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Abstract

We conjecture the inversion relations for thermalized solvable interaction round the face (IRF) two di-
mensional lattice models. We base ourselves on an ansatz for the Baxterization described in the 90’s. We 
solve these inversion relations in the four main regimes of the models, to give the free energy of the models, 
in these regimes. We use the method of Baxter in the calculation of the free energy of the hard hexagon 
model. We believe these results to be quite general, shared by most of the known IRF models. Our results 
apply equally well to solvable vertex models. Using the expression for the free energy we calculate the crit-
ical exponent α, and from it the dimension of the perturbing (thermal) operator in the fixed point conformal 
field theory (CFT). We show that it matches either the coset O/G or G/O, where O is the original CFT 
used to define the model and G is some unknown CFT, depending on the regime. This agrees with known 
examples of such models by Huse and Jimbo et al.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Two dimensional solvable lattice models offer a rich ground to study such phenomena as phase 
transitions, universality, integrability and mathematical applications such as knot theory. For re-
views see [1,2]. These models also enjoy a strong connection with two dimensional conformal 
quantum field theory (CFT). See, e.g., the reviews [3,4].

Some time ago we introduced a method to construct solvable interaction round the face (IRF) 
from the data of an arbitrary CFT [5]. We call such models IRF(O, h, v) where O is the defining 
CFT and h and v are two primary fields in the theory.
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A long standing question is what is the fixed point CFT of the so defined models and how it 
is related to the original CFT O. We solve this problem here by calculating the free energy of 
the thermalized models. From this we deduce the critical exponent α and the dimension of the 
perturbing field in the fixed point CFT.

To compute the free energy we first need to thermalize the trigonometric ansatz of [5]. This 
we do by calculating the two inversion relations for the general IRF models. Then we thermalize 
the models by replacing the sin(u) function in the inversion relations with the function θ1(u, q), 
where θ1 is the standard elliptic function. This agrees with all the models where the off–critical 
Boltzmann weights are known and we conjecture that it is true in general. Thus we are in a 
position to solve exactly models for which the Boltzmann weights are not explicitly known.

We find that in the four main regimes of the IRF model the fixed point CFT is given by a coset 
of the original theory. Namely, in regimes III and IV the fixed point CFT is consistent with the 
coset model G/O where G is some unknown CFT. In regimes I and II, the fixed point CFT is 
O/G.

This fixed point RCFT is known exactly, in some cases. For example, in the Andrews–
Baxter–Forrester model (ABF) [6], which is IRF(SU(2)k, [1], [1]), the fixed point field the-
ory was determined to be the unitary minimal models, which are the coset SU(2)k−1 ×
SU(2)1/SU(2)k , in regimes III and IV [7]. In regimes I and II the critical CFT was iden-
tified as the parafermionic field theory SU(2)k/U(1), which are the Fateev–Fateev model 
[8], by Jimbo et al. [9]. Indeed, this agrees with our general results. For the case of O =
SU(N)k , and h = v = fundamental, the fixed point field theory in regime III was shown to 
be SU(N)k−1 × SU(N)1/SU(N)k by Jimbo et al. [10]. Again agreeing with our result for the 
fixed point CFT.

To compute the free energy, in all the four regimes, we follow the method used by Baxter [1]
in the hard hexagon model. Our results for the free energies agree with the hard hexagon case 
for O = SU(2)3, in the four regimes. In the last section, we discuss how our results for the free 
energy also agree with the eight vertex model and the ABF model.

