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Abstract We study the implication of the distance and
the cobordism conjecture on the 6-dimensional Einstein–
Maxwell theory compactified on S2. In this toy model, the
radion potential is stabilized by the conspiracy of the curva-
ture of S2 and the flux through S2 parametrized by f , and
uplifted by the positive 6-dimensional cosmological constant
parametrized by λ. When λ = 0, the radion is stabilized
at the anti-de Sitter (AdS) vacuum, which cannot be inter-
polated to the Minkowski vacuum since the Kaluza–Klein
(KK) tower descends from UV in the vanishing limit of the
4-dimensional cosmological constant. For nonzero λ which
realizes the metastable de Sitter (dS) vacuum, as well as
the AdS and the Minkowski vacuum, such an obstruction
can be found provided the combination f 2λ is fixed and the
limit λ → 0 is taken. Moreover, the 6-dimensional Einstein–
Maxwell theory allows the transition between vacua through
the nucleation of the bubble. In this case, the values of the
4-dimensional cosmological constant inside and outside the
bubble are different as f is changed at the bubble wall, while
λ remains unchanged. Regarding the AdS vacuum with the
vanishing curvature radius as the ‘nothing’, we find that the
transition from the metastable dS vacuum to the nothing is
not prevented by the descent of the KK tower since f 2λ is
not fixed.

1 Introduction

Whereas the values of physical parameters in the low energy
effective field theory (EFT) can be measured experimentally,
we expect that the underlying fundamental theory provides a
dynamical mechanism explaining how these values are deter-
mined. In string theory, the moduli stabilization does the job:
under the compactification, parameters in the 4-dimensional
EFT are controlled by the size and the shape of the extra
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dimensions, which are fixed by the stabilization of scalars
called moduli. Typically, a large number of possibilities for
choosing the flux quanta in the six extra dimensions allow the
moduli potential to have a local minimum [1], the collection
of which is called the string landscape [2]. But still, in order to
explain the tiny, positive cosmological constant as we observe
it, the moduli need to be stabilized at the metastable de Sitter
(dS) vacuum, rather than the anti-de Sitter (AdS) vacuum.
This is achieved by introducing the uplift generated by anti-
branes in addition [3]. Several models for the metastable dS
vacuum built in this way have been proposed [4,5], which
contributed to the active debate on whether the metastable dS
vacuum can be realized in the controllable parameter regime
[6].

The roles of the flux and the brane in the moduli stabi-
lization can be simply illustrated by the toy model, the 6-
dimensional Einstein–Maxwell theory compactified on S2

with the magnetic flux through S2 [7,8] (see [9] for a peda-
gogical review). In this model, the radion, the modulus deter-
mining the radius of S2, is stabilized through the conspiracy
of two potential terms, each of which is generated by the cur-
vature of S2 and the magnetic flux through S2, respectively.
This indeed is a typical way that the moduli are stabilized in
string theory, in which the curvature term may be replaced by
another flux term or the non-perturbative effect, depending
on the model. Moreover, even though the origin is different,
the positive 6-dimensional cosmological constant mimics the
role of the uplift term.

On the other hand, recent swampland program [10] (for
reviews, see [11–16]) suggests to revisit the moduli stabiliza-
tion and see if there is a missing ingredient which makes the
EFT description inconsistent with quantum gravity. Many
studies along this line rely on the distance conjecture [17].
It states that the infinite distance limit of the moduli space
corresponds to a corner of the landscape, at which the EFT
description becomes invalid as a tower of states descends
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from UV. The 6-dimensional Einstein–Maxwell theory nat-
urally contains a tower of states, a set of Kaluza–Klein (KK)
modes, the mass scale of which becomes extremely tiny in
the decompactification limit, i.e., the limit of the infinitely
large radius of S2. Therefore, it is instructive to investigate
how the radius of S2, hence the KK mass scale, is determined
by the flux and the uplift in the theory in detail, focusing on
the decompactification limit. Since the 4-dimensional cos-
mological constant �4 is determined by the flux and the
uplift as well, we will eventually arrive at the scaling law
obeyed by �4 and the KK mass scale. Regarding this, there
have been conjectures which try to argue that the tiny value
of �4 implies the low tower mass scale [18–23]. If it were
the case, our universe having �4 � 10−123M4

4 , where M4 is
the 4-dimensional Planck mass, is quite close to the corner
of the landscape. Presumably, a relevant tower of states may
be the KK tower, which implies the large size of the extra
dimensions [24]. Moreover, �4 provides the IR mass scale
of the EFT, thus from the scaling law we can see if there is the
scale separation between the IR and the KK mass scale [25–
27]. The first purpose of this article is to explore the scaling
law and the scale separation in the 6-dimensional Einstein–
Maxwell theory and discuss the implications of them.

It is also remarkable that the 6-dimensional Einstein–
Maxwell theory admits the instanton solution describing the
tunnelling between different flux vacua, which in particular
includes the nucleation of the bubble of ‘nothing’. Here the
bubble of nothing indicates the bubble containing not only
no matter, but also no spacetime, which is known to exist
in the presence of the extra dimensions [28]. At the wall
of the bubble of nothing, the radius of the extra dimensions
shrinks to zero size, and at the same time noncompact 4-
dimensional spacetime pinches off such that it cannot extend
to the region inside the bubble wall. In the 6-dimensional
Einstein–Maxwell theory, the magnetic flux, one of ingre-
dients determining the value of �4, can be discharged by
the black 2-brane forming the bubble wall [29]. Then two
vacua separated by the bubble wall have different values of
�4 due to the different values of the flux, while they have
the same value of the 6-dimensional cosmological constant
which generates the uplift. Moreover, a new bubble can be
nucleated inside the bubble, which leads to the sequential
nucleation of bubbles having different values of �4. When
the magnetic flux is completely discharged by the brane, i.e.,
the flux inside the bubble vanishes, the value of �4 inside the
bubble becomes negative infinity, which corresponds to the
AdS vacuum with the vanishing curvature radius. Since the
radius of S2 vanishes as well, we can regard this bubble as
the bubble of nothing. It indicates that spacetime can reach
the nothing through a (series of) nucleation of the bubble(s),
which is extensively studied in [30–32].

Recently, the bubble of nothing has drawn attention (see,
for example, [33–40]) in the context of the swampland pro-
gram. For instance, the cobordism conjecture [41] (see [42]
for a review) argues that the compact space consistent with
quantum gravity can shrink to zero size without any topologi-
cal obstruction. This conjecture is closely connected to an old
idea that the global symmetry is broken by quantum gravity
[43]. For an illustration, we may consider the compact ball
made of the black hole interior, which can smoothly evolve
into the nothing according to the cobordism conjecture [42].
This is nothing more than the complete evaporation of the
black hole, in which the global symmetry is not conserved
since otherwise information is lost. If the conjecture is true,
the transition to the nothing in which the internal manifold
(S2 in our case) shrinks to zero size must be the topology
preserving process. This motivates us to discuss the impli-
cation of the cobordism conjecture on the vacuum transition
in the 6-dimensional Einstein–Maxwell theory. The vacuum
transition to the nothing through the nucleation of the bub-
ble is quite different process from that in [33–38] where the
radion is not stabilized but rolls along the potential, but this
is another way that the change in the value of the radion takes
place along some particular direction of the coordinate space
(see [44,45] for a similar discussion).

