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A R T I C L E I N F O A B S T R A C T

Editor: F. Gelis A convolutional neural network-based classifier is elaborated to retrace the initial orientation of deformed 
nucleus-nucleus collisions by integrating multiple typical experimental observables. The isospin-dependent 
Boltzmann-Uehling-Uhlenbeck transport model is employed to generate data for random orientations of ultra-

central uranium-uranium collisions at 𝐸beam = 1 GeV/nucleon. Statistically, the data-driven polarization scheme 
is essentially accomplished via the classifier, whose distinct categories filter out specific orientation-biased 
collision events. This will advance the deformed nucleus-based studies on nuclear symmetry energy, neutron 
skin, etc.
1. Introduction

The multipole deformation of atomic nuclei is commonly attributed 
to collective motion arising from the interactions among valence nucle-

ons [1–4]. Traditionally, the quadrupole deformation can be measured 
experimentally from the rotational spectra of the nuclear excited state 
or the electric quadrupole moments derived from the hyperfine split-

ting of the atomic spectral line [3]. Since the year 2000, research on 
deformed nuclei through heavy-ion collisions has been initiated in the 
uranium-uranium collision system [5]. Recently, at ultra-relativistic en-

ergies, a strong linear correlation between various-order anisotropic 
flows and multipole deformations was discovered [6,7], leading to sig-

nificant implications for finding signatures of the nuclear deformation.

On the other hand, with the advancement of technology, machine 
learning has emerged as a powerful tool for investigating various prop-

erties of nuclear structure and reactions, particularly with respect to 
nuclear masses [8–11] and nuclear radii [12–15]. Aiming at nuclear 
deformation, deep neural network-based generative models are being 
developed for producing potential energy surfaces, rotational inertia, 
and vibrational inertia of deformed nuclei, which can be further utilized 
to investigate excitation spectra within the five-dimensional collective 
Hamiltonian approach [16,17]. At the same time, a series of machine 
learning approaches, including support vector machine, artificial neu-

ral network [18], convolutional neural network (CNN) [19], and light 
gradient boosting machine [20], were employed to determine impact 
parameters in heavy-ion collisions based on the simulation via quan-
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tum molecular dynamics (QMD) [21,22] and ultra-relativistic QMD 
(UrQMD) models [23–25], achieving impact parameter identification 
accuracy within 0.8 fm [26–29]. Subsequently, the 2D distributions of 
protons and neutrons on transverse momentum and rapidity plane are 
input to find signatures of the nuclear symmetry energy [30], providing 
a reliable reference for experimental studies.

From the current research perspective, an important aspect missing 
in the studies about deformed nuclear reactions should be noted that, 
while the statistical effects of deformed nuclei on heavy-ion collisions 
have been revealed, the orientation issue regarding individual events 
has not yet garnered substantial focus. Absolutely or partially orienting 
the collision events will undoubtedly provide a wealth of information 
on the reactions and structure of deformed nuclei. For example, de-

termining the symmetry dependence of collective flows in orientations 
without spectators would improve the description of the equation of 
state, which benefits nuclear astrophysics, such as binary neutron star 
merger simulations [31]. Moreover, exploring higher-order deformation 
effects through specific orientations would yield valuable insights.

This work aims to develop a multi-input CNN to map the nuclear ini-

tial state orientations of the uranium-uranium reaction systems. Since 
experimental orientation information is lacking, the network will be 
initially trained using simulated results based on the isospin-dependent 
Boltzmann-Uehling-Uhlenbeck (IBUU) transport model [32,33]. Once 
trained with statistical observables matching experimental data reason-

ably well, the network can further filter the orientations for experi-

ments.
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Fig. 1. The ground-state proton (left panel) and neutron (right panel) densities 
for 238U in the 𝑟⊥ − 𝑥 (𝑟⊥ =

√
(𝑦2 + 𝑧2)) coordinate system calculated by the 

relativistic mean-field model plus a Bardeen-Cooper-Schrieffer pairing.

Fig. 2. Simulated schematic for uranium-uranium collision, where 𝑥 − 𝑧 plane 
is the reaction plane.