2. The inversion relations

We wish to study IRF lattice models based on the braiding matrix of a rational conformal 
field theory (CFT). We fix a conformal field theory O and fixed primary fields in this theory h
and v. The IRF model is denoted as IRF(O, h, v) following ref. [5], defined on a square lattice. 
The field h governs the horizontal admissibility condition and the field v the vertical one. We 
assume that the boundary conditions are periodic. Let Bi be the braiding matrix in the RCFT 
which exchanges the field h with the field v [11]. We define the operator

< a1, a2, . . . , an|Bi |a′
1, a

′
2, . . . , a

′
n >= B

(
ai−1 ai

a′
i ai+1

) n∏
m=1
m�=i

δam,a′
m
, (2.1)

where the matrix B is the braiding matrix for the fields h and v, and it obeys the braiding rela-
tions, which are for h = v,

BiBi+1Bi = Bi+1BiBi+1, BiBj = BjBi if |i − j | > 1. (2.2)

The variables on the lattice am and a′ are some primary fields in the RCFT O.
m
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From the braiding matrix one can define the projectors,

P b
i =

n∏
a=1
a �=b

Bi − λa

λb − λa

, (2.3)

where n is the number of eigenvalues of Bi (called the number of blocks) and λa are the eigen-
values. The projection operators obey the relations,

P a
i P b

i = δa,bP
a
i ,

n∑
a=1

P a
i = 1i ,

n∑
a=1

λaP
a
i = Bi, (2.4)

where 1i denotes the unit matrix.
We define the fusion products of the field h as,

h · h =
n−1∑
a=0

ψa, (2.5)

and

h · h̄ =
n−1∑
a=0

ψ̃a, (2.6)

where h̄ is the complex conjugate field of h, n is the number of blocks and the order of the 
fields is set in a certain way, which allows for the Yang–Baxter equation of the model. The order 
of the fields appears to be that ψa+1 is contained in the fusion product of ψa with the adjoint 
representation, and similarly for ψ̃a . The eigenvalues of Bi are [11]

λa = εae
πi(2	h−	a), (2.7)

where εa = ±1 according to whether the product is symmetric or anti–symmetric. Here 	a is the 
dimension of the field ψa [4]. The eigenvalues are all distinct in all the models that we discuss. 
(The fact that the number of blocks is the same in both eqs. (2.6), (2.7) is seen by computing the 
coefficient of the unit field in the fusion product h · h · h̄ · h̄ in two ways.) In particular, we set 
ψ̃0 = [1] (the unit primary field) and ψ̃1 = [adjoint] (the adjoint representation, assuming some 
quantum group structure). Namely, assuming that the CFT O is a WZW model defined with the 
group G [4] then the field ψ̃1 is the primary field transforming in the adjoint representation of G. 
We denote the dimension of ψ̃a by 	̃a . We define the crossing parameters as,

ζa = π

2
(	a+1 − 	a), (2.8)

and

ζ̃a = π

2
(	̃a+1 − 	̃a), (2.9)

where a = 0, 1, . . . , n − 2. We note that ζa, ζ̃a < π/2, which will be important later. This is since 
we assue that 	a, 	̃a < 1.

In ref. [5] an ansatz for the trigonometric solution of the Yang Baxter equation (YBE) was 
given. It is

R
h,h
i (u) =

n−1∑
fa(u)P a

i , (2.10)

a=0
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where

fa(u) =
⎡
⎣ a∏

j=1

sin(ζj−1 − u)

⎤
⎦

⎡
⎣ n−1∏

j=a+1

sin(ζj−1 + u)

⎤
⎦

/⎡
⎣n−1∏

j=1

sin(ζj−1)

⎤
⎦ , (2.11)

where a = 0, 1, . . . , n − 1. Our ansatz is that Rh,h
i solves the Yang Baxter equation,

Ri+1(u)Ri(u + v)Ri+1(v) = Ri(v)Ri+1(u + v)Ri(u), (2.12)

where we denoted by Ri(u) instead of Rh,h
i (u), for shortness. Ri(u) is a trigonometric solution. 

Note that the YBE, eq. (2.12), holds only for one particular order of the fields in eqs. (2.6), (2.7), 

as was discussed earlier. Similarly, we define Rh,h̄
i (u) by substituting the crossing parameters ζ̃a

instead of ζa and substituting the projection operators of the braiding matrix of h with h̄. Rh,h̄
i (u)

also obeys the YBE,

R
h,h̄
i (u)R

h,h̄
i+1(u + v)R

h,h
i (v) = R

h,h
i+1(v)R

h,h̄
i (u + v)R

h,h̄
i+1(u). (2.13)

The two YBE equations (2.12), (2.13) imply that the transfer matrices for Rh,h
i (u) commute with

each other for different spectral parameters u and the same for Rh,h̄
i (u) [1].