This article is organized as follows. In Sect. 2, we review
the features of the 6-dimensional Einstein–Maxwell theory
compactified on S2 relevant to our discussion. Based on this,
we consider in Sect. 3 the implication of the distance con-
jecture on the radion stabilization, presenting the relation
between �4 and the KK mass scale. Section 4 is devoted to
the discussion on the transition between different flux vacua
through the nucleation of the bubble, focusing on the transi-
tion to the nothing which is relevant to the cobordism con-
jecture. Then we conclude. Some details of the bubble are
reviewed in Appendix A.

2 Review on the 6-dimensional Einstein–Maxwell
theory

The action for the 6-dimensional Einstein–Maxwell theory
is

SEM =
∫

d6x
√−G

[M4
6

2
R(6) − 1

4
FAB F

AB − �6

]
, (1)

where M6 is the 6-dimensional Planck mass, FAB is the elec-
tromagnetic field strength (A, B = 0, 1, . . . 5), and �6 is the
6-dimensional cosmological constant of mass dimension six.
Solutions to the equations of motion describing the compact-
ification on S2 by the magnetic flux are given by
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ds2 = e
− φ−〈φ〉

M4 gμνdx
μdxν

+ e
φ−〈φ〉
M4

(
e

〈φ〉
M4 R2

0

)
(dψ2 + sin2 ψdω2),

F2 = g6N

4π
sin ψdψ ∧ dω, N ∈ Z.

(2)

While R0, the fiducial radius of S2, can be chosen arbi-
trarily, the physically meaningful radius is fixed by the stabi-

lization of the radion φ to 〈φ〉 such that 〈R〉 = e
〈φ〉

2M4 R0, from
which the squared 4-dimensional Planck mass is written as

M2
4 = 4π〈R〉2M4

6 = 4πe
〈φ〉
M4 R2

0M
4
6 . (3)

Meanwhile, the magnetic coupling g6 has the mass dimen-
sion one as the dimensionless 4-dimensional electric cou-
pling is obtained by the relation e2

4 = e2
6/(4π〈R〉2), where

e6 is the 6-dimensional electric coupling, the inverse of
g6. We also note that as a result of the compactification,
the mixed components (between the compact and the non-
compact directions) of the metric as well as Aμ become
the 4-dimensional gauge bosons. As shown explicitly in
[8], the gauge symmetry consistent with the 4-dimensional
Minkowski spacetime is given by SU(2)×U(1). Whereas it
allows another solution to the equations of motion contain-
ing the SU(2) instanton, we concentrate on the solution given
by (2). The dependence of the 6-dimensional metric on φ is
determined by the requirement that the kinetic term of φ is
written in the canonical form in the Einstein frame action
after integrating out the extra dimensions1:

S =
∫

d4x
√−g

[
M2

4

2
R(4) − 1

2
gμν∂μφ∂νφ − V (φ)

]
, (5)

where the radion potential V (φ) is given by

V (φ) = 4π

M4
4

[
1

32π2

(g6N )2

M2
6

e
−3 φ

M4

R6
0M

6
6

− e
−2 φ

M4

R4
0M

4
6

+ �6

M6
6

e
− φ

M4

R2
0M

2
6

]
.

(6)

We note that the first and the second term are generated by the
magnetic flux and the curvature of the internal manifold (S2

in our case), respectively. While these two terms suffice to
stabilize φ, as we will see, the vacuum energy density at 〈φ〉,
or equivalently, the 4-dimensional cosmological constant �4,
cannot be positive with �6 = 0. To obtain the metastable dS
vacuum, we need the uplift term induced by the positive �6

in addition.

1 When D-dimensional spacetime is compactified on the internal man-
ifold of dimension n = D − 4, the metric giving the canonical kinetic
term of the volume modulus φ in the Einstein frame action is written as

ds2 = e
−

√
2n
n+2 φ

gμνdx
μdxν + e

2
√

2
n(n+2)

φ
gmndy

mdyn . (4)

Our case corresponds to n = 2.

For the ease of discussion, we define the following dimen-
sionless quantities,

v(x) = 4π

M2
4

V (x), x = e
− φ

M4

R2
0M

2
6

,

f 2 = (g6N )2

M2
6

, λ = �6

M6
6

,

(7)

with respect to which (6) is rewritten as

v(x) = f 2

32π2 x
3 − x2 + λx . (8)

Then one finds that the potential has a local minimum at

〈x〉 = e
− 〈φ〉

M4

R2
0M

2
6

= 32π2

3 f 2

⎡
⎣1 +

√
1 − 3 f 2

32π2 λ

⎤
⎦ . (9)

Here M2
6 〈x〉 is nothing more than 〈R〉−2, or equivalently,

the squared KK mass scale m2
KK. Using (3), the KK mass

scale also can be expressed as mKK = M4√
4π

〈x〉. This is use-
ful because it is typical to take M4, instead of M6, to be a
fixed value given by 2.4 × 1018GeV and treat M4 and 〈R〉 as
independent parameters.2 Putting (9) into (8), one finds that
the value of the potential at 〈x〉 in the unit of M4 is given by

v(〈x〉) =
(

32π2

3 f 2 λ

)[
1 − 2

3

32π2

3 f 2λ

(
1 +

(
1 − 3 f 2

32π2 λ

)3/2)]
.

(10)

We note from (9) that the potential has the local minimum
provided 3

32π2 f 2λ ≤ 1: if 3
32π2 f 2λ becomes larger than

1, the potential monotonically decreases with respect to φ

(or equivalently, 1/x) without the local minimum. In other
words, the potential in this case shows the runaway behavior.
On the other hand, (10) tells us that v(〈x〉) is positive, i.e., the
potential is stabilized at the metastable dS vacuum, provided

3
32π2 f 2λ > 3

4 . If λ = 0, v(〈x〉) is always negative, then the
potential is stabilized at the AdS vacuum.

To investigate the stabilization of the radion in detail, we
first consider the case of λ = 0, i.e., the vanishing �6, where
the potential is minimized at 〈x〉 = 64π2

3 f 2 . Since 〈x〉 is iden-

tified with 1/(M6〈R〉)2, the radius of S2 is given by

〈R〉 =
√

3

8π

f

M6
= 3

32π3/2

f 2

M4
, (11)

2 Indeed, if we fix the value of M6, M4 becomes 0 in the limit 〈R〉 → 0
hence the EFT assuming weak gravity breaks down even in the very
low energy regime. On the other hand, the opposite limit 〈R〉 → ∞
corresponds to the limit M4 → ∞, indicating the decoupling of gravity
in the 4-dimensional EFT description.
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Fig. 1 (Left): Behavior of the potential with respect to RM6 = x−1/2

when λ = 0. The flux for each plot is given by f = 0, 5, and 10, respec-
tively. (Right): Relation between the stabilized values 〈R〉 and V (〈R〉).
Orange and green dot indicate the values of 〈R〉 and V (〈R〉) for f = 5

and 10, respectively, which correspond to plots in the left panel. This
shows that as f increases, 〈R〉 gets larger while V (〈R〉) gets closer to
zero

