dy’ - D' 507599 3.333 —0.686 4.034 —0.667 2.810 —0.707
Dyt - Do 5.2870%% 3.262 —0.785 3915 ~0.757 2.769 ~0.804
B" - Btw 6.531038 6.196 —0.084 7.107 —0.068 5.426 —0.105
B - B 6.44109% 6.105 —0.086 7.056 —0.066 5.397 —0.104
B, — By 3601033 3.162 —0.126 3.702 —0.107 2.741 —0.143
D¥, — D¢ 6.9310:09 2.102 —1.149 2.254 —1.136 1.907 —1.241
Table 3 The decay widths for different radiative decays in the future. Setting intermediate momentum Q2 = 0 in the
Radiative decay T(keV) ﬁtteq analytical functlons about strong fqrrr} factors, we also
obtain the coupling constants of the radiative decays of the
D" — Dty 0.464f8j(1)§g tensor mesons. With these coupling constants, we calculate
Di% — DO 273070756 the radiative decay widths of these tensor mesons and com-
DY, — Dyy 1.658+0.1%  pare our results with experimental data and those of other
5 —U.!
Bt - Bty 1108+313 research groups.
%0 0 +78.1
By — By 2752480 Acknowledgements This work has been supported by the Funda-
BS*2 — Bgy 37.6:];‘22'2 mental Research Funds for the Central Universities, Grant Number

r'(D;,) = 169 £ 0.8MeV, F(B;‘O) =242 £ 1.7MeV,
F(B;“r) 20 &£ 5MeV, I'(B},)) = 1.47 £ 0.33MeV.
From these experimental data, we observe that the branching
ratios of the calculated radiative decays are of the order of
10~2 ~ 107>, which are measurable in the future by LHCb.
In reference [71], the radiative decays of the heavy tensor
mesons were also analyzed in the framework of the light cone
QCD sum rules(LCSR) method. We observe that our results
for mesons D3 and D7, are comparable with its results. For
mesons Bj and B, , the results from QCD sum rules and light
cone QCD sum rules vary widely, which need to be further
studied by other theoretical methods or in experiments.

4 Conclusion

In this paper, we analyze the tensor-vector-pseudoscalar(TVP)
type of vertices in the cases of light vector mesons p, @ and
¢ being off-shell. We firstly calculate its strong form factors
in space-like regions(g> < 0). Then, we fit the form fac-
tors into exponential functions which are used to extrapolate
into time-like regions(g> > 0) to obtain strong coupling con-
stants. These strong coupling constants are important param-
eters in studying the strong decay behaviors of tensor mesons

@ Springer
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