The R matrices obey the first inversion relation which follows from eqs. (2.10), (2.11),

R
h,h
i (u)R

h,h
i (−u) = ρ(u)ρ(−u)1i , (2.14)

and

R
h,h̄
i (u)R

h,h̄
i (−u) = ρ̃(u)ρ̃(−u)1i , (2.15)

where

ρ(u) =
n−2∏
r=0

sin(ζr − u)/ sin(ζr ), (2.16)

and

ρ̃(u) =
n−2∏
r=0

sin(ζ̃r − u)/ sin(ζr ). (2.17)

The second inversion relation is crossing. We shall denote again Ri(u) by its matrix form. 
Then the crossing relation is, (which is a conjecture),

Rh,h̄

(
d c

a b

)
(u) =

(
ψaψc

ψbψd

) 1
2

Rh,h

(
a d

b c

)
(λ − u), (2.18)

where λ is the crossing parameter,

λ = ζ̃0 = π	adjoint/2, (2.19)

where we used eq. (2.8). The crossing multipliers are

ψa = Sa0/S00, (2.20)

where S is the modular matrix [4]. The fusion products, eqs. (2.6), (2.7) are related to the modular 
matrix by Verlinde formula. See e.g. [4].
4



D. Gepner Nuclear Physics B 971 (2021) 115532
We wish to thermalize now the IRF model. We do not know how to thermalize the Boltzmann 
weights. So instead we will thermalize the inversion relations. We define the theta function,

θ1(u, q2) = sinu

∞∏
n=1

(1 − 2q2n cos 2u + q4n)(1 − q2n). (2.21)

(This definition differs from the standard one by a factor of 2q1/4, which is irrelevant since we 
will only encounter ratios of theta functions.)

Now we conjecture that the thermalization of the first inversion relation, eq. (2.14), is given by 
replacing the sin by the theta function θ1. We denote θ1(u, q2) by θ1(u). Then, the thermalization 
of the R matrix is

R
h,h
i (u)R

h,h
i (−u) = ρ(u)ρ(−u)1i , (2.22)

where

ρ(u) =
n−2∏
r=0

θ1(ζr − u)/θ1(ζr ). (2.23)

Similarly, we thermalize the second relation, eqs. (2.15), (2.18),

R
h,h̄
i (u)R

h,h̄
i (−u) = ρ̃(u)ρ̃(−u)1i , (2.24)

where

ρ̃(u) =
n−2∏
r=0

θ1(ζ̃r − u)/θ1(ζr ). (2.25)

Finally, the crossing relation eq. (2.18) remains the same for general q except for the crossing 
multiplier, eq. (2.20), whose explicit expression we will not need here. Note that for q = 0 (the 
critical limit), θ1(u) = sinu so we get the same inversion relations as before.

These conjectures can be indeed verified for many models for which we know the explicit 
Boltzmann weights, e.g., [1,2].

Next, we wish to define the free energy of the model. It is given by

κ = lim
N→∞Z1/N , (2.26)

where N is the number of lattice sites and Z is the partition function calculated with Rh,h. The 
free energy is given as usual by,

F = −kBT logκ, (2.27)

where kB is Boltzmann constant and T is the temperature.
Now, since the transfer matrices commute for different spectral parameters u, the inversion 

relations translate to equations of κ(u) (fixing some q),

κ(u)κ(−u) = ρ(u)ρ(−u), (2.28)

and

κ(λ + u)κ(λ − u) = ρ̃(u)ρ̃(−u). (2.29)
5
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In deriving the last equation, we used the fact that the crossing multipliers cancel when calculat-
ing the partition function. We also used in an essential way the fact the boundary conditions are 
periodic [1].

Actually, the inversion relations, eqs. (2.28), (2.27), remain the same under the substitution 
ζi → −ζi , or ζ̃i → −ζ̃i . Thus, we take instead of the crossing relations their absolute values, 
ζi → |ζi | and ζ̃i → |ζ̃i |.