Fig. 2 (Left): Behavior of the potential with respect to RM6 = x−1/2

when f = 5. The 6-dimensional cosmological constant in each plot
is given by λ = 0, 1, 3.2, 3.5 and 5, respectively. (Right): Rela-
tion between 〈R〉 and V (〈R〉), showing that as λ increases, both 〈R〉
and V (〈R〉) increase. In particular, as λ becomes larger than 3.2,

V (〈R〉) changes the sign from negative (AdS) to positive (dS). Blue,
orange, green, and red dot indicate the values of 〈R〉 and V (〈R〉) for
λ = 0, 1, 3.2 and 3.5, respectively, which correspond to plots in the left
panel

where (3) is used for the last equality. Then as mentioned
above, the potential at the minimum (in the unit of M4),

v(〈x〉) = −4096π4

27

1

f 4 = − 1

3M4
6 〈R〉4

= −4π

3

1

M2
4 〈R〉2

,

(12)

is negative, thus the potential is stabilized at the AdS vacuum.
We note that in the absence of the flux ( f = 0), 〈R〉 is given
by 0, at which the potential becomes negative infinity. As evi-

dent from plots in Fig. 1, as f increases, 〈R〉 monotonically
increases such that S2 is eventually decompactified, and at
the same time, the depth of the potential becomes smaller,
approaching the Minkowski vacuum indefinitely. Moreover,
we infer from (3) that the stabilized value of the potential

V (〈x〉) = M4
4

4π
v(〈x〉) is just given by − 4π

3 M4
6 . If we take M6

to be a fixed value, V (〈x〉) is independent of 〈R〉. However, it
is typical to treat 〈R〉 and the fixed value M4 as independent
parameters, in which case the qualitative features of V (〈x〉)
are the same as those of v(〈x〉) discussed so far. As we will
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see, M6 in this case is interpreted as the ‘species scale’, which
gets lower as 〈R〉 gets larger.

On the other hand, when λ �= 0, the potential is stabilized
at the AdS (dS) vacuum for 3

32π2 f 2λ < 3
4 ( 3

32π2 f 2λ > 3
4 ).

Suppose f is fixed but λ is allowed to vary. Then one finds
that the transition between the AdS and the dS vacuum at

3
32π2 f 2λ = 3

4 (Minkowski vacuum) is smooth with respect
to λ. As can be found in (9), for a fixed value of f , 〈R〉 =
1/(M6〈x〉1/2) increases as λ increases. At the same time, the
value of v(〈x〉) given by (10) increases from the negative to
the positive value, thus |�4| of the AdS vacuum ( 3

32π2 f 2λ <
3
4 ) gets smaller until the Minkowski vacuum ( 3

32π2 f 2λ =
3
4 hence |�4| = 0) is reached, after which |�4| of the dS
vacuum ( 3

32π2 f 2λ > 3
4 ) gets larger. Moreover, the values of

〈x〉 and v(〈x〉) in the limit λ → 0 coincide with those in the
case of λ = 0 we previously discussed. Such a behavior of
the potential is shown in Fig. 2.

We may also fix λ to some finite value, and investigate
the behavior of the potential by changing f , as depicted in
Fig. 3. When f = 0, 〈x〉 becomes infinity, or equivalently,
〈R〉 = 0, at which the value of the potential is given by
negative infinity. This corresponds to the AdS vacuum with
the vanishing curvature radius. As f increases, the value of
the potential increases and when 3

32π2 f 2λ = 3
4 is satisfied,

we obtain the Minkowski vacuum where the transition from
the AdS to the dS vacuum takes place.

Even more interesting case is that both f and λ are allowed
to vary but their combination 3

32π2 f 2λ is fixed. We postpone
the discussion on this case to Sect. 3 since it is closely rele-
vant to the swampland conjectures concerning the distance
conjecture. In any case, even if both f and λ are nonzero,
they cannot be arbitrarily large since as 3

32π2 f 2λ gets larger
than 1, the potential shows the runaway behavior, i.e., mono-
tonically decreases with respect to R = M−1

6 x−1/2 without
the local minimum. The values of the stabilized radius and
the potential at 3

32π2 f 2λ = 1 are given by

〈x〉 = 1

M2
6 〈R〉2

= 32π2

3 f 2 = λ,

v(〈x〉) = 1024π4

27

1

f 4 = λ2

3
,

(13)

respectively, which correspond to the maximum values of
〈R〉 and v(〈x〉) that the metastable dS vacuum can have.

We also note that putting the relation

3 f 2

32π2 = 2(M6〈R〉)2 − λ(M6〈R〉)4, (14)

which is obtained from (9), into (10), we can express v(〈x〉)
in terms of 〈R〉:

v(〈x〉) = −1 + 2λ(M6〈R〉)2

3(M6〈R〉)4 . (15)

This is useful in the later discussion.
Meanwhile, the squared mass of φ, the canonically nor-

malized radion, is given by

m2
R = d2V

dφ2

∣∣∣∣
φ=〈φ〉

= 1

M2
4

x
d

dx

(
x
dV

dx

)∣∣∣∣
x=〈x〉

= 512π3

9

M2
4

f 4

√
1 − 3 f 2

32π2 λ

⎛
⎝1 +

√
1 − 3 f 2

32π2 λ

⎞
⎠

2

,

(16)

where we use the relation between φ and x as well as that
between V and v, both of which can be found in (7). If λ = 0,
it is given by m2

R = 2048π3

9 f 4 M2
4 , which also can be written

as 128π2

3 f 2 M2
6 . When 3

32π2 f 2λ = 3
4 is satisfied, i.e., the radion

is stabilized at the Minkowski vacuum, the radion mass is
given by m2

R = 64π3

f 4 M2
4 = 16π2

f 2 M2
6 , or equivalently, m2

R =
λ2

π
M2

4 = 2λM2
6 . Of course, the radion becomes massless

when 3
32π2 f 2λ = 1, as for 3

32π2 f 2λ > 1 the potential is not
stabilized but exhibits the runaway behavior. It is instructive
to compare this with the KK mass scale, m2

KK = 〈R〉−2 =
M2

6 〈x〉, where 〈x〉 is given by (9). The ratio

m2
R

m2
KK

= 2

√
1 − 3 f 2

32π2 λ, (17)

monotonically decreases from 2 to 0 as the combination
3

32π2 f 2λ varies from 0 to 1, which is evident from Fig. 4.
In particular, the ratio becomes 1 at the Minkowski vacuum,
where 3

32π2 f 2λ = 3
4 is satisfied. Therefore, m2

R is always

larger than but not exceeding twice of m2
KK in the AdS vac-

uum while is smaller than m2
KK in the dS vacuum. When

either λ or f is zero, the ratio is fixed to 2.
This shows that in the AdS vacuum, the 4-dimensional

EFT description for the radion stabilization is more or less
valid since mR is not so much enhanced compared to mKK

hence only a few KK modes are found at the energy scale
mR . Moreover, the ratiom2