2. The isospin-dependent Boltzmann-Uehling-Uhlenbeck 
transport model

The IBUU transport model employs the Monte Carlo method to simu-

late the phase-space evolution of baryons and mesons during heavy-ion 
collisions, encompassing essential physical processes such as elastic and 
inelastic scattering, particle absorption, and decay [34]. The version 
we employed [35–39] has incorporated the Coulomb effect [37], Pauli 
blocking, and medium effects on scattering cross sections [40], etc. The 
used single nucleon potential includes a Skyrme-type parametrization 
isoscalar term and an exponential isovector term [36,41], which reads

𝑈 (𝜌) =𝐴(𝜌∕𝜌0) +𝐵(𝜌∕𝜌0)𝜎 , (1)

where 𝜎 = 1.3, 𝐴 = −232 MeV accounts for the attractive part, and 𝐵 =
179 MeV accounts for the repulsive part. These choices correspond to 
an incompressibility coefficient 𝐾 = 230 MeV.

The nucleon density distributions for 238U are calculated by the 
relativistic mean-field model plus a Bardeen-Cooper-Schrieffer pairing 
(RMF+BCS) [42,43]. The point-coupling PC-PK1 functional [44] is used 
in the particle-hole channel and a separable pairing force is for the 
particle-particle channel. Due to the superior capability in delineating 
the nuclear radii, profiles, and deformations for neutron-rich nuclei, the 
densities generated by RMF models have recently been utilized to ini-

tialize the IBUU model [45,46]. Shown in Fig. 1 is the nucleon density 
distributions of 238U with the quadrupole deformation being 𝛽 = 0.287.

Initially, the intrinsic coordinate systems (𝑥𝑦𝑧) of the colliding nu-

clei are set to align with the center-of-mass coordinate system (𝑥′𝑦′𝑧′) of 
the reaction. As shown in Fig. 2, an Euler rotation operator (Ω(𝜑, 𝜃, 0) =
𝑅𝑧(𝜑)𝑅𝑦(𝜃)𝑅𝑥(0)) is applied independently to the target and the pro-

jectile, where only four degrees of freedom (𝜃1, 𝜑1 for the target, and 
𝜃2, 𝜑2 for the projectile) are required for each collision event due to the 
absence of triaxial deformation. Considering that spectator fragments 
2

from the projectile can be detected on an event-by-event basis in exper-
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Fig. 3. The mean square elliptic flows as a function of the test particle number 
𝑁 (curves in the blue color series) and the corresponding strength of the defor-

mation effect 𝐼 (curves in the red color). The purple curve serves as a contrast, 
representing the spherical Pb+Pb collision system.

iments [47], we confine the study to the events where the projectiles 
are completely obstructed by the targets as

𝜃2 ∈

{
[𝜃1,180◦ − 𝜃1] 𝜃1 < 90◦

[180◦ − 𝜃1, 𝜃1] 𝜃1 ≥ 90◦
(2)

and

𝜑2 = 𝜑1 (3)

with 𝜃1 ∈ [0◦, 180◦] and 𝜑1 ∈ [0◦, 180◦]. Given the limited discrimina-

tive power of impact parameters, the scenario of ultra-central collisions 
is set with 𝑏 ≤ 1 fm. In experiments, events with the target spectator 
fragments appearing only in one direction can also be filtered out to de-

termine ultra-central collisions. Under the present densities, the Fermi 
gas model with local density approximation is employed to generate 
the momentum distributions. Within the intermediate energy range, in-

creasing the beam energy will enhance the deformation effects [45], 
and also will produce more hadrons within a single event, which is ad-

vantageous to trace back the orientation. Accordingly, the beam energy 
is set to 1 GeV/nucleon.

In the classic picture, the orientation of collisions is random, ne-

cessitating averaging over all events to search for the signatures of 
deformation. For each event, BUU-type models typically utilize 𝑁 test 
particles to mimic the spreading of real nucleons in phase space, thereby 
overcoming the limitations of point particle simulations [48], which 
means, that every 𝑁 collisions share a common mean field evolved 
from the same impact parameters and collision orientations [34]. This 
also implies that the 𝑁 determines the stability of the mean field and 
defines the fluctuations in observables for each event. In this study, 
determining the collision orientation requires ensuring that the observ-

able fluctuations for theoretical simulation events closely mirror those 
observed in experiments. To this end, we vary the test particle number 
from 𝑁 = 1 to 𝑁 = 100 to simulate a real event, where 𝑁 = 1 signifies 
the dynamics evolution of point particles, while larger 𝑁 values can be 
understood as particles converging towards a wave packet. On this ba-

sis, collisions with 10, 000 different collision orientations are simulated, 
and the data is split into training and validation sets in a 7:3 ratio.