We also find it convenient to change the second inversion relation by substituting u → λ − u. 
The second inversion relation then becomes,

κ(u)κ(2λ − u) =
n−2∏
r=0

[
θ1(ζ̃r − λ + u)θ1(ζ̃r + λ − u)

]
. (2.30)

3. Regimes III

Our aim now is to solve the inversion relations eqs. (2.28), (2.30) and to calculate the free 
energy. We assume first that the model is in regime III. This is defined by

0 < q2 < 1, (3.1)

0 < u < d, (3.2)

where d = mini ζi , ζ̃i , and q2 = exp(−ε). Here ε is a parameter. It is convenient to use the 
modular transformation of the theta function. This is defined by [1]

θ1(u, e−ε) = 1
2

(
2π

ε

) 1
2

exp

[
ε

8
− π2

2ε
+ 2u(π − u)

ε

]
f (e−4πu/ε, e−4π2/ε), (3.3)

where f is defined by,

f (w,q) =
∞∏

n=1

(1 − qn−1w)(1 − qnw−1)(1 − qn). (3.4)

We find it convenient to redefine,

κ̃(u) = e2δu/εe2(n−1)u2/εκ(u), (3.5)

where

δ = 1

λ

n−2∑
r=0

[ζr (π − ζr ) − πζ̃r ]. (3.6)

The dependence on n is essential to simplify the inversion relations. Then, the first inversion 
relation, eq. (2.28), (2.23), becomes,

κ̃(w)κ̃(w−1) = η(w), (3.7)

where

η(w) =
n−2∏
r=0

f (zrw)f (zrw
−1)

f (zr )2 , (3.8)

where
6
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w = exp(−4πu/ε), (3.9)

zi = exp(−4πζi/ε), (3.10)

z̃i = exp(−4πζ̃i/ε), (3.11)

q̃ = e−4π2/ε, (3.12)

and we denoted for brevity f (w) for f (w, q̃). The second inversion relation, eq. (2.30), becomes,

κ̃(w)κ̃(x2w−1) = η̃(w), (3.13)

where

x = exp(−4πλ/ε) = z̃0, (3.14)

and

η̃(w) =
n−2∏
r=0

f (z̃rw/x)f (z̃rxw−1)

f (zr )2 . (3.15)

We wish to solve now for the free energy, using the two inversion relations. For this purpose 
we assume that log(k̃(w)) is analytic in an annulus containing the point w = 1 and the point 
w = x. We analytically continue k(u) to −λ < u < 0 and to 0 < u < λ. This assumption is 
justified by considering explicit models, e.g., the hard hexagon model [1].

So we expand,

log[κ̃(w)] =
∞∑

m=−∞
cmwm, (3.16)

where the summation is convergent in an annulus containing 1 and x. In the neighborhood of 1, 
eqs. (3.7), (3.8), gives,

logη = d0 +
∞∑

m=1

dm(wm + w−m), (3.17)

where m > 0,

d0 =
n−2∑
r=0

−2 log[f (zr )/φ(q̃)], (3.18)

where

φ(q̃) =
∞∏

m=1

(1 − q̃m), (3.19)

and

dm = −
n−2∑
r=0

(zm
r + q̃mz−m

r )/[m(1 − q̃m)]. (3.20)

We define d−m = dm for m > 0. Similarly, the second inversion relation, eqs. (3.13)–(3.15), 
becomes, for m �= 0,
7
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log η̃ =
∞∑

m=−∞
d ′
mwm, (3.21)

where

d ′
0 = d0, (3.22)

d ′
m = −

n−2∑
r=0

(z̃m
r /xm + q̃mz̃−m

r x−m)/[m(1 − q̃m)]. (3.23)

Taking the logarithms of eqs. (3.13), (3.7) and equating coefficients, we find,

cm + c−m = dm, (3.24)

cm + x−2mc−m = d ′
m, (3.25)

for m ≥ 0. The solution of these two equations is,

c0 = 1
2d0, (3.26)

cm = (−x2md ′
m + dm)/(1 − x2m), (3.27)

for m �= 0. This completes the calculation of the free energy in regime III. Indeed

log κ̃(w) =
∞∑

m=−∞
cmwm,

converges in an annulus containing the points 1 and x, as we assumed. We assume that |ζ̃r | ≤ λ

always, for all r , which is needed to show convergence. We checked this in many models, but we 
do not have a general proof for this fact.