R/m2
KK does not diverge, implying

that even if mKK gets closer to 0, it does not decrease more
rapidly compared to mR , so the radion stabilization may not
be obstructed by the descent of the KK modes. However,
even in this case, the UV cutoff for any other 4-dimensional
EFT description can decrease rapidly in the limit mKK → 0.
Indeed, more realistic model can contain the dynamics which
is not directly relevant to the radion stabilization, but well
described in the 4-dimensional EFT framework. For exam-
ple, the size of �4 resulting from the moduli stabilization
and that of the electroweak scale can be connected only in
the indirect way. For this reason, we will regard the vanishing
limit of mKK as a signal that the generic 4-dimensional EFT
description becomes invalid, as well known.
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Fig. 3 (Left): Behavior of the potential with respect to RM6 = x−1/2

when λ = 3.5. The flux for each plot is given by f = 0, 4, 4.75, 5 and 6,
respectively. (Right): Relation between 〈R〉 and V (〈R〉), showing that
as f increases, both 〈R〉 and V (〈R〉) increase allowing the transition

from the AdS to the dS vacuum. Orange, green, and red dot indicate the
values of 〈R〉 and V (〈R〉) for f = 4, 4.5, and 5, respectively, which
correspond to plots in the left panel

Fig. 4 The ratio m2
R/m2

KK as a function of 3
32π2 f 2λ

3 Distance conjecture: scale separation and scaling law

Since two extra dimensions are compactified on S2, the 6-
dimensional Einstein–Maxwell theory we reviewed in Sect. 2
contains the KK tower as a natural tower of states. When the
KK mass scale mKK becomes zero, the KK tower descends
from UV, invalidating the 4-dimensional EFT description.
Recent distance conjecture claims that such a descent of a

tower of states is what happens when the EFT is close to the
corner of the landscape. Moreover, it is also conjectured that a
tower of states invalidating the EFT descends from UV as the
size of �4 gets smaller, emphasizing that the (A)dS vacuum
in the vanishing limit of �4 cannot be continuously inter-
polated into the Minkowski vacuum in the EFT framework
[18]. In this section, we discuss the conjectures concerning a
tower of states in the context of the 6-dimensional Einstein–
Maxwell theory, in which both mKK and �4 are determined
by the radion stabilization thus the flux and the uplift.

We begin our discussion with the scale separation between
the IR mass scale obtained from�4 andmKK. When the back-
ground geometry is given by dS space, the natural IR mass
scale is the Hubble parameter H satisfying �4 = 3M2

4 H
2,

which indeed is the inverse of the horizon radius. In the case
of the AdS background, the inverse of the curvature radius,
which will be also denoted by H , is the natural IR mass scale.
This can be justified by considering the metric of AdS space
[46] (see also [37,47])

ds2 = 1

H2

[
−

(
1 + r2

1 − r2

)
dt2 + 4

(1 − r2)2 (dr2 + r2d
2)

]
,

(18)
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Fig. 5 The ratio H2/m2
KK as a function of 3 f 2λ

32π2

where r ∈ [0, 1) and r = 1 corresponds to the boundary.
When we imagine the surface of constant r , the area of the
surface and the volume of the region surrounded by the sur-
face are given by

A = 4π

(
2r

H(1 − r2)

)2

V = 4π

∫
drr2

(
2

H(1 − r2)

)3

= 4π

2H3

[
2r(1 + r2)

(1 − r2)2

+ log

(
1 − r

1 + r

)]
, (19)

respectively. Then the ratio A/V is a monotonically decreas-
ing function of r and minimized at the boundary (r = 1)
where A/V = 2 H .

In terms of H , the value of �4 in dS space and that in AdS
space are written as 3 H2M2

4 and −3 H2M2
4 , respectively:

as (A)dS space gets closer to Minkowski space, |�4| gets
smaller, and H becomes 0. In the 6-dimensional Einstein–
Maxwell theory, the value of H is given by

H2 = |V (〈φ〉)|
3M2

4

= M2
4

12π
|v(〈x〉)| = M2

4

12π

(
32π2

3 f 2 λ

)∣∣∣∣1

− 2

3

32π2

3 f 2λ

(
1 +

(
1 − 3 f 2

32π2 λ

)3/2)∣∣∣∣. (20)

We note that the potential for f = 0 (the vanishing mag-
netic flux) is minimized at 〈R〉 = 0 where V = −∞ hence
H = ∞. As mentioned in Sect. 2, this will be interpreted
as the AdS vacuum in the limit of the vanishing curvature
radius. Using the expression for 〈x〉 = m2

KK/M2
6 given by

(9) and the fact that M2
4 = 4πM4

6 /m2
KK (see (3)), we obtain

the ratio

H2

m2
KK

= 1

3

( 3 f 2

32π2 λ
)∣∣∣1 − 2

3
32π2

3 f 2λ

(
1 +

(
1 − 3 f 2

32π2 λ
)3/2)∣∣∣

(
1 +

√
1 − 3 f 2

32π2 λ
)2

= 1

9
| − 1 + 2λ(M6〈R〉)2|

= 1

9

∣∣∣ − 1 + λ

π

M4

mKK

∣∣∣, (21)

the behavior of which as a function of 3 f 2λ

32π2 is depicted in

Fig. 5. From this, one finds that when 3 f 2λ

32π2 = 1, i.e., the
dS background is about to be destabilized by the runaway
behavior of the potential, H2/m2

KK = 1/9. The same ratio

H2/m2
KK = 1/9 is also obtained in the limit 3 f 2λ

32π2 → 0. In
these cases, The IR mass scale H is of the same order as
mKK, so the scale separation does not occur.

In particular, when λ = 0, the value of H2/m2
KK is 1/9

for any finite value of f since 3 f 2λ

32π2 = 0 is satisfied, while
the radion is always stabilized at the AdS vacuum. Then
we obtain the scaling law obeyed by �4 and mKK given by
mKK = |3�4|1/2/M4. The exponent 1/2 here is claimed to
be the upper bound on the exponent in the AdS/dS distance
conjecture [18], which can be found in the supersymmetric
AdS vacuum. The scaling law shows that as |�4| → 0, i.e.,
the AdS background gets closer to Minkowski space, mKK

becomes zero, invalidating the 4-dimensional EFT descrip-
tion. In terms of 〈φ〉, the relation mKK = M4√

4π
〈x〉 with

x ∼ e−φ/M4 indicates that |�4|/M4
4 ∼ e−2φ/M4 . We note

that since the size of both 〈x〉 ∼ f −2 and v(〈x〉) ∼ f −4 are
controlled by the flux f , the smallness of |�4| indicating the
low KK mass scale can be understood as a result of the large
flux, as also discussed in Sect. 2.

On the contrary, when λ �= 0, as can be inferred from the
last expression in (21), the ratio between H and mKK is no
longer a constant unless λ is close to 0. Indeed, as discussed
in Sect. 2 and summarized in Figs. 2 and 3, given the fixed
value of f (λ), the transition between the AdS vacuum and the
dS vacuum through the Minkowski vacuum is smooth with
respect to λ ( f ). The KK mass scale does not vanish at the

Minkowski vacuum ( 3 f 2λ

32π2 = 3
4 ) in this case, and as is evident

from Fig. 5, H (hence |�4|) decreases even more rapidly
compared to mKK, thus the KK tower can be decoupled from
the EFT at the IR mass scale. This is quite different from
the prediction of the AdS/dS distance conjecture and seems
to realize the scenario similar to the KKLT [4] or the large
volume scenario [5], in which the radion is mainly stabilized
by the flux and then slightly uplifted, while the KK tower
does not descend from UV even in the Minkowski limit.