In Fig. 3, the observable ⟨⟨𝑣2⟩2𝑁 ⟩ is examined (the blue color series), 
as it has been proven to be a sensitive probe of quadrupole deformation 
[7]. The inner and outer brackets of ⟨⟨𝑣2⟩2𝑁 ⟩ respectively represent the 
averaging elliptic flow over 𝑁 test-particle collisions with the same 
orientation and averaging over all orientations. The response relation 
between ⟨⟨𝑣2⟩2𝑁 ⟩ and the quadrupole deformation 𝛽 can be expressed 
as
⟨⟨𝑣2⟩2𝑁 ⟩ = 𝑎𝑁 + 𝑓 (𝛽), (4)
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Fig. 4. Schematic diagram of the structure of the convolutional orientation filter (COF) neural network.
where the fluctuation 𝑎𝑁 = ⟨⟨𝑣2⟩2𝑁 ⟩𝛽=0 corresponds to the blue dashed 
curve and the deformation effect 𝑓 (𝛽) is manifested as the difference 
between the blue solid and dashed curves. In this case, we define the 
strength of deformation effect as

𝐼 = 𝑓 (𝛽)
𝑎𝑁

, (5)

which corresponds to the red curve of Fig. 3. The significant effect on 
the mean square elliptic flow indicates the feasibility of exploring nu-

clear deformations via intermediate-energy heavy-ion collisions. It can 
be noted that the increasing 𝑁 leads to a reduced fluctuation, while 
the 𝑓 (𝛽) remains constant during this process, resulting in increasing 
strength of deformation effect. In comparing the spherical collision sys-

tems of Pb+Pb, we observe that increasing 𝑁 amplifies the differences 
between the two systems, and this difference saturates at 𝑁 = 20. These 
properties, especially the ratio and difference between the two systems, 
can be exploited to reference experiments to determine reasonably the 
𝑁 . Generally, 𝑁 is set to be at least 50 to maintain the stability of the 
mean field [48], thus this study will also be going forward based on this 
premise.

3. Convolutional orientation filter

In the IBUU transport model, the comprehensive information of the 
final state is stored in the phase-space distribution 𝑓 (𝑟, ⃗𝑝, 𝑇 ), where 𝑟
and 𝑝 represent the coordinate and momentum of a hadron, respec-

tively. The variable 𝑇 denotes the type of the hadron, which includes 
𝑝, 𝑛, 𝜋+, 𝜋0, 𝜋−, Δ++, Δ+, Δ0, Δ−. Regarding the reaction picture at 
the current energy, there has been ample discussion in recent work on 
the principal component analysis of azimuthal flow [49]. We present a 
summary of empirically considered observables pertaining to collision 
orientation as follows:

1. The hadron counting 𝐶(𝑝𝑡, 𝑦0) and distributions of anisotropic 
flows 𝑣𝑛=1,2,3,4(𝑝𝑡, 𝑦0) in central rapidity 𝑦0(= 𝑦∕𝑦beam) and trans-

verse momentum 𝑝𝑡 (=
√
𝑝2𝑥 + 𝑝2𝑦). In practice, we adopt grid inter-

vals of Δ𝑝𝑡 = 0.15 GeV/c and Δ𝑦0 = 0.1 for transverse momentum 
and center rapidity bins, respectively.

2. Mean values of anisotropic flows ⟨𝑣𝑛⟩ (𝑛 = 1, 2, 3, 4) for all the emit-

ted particles.

3. Multiplicities of charged particles 𝑀𝑝, 𝑀𝜋− , 𝑀𝜋+ , 𝑀Δ− , 𝑀Δ+ , 
3

𝑀Δ++ , where both medium and free particles are incorporated.
Table 1

The initial collision orientations corresponding to the six 
classification cases.

Case 𝜃1 (Target) 𝜃2 (Projectile)

1 [0◦,30◦] ∪ [150◦,180◦] [0◦,30◦] ∪ [150◦,180◦]
2 [0◦,30◦] ∪ [150◦,180◦] [30◦,60◦] ∪ [120◦,150◦]
3 [0◦,30◦] ∪ [150◦,180◦] [60◦,120◦]
4 [30◦,60◦] ∪ [120◦,150◦] [30◦,60◦] ∪ [120◦,150◦]
5 [30◦,60◦] ∪ [120◦,150◦] [60◦,120◦]
6 [60◦,120◦] [60◦,120◦]

4. Counting of the high-momentum nucleons (𝑝𝑡 > 0.5 GeV/c) in 
transverse emission azimuth angle 𝜙 (= arccos (𝑝𝑥∕𝑝𝑡)) and longi-

tudinal emission angle 𝜃⊥ (= arccos (𝑝𝑧∕|𝑝|)). The angular intervals 
are uniformly set at Δ𝜃⊥(Δ𝜙) = 30◦.