We wish to calculate now the critical exponent α. This is defined as the singularity of the free 
energy,

κsingular ∝ |T − Tc|2−α, (3.28)

where Tc is the critical temperature. We have that q̃ = exp(−4π2/ε). Since cm is divided by 
1 − x2m this means that it becomes a theta function at the modulus x2, when summed back. 
Since λ = π	̃0/2, eq. (2.9), we may write this modulus as

x2 = q̃	̃0 . (3.29)

Under the inverse modulus transformation, eq. (3.3), x2 becomes,

(q2)1/	̃0 . (3.30)

Since q2 ∝ |T − Tc| this implies that

κsingular ∝ |T − Tc|1/	̃0 , (3.31)

and so,

2 − α = 1

	̃0
. (3.32)

The dimension of the perturbing operator at the critical conformal field theory is given by [3],
8
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	p = 1 − α

2 − α
= 1 − 	̃0. (3.33)

Now, since we assume that ψ̃1 is the adjoint operator, in quantum group models, the dimension 
of the perturbing field is seen to be,

	p = 1 − 	adjoint, (3.34)

where 	̃0 = 	adjoint.1 Such a field appears in the coset theory,

C = G
O , (3.35)

where O is the original CFT used to define the model and G is some CFT model [4], where we 
take the currents in G and the adjoint representation in O. Thus, we conjecture that the fixed point 
of Regime III is given by the coset C. In many cases where the fixed point theory was calculated 
explicitly, this was indeed shown to be the case. For example, the RCFT O of the ABF model [6]
is SU(2)k WZW model. The fixed point in Regime III is the k + 1 minimal model [7], defined 
by the coset

C = SU(2)k−1 × SU(2)1

SU(2)k
, (3.36)

consistent with eq. (3.35).

4. Regime II

Let us consider regime II. This is defined by

0 < q < 1, 0 > u > −d. (4.1)

The first inversion relation remains the same, eqs. (2.28), (2.23). The second inversion relation 
becomes,

κ(u)κ(2λ − π − u) =
n−2∏
r=0

θ1(ζ̃r − λ + u)θ1(ζ̃r + λ − π − u)/θ1(ζr )
2, (4.2)

where the theta function is invariant under a shift by π . We define,

κ̃(u) = eδu/εe2(n−1)u2/εκ(u), (4.3)

where

δ =
n−2∑
r=0

[
2π2 − 4πζ̃r + 4ζr (π − ζr )

]/
(2λ − π). (4.4)

The dependence on n is essential to simplify the inversion relations. Then the second inversion 
relation, eq. (4.2), becomes,

κ̃(w)κ̃(w2
0/w) = η̃(w) =

n−2∏
r=0

[
f (z̃rx

−1w)f (z̃rxq̃−1w−1)/f (zr )
2
]
, (4.5)

1 An exception to this is the hard hexagon model, where κ(w) is not singular in regime III, as a result of cancellations
[1].
9
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where

w2
0 = q̃−1x2, (4.6)

where q̃ , x, zr and z̃r are given by eqs. (3.12), (3.14), (3.10), (3.11). We assume now that

log[wμκ̃(w)] (4.7)

is analytic in an annulus a < |w| < b containing the points w = 1 and w = w0. This is an analytic 
continuation of w to w < 1 and w > w0 even though the regime is defined for a subset of these 
values.