The situation can be changed if we allow both f and λ

to vary but fix their combination 3 f 2λ

32π2 to some value smaller
than 1 (to avoid the runaway potential). This is equivalent
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Fig. 6 Radion potentials giving the same value of the AdS cosmolog-

ical constant under the fixed value of M6. While 3 f 2λ

32π2 is fixed to 0.2,
the value of λ for each plot is chosen to be 0.5, 2 and 10, respectively

to fixing the combination λ(M6〈R〉)2 = (λ/
√

4π)M4〈R〉 =
λ〈x〉−1, which is evident from (21) or the fact that λ〈x〉−1

depends on f and λ through the combination 3 f 2λ

32π2 only (see

(9)). In this case, H2/m2
KK becomes a constant smaller than

1/9, resulting in the scaling law mKK ∼ |�4|1/2 as in the
case of λ = 0 or 1. Of course, depending on the value of
3 f 2λ

32π2 , the vacuum we consider can be not only AdS or dS,

but also Minkowski. Moreover, under the fixed value of 3 f 2λ

32π2 ,

f 2 gets larger if we choose smaller λ. Equivalently, the value
of λ(M6〈R〉)2 = M4√

4π
λ〈R〉 can be fixed if we take 〈R〉 to be

infinitely large (hence mKK → 0) in the limit λ → 0.
Now, from (10), the stabilized value of the potential which

is identified with �4 can be written as

�4 = V (〈x〉) = M4
4

4π
v(〈x〉) = M4

4

4π
λ2

(
32π2

3 f 2λ

)

×
[

1 − 2

3

32π2

3 f 2λ

(
1 +

(
1 − 3 f 2

32π2 λ

)3/2)]

= 4πM8
6 (λ〈R〉2)2

(
32π2

3 f 2λ

)

×
[

1 − 2

3

32π2

3 f 2λ

(
1 +

(
1 − 3 f 2

32π2 λ

)3/2)]
. (22)

If we take M6 to be a fixed value, λ〈R〉2 in the last expres-
sion of (22), hence �4 is completely determined by the value

of 3 f 2λ

32π2 . We can compare cases of different values of λ giv-

ing the same value of 3 f 2λ

32π2 (hence the same value of �4) as
follows (see also Fig. 6). When we separate the radion sta-
bilization into two steps, the stabilization of the radion at
the AdS vacuum by f and the uplift by λ, the larger value
of f stabilizes the radion at the AdS vacuum of the smaller
depth, but since λ becomes smaller to give the same value

of 3 f 2λ

32π2 , the potential is uplifted by the smaller amount, giv-

Fig. 7 Radion potentials for different choices of λ under the fixed value

of M4. While 3 f 2λ

32π2 is fixed to 0.2, the value λ for each plot is chosen to
be 0.5, 2 and 5, respectively

ing the same value of �4.3 In particular, we can take the
limit λ → 0 without changing �4, in which both f and
〈R〉 becomes infinity, resulting in mKK → 0. Since the KK
tower descends from UV in this case, the 4-dimensional EFT
description is not reliable. We can find the similar situation
in more realistic model like the KKLT or the large volume
scenario, in which the uplift potential is generated by D3-
branes at the tip of the Klebanov-Strassler throat [22,23].
In this case, the uplift potential and the tower mass scale m
satisfy the scaling law m ∼ V α

up. The value of α is given by
either 1/3 or 1/4, depending on the type of tower (the KK or
the string tower) and how strongly the throat is warped.

On the other hand, if we fix the value of M4, the second

expression of (22) tells us that given the fixed value of 3 f 2λ

32π2 ,
the smaller value of λ leads to the smaller size of �4 (Fig. 7).
But since the sign of �4 cannot be changed by varying λ in
this case, the transition between the AdS and the dS vacuum
does not take place. Moreover, while the limit λ → 0 cor-
responds to the Minkowski limit �4 → 0 of (A)dS space

(the sign of �4 depends on the value of 3 f 2λ

32π2 ), 〈R〉 becomes
infinity as well, thus mKK → 0. More concretely, from (9),
the KK mass scale can be written as

mKK = M4√
4π

〈x〉 = M4√
4π

λ
(32π2

3 f 2λ

) ⎡
⎣1 +

√
1 − 3 f 2

32π2 λ

⎤
⎦ ,

(23)

so when M4 and 3 f 2λ

32π2 are fixed, mKK becomes 0 as λ → 0.
Therefore, when λ is very close to 0, the 4-dimensional EFT
is no longer reliable as the KK tower descends from UV,
which is consistent with the claim of the AdS/dS distance
conjecture. Meanwhile, when 3 f 2λ

32π2 is fixed to 3
4 , the radion

3 The final value of �4 is not necessarily positive: the sign of �4 is

determined by the value of 3 f 2λ

32π2 .
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is stabilized at the Minkowski vacuum (� = 0), regardless
of the size of λ: the transition between the Minkowski and
the (A)dS vacuum does not take place. Even in this case, the
radion stabilization in the limit of λ → 0 is not reliable since
mKK = M4√

π
λ becomes 0 as well. In terms of the moduli sta-

bilization, this indicates that the realization of the Minkowski
vacuum through the tiny uplift from very shallow AdS poten-
tial generated by the large flux is invalidated by the descent
of the KK tower.

We close this section with the remark on the species scale
�sp, above which gravity is no longer weakly coupled: denot-
ing the number of states below �sp by Nsp, �sp is defined
by the requirement that the gravity coupling Nsp�sp/M2

4
becomes O(1), i.e., �sp = M4/

√
Nsp [48,49]. Then �sp

is a natural cutoff scale of the EFT in which the gravitational
interaction is weak. When mKK decreases, the descent of
the KK tower leads to the increase in Nsp, thus the decrease
in �sp. In our case, two extra dimensions are compactified
on S2, then the squared mass of the KK mode is written as
m2

n = 〈R〉−2(n2
1 +n2

2) = m2
KK(n2

1 +n2
2), with n1 and n2 inte-

gers (for more generic case in which the sizes of two extra
dimensions are different, see, e.g., [50] or Appendix A of
[51]). Since we expect thatmKK  �sp, Nsp is approximated
by a quarter of the area of the disc with radius �sp/mKK.
Omitting O(1) coefficient, Nsp is estimated as �2

sp/m
2
KK.

Combining this with the relation�sp = M4/
√
Nsp, we obtain

Nsp = M4

mKK
, �sp = m1/2

KKM1/2
4 . (24)

Moreover, using the relation M4 = √
4πM2

6 /mKK (see (3)),
one finds that �sp = M6. That is, the strong gravitational
interaction becomes evident above the more fundamental
gravity scale M6 (see also [52] for more discussion). This
indeed is consistent with the well known proposal that the
very high mass scale M4 may be the result of the large extra
dimensions, in which case the Planck mass of the higher
dimensional UV completion (M6 in our case) is low [53]. It
is also remarkable that Nsp is nothing more than 〈x〉−1, since

Nsp ∼ M4〈R〉 = √
4π(M6〈R〉)2 =

√
4π

〈x〉 . (25)

Therefore, using (9) we can parametrize Nsp in terms of
f and λ. For example, when λ = 0, the relation Nsp ∼
〈x〉−1 = 3 f 2

64π2 is satisfied, showing that the number of KK
modes below �sp = M6 increases as f increases. Mean-

while, when λ �= 0 and the value of 3 f 2λ

32π2 is fixed, the com-

bination λ(M6〈R〉)2 = λ〈x〉−1 is also fixed, which leads to
Nsp ∼ 1/λ up to O(1) constant. This explicitly shows the
descent of the KK tower in the limit λ → 0.