In particular, the anisotropic flows are expressed as

𝑣𝑛 = ⟨cos(𝑛𝜙)⟩ . (6)

The organized observables will serve as inputs for the network, as de-

picted in Fig. 4. Hereinafter, the network will be denoted as the convo-

lutional orientation filter (COF). The output was anticipated to include 
𝜃1, 𝜃2, 𝜑1, and 𝜑2, nevertheless, after multiple rounds of training and 
validation, we have arrived at the following conclusions: 1. According 
to the Heisenberg uncertainty principle, considering this issue as a lin-

ear regression task is relatively less reliable compared to adopting a 
classification approach; 2. The angle 𝜑 demonstrates limited sensitivity 
to the present inputs; 3. 𝜃 = 𝑘 and 𝜃 = 180◦ − 𝑘 are degenerate states 
and cannot be distinguished. As such, we categorize the output, based 
on the 𝜃1 and 𝜃2, into six cases (as illustrated in Table 1) and perform 
one-hot encoding for representation. In this case, a tip-body collision 
(𝜃1 = 0◦, 𝜃2 = 90◦) would be labeled as [0, 0, 1, 0, 0, 0].

The four aforementioned inputs are individually fed into multiple 
branch cells composed of convolutional, pooling, and fully connected 
layers. The outputs of these branch cells are then aggregated in a trunk 
cell and subjected to batch normalization [50], ensuring a stable fea-

ture distribution. An essential point that must be emphasized is that the 
network consists of 15 layers with intricate connections, whose com-

plexity can lead to some neurons being trapped in the negative range 
and becoming deactivated under the commonly used ReLU [51] ac-

tivation function for nonlinearity, especially after multiple iterations. 
To address this issue and improve convergence, we adopt the LReLU 

activation function [52] to avoid gradient vanishing. Ultimately, after 
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Table 2

Accuracy of the training and validation sets with 𝑁
test particles to simulate a real event.

𝑁 1 20 50 100

training set 22.8% 67.5% 72.4% 77.1%

validation set 22.0% 65.1% 72.2% 74.1%

Fig. 5. The probability distribution of the actual case at different predicted 
channels with (a) 𝑁 = 1, (b) 𝑁 = 20, (c) 𝑁 = 50, and (d) 𝑁 = 100.

multiple iterations constrained by the cross-entropy loss function [53], 
the COF network generates orientation classifications normalized by the 
Softmax function [54]. The meticulously designed hyperparameter set 
for the COF network architecture is listed in Appendix A, which can also 
be employed for other transport models, such as a multiphase transport 
model [55–57], UrQMD model [23–25], and antisymmetrized molecu-

lar dynamics model [58,59], etc.

4. Results and analysis

We shift our attention to the performance of the COF network, which 
is showcased in Table 2. The training set and validation set show only 
marginal distinctions, since the abundance of simulated events used for 
training has effectively mitigated overfitting, showcasing a strong gen-

eralization capability. This, to some extent, supports the application of 
the network to experimental data. The accuracy demonstrates a posi-

tive correlation with 𝐼 , while once 𝑁 surpasses 20, the enhancement 
in accuracy becomes quite limited. It is understandable that some colli-

sion scenarios positioned at the boundary between two classes and with 
the random impact parameters interfered cannot be correctly classified.