Then we can calculate

log η̃(w) =
∞∑

m=−∞
d ′
mwm, (4.8)

and

d ′
m =

n−2∑
r=0

[z̃m
r x−m + q̃−m(z̃rxq̃−1)−m]/[m(1 − q̃−m)], (4.9)

d ′
0 = d0 +

n−2∑
r=0

log(z̃2
r q̃

−1). (4.10)

Thus,

μ = (d ′
0 − d0)/(2 logw0) = 	̃n−1

	adjoint
, (4.11)

and

log[wμκ̃(w)] =
∞∑

m=−∞
cmwm, (4.12)

where

cm = (dm − w2m
0 d ′

m)/(1 − w2m
0 ), (4.13)

for m �= 0, and

c0 = 1
2d0. (4.14)

Indeed the series, eq. (4.12), for κ̃ converges in an annulus containing w = 1 and w = w0.
The free energy log[wμκ̃(w)] is given by the series

cm = am/(1 − w−2m
0 ), (4.15)

where am is some function, defied in eq. (4.13). Thus it is given by a theta function with the 
modulus w−2

0 which is

p = w−2
0 = e−4π2(1−	̃0)/ε = q̃1−	̃0 , (4.16)

under the inverse modulus transformation, as in eq. (3.3), we find

κsingular = (q2)1/(1−	̃0), (4.17)
10
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where q2 is proportional to |T − Tc|. Thus we find for the exponent α,

2 − α = 1/(1 − 	̃0). (4.18)

For a quantum group model, where O is a WZW model, 	̃0 is the dimension of the adjoint 
representation, conjecturally. Thus the dimension of the perturbing thermal operator is

	p = 1 − α

2 − α
= 	̃0 = 	adjoint. (4.19)

An operator with such a dimension appears in the Coset model,

C = O
G , (4.20)

where O is the RCFT used to define the model and G is some CFT model [4]. Thus we conjecture 
that C is the fixed point theory in regime II. The perturbing operator is the adjoint representation 
in O and the unit in G. For example, for the ABF model in regime II, where O is SU(2)k WZW 
model, the fixed point theory is the parafermionic theory [9],

C = SU(2)k

U(1)
. (4.21)

5. Regime IV

Let us get now to regimes IV and I. Regime IV is defined by

−1 < q2 < 0, 0 < u < d, (5.1)

where d = mini ζi , ζ̃i . We use the inverse modulus [1],

θ1(u,−e−ε) = − 1
2

(π

ε

) 1
2 exp

[
ε

8
− π2

8ε
− u(2u + π)

ε

]
f (e2πu/ε,−e−π2/ε), (5.2)

where, as before,

f (w,q) =
∞∏

n=1

(1 − qn−1w)(1 − qnw−1)(1 − qn). (5.3)

We define

q2 = − exp(−ε), q̃ = −e−π2/ε, (5.4)

x = − exp(−πλ/ε), zr = − exp(−πζr/ε), z̃r = − exp(−πζ̃r/ε), (5.5)

w = exp(2πu/ε), (5.6)

where the crossing parameters were defined in eqs. (2.8), (2.9).
In regime IV we write the two inversion relations as

κ(u)κ(−u) =
n−2∏
r=0

[
θ1(−ζr − u)θ1(−ζr + u)/θ1(−ζr )

2
]
, (5.7)

κ(u)κ(2λ − u) =
n−2∏ [

θ1(ζ̃r − λ + u)θ1(ζ̃r + λ − u)/θ1(−ζr )
2
]
, (5.8)
r=0

11
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which are eqs. (2.28), (2.30). We define

κ̃(u) = eδu/(2λε)e2(n−1)u2/εκ(u), (5.9)

where

δ =
n−2∑
r=0

2πζ̃r + 2ζr(π − 2ζr ), (5.10)

then, the first inversion relation for regime IV becomes,

κ̃(w)κ̃(w−1) = η(w) =
n−2∏
r=0

f (z2
rw)f (z2

r /w)

f (z2
r )

2 . (5.11)

This also holds for regime I (see section 6). The second inversion relation, for regime IV, be-
comes,

κ̃(w)κ̃(x−4/w) = η̃(w) =
n−2∏
r=0

[
f (wx2z̃−2

r )f (w−1z̃−2
r x−2)/f (z2

r )
2
]
, (5.12)

where we define the crossing parameter,

w0 = x−2. (5.13)