4 Vacuum transition and the bubble of nothing

As we have seen in Sect. 2, the 6-dimensional Einstein–
Maxwell theory contains essential ingredients of the moduli
stabilization, the flux and the uplift parametrized by f and
λ, respectively. A large number of (meta)stable vacua in the
landscape can be realized by various choices of f and λ, pro-
vided the EFT description is protected from the descent of the
KK tower. Moreover, the 6-dimensional Einstein–Maxwell
theory admits the instanton solution describing the nucle-
ation of the bubble, which allows a transition between vacua
having different values of �4 [29–32]. Among possible solu-
tions for the bubble, the ‘bubble of nothing’ is of particular
interest in light of the cobordism conjecture [41]. In this solu-
tion, noncompact spacetime cannot extend inside the bubble
as it pinches off at the bubble wall, where the radius of the
extra dimensions shrinks to zero size [28].

To investigate various aspects of the bubble solution
including the bubble of nothing in detail, we first note that in
the bubble solution of the 6-dimensional Einstein–Maxwell
theory, the magnetic flux through S2 is ‘discharged’ by the
black 2-brane at the bubble wall. Here the black 2-brane is
extended over noncompact (1+2)-dimensions and described
by the metric [29]

ds2 =
(

1 −
√

3g6

8πM2
6 ρ

)2/3
(−dt2 + dx2 + dy2)

+
(

1 −
√

3g6

8πM2
6 ρ

)−2
dρ2 + ρ2(dψ2 + sin2 ψdω2),

(26)

which is the solution to the Einstein equation in the presence
of the magnetic flux through S2, i.e., the electromagnetic
field strength given by F2 = g6

4π
sin ψdψ ∧ dω. Then the

flux quanta outside and inside the bubble are given by N
(see (2)) and N − n, respectively, where n is the number of
branes. Even in this case, the values of the 6-dimensional
cosmological constant �6 (hence λ) inside and outside the
bubble are the same, since �6 is not changed by the black
2-brane. As a result, the values of �4 inside and outside the
bubble are different and the bubble solution well describes
the transition between two vacua through the tunnelling [54].
We also expect that another bubble can be nucleated inside
the bubble, which leads to the sequential change in �4 along
some particular direction (normal to the bubble wall) in the
coordinate space.

When the flux inside the bubble vanishes ( f = 0), �4

becomes negative infinity, hence the geometry inside the bub-
ble corresponds to AdS space with the vanishing curvature
radius (H = ∞). In this case, 〈R〉 = 0 and as can be inferred
from (19), the volume vanishes for any finite value of r . Then
the region inside the bubble may be regarded as being empty,
i.e., not filled with spacetime. From this, [32] claimed that
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the bubble of vanishing flux can be identified with the bubble
of nothing, which was extensively studied in [30–32].

Before proceeding, we note here about the reliability of
the claim in [32]. Whereas the bubble is the classical solu-
tion, the point of vanishing 〈R〉 corresponds to the spacetime
singularity, where the length scale provided by the curvature
becomes much smaller than the cutoff length scale, say, the
Planck length or the string length scale, hence the EFT based
on the seimclassical approximation breaks down. Another
way to see the invalidity of the EFT is to notice that if the
membrane wrapping S2 exists, its tension becomes extremely
small as 〈R〉 gets close to zero. This means the descent of
a tower of states which was not present in the EFT from
UV. On the other hand, the recent cobordism conjecture [41]
argues that any internal manifold in the EFT consistent with
quantum gravity can shrink to the nothing without the topo-
logical obstruction. This suggests that if we assume our 6-
dimensional Einstein–Maxwell theory to be consistent with
quantum gravity, the point of vanishing 〈R〉 can be still inter-
preted as the ‘end of the world’ beyond which spacetime no
longer extends. At this point, the value of 〈R〉 may not actu-
ally vanish, but instead the defect of the small but finite size
can be located, as considered in [38]. From this observation,
we regard the vanishing limit of f as the end of the world
in the semiclassical approximation, beyond which is just the
nothing.

If �6 = 0 (λ = 0), as we discussed in Sect. 2 (and sum-
marized in Fig. 1), the radion is always stabilized at the AdS
vacuum where �4 is negative. The decrease in the flux by the
black 2-brane leads to the nucleation of the bubble in which
the geometry is given by AdS space with the smaller value
of �4 (or equivalently, the larger value of H ). Then through
the sequential nucleation of the bubbles lowering �4, the
AdS vacuum with �4 = −∞ can be reached, which is inter-
preted as a nucleation of the bubble of nothing. Transition to
the bubble of nothing from dS or Minkowski space can be
realized when �6 �= 0 (λ �= 0: see also discussion in Sect. 2
which is summarized in Fig. 2). Since the nucleation of the
bubble just changes f , but not λ, the transitions between dS,
Minkowski, and AdS space are not obstructed by the descent
of the KK tower.

These features are evident in the thin wall approximation,
in which the geometry inside (or outside) the bubble is well
described by (Euclidean) (A)dS space, except for the narrow
region near the bubble wall. Moreover, we assume that the
4-dimensional part of the metric (2) describing the geometry
inside the bubble respects the spatial isotropy thus can be
written as

gμνdx
μdxν = dξ2 + a(ξ)2d
2

3, (27)

where we use the Euclidean signature since the bubble is
an instanton solution. In addition, φ depends only on ξ . We
also expect that the metric describing the region outside the

bubble can be written in the same form, but �4 becomes dif-
ferent as the flux outside and inside the bubble are different.
Restricting our attention to the region inside the bubble, the
action is given by

Sin
E =

∫
d4x

√
g

[
− M2

4

2
R + 1

2
gi j∂iφ∂ jφ + V (φ)

]

= 2π2
∫

dξ

[
3M2

4 (a2a′′ + aa′2 − a)

+ a3
(

1

2
φ′2 + V (φ)

)]
, (28)

where the prime indicates the derivative with respect to ξ .
Thus, a(ξ) and φ(ξ) satisfy

3(a′(ξ)
2 − 1)

a(ξ)2 = 1

M2
4

(φ′(ξ)2

2
− V (φ)

)

φ(ξ)′′ + 3
a′(ξ)

a(ξ)
φ′(ξ) = dV (φ)

dφ
.

(29)

In the thin wall approximation, the geometry inside the
bubble is more or less well described by the solution φ =
〈R〉 =constant (hence V (φ) = V (〈R〉)), i.e., the stabilized
radion. Depending on the sign of V (〈R〉), a(ξ) describes
the Euclidean version of AdS (V (〈R〉) < 0), Minkowski
(V (〈R〉) = 0), and dS (V (〈R〉) > 0) space, respec-
tively. Since |V (〈R〉)| = 3M2

4 H2, a(ξ) in the AdS vacuum
(V (〈R〉 < 0) is given by

a(ξ) = 1

H
sinh[H(ξ − ξ0)], (30)

whereas a(ξ) in the dS vacuum (V (〈R〉 > 0) is given by

a(ξ) = 1

H
cos[H(ξ − ξ0)]. (31)

From (21), H can be written as

H = 1

3〈R〉
∣∣∣ λ

π
M4〈R〉 − 1

∣∣∣1/2
(32)

in both cases. For Euclidean Minkowski space (V (〈R〉) = 0),
we just have a(ξ) = ξ .