Displayed in Fig. 5 are the probability distributions of the six clas-

sification cases at different output channels, where the normalization 
condition is 

∑
𝑖(𝑗) 𝑃𝑖(𝑗) = 1 with the subscript 𝑖, 𝑗 representing the out-

put channels and the true cases, respectively. Taking the black solid 
line in (c) 𝑁 = 50 as an example, the collision events classified as 
Channal-1 are actually composed of 80% Case-1 and 20% Case-2. For 
the descriptions of point particles in Fig. 5(a), the network polariza-

tion performance is quite weak, only the partial polarization brought by 
Channel-1 and -6 remains effective. As the 𝑁 increases to 20 in panel 
(b), the results become considerably reliable. The situation with 𝑁 = 50
and 𝑁 = 100 in panels (c) and (d) provides enhanced descriptions pri-

marily for categories with a higher number of spectators (Case-2, -3, and 
-5). It is evident that Channel-1 and -6 still exhibit better discriminative 
power, which corresponds to the commonly mentioned body-body and 
tip-tip collisions [5,7] and are crucial for investigating various prop-

erties of deformed nuclei. Moreover, leveraging the high angular reso-

lution, conducting combined analyses across multiple channels would 
4

be beneficial. For example, by specifically choosing events categorized 
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in Channel-1, -4, and -6, the spectator effects could be effectively fil-

tered out. Alternatively, amalgamating data from Channel-1, -2, and -3 
allows for the exclusion of events involving large-angle target nucleus 
(𝜃2 > 30◦).

Two key issues have arisen: the extent to which observables play 
a role in the identification of orientations, and the impact of precision 
loss on the observables. It is possible to make a judgment by compar-

ing the COF classifications with the real scenarios, for which the count 
proportion distributions of various observables on the validation set are 
displayed in Fig. 6. The first two rows contrast the discrepancies be-

tween the COF classifications and the real scenarios for the anisotropic 
flows 𝑣1, 𝑣2, 𝑣3, and 𝑣4, while the last two rows contrast the differ-

ences for charged particles 𝑝, 𝜋−, 𝜋+, Δ−, Δ+, Δ++. It can be observed 
that the directed flow 𝑣1, elliptic flow 𝑣2, and multiplicities of 𝜋− and 
𝜋+ are more sensitive to orientation. This indicates that these observ-

ables play a more crucial role in the classification. Comparative analysis 
of subscripts 𝑥 = 1 and 𝑥 = 2 in Fig. 6 reveals negligible differences 
between the COF classification and actual categories, even with a preci-

sion loss exceeding 20%. The successful classification of these untrained 
events emphasizes the effectiveness of the current network. This also 
means that further improving accuracy is dispensable due to the ex-

tensive overlap in the distribution of observables across channels. In 
fact, the width of these distributions is a direct manifestation of fluctua-

tions, which has been verified to decrease with 𝑁 increasing gradually. 
A narrower distribution results in reduced overlap amongst different 
channels/cases, thereby further improving the accuracy. From an ex-

perimental perspective, measuring the full width at half maximum of 
non-sensitive observables, such as 𝑣3, and 𝑣4, can also aid in determin-

ing a reliable value for 𝑁 .

The mean squared collective flows ⟨𝑣21⟩, ⟨𝑣22⟩, and the multiplici-

ties of 𝜋− and 𝜋+, as sensitive observables, are further investigated in 
Fig. 7. The results of the screened events align exactly with the theoreti-

cal calculation, affirming the accuracy of COF reaches a level where the 
accuracy loss is no longer sensitive to the observable. Such statistical 
regularities emphasize a key point that it is challenging to distinguish 
the orientations of colliding nuclei through conventional data process-

ing methods. As such, the emerging artificial intelligence technologies 
geared toward combining multiple observables may be the only solu-

tion to this problem.

For ⟨𝑣21⟩, the overall trend suggests that as the collision scenario ap-

proaches tip-tip configuration, resulting in higher central density, more 
emitting particles exhibit a bias toward the 𝑥-direction, which is the 
direction of the impact parameter. Interestingly, when both colliding 
nuclei are oriented at approximately a 45◦ to the 𝑧-axis, particles ap-

pear to exhibit a greater tendency to be squeezed out in the 𝑥-direction. 
In ⟨𝑣22⟩, the six channels (cases) are observed to be statistically divided 
into three categories. Channel-1 exhibits a higher distribution in regions 
with stronger 𝑣2, Channel-2 and -4, as the second tier, and Channel-3, 
-5, and -6 encompass the category of events with the weakest elliptic 
flow. This order is clearly related to the initial state overlap eccen-

tricity, where the overlap refers to the projection of the participants 
on the 𝑥 − 𝑦 plane [34]. Simultaneously, the substantial spectators in 
Case-2, -3, and -5 contribute to a partial suppression of their ⟨𝑣22⟩. In 
the combined influence of these factors, we find that these three cate-

gories appear to be independent of the target orientation and are solely 
determined by the projectile orientation. In particular, Channel-1, rep-

resenting body-body collisions, vividly amplifies the deformation effect, 
which will promote future research on nuclear structural properties and 
reaction mechanisms. Turning to the lower panel of Fig. 7, it can be 
noted that collisions approaching tip-tip orientation tend to enhance the 
yield of pion mesons, attributed to the higher reaction density achiev-

able in tip-tip collisions.