We denoted for brevity f (w, q̃) as f (w).
As before, we assume that log(wμκ̃(w)) is analytic in an annulus a < |w| < b containing 

w = 1 and w = w0. Thus we expand

log(η(w)) =
∞∑

m=−∞
dmwm, (5.14)

and we find in regimes IV and I (see section 6)

dm = −
n−2∑
r=0

z2m
r + z−2m

r q̃m

m(1 − q̃m)
, (5.15)

d0 = −2
n−2∑
r=0

log[f (z2
r )/φ(q̃)], (5.16)

where φ(q̃) was defined in eq. (3.19). Similarly we expand

log(η̃(w)) =
∞∑

m=−∞
d ′
mwm, (5.17)

where

d ′
m =

n−2∑
r=0

(x2z̃−2
r )m + (z̃−2

r x−2)−mq̃−m

m(1 − q̃−m)
, (5.18)

for m �= 0, and

d ′ = d0 + 2μ logw0, (5.19)
0

12
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where

μ =
n−2∑
r=0

log(z̃−4
r )/ log(x−4) = 	̃n−1

	adjoint
. (5.20)

Thus, as before, eq. (3.27), we find

log(wμκ̃(w)) =
∞∑

m=−∞
cmwm, (5.21)

where

cm = (dm − w2m
0 d ′

m)

(1 − w2m
0 )

, (5.22)

for m �= 0 and

c0 = 1
2d0. (5.23)

We note that indeed this series converges in an annulus containing w = 1 and w = w0.
Let us compute now the critical exponent α. The series for cm, eq. (5.22), is an expression for 

a theta function with the modulus,

w−2
0 = x4 = e−2π2	adjoint/ε = q̃2	adjoint , (5.24)

(we ignore the overall sign). The expression for κ̃ includes factors of θ4(u, −q̃2). The function 
θ4 is defined by

θ4(u, q2) =
∞∏

n=1

(1 − 2q2n−1 cos 2u + q4n−2)(1 − qn),

and it satisfies the conjugate modulus relation [1]

θ4(u, e−ε) =
(

2π

ε

) 1
2

exp

[−π2

2ε
+ 2u(π − u)

ε

]
f (−e−4πu/ε, e−4π2/ε).

Denoting p = −q2, we find that the inverse modulus transformation gives the modulus,

p2/	adjoint . (5.25)

(Note that we get a factor of 4 in the modulus as a result of the inverse modulus relation.) Now, 

since the function θ4 includes powers of q = p
1
2 and defining p = t where t is the temperature, 

we find that

κsingular ∝ t1/	adjoint , (5.26)

and

2 − α = 1/	adjoint. (5.27)

Thus the dimension of the perturbing (thermal) operator in the fixed point RCFT is

	p = 1 − α = 1 − 	adjoint. (5.28)

2 − α

13
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This is the same dimension as in Regime III and we conclude that it is the other side of the same 
fixed point. The RCFT in Regime IV is thus conjectured as the coset model

C = G
O , (5.29)

where O is the original CFT used to define the model and G is some unknown CFT.

6. Regime I

Let us turn now to regime I. It is defined by

−1 < q < 0, 0 > u > −d. (6.1)

The first inversion relation is the same as in regime IV, eq. (5.7). For the second inversion relation 
we take as in regime II,

κ(u)κ(2λ − π − u) =
n−2∏
r=0

θ1(ζ̃r − λ + u)θ1(ζ̃r + λ − π − u)/θ1(−ζr )
2. (6.2)

We define as in regime IV, q , q̃, x, z̃r and w, eqs. (5.4)–(5.6). We further define

κ̃(u) = e2(n−1)u2/εeδu/[ε(2λ−π)]κ(u), (6.3)

where

δ =
n−2∑
r=0

2ζr(π − 2ζr ) − π2 + 2πζ̃r . (6.4)