The action for the whole region, which includes the bub-
ble wall as well as the regions inside and outside the bubble,
gives the profiles of a(ξ) and φ(ξ) describing the interpo-
lation between two different vacua. Even though both a(ξ)

and φ(ξ) are continuous over the whole range of ξ , their
derivatives a′(ξ) and φ′(ξ) show discontinuity at the bubble
wall in the thin wall approximation. This is well explored
in [31], which is also reviewed in Appendix A to make the
discussion self-contained. Moreover, whereas we are mainly
interested in so-called the ‘down tunnelling’, the nucleation
of the bubble with the smaller value of �4, there can be the
‘up tunnelling’, the nucleation of the bubble with the larger
value of �4. Regarding this, we note that Euclidean dS space
is compact, leading to the finite value of the Euclidean action
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Fig. 8 The qualitative profile of V (φ(ξ)) in the sequential nucleation
of bubbles. The flux changing black 2-branes are located at ξ1, ξ2, and
ξ3, respectively, and the value of �4 in each bubble, i.e., the region
between branes, is almost constant in the thin wall approximation

SE even if the integration is taken over the region outside
the bubble. In contrast, Euclidean AdS or Minkowski space
is noncompact, hence SE for the region outside the bubble
diverges. As pointed out in [32] (and also [54]), such a differ-
ence prevents the transition from Minkowski or AdS space to
the vacuum with larger �4. This is also reviewed in Appendix
A.

When the sequential nucleation of the bubbles takes place,
the change in �4 in the moduli space (determined by the
value of 〈φ〉) also can be realized in the real coordinate space
along ξ (see Fig. 8). In particular, consider the transition
toward the nothing, the AdS vacuum with H = ∞, along
the direction of ξ → 0 through the sequential nucleation of
the bubbles. To describe this, suppose the geometry before
the nucleation of the bubble is given by AdS space and the
bubble walls are located at ξ1, ξ2, · · · , respectively. Then �4

can get smaller through the sequential nucleation of the bub-
bles until it reaches the negative infinity, i.e., the ‘nothing’.4

Denoting the value of H in the region ξ ∈ (ξi , ξi+1) by Hi ,
one can infer from (30) that a(ξ) in this region is written as

ai (ξ) = 1

Hi
sinh[Hi (ξ − ξ i0)]. (33)

We note that in the bubble of nothing, |a(ξ)| diverges since
H → ∞. Ignoring the profile of a(ξ) at the bubble wall
which is assumed to be very narrow, it is a good approxi-
mation to require that a(ξ) continuously changes from ai to

4 In fact, the production of the bubble with the larger value of �4 in AdS
space is suppressed. In particular, As mentioned above, the nucleation
of the small bubble with the larger value of �4 in the noncompact
Euclidean AdS space is forbidden, as argued in [32] and also reviewed
in Appendix A.

Fig. 9 Profile of a(ξ) describing the transition between AdS spaces,
where H increases (hence �4(< 0) decreases) discontinuously along
the direction of ξ → 0: the values of H are taken to be 5 for 1 < ξ < 2,
3 for 2 < ξ < 3, 1 for 3 < ξ < 4, and 0.1 for 4 < ξ < 5, respectively,
and ξ4

0 = 0.2

ai+1 at ξi+1, which gives

ξ i0 = ξi+1 − 1

Hi
sinh−1

[ Hi

Hi+1
sinh[Hi+1(ξi+1 − ξ i+1

0 )]
]
.

(34)

In this way, every value of ξ i0 is determined by the value of ξ i0
in the region far outside the bubble. Example of the profile
of a(ξ) is shown in Fig. 9.

When the spacetime geometry before the bubble nucle-
ation is given by dS space, ai (ξ) in the dS region (the region
in which �4 > 0) is

ai (ξ) = 1

Hi
cos[Hi (ξ − ξ i0)]. (35)

This shows that in the dS region, a(ξ) strongly oscillates for
large value of H , but as we have seen in Sect. 2, H is restricted

to be smaller than M4λ/(6
√

π) at which 3 f 2λ

32π2 = 1 is satis-
fied (see (20)) since otherwise the radion is not stabilized
by the runaway behavior of the potential. This is remarkable
because the obstruction of the radion stabilization is natu-
rally connected to that of the semiclassical approximation:
when H > M4 the period of a(ξ) is smaller than M−1

4 but
in this case H is not fixed by the radion stabilization. For
the transition between two dS spaces at ξi+1, the continuity
between ai and ai+1 leads to

ξ i0 = ξi+1 − 1

Hi
cos−1

[
Hi

Hi+1
cos[Hi+1(ξi+1 − ξ i+1

0 )]
]

.

(36)
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Fig. 10 Profile of a(ξ) describing the transition from dS to AdS space
(at ξ = 3), where �4 decreases discontinuously along the direction of
ξ → 0: the values of H are taken to be 3 for 1 < ξ < 2 (AdS), 1 for
2 < ξ < 3 (AdS), 3 for 3 < ξ < 4 (dS), and 10 for 4 < ξ < 5 (dS),
respectively, and ξ4

0 = 0.2

On the other hand, for the transition from dS to AdS space
at ξ = ξi+1, the continuity condition becomes

ξ i0 = ξi+1 − 1

Hi
sinh−1

[
Hi

Hi+1
cos[Hi+1(ξi+1 − ξ i+1

0 )]
]

.

(37)

An example of the transition from dS to AdS space through
the nucleation of the bubble is shown in Fig. 10.

As we have investigated, the transition between vacua
through the bubble nucleation connects spacetime with any
allowed value of �4 to the nothing. Indeed, since the nothing
is the AdS vacuum with �4 = −∞, the successful transition
from the dS vacuum to the nothing requires that the transition
from the dS to the AdS or the Minkowski vacuum takes place
without obstruction by the descent of the KK tower. Regard-
ing this, we recall that the descent of the KK tower becomes

problematic when the combination 3 f 2λ

32π2 is kept fixed and the
limit λ → 0 is taken. In our case, in contrast, the transition
takes place by changing f , while λ remains fixed so the tran-
sition from the dS vacuum to the nothing is not obstructed
by the descent of the KK tower. If we can realize the UV
completion which gives rise to the simultaneous changes in
f and λ with f 2λ fixed, dS space may not be connected to
the nothing through the bubble nucleation since �4 does not
change the sign under varying λ and the KK tower descends
from UV in the limit λ → 0. Then we may say that the
realization of the metastable dS vacuum is a counterexample
of the cobordism conjecture or the metastable dS vacuum
cannot exist according to the cobordism conjecture.