During tracing the collision orientations, a multitude of nonlinear 
transformations interact, making it difficult to determine which input 
variable has a significant impact on the feed-forward process of the COF 

network. Aiming at the other inputs, including the 2D distributions of 
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Fig. 6. The distributions of event count proportions for the anisotropic flows 𝑣1 (a𝑥), 𝑣2 (b𝑥), 𝑣3 (c𝑥), 𝑣4 (d𝑥) and the multiplicities of charged particle including 
𝑝 (e𝑥), 𝜋− (f𝑥), 𝜋+ (g𝑥), Δ− (h𝑥), Δ+ (i𝑥), Δ++ (j𝑥) with 𝑁 = 50 on validation set, where subscript 𝑥 = 1 represents the actual classification cases, while 𝑥 = 2
represents the situation of the COF output channels.
Fig. 7. Upper panel: The distribution of mean squared directed flow ⟨𝑣21⟩ and 
elliptic flow ⟨𝑣22⟩ across different predicted channels. Lower panel: The distri-

bution of 𝜋− and 𝜋+ multiplicities across different predicted channels.

the hadron counting and anisotropic flows on transverse momentum 
and rapidity plane and the counting of the high-momentum nucleons in 
transverse (longitudinal) emission angle, it is challenging to discern the 
impact of orientation on an individual event from a conventional per-

spective. Nevertheless, the contribution of these inputs to orientation 
recognition cannot be overlooked, which is analogous to the situation 
that using deep learning to find signatures of the nuclear symmetry 
energy [30]. Eventually, these observables collectively facilitate the 
recognition of the collision orientation.

With the aid of the COF network, orientation-dependent physical 
quantities would be experimentally measured, which will enable us to 
capture more information from facilities such as HIAF/IMP, J-PARC, 
5

FAIR, NICA, HIMAC, etc. The previous experiments are also worth more 
detailed analysis, especially the Au+Au reactions at 200 GeV and the 
U+U reactions at 193 GeV at RHIC [60]. In future research, utiliz-

ing the elliptic flow in Channel-1 might offer a geometric effect-based 
means to explore further the impact of symmetry energy and equa-

tion of state. Furthermore, theoretical research [61] has indicated that 
high-momentum tails, resulting from short-range correlations, are more 
likely to manifest at the nuclear surface. Therefore deformed nuclei with 
larger surface areas will undoubtedly provide an excellent platform for 
investigating this phenomenon, which will also benefit from the COF 
network. In summary, this research would greatly broaden the horizons 
of heavy-ion collision studies, facilitating a deeper comprehension of 
both nuclear structure and nuclear reactions.

5. Summary

Based on the 1 GeV/nucleon uranium-uranium ultra-central colli-

sion data simulated using the IBUU transport model, we construct a 
composite neural network of multiple observables in a supervised clas-

sification mode to retrospectively determine the initial state orientation 
of the deformed colliding nuclei. This data-driven polarization approach 
is applicable in a statistical sense. The different output channels of the 
COF network filter out specific orientation-biased collision events. By 
simulating the evolution of point particles (𝑁 = 1) and the wave packet 
composed of multiple point test particles (𝑁 = 20, 50, 100) in the mean 
field, we conclude that the identification capability of the COF network 
is positively correlated with the ratio of the deformation effect to fluc-

tuation.

When the evolved results are composed of 𝑁 = 50 test particles, 
the accuracy for both tip-tip and body-body collisions exceeds 80%. 
Upon comparing observables between real categories and COF chan-

nels, including anisotropic flows and charged particle multiplicities, 
we identify virtually no discernible differences, which is a reflection 
of the extensive overlap in the distribution of observables across chan-

nels. Amongst these observables, we note the orientation dependence of 
𝑣1, 𝑣2, and the pion multiplicities, leading to the conclusion that the ec-

centricity of the overlap, the achieved density in the reaction, and the 
spectator effect profoundly impact these sensitive measurements.