Then the second inversion relation, eq. (6.2), then becomes

κ̃(w)κ̃(w2
0/w) =

n−2∏
r=0

f (wx2z̃−2
r )f (w−1z̃−2

r x−2q̃2) = η̃(w), (6.5)

where

w0 = −x−2q̃, (6.6)

and f (w, q̃) was defined in eq. (5.3).
Now, we need to expand as before

log η̃(w) =
∞∑

m=−∞
d ′
mwm, (6.7)

and we find,

d ′
0 = d0, (6.8)

where d0 is given by eq. (5.16). Also,

d ′
m = −

n−2∑
r=0

(x2z̃−2
r )m + (z̃−2

r x−2q̃2)−mq̃m

m(1 − q̃m)
, (6.9)

for m �= 0. So, as before,
14



D. Gepner Nuclear Physics B 971 (2021) 115532
log κ̃(w) =
∞∑

m=−∞
cmwm, (6.10)

where

c0 = 1
2d0, (6.11)

and

cm = −w2m
0 d ′

m − dm

1 − w2m
0

, (6.12)

as before, for m �= 0. The series, eq. (6.10), indeed converges in an annulus containing w = 1
and w = w0.

Now, we wish to compute the exponent α. The expression for cm is a theta function with the 
modulus

w2
0 = q̃2x−4, (6.13)

which can be written as

w2
0 = q̃2(1−	adjoint), (6.14)

where we used the definition of x and λ, eqs. (5.5), (2.9). Thus, the modulus of the theta function 
has the modulus

(q̃2)2(1−	adjoint). (6.15)

Now, since the expression for the theta function contains θ4, at positive modulus, the same dis-
cussion as in section 5 shows that

2 − α = 1

1 − 	adjoint
, (6.16)

and the dimension of the perturbing field is

	p = 1 − α

2 − α
= 	adjoint. (6.17)

This is the same dimension as in regime II and we conclude that it is the other side of the same 
phase transition with the critical theory given as in regime II by the coset

C = O
G , (6.18)

where O is the original theory used to define the model and G is some unknown CFT.
This concludes the expression for the free energy in all the four regimes. We can check our 

results for the hard hexagon model which is IRF(SU(2)3, [1]). There λ = π/5, n = 2, ζ0 = ζ̃0 =
λ. We find a complete agreement with the results of Baxter for the free energy [1], p. 425.

7. Discussion

Another construction of two dimensional solvable lattice models is the vertex models. These 
are defined by some CFT O and some representation h, where the fields are weights in this 
representation. The Boltzmann weights are elements of End(V × V ) where V are the weights of 
15
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the representation h. As was discussed in refs. [12,13], the Baxterization of the models is exactly 
the same formula as the IRF models, eq. (2.10), (2.11). For the case of SU(2) this was described 
in ref. [14]. Thus, our calculation of the free energy holds equally well for these models, with the 
parameters ζi and ζ̃i given by eqs. (2.8), (2.9). We assume here periodic boundary conditions. 
The free energy then obeys the same inversion relations, eqs. (2.28), (2.30). Thus also the solution 
for the free energy is the same as described in this paper.

In ref. [15], the inversion relations for the eight vertex model are described by Baxter. They 
coincide precisely with our conjectured inversion relations eqs. (2.28), (2.29), where we denote 
the crossing parameter by λ, eqs. (6.6a), (6.6b) of [15], and the same analyticity requirements. 
The eight vertex model is a thermalization of the six vertex model [15], which is the vertex 
model of general level SU(2) with the representation h being the fundamental representation 
[14]. Thus, the two results fit nicely.

In fact, as was discussed in ref. [6] the same inversion relations hold for the kth ABF model 
with λ = π/(k + 2), for all natural integer k. In our language, this is the IRF with the CFT O
which is SU(2)k WZW model with the fields h = v = the fundamental representation. So, again 
we find a consistency with eq. (2.19). Thus also the solution we found for the free energy is 
exactly the same as the one found for the eight vertex model and for the ABF model, in all the 
four regimes. This supports important credence to our inversion relations and to our calculation 
of the free energy, in these particular cases.

Another interesting point is that in the theories C define integrable models when perturbed 
by the thermal operator. This may be interesting for the building of new integrable models of 
massive quantum field theories.
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