5 Conclusions

The 6-dimensional Einstein–Maxwell theory compactified
on S2 contains essential ingredients of the moduli stabi-
lization like the curvature of the extra dimensions, the flux
through the extra dimensions, and the uplift, which also can
be found in the string compactification. This motivates us to
investigate the swampland conjectures concerning the mod-
uli stabilization in the context of the 6-dimensional Einstein–
Maxwell theory. In this article, we first consider the scale
separation and the scaling law, both of which are based on
the distance conjecture. We found that in two cases, the AdS
vacuum with the vanishing uplift (λ = 0) and any type of
the vacuum with the fixed value of the combination f 2λ,
the KK mass scale and the value of �4 obey the scaling
law. This indicates that, as claimed by the AdS/dS distance
conjecture, (A)dS space with the tiny value of �4 is not inter-
polated to the Minkowski space, but is close to the swamp-
land in which the KK tower descends from UV. Moreover,
the 6-dimensional Einstein–Maxwell theory allows the tran-
sition between vacua through the nucleation of the bubble.
Of the particular interest is the case of �4 = −∞, which
was claimed to be identified with the ‘nothing’. According
to the cobordism conjecture, the background geometry con-
sistent with quantum gravity can smoothly evolve into the
nothing at which the compact S2 shrinks to zero size. Since
the combination f 2λ is not fixed in this case, that is, the flux
is changed by the bubble wall but the uplift remains fixed,
the transition from the metastable dS vacuum to the noth-
ing is not obstructed by the descent of the KK tower. This
implies that the metastable dS vacuum in the 6-dimensional
Einstein–Maxwell is not excluded by the cobordism conjec-
ture.

It is quite remarkable that whether the given vacuum
belongs to the landscape or the swampland crucially depends
on the relation between parameters representing different
ingredients of the moduli (radion in this case) potential.
That is, if the flux f and the uplift λ are independent, the
metastable dS vacuum is not obstructed by the descent of
the KK tower and is cobordant to the nothing. Then the dis-
tance and the cobordism conjecture cannot be used to claim
that the metastable dS vacuum belongs to the swampland. In
contrast, the opposite conclusion can be drawn if f and λ are
no longer independent, but constrained by f 2λ=(constant).
Since such a relation can be explained in the UV completion,
this may suggest that the EFT alone is not sufficient to distin-
guish the landscape from the swampland, but the appropriate
UV completion needs to be taken into account.
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Appendix A: Details of the bubble solution

In the thin wall approximation, the value of �4 inside (or out-
side) the bubble can be approximated by a constant unless the
narrow region near the bubble wall is considered. Thus, the
geometry of the region inside (or outside) the bubble is well
described by Euclidean (A)dS or Minkowski space, depend-
ing on the sign of �4. Meanwhile, at the bubble wall, the
black 2-brane which changes the flux, hence �4, is located.
Then even though a(ξ) and φ(ξ) are continuous at the bubble
wall, their derivatives are not, as studied in [31]. To see this
in detail, we consider the action describing the whole region,
i.e., the bubble wall as well as the regions inside and outside
the bubble:

SE = Sin
E + Sbrane

E + Sout
E

= 2π2
∫ ξ

0
dξ

[
a3

(
1

2
φ′2 + V

)

+ 3M2
4

(
d

dξ
(a2a′) − aa′2 − a

)]

+ 2π2a3T e
− 3

2
φ
M4

∣∣∣∣
ξ

+ 2π2
∫ ∞

ξ

dξ

[
a3

(
1

2
φ′2 + V

)

+ 3M2
4

(
d

dξ
(a2a′) − aa′2 − a

)]
, (A.1)

where ξ is the location of the bubble wall, and we included
the DBI action for the black 2-brane. The brane tension
is given by T = 2√

3
(ng6)M2

6 (n: the number of branes),
which is identified with the ADM mass of the brane solu-
tion (26) (see Eq. (2.6) of [55]). Under the variations δa
and δφ, δSin

E and δSout
E provide the surface term contain-

ing a′ and φ′. That is, under δφ the kinetic term gives

2π2a3φ′δφ. Meanwhile, under δa the Einstein–Hilbert term
gives 12π2M2

4aa
′δa + 12π2M2

4a
2δa′ = d

dξ
(6π2M2

4a
2δa)

from the first surface term and −12π2M2
4aa

′δa from the
second term, respectively. The former, the surface term of
the surface term is defined on the boundary of the bound-
ary which is empty, so we may ignore it. Identifying the
sum of these variations with the variation of the brane term,

(6π2a2δa − 3π2a3 δφ
M4

)T e
− 3

2
φ
M4 , we obtain

�φ′ ≡ φ′
out − φ′

in = −3

2

T

M4
e
− 3

2
φ
M4 ,

�a′ ≡ a′
out − a′

in = − T

2M2 ae
− 3

2
φ
M4 .

(A.2)

In particular, the second relation gives

�
(1

2
φ′2 − V

)
= M2

4 �
3a′2 − 1

a2 = M2
4

6a′

a
�a

= −3T
a′

a
e
− 3

2
φ
M4 , (A.3)

where a′ can be taken to be the mean value between a′(ξ +ε)

and a′(ξ − ε) (ε  1).
On the other hand, the transition between vacua through

the nucleation of the bubble includes the ‘up tunnelling’, in
which the value of �4 inside the bubble is larger than that out-
side the bubble. The qualitative feature of the up tunnelling
rate crucially depends on the sign of �4 outside the bubble.
In particular, if the geometry outside the bubble is AdS or
Minkowski space, the Euclidean version of which is non-
compact, the up tunnelling rate vanishes [32]. To see this,
consider two vacua, say, A vacuum and B vacuum where
the value of �4 in A vacuum is larger than that in B vac-
uum. Then the tunnelling rate from A vacuum to B vacuum
satisfies [54]

�A→B ∼ e−(SE (instanton)−SE (A)). (A.4)

At the same time, there can be the ‘up tunnelling’, the transi-
tion from B vacuum to A vacuum, the rate of which is given
by

�B→A ∼ e−(SE (instanton)−SE (B)). (A.5)

Here the instanton action SE (instanton) in �A→B is the same
as that in �B→A and finite. Now, SE (A) and SE (B) can be
obtained by putting the solutions to the equations of motion
(29) into (28). Replacing φ′2/2 by V + 3M2

4 [(a′2 − 1)/a2],
we obtain [56]

Sin
E = 4π2

∫
dξ(a3V − 3M2

4a) + 6π2M2
4

∫
dξ

d

dξ
(a2a′),

(A.6)

where the last surface term will not be considered since we
are interested in the behaviors of a(ξ) and φ(ξ) in the bulk.
The first equation of motion in (29) gives the relation
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da = dξ

√
1 − V

3M2
4

a2, (A.7)

from which the first integral in (A.6) becomes

Sin
E = −12π2M2

4

∫
daa

√
1 − V

3M2
4

a2

= 12π2 M
2
4

V

(
1 − V

3M2
4

a2
)3/2∣∣∣a f

ai
, (A.8)

where the surface term is omitted. Moreover, Sout
E , the action

for the region outside the bubble is also given by the same
expression. Therefore, if the geometry of the region outside
the bubble is AdS space, V < 0 and a f extends to infinity,
thus Sout

E (AdS) = −∞. Then the ratio of the transition rates
�B→A/�A→B = eSE (B)−SE (A) becomes zero if the geom-
etry of B vacuum (outside the bubble wall) is AdS space.
The same conclusion can be drawn when the geometry of B
vacuum is Minkowski space, in which V = 0 and a = ξ ,
thus Sout

E = −6π2M2
4 (a2

f − a2
i ) with a f = ∞. This shows

that the nucleation of the bubble of the lager value of �4 in
AdS or Minkowski space is forbidden.
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