At relativistic energies, the production of hadrons is often increased 
by orders of magnitude compared to intermediate energies, while par-

ticipants are no longer influenced by spectators, making the identifi-
cation of the initial state orientation markedly more reliable. We look 
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Table 3

The hyperparameter set of the convolutional orientation filter struc-

ture. The “𝐷” represents the output dimension of the layer, the “𝐶in” 
denotes the input channels, the “𝐶out” signifies the output channels, 
the “𝐾𝑠” refers to the size of the kernel which includes both convo-

lutional and pooling dimensions, the “𝑆𝑡” indicates the stride used 
during convolution or pooling operations, and the “𝑔(𝑥)” represents 
the non-linear activation function. See the text for abbreviations.

Cell-1 (CNN)

L Type 𝐷 𝐶in. 𝐶out. 𝐾𝑠 𝑆𝑡 𝑔(𝑥)

— Input1 (5,15,10) — — — — —

1 pooling (5,5,5) 5 5 (3,2) (3,2) —

2 Conv. (16,5,5) 5 16 (3,3) (1,1) LReLU

3 Conv. (32,5,5) 16 32 (3,3) (1,1) LReLU

4 Conv. (64,5,5) 32 64 (3,3) (1,1) LReLU

5 FC 512 — — — — LReLU

6 FC 128 — — — — LReLU

— Out1 128 — — — — —

Cell-2(3)(4)(5) (FCNN)

L Type 𝐷 𝑔(𝑥)

— Input2(3)(4)(5) 4(6)(6)(3) —

1 FC 32 LReLU

2 FC 64 LReLU

— Out2(3)(4)(5) 64 —

Cell-6 (FCNN)

L Type 𝐷 𝑔(𝑥)

— Out1 ⊎Out2 ⊎ ... ⊎Out5 384 —

1 Batch-Norm 384 —

2 FC 512 LReLU

3 FC 256 LReLU

4 FC 128 Softmax

— Prediction 6 —

forward to the COF network being combined with a broader range of 
transport models and applied to experimental data measurements.
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Appendix A. The hyperparameter set of convolutional orientation 
filter

The COF network consists of 6 cells denoted as Cell-n (n=1-6) as 
indicated in Table 3, among which, except for Cell-1, which is a convo-

lutional neural network (CNN), all other cells are fully connected neural 
networks (FCNN). Each cell is composed of several unit layers, includ-

ing convolutional (Conv.), average pooling (pooling), fully connected 
6

(FC), and batch normalization (Batch-Norm) layers.
Physics Letters B 848 (2024) 138359

In the presented table, the initial row and the concluding row of 
each cell respectively signify its input and output. In this context, 
Input1 comprises five matrices: 𝐶(𝑝𝑡, 𝑦0), 𝑣1(𝑝𝑡, 𝑦0), 𝑣2(𝑝𝑡, 𝑦0), 𝑣3(𝑝𝑡, 𝑦0), 
𝑣4(𝑝𝑡, 𝑦0). The Input2 denotes the mean values of anisotropic flows ⟨𝑣𝑛⟩
(𝑛 = 1, 2, 3, 4) across all emitted particles. The Input3 indicates multi-

plicities of charged particles, 𝑀𝑝, 𝑀𝜋− , 𝑀𝜋+ , 𝑀Δ− , 𝑀Δ+ , 𝑀Δ++ . The 
Input4 and Input5 correspond to the hadron count in transverse and lon-

gitudinal emission azimuth angle. The input for Cell-6 is a combination 
of the outputs from Cell-1 to Cell-5 noted as Out1 ⊎ Out2 ⊎ ... ⊎ Out5, 
where the symbol ⊎ indicates splicing two vectors, e.g., [𝑎, 𝑏, ...] ⊎
[𝑐, 𝑑, ...] = [𝑎, 𝑏, ..., 𝑐, 𝑑, ...]. Besides, the activation function is repre-

sented as LReLU(𝑥) =max{0.01 × 𝑥, 𝑥} and Softmax(𝑥𝑖) = 𝑒𝑥𝑖∕
∑
𝑗 𝑒

𝑥𝑗 .

Furthermore, to mitigate the influence of absolute data magnitudes, 
all input features are subject to min-max normalization, ensuring they 
fall within the range of 0 to 1. During the training process, a dy-

namically decreasing learning rate, which reduces as the loss function 
converges, is applied with the Adaptive Momentum Estimation (Adam) 
[62] optimizer. The aforementioned definitions and concepts are en-

tirely consistent with the patterns used in PyTorch [63].
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